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S1. INTRODUCTION

THIS DOCUMENT CONTAINS additional material related to our paper “Search,
Obfuscation, and Price Elasticities on the Internet.”

S2. THEORY OF PRICE SEARCH ENGINES

Any model of price search engines must avoid two possible contradictions.
The first is the Bertrand paradox. A price search engine that caused all retailers
to go out of business would be of little use. The second is what we will call
the search engine revenue paradox. If a price search engine creates Bertrand-
like competition, then retailers cannot pay the search engine because they are
making no profits, and consumers will not pay the search engine because if
there is no price dispersion, they can just go directly to any retailer. In this
section we present a simple model to illustrate the incentives of search engines
and retailers, and note that it is easy to avoid these paradoxes if the search
engine has adequate pricing instruments.

Consider a retail sector consisting of a large number of firms selling a single
undifferentiated product. Suppose that the only way that retailers can reach
consumers is via a monopoly price search engine. The search engine can moni-
tor sales that are made as a result of its searches and charge retailers a referral
fee of r for each sale made. Suppose that the outcome of the price competition
game between the listed retailers depends on two parameters: the wholesale
price w at which retailers acquire the good and a parameter s that we call the
level of “search frictions.” Assume that aggregate sales in this equilibrium are
Q∗(w� s) and aggregate retailer profits are πr(w� s). Assume that these func-
tions are differentiable and that for small s we have ∂Q∗/∂w < 0, ∂Q∗/∂s < 0,
∂πr/∂w < 0, and ∂πr/∂s > 0.1 Assume that prices converge to marginal cost
as s goes to zero so Q∗(w�0)=D(w) and πr(w�0)= 0.

Suppose for now that the price search engine can costlessly choose any level
of search frictions s. Write c for the cost at which retailers acquire the good
that they sell. The problem facing the search engine is now

Max
r�s

rQ∗(c + r� s)�

1The one condition where one would expect “for small s” to bind most quickly is the last one,
but given the elasticities we report, we feel comfortable assuming that the firms in our data would
prefer somewhat less efficient search.
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Given that Q∗ is decreasing in s, the optimal choice is to eliminate all search
frictions (i.e., set set s = 0). The search engine’s problem is then simply the
standard monopoly pricing problem

Max
p

(p− c)D(p)�

where p ≡ c + r. The search engine sets r = pm − c and gets the full monopoly
profit. Retailers earn zero profits. This illustrates our first observation, which
is that search engines would like to reduce frictions.

Our resolution to the search engine revenue paradox is that as long as search
engines can charge per sale referral fees, firms pass the referral fees on to
consumers and search engines can collect their revenues from retailers.2 The
model does have the Bertrand paradox problem if retailers have fixed costs.
In this case a couple of solutions would be natural: the search engine could
make fixed payments to the retailers to cover their fixed costs or, if that is not
feasible, the search engine could choose the minimal level of search frictions
that would let the retailers recover their fixed costs.

Now consider a model in which search engines and retailers must make
costly investments to increase or decrease search frictions. Search frictions will
then typically not be eliminated, and the effect of technological progress on
the level of search frictions is indeterminate. This is our second observation.
For example, the simplest balance-of-power game would have the search en-
gine choose an investment level xse at cost g(xse;θ) while retailers simultane-
ously choose xr at cost h(xr;θ), resulting in the level of search frictions be-
ing s0 − xse + xr . The parameter θ indexes the state of technology. Whether
increases in θ increase or decrease equilibrium search frictions in a model
like this is obviously indeterminate: it depends on whether the technology aids
search-improving or search-obfuscating more.

