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The proof of the main result in the main paper is provided here. We also provide an
example in which the best reply to nondecreasing bidding functions fails to be nonde-
creasing, and we show how to approximate a degenerate density by one that satisfies
the assumptions in the main paper. Finally, we establish that the main result continues
to hold when the notion of genericity is changed from the topological notion of residual
sets to the measure-motivated notion of prevalent sets.

1. INTRODUCTION

THROUGHOUT THIS SUPPLEMENT, we refer to the main paper as RP. This sup-
plement proceeds as follows: Section 2 provides the proof of RP Theorem 6.1.
Section 3 provides an example in which one agent has no nondecreasing best
reply to the nondecreasing bidding functions of the other agents. Section 4 pro-
vides a sequence of conditional density functions that satisfy RP Assumptions
A.1 and A.2, which converge uniformly to the density function employed in the
example in RP Section 5.2. Section 5 proves that RP Theorem 6.1 continues to
hold when the topologically motivated notion of genericity used in RP (resid-
ual sets) is replaced by a measure-motivated notion of genericity (prevalent
sets).

2. PROOF OF THEOREM 6.1 IN RP

The proof is broken into Parts A–D.

2.1. Part A

We begin by demonstrating that when there is a continuum of agents and
the grid of prices is fine enough, the double auction possesses a symmetric
equilibrium in pure nondecreasing bidding functions.

As in RP Section 3, suppose that there is a unit mass of agents, of whom
α ∈ (0�1) are buyers and 1 − α are sellers. If the state of the good is ω� drawn
according to the density g(·)� then for every x ∈ [0�1]� F(x|ω) agents receive
a signal below x and 1 − F(x|ω) agents receive a signal above x� An agent
with signal x has value v(x�ω) in state ω. Now suppose that each agent’s bid is
restricted to a discrete set of prices P = {0�∆�2∆� � � �}� where ∆ is the fineness

1We thank three referees and the editor for helpful suggestions. Both authors gratefully ac-
knowledge financial support from the National Science Foundation (Grants SES-9905599, SES-
0214421, and SES-0001744).
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of the grid. Denote this environment by E(α�v� f�g�∆)� where f is the density
of F�

Let us now define a pure, symmetric, nondecreasing double-auction equi-
librium for E(α�v� f�g�∆). We restrict our attention to nondecreasing bid-
ding functions that are right-continuous at every x ∈ [0�1] and continuous at
x = 1� This is convenient because such functions are completely characterized
by their jump points and every bid in the range of such a function is assumed
on a nondegenerate interval of signals. So, fix such a nondecreasing function
b : [0�1] →P �

We wish to define an agent’s payoff as a function of both his signal and his
bid given that all other agents employ b : [0�1] → P , but to do so, we must
first determine the market-clearing price as a function of the unknown state
of the good ω when all other agents employ b(·)� Recall that x(ω) is the αth
percentile when the state of the good is ω (i.e., F(x(ω)|ω) = α). Hence, if all
agents employ b(·)� then the double-auction market-clearing price in state ω
must be P(ω) = b(x(ω)) whenever b(·) is continuous at x(ω). Because x(·) is
strictly increasing, b(·)� being nondecreasing, is continuous at x(ω) for all but
perhaps countably many ω� Consequently, P(ω) is determined uniquely for all
but perhaps countably many, and hence a measure zero set of, states ω� There-
fore, without loss, we may define P(ω) = b(x(ω)) for all ω ∈ [0�1) and define
P(1) = limω↑1 P(ω)� which is well defined because b(x(·)) is nondecreasing.2

Henceforth, we will abbreviate this definition of P(·), including the limit at
ω = 1� by writing P(·)≡ b(x(·))�

Suppose that p = P(ω) is the market-clearing price in state ω ∈ [0�1]. Let-
ting [x(p)� x̄(p)) denote the nondegenerate interval in [0�1) on which b(·)
is p, F(x̄(p)|ω)− F(x(p)|ω) is the fraction of agents who bid p; the mass of
agents who bid p or higher is 1 − F(x(p)|ω) ≥ 1 − F(x(ω)|ω) = 1 − α� How-
ever, but because 1 −α is the total number of units of the good, only a fraction
of the agents who bid p will end up with a unit.

