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(Econometrica, Vol. 78, No. 5, September 2010, 1673-1710)

By DREW FUDENBERG AND YUICHI YAMAMOTO

S.1. PROOF OF THEOREM 1

THEOREM 1: If a subset W of R*\ is bounded and ex post self-generating
with respect to &, then W C E(95).

PROOF: Let v e W. We will construct a PPXE that yields v. Since v €
B(8, W), there exist a profile « and a function w:Y — W such that (a, v)
is ex post enforced by w. Set the action profile in period one to be s|,0 = &
and for each h' = y' € Y, set v|,; = w(h') € W. The play in later periods
is determined recursively, using v|,: as a state variable. Specifically, for each
t > 2 and for each h'~' = (y7)'_} € H""!, given a v|,1 € W, let a|,—1 and
w|ye-1:Y — W be such that («]-1, v|,-1) is ex post enforced by w|,—1. Then
set the action profile after history 4'~! to be s|,—1 = a|,~1 and for each y' € Y,
set U|ht:(ht—l,yt) = w|hr—1 (yt) eW.

Because W is bounded and & € (0, 1), payoffs are continuous at infinity, so fi-
nite approximations show that the specified strategy profile s € S generates v as
an average payoff, and its continuation strategy s|, yields v|,. for each k' € H".
Also, by construction, nobody wants to deviate at any moment of time, given
any state w € (2. Because payoffs are continuous at infinity, the one-shot devi-
ation principle applies, and we conclude that s is a PPXE, as desired. Q.E.D.

S.2. PROOF OF THEOREM 2

THEOREM 2: If a subset W of R s compact, convex, and locally ex post
generating, then there is 6 € (0, 1) such that W C E(8) forall 6 € (6, 1).

PROOF: Suppose that W is locally ex post generating. Since {U,},y is an
open cover of the compact set W, there is a subcover {U,n},, of W. Let 8=
max,, 6,». Choose u € W arbitrarily and let U,» be such that u € U,». Since
W N Upm € B(8,m, W), there exist a,, and w,: Y — W such that (a,, u) is ex
post enforced by w,, for §,». Given a é € (8, 1), let
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for all y € Y. Then it is straightforward that («,, u) is enforced by (w(y))ycy
for 6. Also, w(y) € W forall y € Y, since u and w(y) are in W and W is convex.
Therefore, u € B(8, W), meaning that W < B(8, W) for all 6 € (5, 1). (Recall
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that u and & are arb_itrarily chosen from W and (3, 1).) Then, from Theorem 1,
W C E(6) for 6 € (5, 1), as desired. O.E.D.

S.3. PROOF OF LEMMA 2

LEMMA 2: Forevery 6 € (0,1), E(8) C E*(6) € Q, where E*(8) is the convex
hull of E(8).

PROOF: It is obvious that E(8) € E*(8). Suppose E*(8) € Q. Then, since
the score is a linear function, there is v € E(6) and A such that A - v > k*(A).
In particular, since E(8) is compact, there exist v* € E(6) and A such that
A-v* > k*(A) and A - v* > A - v for all v € E*(8). By definition, v* is enforced
by (w(y))ycy such that w(y) € E(6) € E*(6) S H(A, A-v*) forall y e Y. But
this implies that k*(A) is not the maximum score for direction A, a contradic-
tion. O.E.D.

S.4. PROOF OF LEMMA 3

LEMMA 3: For any sn_100th set W in the interior of Q, there is & € (0, 1) such
that W C E(8) for 6 € (8, 1).

PROOF: Since W is bounded, it suffices to show that it is also locally ex post
generating, that is, for each v € W, there exist 8, € (0, 1) and an open neigh-
borhood U, of v such that W N U, € B(6,, W).