A couple of variants of the model are worth mentioning. First, suppose the
search engine could also charge fixed fees. It would then charge a fixed fee
of πr(s∗) − h(x∗

r ;θ) to extract the retailers’ profits. As long as the fixed and
the referral fees were chosen in a stage prior to when the x’s were chosen, the
determination of equilibrium search frictions would be unchanged—the only
difference would be that the retailers’ efforts at obfuscation would just help
them achieve a zero profit. Second, suppose that there were multiple search
engines competing to attract consumers. In a model with differentiation be-
tween search engines á là Hotelling, the degree of differentiation determines
the utility consumers receive. The search engines will want to provide this util-
ity level in the most efficient way possible. In many models this would give

2As in the literature on vertical restraints, there may be many other contracts that could be
used to extract the monopoly profits. For example, the search engine could refuse to post any
price below the monopoly price and charge each retailer a fixed fee equal to its expected market
share times the monopoly profit.
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search engines an incentive to reduce search frictions and also lead them to
charge lower referral fees than in the monopoly model.

The only full models of price search engines we are aware of are those of
Baye and Morgan (2001, 2003). They did not consider the possibility of charg-
ing referral fees. They nonetheless avoided the revenue paradox. The key in-
sight is that differences from the Bertrand model that one might think are
trivial—the presence of an outside option for retailers and/or positive listing
fees—make the standard argument that the Bertrand game has no mixed strat-
egy equilibria inapplicable. It turns out that the model has a symmetric mixed
strategy equilibrium in which firms randomize both over whether to list and
over the prices to choose if they do. Both retailers and consumers are willing
to pay positive fixed fees to the search engine.

S3. PRICEWATCH UNIVERSE AND MEMORY MODULES

One can actually use Pricewatch to locate a product in one of two ways.
One can either type a technical product description, such as “Kingston PC2100
512MB,” into a search box or one can run through a multilayered menu to
select one of a number of predefined product categories as discussed on our
paper, for example, clicking on “System Memory” and then on “PC133 128MB
SDRAM DIMM.” We believe that the latter is much more common.

Two aspects of the time series of memory prices are important to our paper.
The first is that memory prices are quite volatile. Figure S1 graphs site A’s

FIGURE S1.—Prices for 128MB PC100 memory modules: the lowest price on Pricewatch and
website A’s low-, medium-, and high-quality prices.
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prices for low-, medium-, and high-quality 128MB PC100 memory modules
along with the lowest price available on Pricewatch. The volatility is apparent
in the lowest price listed on Pricewatch. Prices declined by about 70% over the
course of the year, but the decline is far from steady, for example, prices rose
by about 50% between late May and early July 2000 and by about 25% in less
than two weeks in November 2000. There are many instances of rapid short-
term movement. The volatility of memory prices contributes to the turnover
in Pricewatch’s lists. The second is that our retailer’s prices for medium- and
high-quality memory tend to stay fixed for longer periods and then to change in
discrete jumps. These discontinuities are an important source of information
about demand elasticities.

S4. DATA

Summary statistics for each of the four categories are presented in Table S.I.
In all four categories the websites we study are consistently near the top of
the Pricewatch list: the average prices for the low-quality products they sell
are within 10% of the average lowest price. There is more price dispersion in
the 256MB categories (part of which is due to a period when only a few firms
had access to a low-cost supplier). The fraction of consumers who choose to
upgrade to medium- or high-quality is higher in the 256MB categories.

One issue that comes up in interpreting our demand regressions is that the
PLowRank variable could proxy for the attractiveness of our firms’ medium-
and high-quality offerings relative to the offerings of its competitors. We can-
not offer a study of this based on a full sample of firms for two reasons: first,
there is no natural definition of “medium-quality” or “high-quality” that could
be applied across websites to categorize the many diverse offerings; second,
even if there were such definitions, we do not have the data. Collecting such
data would have been difficult and we did not do it.

We can provide some relevant evidence by comparing our firm’s two web-
sites. We construct three daily variables giving the difference in logs between
site B’s price for a product and site A’s: � log(PLow), � log(PMid), and
� log(PHi). The top part of Table S.II gives summary statistics for these vari-
ables from the 128MB PC100 category. The positive means reflect that site B
typically has slightly higher prices. Prices usually differ by a few percent. (For
low-quality memory, they could only differ by a few percent if they both were
to appear on Pricewatch’s list.) They are occasionally much farther apart. The
bottom panel of the table gives pairwise correlations. The correlations of low-
quality price differences with medium- and high-quality differences are 0.48
and 0.30. Correlations with � log(1 + PLowRank) would be somewhat lower.