Because the mass of agents who bid strictly more than p in state ω� namely
1 − F(x̄(p)|ω)� must end up with a unit, clearing the market requires that,
out of those agents whose bids are equal to the market-clearing price p� only
F(x̄(p)|ω) − α end up with a unit. Since these agents are chosen at random
from among those who bid p, an agent who bids p when the state is ω ∈ P−1(p)
ends up with a unit with probability

λ(ω|p)= F(x̄(p)|ω)− α

F(x̄(p)|ω)− F(x(p)|ω)
�(2.1)

2Defining P(1) = b(x(1)) would render P(·) discontinuous at ω = 1 when b(·) is discontinuous
at x(1) ∈ (0�1)� The range of P(·) would then include a price, namely P(1)� that is not assumed
on a nondegenerate interval. This inconvenience is avoided by defining P(·) to be continuous at
ω = 1�
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where [x(p)� x̄(p)) = b−1(p). It is straightforward to show that when positive,
λ(ω|p) is strictly decreasing in ω� Hence, conditional on an agent’s bid being
equal to the market-clearing price, he is less likely to end up with the good
the higher is the state. Consequently, there is a winner’s curse effect associated
with rationing; ending up with the good is bad news regarding the state ω� (Of
course, rational agents take this into account.)

For convenience, for each ω ∈ [0�1]� we extend λ(ω|·) from the range of
P(·) to all of P by defining λ(ω|p)= 0 if p ∈P is not in the range of P(·)�

If all agents but one employ the bidding function b(·)� let uβ(p�x|b(·)) de-
note the remaining agent’s payoff when his signal is x ∈ [0�1], he submits a
bid of p, and he is a buyer, and let uσ(p�x|b(·)) denote his payoff if he is a
seller. To reflect that no single agent can affect the price in this continuum-
agent model, the market-clearing price function is the same as that when all
agents employ b(·). Hence, P(·)= b(x(·)) and we have

uβ(p�x|b(·)) =
∫
ω:P(ω)<p

(v(x�ω)− P(ω))h(ω|x)dω

+
∫
ω:P(ω)=p

(v(x�ω)−p)λ(ω|p)h(ω|x)dω

and

uσ(p�x|b(·)) =
∫
ω:P(ω)>p

(P(ω)− v(x�ω))h(ω|x)dω

+
∫
ω:P(ω)=p

(p− v(x�ω))(1 − λ(ω|p))h(ω|x)dω�

where an integral over the empty set is understood to be zero and where
h(ω|x) = f (x|ω)g(ω)/

∫ 1
0 f (x|ω)g(ω)dω is the conditional density of the

state of the good given the agent’s signal of x� a notation we shall maintain
throughout the proofs.

Consequently,

uσ(p�x|b(·))= uβ(p�x|b(·))+
∫ 1

0
(P(ω)− v(x�ω))h(ω|x)dω�(2.2)

so that a buyer and seller with the same signal have precisely the same prefer-
ences over bids, p. Indeed, (2.2) indicates that a seller can optimize by com-
mitting to sell his unit at the market-clearing price and then bid as if he is a
buyer. The symmetry between buyers and sellers is a consequence of the fact
that when there is a continuum of agents, no single agent can affect the price.
This symmetry disappears when there are finitely many agents as will be the
case later on.
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Because buyers and sellers are symmetric, we may for the sake of conve-
nience and without loss evaluate any agent’s payoff (buyer or seller) from bid-
ding p when his signal is x by the common payoff function

u(p�x|b(·)) =
∫
ω:P(ω)<p

(v(x�ω)− P(ω))h(ω|x)dω(2.3)

+
∫
ω:P(ω)=p

(v(x�ω)−p)λ(ω|p)h(ω|x)dω�

where both P(·) and λ(·|·) are determined by b(·)� the bidding function em-
ployed by all other agents.