First, consider v e bd W. Let A be normal to W at v and let kK = A - v. Since
W C Q € H*(A), there exist «, v, and (W(y)),ey such that A -0 > A-v =k,
(a, v) is enforced using continuation payoffs (w(y)),y for some Se 0,1),
and w(y) e H(A, A-v) forall ye Y. Foreach 6 € (8,1) and yeY,let

5—96 S(1—8) (. v—7
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w(y. ) 3(1—5)U+5(1—6)(w(y)Jr 6)

By construction, («, v) is enforced by (w(y, 6)),ey for 8, and there is k > 0 such
that jw(y, 6) —v| < k(1 —190). Also, since A-v > A-v=k and w(y) € H(A, A-D)
for all y € Y, there is & > 0 such that w(y) — ";8” isin H(A,k—¢g)forallyeY,
thereby

5(1— 5)8)
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for all y € Y. Then, as in the proof of FL’s Theorem 3.1, it follows from the
smoothness of W that w(y, ) € int W for sufficiently large 8, that is, («a, v) is
enforced with respect to int W. To enforce u in the neighborhood of v, use «
and a translate of (w(y, 6)),ey.



REPEATED GAMES 3

Next, consider v € int W. Choose A arbitrarily, and let « and (w(y, 8)),.y be
as in the above argument. By construction, (e, v) is enforced by (w(y, 6))yey.
Also, w(y, 8) € int W for sufficiently large 8, since |w(y, 6) — v| < k(1 — ) for
some k > 0 and v € int W. Thus, (a, v) is enforced with respect to int W when 6
is close to 1. To enforce u in the neighborhood of v, use « and a translate of
(w(y, 8))yey, as before. Q.E.D.

S.5. ALTERNATE PROOF OF LEMMA 6

LEMMA 6: Suppose that a profile o has statewise full rank for (i, ) and (j, ®)
satisfying w # @, and that « has individual full rank for all players and states.
Then k*(a, A) = oo for direction A such that XY # 0 and /\f’ #0.

PROOF: Let (i, w) and (j, @) be such that A? #0, A% #0, and @ # . Let «
be a profile that has statewise full rank for all (7, w) an(f (j, @) satisfying w # @.
First, we claim that for every K > 0, there exist z* = (z{°(y))yey and z]‘?’ =

(z(¥))yey such that

K
Sl @ i»r&&—j) " L=
(S1) T (a;, a;) - z; BA7

forall a; € A;,

(S2) 7°(aj,a) 27 =0
forall a; € A;, and

(S3) Az +ATZ () =0

for all y € Y. To prove that this system of equations indeed has a solution, elim-
inate (S3) by solving for zf’ (y). Then there remain | 4;| + | A4;| linear equations,
and its coefficient matrix is I1; .o (a). Since statewise full rank implies that
this coefficient matrix has rank | 4;| 4 | A4;|, we can solve the system.

Next, for each (I, w) € I x (2, we choose (W}’ (y)),cy so that

(54) (1-8)g (a, ay) + 87" (as, ay) - Wy =0

for all a; € A,. Note that this system has a solution, since « has individual full
rank. Intuitively, continuation payoffs w® are chosen so that players are indif-
ferent over all actions and their payoffs are zero.

Let K > max,.y A - w(y), and choose (z{(y)),cy and (zf(y))yey to satisfy
(S1)—(S3). Then let

we(y)+z2(y), if(l,)=(,w),
w’(y) = W) +z7 (), if(,®)=(j,o),
;

wy(y), otherwise



4 D. FUDENBERG AND Y. YAMAMOTO

for each y e Y. Also, let

vl =1 A’
0, otherwise.

if ([, ®) = (i, w),

We claim that this (v, w) satisfies constraints (i) through (iii) in LP Average.
It follows from (S4) that constraints (i) and (ii) are satisfied for all (/, w) e
Ax N\ {(i, w), (j, ®)}. Also, using (S1) and (S4), we obtain

(1 -90)g’(a;, a_;)+ 6w (a;, a_;) - wy
=(1-90)g/(ai, a_;) + 6m”(a;, a_;) - (wy + z;°)
_ K
=

for all a; € A;. This shows that (v, w) satisfies constraints (i) and (ii) for (i, w).
Likewise, from (S2) and (S4), (v, w) satisfies constraints (i) and (ii) for (j, @).
Furthermore, using (S3) and K > maxcy A - w(y),

A-w(y) = A-(y) + A7z (9) + A7z ()
=Awy)<K=A-v

for all y € Y, and hence constraint (iii) holds.
Therefore, k*(a, A) > A-v = K. Since K can be arbitrarily large, we conclude
k*(a, L) = 0. Q.E.D.
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