A second data issue is that we are aggregating hourly data to produce daily
variables. In a nonlinear model this has the potential to cause bias. The one
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TABLE S.I

SUMMARY STATISTICS FOR MEMORY MODULE DATA

Variable Mean Stdev Min Max

128MB PC100 memory modules; 683 website day observations
LowestPrice 62�98 33�31 21�00 120�85
Range 1–12 6�76 2�52 1�00 13�53
PLow 66�88 34�51 21�00 123�49
PMid 90�71 40�10 35�49 149�49
PHi 115�19 46�37 48�50 185�50
log(1 + PLowRank) 1�86 0�53 0�69 3�26
QLow 12�80 17�03 0 163
QMid 2�44 3�33 0 25
QHi 2�02 3�46 0 47

128MB PC133 memory modules; 608 website day observations
LowestPrice 71�02 37�02 21�00 131�00
Range 1–12 5�92 2�74 2�00 15�00
PLow 73�65 36�72 21�00 131�49
PMid 98�70 41�78 35�45 154�00
PHi 123�46 47�56 48�50 189�50
log(1 + PLowRank) 1�77 0�64 0�69 3�40
QLow 10�10 12�11 0 99
QMid 2�15 4�91 0 100
QHi 4�79 3�93 0 35

256MB PC100 memory modules; 575 website day observations
LowestPrice 130�30 58�17 32�46 215�00
Range 1–12 28�95 15�78 6�39 75�80
PLow 143�40 67�19 47�67 283�49
PMid 206�36 85�91 77�49 372�89
PHi 250�13 93�13 98�50 417�18
log(1 + PLowRank) 1�90 0�55 0�69 2�91
QLow 2�87 4�61 0 33
QMid 1�00 1�88 0 18
QHi 0�87 1�63 0 16

256MB PC133 memory modules; 575 website day observations
LowestPrice 143�90 71�97 32�46 269�00
Range 1–12 25�49 14�01 6�60 67�00
PLow 156�08 78�22 43�00 291�45
PMid 213�16 91�89 78�49 345�45
PHi 249�95 92�26 104�37 392�21
log(1 + PLowRank) 1�97 0�49 0�69 2�73
QLow 5�29 10�24 0 136
QMid 1�10 1�93 0 12
QHi 3�61 3�86 0 19
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TABLE S.II

PRICE DIFFERENCES BETWEEN SITE A AND SITE B:
SUMMARY STATISTICS AND CORRELATIONS

ACROSS QUALITIESa

Differences

Variable Mean Stdev Min Max

� log(PLow) 0.034 0.045 −0�058 0.244
� log(PMid) 0.015 0.043 −0�099 0.208
� log(PHi) 0.024 0.041 −0�098 0.288

Correlations

� log(PLow) � log(PMid) � log(PHi)

� log(PLow) 1.00
� log(PMid) 0.48 1.00
� log(PHi) 0.30 0.26 1.00

a128MB PC100 memory modules.

variable in our model for which this is a concern is PLowRank.3 It does change
at least once on most days: in the 128MB PC100 data, PLowRank only is con-
stant throughout the day on 39% of the website days. To give more of a sense of
the magnitude of the within-day variation, we computed the within-day range
of PLowRank: maxh PLowRankht − minh PLowRankht . In the 128MB PC100
category the mean range is 1.93. The frequencies of 0, 1, 2, 3, 4, and 5 are 39%,
24%, 14%, 6%, 5%, 2%, and 3%. The range is greater than 6 on 7% of the
website days.