The nondecreasing bidding function b(·) constitutes a pure symmetric equi-
librium of the double auction for E(α�v� f�g�∆) if b(·) is right-continuous on
[0�1]� continuous at x = 1� and, given that all other agents employ it, any re-
maining agent’s payoff given by (2.3) is, for each x ∈ [0�1]� maximized when
p = b(x). We will henceforth call such a bidding function simply a double-
auction equilibrium for E(α�v� f�g�∆)�

We now investigate the properties of a particularly useful correspon-
dence related to equilibria of E(α�v� f�g�∆)� Let P̄ = {0�∆�2∆� � � � �K∆} =
{p0� � � � �pK}� where K∆≥ v(1�1) > (K−1)∆. Because no bid above pK = K∆
is ever strictly better for any agent than his best bid in P̄� for the purposes of
existence it suffices to restrict the agents’ bids to P̄�

As in Athey (2001), it will be useful to view nondecreasing step functions as
being derived from the points at which they jump. Specifically, a vector of jump
points 0 ≤ x1 ≤ x2 ≤ · · · ≤ xK ≤ 1 defines a nondecreasing right-continuous
function b : [0�1] → {p0� � � � �pK} as follows, where x0 = 0 and xK+1 = 1:

b(x) = pk� if x ∈ [xk�xk+1) and b(1)= lim
x↑1

b(x)�(2.4)

Note that the definition ensures continuity at x= 1�
Let XK denote the nonempty, compact, convex set of nondecreasing vectors

in [0�1]K and let bx(·) denote the step function defined in (2.4) for x ∈ XK .3
For x ∈ XK , suppose that all agents but one employ the bidding function bx(·)�
Then u(p�x|bx(·))� given by (2.3), denotes the remaining agent’s payoff from
bidding p ∈ P̄ when his signal is x� Because x represents bx(·)� from now on
we shall write u(p�x|x) instead of u(p�x|bx(·))� Consider now the remaining
agent’s ex ante constrained maximization problem

max
y∈XK

∫ 1

0
u(by(x)�x|x)f (x)dx�(2.5)

3Note that every nondecreasing right-continuous function that is continuous at x = 1 and whose
range is a subset of {p0� � � � �pK} is represented by some nondecreasing vector x� In particular,
functions that do not assume the price pk are represented by x ∈ XK such that xk = xk+1�
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where f (x) = ∫ 1
0 f (x|ω)g(ω)dω is the ex ante density over the agent’s signal,

a notation we maintain throughout the proofs.
This maximization problem is constrained because it restricts the agent to

nondecreasing bidding functions (i.e., by(·)) when there is as yet no reason to
expect the agent’s best reply to be nondecreasing.

Note that bx(·) would be a double-auction equilibrium if x were a solution
to (2.5) and if it could be shown that the remaining agent possesses a nonde-
creasing best reply when all other agents employ bx(·)�

Let B(x) denote the set of solutions to (2.5).4 Because the function φ(x� y)=∫ 1
0 u(by(x)�x|x)f (x)dx is continuous in (x� y),5 B(·) is a nonempty-valued,

compact-valued, upper hemicontinuous correspondence from XK into subsets
of itself. However, it need not be convex-valued. Letting coB(x) denote the
convex hull of B(x)� it follows from Kakutani’s theorem that x̂ ∈ coB(x̂) for
some x̂ ∈ XK�

We now present two important results concerning the fixed points of coB(·).
A consequence of these results is that whenever ∆ > 0 is sufficiently small,
every fixed point x̂ of the correspondence coB(·) is a fixed point of the corre-
spondence B(·)� and bx̂(·) is a double-auction equilibrium for E(α�v� f�g�∆).