If one knew the parameters of the demand model, then it would be pos-
sible to avoid aggregation bias in a daily regression. Suppose Q = ∑

h Qh. If
E(Qh) = (1 + Rankh)

γwh, then E(Q) = ∑
h(1 + Rankh)

γwh. The ideal aggre-
gate rank variable Rank is that which satisfies

E
(
Q(1 + Rank)−γ

(∑
wh

)−1) = 1�

This gives

log(1 + Rank)= 1
γ

log

⎛
⎜⎜⎝

∑
h

(1 + Rankh)
γwh

∑
h

wh

⎞
⎟⎟⎠ �

3The daily log(1 + PLowRank) variable used in our paper was constructed as the average
across hours of log(1 + PLowRankh), rather than as the log of plus the average rank. Our hope
was that this might help reduce the aggregation problem because it is a correct solution in a
regression of logQ on log(1 + PLowRank).
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We computed the aggregate rank variable defined by this expression on our
128MB PC100 data using the estimated γ from our base demand model. The
correlation of this variable with the one we use is 0.9946.

S5. DEMAND ESTIMATES

In this section we discuss some variants on our demand estimation.
Our standard demand model includes three different variables related to

low-quality prices: our firm’s price, log(PLow), the lowest price on Pricewatch
in the category, log(LowestPrice), and the rank of our firm on Pricewatch’s list,
log(1+PLowRank). One limitation of our approach is that we have assumed a
functional form for the effect of PLowRank. One could worry that this restric-
tion misses important details or that it is driven by ranks that are outliers. For
instance, Baye, Gatti, Kattuman, and Morgan (2006) emphasized that the firm
on the top of Kelkoo’s lists receives many more clicks than the second highest
firm.

As one alternate approach, we estimate a model that is more flexible than
our base model, but not so flexible as to make the estimates highly noisy.
Specifically, we assumed that the demand function was rank-independent when
a firm was not on the first page of Pricewatch’s list and that when a firm was
on the first page the relationship between Xβ and PLowRank was continuous
and piecewise linear in PLowRank. We allowed the slopes to change at ranks
of 2, 4, 6, and 12. (Note that this makes the estimation of demand when the
firm is in the top position fully flexible.)

Coefficient estimates from this model are given in Table S.III. Eleven of the
twelve estimated slope coefficients are negative. Two of the estimates are very
highly significant. Three others have t-statistics around 2.0. Figure S2 plots the
fitted values from these estimates against our assumed parametric form.4 The
bold lines in the figure are our base model. The narrower lines are from the
piecewise linear model. In general, the two sets of fitted values look similar.
There is no evidence that our results are driven by outliers at the top rank.5

A second way to approach this issue is to estimate a more flexible functional
form, even though we do not have enough data to get any precise estimates
this way. To do this, we estimated a demand model on the 128MB PC100 data
that is like our main specification but with twelve rank dummies instead of the
log(1 + PLowRank) variable.6 The top panel of Figure S3 plots the predicted

4The graph plots fitted values of Xβ̂ with all dummy variables set equal to zero and other
variables (apart from PLowRank) set to their sample means.

5The one apparent departure is that high-quality sales appear to be greater than our base
model indicates at ranks 6–12. The standard error on the coefficient estimate driving this result,
however, is sufficiently large so that we could not reject the hypothesis that piecewise linear slope
coefficient takes on the value that would make the two curves nearly coincide.

6The RankX dummy is a dummy for observations with log(1 + PLowRank) being between
log(1 + (X − 1

2 )) and log(1 + (X + 1
2 )) to accommodate the within-day rank changes.
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TABLE S.III

PIECEWISE LINEAR DEMAND MODEL FOR 128MB PC100 MEMORY MODULES a

Dep. Var.: Quantities

Independent
Variables

of Each Quality Level

Lowq Midq Highq

PLowRank (1–2) −0�11 −0�11 −0�30
(1�0) (0�5) (1�2)

PLowRank (2–4) −0�32∗ −0�22∗ −0�13
(6�2) (2�4) (1�0)

PLowRank (4–6) −0�32∗ −0�12 −0�08
(5�8) (1�5) (1�1)

PLowRank (6–12) −0�07∗ −0�10 0�02
(2�0) (1�8) (0�4)