In what follows, keep in mind that the grid of prices P̄ , the correspondence
B(·)� and the fixed point x̂ all depend on ∆�

LEMMA 2.1: There exists η̄ > 0 such that for all K and ∆ satisfying (K−1)∆ <
v(1�1) ≤ K∆ and all x ∈ XK� if the length of each interval over which P(·) ≡
bx(x(·)) is constant is strictly less than η̄, then (i) B(x) is convex and (ii) if all other
agents employ bx(·), then for some y ∈ XK the nondecreasing bidding function
by(·) maximizes the agent’s ex ante (and interim) payoff among all measurable
bidding functions, nondecreasing or not.

LEMMA 2.2: For every η> 0� there exists ∆̄ > 0 such that for all ∆< ∆̄� when-
ever x̂ ∈ coB(x̂)� the length of each interval over which P(·)≡ bx̂(x(·)) is constant
is strictly less than η�

The proofs of these lemmas will be provided below. We first present an im-
mediate consequence.

PROPOSITION 2.3: There exists ∆̄ > 0 such that for all ∆ < ∆̄, the following
statements are equivalent:

(a) bx̂(·) is a double-auction equilibrium for E(α�v� f�g�∆).

4The correspondence B(·) varies with ∆� Although this dependence is suppressed for simplicity,
all of our proofs take it into account.
5This follows from the fact that if (xn� yn) → (x� y)� then u(byn (x)�x|bxn )→ u(by(x)�x|bx) for all
values of x but perhaps the finitely many values x= y1� � � � � yK (where y = (y1� � � � � yK)). Applying
the dominated convergence theorem yields φ(xn� yn)→φ(x� y)� as desired.
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(b) x̂ ∈ B(x̂).
(c) x̂ ∈ coB(x̂)�

Consequently, because coB(·) always possesses a fixed point, a double-auction
equilibrium for E(α�v� f�g�∆) exists for all sufficiently small ∆.

PROOF: Clearly (a) ⇒ (b) ⇒ (c). Hence, it suffices to show that (c) ⇒ (a).
If ∆ > 0 is sufficiently small, Lemmas 2.2 and 2.1 imply that (i) and (ii) of

Lemma 2.1 hold. So, if x̂ ∈ coB(x̂)� then x̂ ∈ B(x̂) by Lemma 2.1(i). Conse-
quently, bx̂(·) is a best reply for the remaining agent among all nondecreasing
bidding functions when all others employ bx̂(·)� Lemma 2.1(ii) then implies
that bx̂(·) is an equilibrium, as desired. Q.E.D.

LEMMA 2.4: For every x ∈ [0�1]� let g(·|x) ≥ 0 be a density on [ω�ω̄]� Further
suppose that g(·|·) is C1 and satisfies the affiliation inequality on [ω�ω̄] × [0�1]�
Finally, suppose that r(x�ω) is nondecreasing, C1, and satisfies rx(x�ω) > ε > 0
on [ω�ω̄] × [0�1]� Let

φ(x)=
∫ ω̄

ω

r(x�ω)g(ω|x)dω�

Then φ′(x) > ε for all x ∈ [0�1]�
PROOF: We have

φ′(x) =
∫ ω̄

ω

rx(x�ω)g(ω|x)dω+
∫ ω̄

ω

r(x�ω)gx(ω|x)dω

≥
∫ ω̄

ω

rx(x�ω)g(ω|x)dω
> ε�

where the first inequality follows because r(x�ω) is nondecreasing in ω and
g(ω|x) satisfies the affiliation inequality, and the second follows because
rx(x�ω) > ε� Q.E.D.