DumPLowRank >12 −0�65∗ 0�14 −0�61
(3�0) (0�4) (1�8)

log(PLow) −3�29∗ 1�02 1�00
(2�4) (0�6) (0�5)

log(PMid) 0�33 −6�80∗ 2�21
(0�4) (5�8) (1�6)

log(PHi) 0�38 2�58 −4�29∗

(0�4) (1�7) (3�0)
SiteB −0�25∗ −0�30∗ −0�64∗

(3�2) (2�8) (6�2)
Weekend −0�48∗ −0�94∗ −0�72∗

(8�4) (8�3) (5�8)
log(LowestPrice) 1�20 0�53 0�00

(1�0) (0�3) (0�0)
Number of obs. 683 683 683

aAbsolute value of t-statistics in parentheses. Asterisks (∗) denote significance at the 5% level.

low-quality demand levels in our model (1 + PLowRank)γ̂ . Superimposed on
the plot are the predicted values obtained from the model with rank dummies
with 2 standard-error bars.7 The rank-dummy estimates are generally similar
to our assumed functional form. Our base model lies within the standard error
bars in all cases. The tendency of the flexible model to predict slightly higher
sales at the low ranks appears to be a little more pronounced in this model.
Again, there is no evidence of a jump in sales when moving to the top of the
list, which one might have guessed would exist given Baye, Gatti, Kattuman,
and Morgan’s (2006) results.

Our standard demand specification is not a constant elasticity specification.
Table III in our main paper reports estimated elasticities that apply when vari-

7The omitted category in the rank-dummies model is all ranks above 13. The predicted values
again correspond to setting all continuous variables equal to their sample means and all other
dummy variables equal to zero.
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FIGURE S2.—Functional forms for demand: standard model vs. piecewise linear in the
PLowRank model.
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FIGURE S3.—Functional forms for demand: standard model vs. flexible rank-by-rank esti-
mates.

ables are set to their sample means. Elasticities with respect to changes in the
low-quality price will differ at different prices both because of the assumed
functional form for the effect of PLowRank and because one would want to
use a different value for ∂PLowRank/∂PLow to account for differences in



SEARCH, OBFUSCATION, AND PRICE ELASTICITIES 11

TABLE S.IV

PRICE ELASTICITIES AT DIFFERENT PRICE LEVELS: THE STANDARD MODEL AND
A PIECEWISE LINEAR MODEL

PLowRank = 2�5 MeanPLowRank PLowRank = 9

Low Mid Hi Low Mid Hi Low Mid Hi

Standard Demand Model
PLow −58�0 −32�3 −20�4 −23�1 −11�4 −6�5 −16�7 −7�6 −4�0
PMid 0�7 −6�7 2�4 0�7 −6�7 2�4 0�7 −6�7 2�4
PHi 0�2 2�7 −4�8 0�2 2�7 −4�8 0�2 2�7 −4�8

Piecewise Linear Demand Model
PLow −51�6 −31�3 −17�8 −24�7 −11�2 −2�1 −10�7 −9�9 3�3
PMid 0�3 −6�8 2�2 0�3 −6�8 2�2 0�3 −6�8 2�2
PHi 0�4 2�6 −4�3 0�4 2�6 −4�3 0�4 2�6 −4�3

density of the price distribution. The top half of Table S.IV illustrates how
the elasticities change with prices in our standard 128MB PC100 model. The
left matrix assumes a rank of 2.5, the center matrix assumes a rank of 6, and
the right matrix assumes a rank of 9.8 Note that the estimated elasticities with
respect to the low-quality price are much larger when a website is close to the
top of the Pricewatch list. This is due both to the assumed functional form for
demand and to prices being closer together at the top of the list than they are
further down on the list. This pattern of elasticities is consistent with optimal
pricing intuition: the inverse-elasticity pricing rule implies that firms with sim-
ilar costs can only be indifferent to a range of positions on the list if demand
elasticities are lower at the higher price levels.

The bottom half of the table presents corresponding estimates derived from
our piecewise linear estimates.9 The flexibly estimated elasticity matrices at
the three ranks are remarkably close to the estimates from our standard model.
Our model appears to be adequate to capture the main features of the demand-
rank relationship.