PROOF OF LEMMA 2.1: By Theorem 1 in Athey (2001), it suffices to show
that there exists η̄ > 0 such that for all K and ∆ satisfying K∆ ≥ v(1�1) >
(K − 1)∆ and for all x ∈ XK , if the length of each step of P(·)= bx(x(·)) is less
than η̄� then the agent’s payoff function u(p�x|x) satisfies the single-crossing
property in (p�x) ∈ P̄ × [0�1]� That is, for every p̄ > p in P̄ and every x ∈
[0�1]� if

u(p̄�x|x)−u(p�x|x)

=
∫
ω:P(ω)=p

(v(x�ω)−p)(1 − λ(ω|p))h(ω|x)dω
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+
∫
ω:p<P(ω)<p̄

(v(x�ω)− P(ω))h(ω|x)dω

+
∫
ω:P(ω)=p̄

(v(x�ω)− p̄)λ(ω|p̄)h(ω|x)dω

≥ 0�

then the inequality is maintained when x rises, and if the inequality is strict,
the inequality remains strict when x rises.

Noting that the conclusion holds trivially if the interval {ω :p≤ P(ω)≤ p̄} is
degenerate, it suffices to show that it holds when the interval {ω :p ≤ P(ω) ≤
p̄} is nondegenerate.

Let I0� I1, and I2 denote the intervals P−1(p)� P−1((p� p̄))� and P−1(p̄)�

respectively. At least one of the Ik is nondegenerate because I0 ∪ I1 ∪ I2 =
{ω :p≤ P(ω)≤ p̄} is nondegenerate. For x ∈ [0�1]� define

d0(x) =
∫
I0

(1 − λ(ω|p))h(ω|x)dω�(2.6)

d1(x) =
∫
I1

h(ω|x)dω�

d2(x) =
∫
I2

λ(ω|p̄)h(ω|x)dω�

Also for x ∈ [0�1], define the density hk(·|x) on Ik, for k= 0�1�2, as

h0(ω|x) = (1 − λ(ω|p))h(ω|x)/d0(x)� if ω ∈ I0�

h1(ω|x) = h(ω|x)/d1(x)� if ω ∈ I1�

h2(ω|x) = λ(ω|p̄h)(ω|x)/d2(x)� if ω ∈ I2�

where hk(ω|x) is defined to be zero if the denominator dk(x) that appears in
its definition is zero.

Letting φ(x)= u(p̄�x|x)− u(p�x|x), we then have

φ(x) = d0(x)

∫
I0

(v(x�ω)−p)h0(ω|x)dω

+ d1(x)

∫
I1

(v(x�ω)− P(ω))h1(ω|x)dω

+ d2(x)

∫
I2

(v(x�ω)− p̄)h2(ω|x)dω�
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Now, because I0 ∪ I1 ∪ I2 = {ω :p ≤ P(ω) ≤ p̄} is nondegenerate, d0(x) +
d1(x)+ d2(x) > 0 for all x ∈ [0�1]� For x ∈ [0�1]� define, for k= 0�1�2�

ak(x) = dk(x)/(d0(x)+ d1(x)+ d2(x))�

c0(x) =
∫
I0

(v(x�ω)−p)h0(ω|x)dω�

c1(x) =
∫
I1

(v(x�ω)− P(ω))h1(ω|x)dω�

c2(x) =
∫
I2

(v(x�ω)− p̄)h2(ω|x)dω

and define γ(x)= φ(x)/(d0(x)+ d1(x)+ d2(x)) for x ∈ [0�1]� Then

γ(x)= a0(x)c0(x)+ a1(x)c1(x)+ a2(x)c2(x)�(2.7)

Note that sgnφ(x) = sgnγ(x), because d0(x)+ d1(x)+ d2(x) > 0 on [0�1].
Hence, it suffices to show that there exists η̄ > 0 such that for all x ∈ XK� if
the length of every step of P(·) = bx(x(·)) is less than η̄� then γ′(x) > 0 for all
x ∈ [0�1] and for all pairs of prices p< p̄ in P̄ such that [p� p̄] contains a price
in the range of P(·)�

Now

γ′(x) = a0(x)c
′
0(x)+ a1(x)c

′
1(x)+ a2(x)c

′
2(x)

+ a′
0(x)c0(x)+ a′

1(x)c1(x)+ a′
2(x)c2(x)�

Moreover, because vx(x�ω) > 0 and continuous on [0�1]2� there exists ε > 0
such that vx(x�ω) > ε on [0�1]2� Consequently, Lemma 2.4 implies that
c′
k(x) > ε for all x and for k = 0�1�2� Because the ak(x) are nonnegative and

sum to 1, this implies

γ′(x) > ε+ a′
0(x)c0(x)+ a′

1(x)c1(x)+ a′
2(x)c2(x)�

Because ck(x) is bounded on [0�1]� it suffices to show that the a′
k(x) are

sufficiently close to zero uniformly in x when the step widths of P(·) are suffi-
ciently small. More precisely, it suffices to show that for all sequences Kr →r ∞
and ∆r →r 0 such that Kr∆r ≥ v(1�1) > (Kr − 1)∆r� for every sequence of
price functions Pr : [0�1] → P̄r = {0�∆r� � � � �Kr∆r} whose step widths converge
uniformly to zero, and for all sequences of prices p

r
< p̄r in P̄r such that

[p
r
� p̄r] contains a price in the range of Pr(·)� the corresponding sequences

a′
0�r(x)�a

′
1�r(x)� and a′

2�r(x) converge to zero uniformly in x ∈ [0�1]� Given such
sequences Kr� ∆r� Pr(·)�p

r
� and p̄r , we now derive the desired conclusion.

However, to simplify the notation, we suppress the index r.
As the width of the steps of P(·) converges uniformly to zero, the length of

the intervals I0 and I2 converge to zero because each of these corresponds to a
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length of one of the steps of P(·)� However, the length of I1 need not converge
to zero because I1 is potentially the sum of the lengths of many steps of P(·)
and the number of these steps might be unbounded along the sequence. Of
course, the length of I1 is bounded.

Of the three derivatives, a′
0(x)� a

′
1(x), and a′

2(x), we will only treat one in
detail; the other two are similar. Let us consider a′

0(x)� Direct computation
yields

a′
0(x) =

[
d′

0(x)

d0(x)
− d′

1(x)

d1(x)

]
a0(x)a1(x)+

[
d′

0(x)

d0(x)
− d′

2(x)

d2(x)

]
a0(x)a2(x)�(2.8)

where for k= 0�1�2� d′
k(x)/dk(x) is understood to be zero if Ik is degenerate,

the latter being the only instance in which dk(x)= ak(x)= 0�
If I0 is degenerate at any point in the sequence, then a0(·) and a′

0(·) are
identically zero at that point in the sequence. So, without loss, we may assume
that along the sequence, I0 is always nondegenerate.

By (2.8), it suffices to show that
[
d′

0(x)

d0(x)
− d′

1(x)

d1(x)

]
a0(x)a1(x)(2.9)

and [
d′

0(x)

d0(x)
− d′

2(x)

d2(x)

]
a0(x)a2(x)(2.10)

each converge uniformly to zero.
Now, along the sequence, the intervals I1 and I2 can each be either degen-

erate or nondegenerate. Any subsequence along which both are degenerate is
such that both (2.9) and (2.10) are zero for all x along that subsequence (recall
the convention established in (2.8)). We consider the remaining cases one at a
time.

CASE I: Consider any subsequence along which I1 is degenerate and I2 is
nondegenerate. Because I1 is degenerate, (2.9) is zero for all x� The definition
of d0(x) yields

d′
0(x)

d0(x)
=

∫
I0
(1 − λ(ω|p))hx(ω|x)dω∫

I0
(1 − λ(ω|p))h(ω|x)dω(2.11)

=
∫
I0

hx(ω|x)
h(ω|x)

(
(1 − λ(ω|p))h(ω|x)∫

I0
(1 − λ(ω|p))h(ω|x)dω

)
dω

→ hx(ω0|x)
h(ω0|x) �
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where ω0 is the common limit of the upper and lower endpoints of the se-
quence of intervals {I0}, whose lengths converge to zero, and where the limit in
the display follows because the expression on the right-hand side of the second
equality is an average of hx(ω|x)/h(ω|x) over ω ∈ I0, and both hx(·|x) and
h(·|x) are continuous and h(·|x) > 0� Moreover, the convergence is uniform
in x because hx(ω|x) and h(ω|x) are jointly continuous in ω and x.6

Similarly,

d′
2(x)

d2(x)
→ hx(ω2|x)

h(ω2|x) uniformly in x�

where ω2 is the common limit of the upper and lower endpoints of the subse-
quence of nondegenerate intervals {I2}� whose lengths converge to zero.

Now, because I1 is degenerate along the subsequence under consideration,
the intervals I0 and I2 are adjacent and so their endpoints must converge to
a common point. That is, ω0 = ω2� We conclude that (2.10) converges to zero
uniformly in x, because a0(x) and a2(x) are bounded between 0 and 1� Hence,
a′

0(x) converges to zero uniformly in x�

CASE II: Next, consider any subsequence along which I2 is degenerate and
I1 is nondegenerate. Because I2 is degenerate, (2.10) is zero for all x along
the subsequence. If the length of I1 converges to zero along any further subse-
quence, then as above we may conclude that

d′
1(x)

d1(x)
→ hx(ω1|x)

h(ω1|x) uniformly in x�(2.12)

where ω1 is the common limit of the upper and lower endpoints of the further
subsequence of intervals {I1}� However, because I0 and I1 are adjacent inter-
vals, we must then have ω0 = ω1 so that (2.9) converges to zero uniformly in x.
Hence, a′

0(x) converges to zero uniformly in x�
If the length of I1 is bounded away from zero along some other further sub-

sequence, then d0(x)/d1(x) converges to zero uniformly in x� so that a0(x)
converges to zero uniformly in x� Because d′

1(x)/d1(x) is bounded on [0�1]
along the subsequence, (2.9) converges to zero uniformly in x�

CASE III: Consider any subsequence along which both I1 and I2 are nonde-
generate. If the length of I1 converges to zero along any further subsequence,
then once again (2.12) holds, and again ω0 = ω1 so that (2.9) converges to zero
uniformly in x� However, I1 and I2 are also adjacent intervals, so that, similarly,
ω0 = ω1 = ω2 and so (2.10) converges to zero uniformly in x as well. Hence,
a′

0(x) converges to zero uniformly in x�

6Note that this limit result takes into account the fact that the function λ(·|p) varies with I0 and p�
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If the length of I1 is bounded away from zero along some other further sub-
sequence, then both d0(x)/d1(x) and d2(x)/d1(x) converge to zero uniformly
in x� so that both a0(x) and a2(x) converge to zero uniformly in x� Because
d′
k(x)/dk(x)� being an average over ω of hx(ω|x)/h(ω|x) (see, e.g., (2.11)),

is bounded on [0�1] along the subsequence, (2.9) and (2.10) each converge to
zero uniformly in x� and hence so does a′

0(x)�
Having considered all possible cases, we conclude that a′

0(x) converges to
zero uniformly in x� A similar argument establishes the required uniform con-
vergence to zero of both a′

1(x) and a′
2(x)� Q.E.D.

Note that the preceding proof did not make essential use of the exact func-
tional form of the rationing probability function λ(ω|p)� We have therefore
actually proven the following result, which we record here for future reference.