8The table in our main paper is quite close to the center matrix because it corresponds to an
assumed rank of 5.4. For the first matrix ∂PLowRank/∂PLow was set to three times the inverse of
the average difference between the first and fourth lowest prices, and prices and ranks were set to
the means from the subset of observations when a site’s rank was in this range. The second matrix
uses eleven times the inverse of the average difference between the lowest and 12th lowest price
and full sample means (as does the matrix in our main paper). The third is based in differences
between the seventh and eleventh lowest prices and means from observations with ranks in this
range.

9The low-price elasticities in the left and right matrix are derived using the PLowRank (2–4)
and PLowRank (6–12) coefficients, respectively. Our piecewise linear specification has a kink at a
rank of six, so we have chosen to use the average of the PLowRank (4–6) and PLowRank (6–12)
coefficients when calculating the slope of the demand-rank curve at six.
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S6. INSTRUMENTAL VARIABLE ESTIMATES

Our paper presents instrumental variable IV estimates using two sets of in-
struments: “cost-based” and “otherspeed.” In this section, we provide some
information on the power of the instruments.

Table S.V presents regressions of log(PLow), log(PMid), and log(PHi) on
the exogenous variables in our demand model and the cost-based instruments,
in other words, the first stage regressions. The cost for the low- and high-quality
modules is highly significant for the corresponding price in the regressions, and
the F -tests for the joint significance of the instruments are significant. The
mid-quality cost is not significant in the mid-quality regression. In this regard,
the power of the cost-based instruments is less than what one would like.

Table S.VI presents the analogous first-stage regressions for the other-speed
instruments. Note that we can and do instrument for log(1 +PLowRank) with
these instruments, so we present four first-stage regressions. This time, the
coefficients on all of the instruments have very high t-statistics in the relevant
regressions. The instruments, however, only capture a portion of the variation
in PLowRank and this will reduce the precision of our estimates of the effects
of a site’s low-quality rank on its sales.

TABLE S.V

FIRST-STAGE REGRESSIONS: COST-BASED INSTRUMENTS a

Independent
Variables

Dependent Variable

log(PLow) log(PMid) log(PHi)

log(CostLow) 0�14 −0�02 −0�08
(4�7) (0�4) (2�5)

log(CostMid) 0�01 0�02 0�02
(0�3) (0�8) (0�9)

log(CostHi) 0�05 0�11 0�35
(2�0) (3�2) (11�7)

log(LowestPrice) 0�45 0�21 0�14
(12�1) (4�0) (3�4)

log(1 + PLowRank) 0�06 0�02 0�01
(22�4) (6�5) (4�6)

SiteB 0�002 0�000 0�01
(0�7) (0�0) (2�6)

Weekend 0�004 0�003 0�001
(1�9) (1�3) (0�5)

Number of obs. 683 683 683
R-squared 0�997 0�994 0�996

aAbsolute value of t-statistics given in parentheses. Regressions also include time trends with slopes changing
every 30 days.
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TABLE S.VI

FIRST-STAGE REGRESSIONS: OTHER-SPEED INSTRUMENTS a

Independent
Variables

Dependent Variable

log(PLow100) log(PMid100) log(PHi100) log(1 + PLowRank100)

log(PLow133) 0�72 0�02 0�04 3�16
(23�3) (0�4) (0�9) (6�7)

log(PMid133) −0�00 0�56 0�15 0�41
(0�0) (15�4) (4�2) (1�0)

log(PHi133) 0�05 0�31 0�49 0�87
(1�7) (7�2) (11�7) (1�8)

log(1 + PLowRank133) 0�004 0�001 0�002 0�29
(1�7) (0�4) (0�6) (7�9)

log(LowestPrice) 0�17 0�04 0�06 −1�63
(5�9) (0�9) (1�7) (3�7)

SiteB 0�006 −0�001 0�01 0�29
(2�4) (0�3) (3�4) (5�5)

Weekend 0�003 0�001 0�001 0�002
(2�3) (0�6) (0�4) (0�1)

Number of obs. 608 608 608 608
R-squared 0�999 0�997 0�997 0�543

aAbsolute value of t-statistics given in parentheses. Regressions also include time trends with slopes changing
every 30 days.
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