COROLLARY 2.5: There exists η̄ > 0 such that for all K and ∆� all P̄ =
{0�∆� � � � �K∆}� all right-continuous nondecreasing functions P : [0�1] → P̄ con-
tinuous at 1� and all measurable γ : [0�1] × P̄ →[0�1] such that γ(ω|p) ∈ (0�1)
whenever P(ω) = p, if the width of each step of P(·) is strictly less than η̄ and

r(p�x) =
∫
ω:P(ω)<p

(v(x�ω)− P(ω))h(ω|x)dω

+
∫
ω:P(ω)=p

(v(x�ω)−p)γ(ω|p)h(ω|x)dω�

then, for all p̄ > p in P̄ such that [p� p̄] contains a price in the range of P(·)�
there is a strictly positive C1 function d(·) on [0�1] such that

d

dx

r(p̄�x)− r(p�x)

d(x)
≥ η̄ > 0(2.13)

for all x ∈ [0�1].7

PROOF OF LEMMA 2.2: Suppose, by way of contradiction, that the lemma
is false. Then there is a sequence of finite price grids P̄∆ that become dense
in [0� v(1�1)] as ∆ → 0 and each of whose highest price lies between v(1�1)
and v(1�1) + 1, and there is a corresponding sequence of fixed points x∆ of
coB(·) such that for some ε > 0 and for every ∆ > 0� the width of some step
of P∆(·) = bx∆(x(·)) is of length at least ε.8 That is, for each ∆� there is an
interval of states [ω∆� ω̄∆) on which P∆(·) assumes the value p∆� say, and such

7Let d(·) = d0(·)+ d1(·)+ d2(·)� where the dk are as in the proof of Lemma 2.1.
8The number of prices in P̄∆� and so the dimension of x∆� also depends on ∆ and will typically
increase without bound as ∆ tends to zero.
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that ω̄∆ −ω∆ ≥ ε for all ∆� Because p∆ ∈ [0� v(1�1)+ 1]� we may assume that
p∆ → p as ∆ → 0�

Since the length of the interval of states on which P∆(·) = bx∆(x(·)) is p∆

is bounded away from zero and x(·) is continuous and strictly increasing, the
length of the interval of signals on which bx∆(·) is p∆ must also be bounded
away from zero. So, for every ∆� we may suppose that this interval of signals
has length at least η> 0.

Now, x∆ ∈ coB(x∆) implies that x∆ is a convex combination of finitely many
vectors y∆� � � � � z∆ in B(x∆)� Because the length of the interval on which bx∆(·)
is p∆ is at least η� the same must be true for at least one of by∆(·)� � � � � bz∆(·)�
Hence, for every ∆ there exists y∆ ∈ B(x∆) such that the length of the interval,
[y∆� ȳ∆) say, on which by∆(·) is p∆ is at least η�

Because y∆ ∈ B(x∆), by∆(·) maximizes the agent’s ex ante payoff when all
others employ bx∆(·) and the agent is restricted to nondecreasing strategies.
Hence, the agent’s interim payoff when his signal is y∆ must be at least as high
when he bids p∆ as it would be were he to bid the next price in the grid below
p∆ (assuming, for the moment, that p∆ > 0 so that such a price exists). Other-
wise, because the agent’s payoff is continuous in his signal, he can increase his
ex ante payoff, while still satisfying the nondecreasing strategy constraint, by
reducing his bid just below p∆ for a small interval of signals around y∆� So, if
p∆

− denotes the price in P̄∆ just below p∆, we must have

∫ ω∆

ω∆

(v(y∆�ω)−p∆
−)(1 − λ(ω|p∆

−))h(ω|y∆)dω(2.14)

+
∫ ω̄∆

ω∆

(v(y∆�ω)−p∆)λ(ω|p∆)h(ω|y∆)dω≥ 0�

where [ω∆�ω∆) is the (possibly empty) interval on which P∆(·) assumes the
value p∆

− and where [ω∆� ω̄∆) is the interval on which P∆(·) assumes the
value p∆� We have so far assumed that p∆ > 0� If p∆ = 0� define [ω∆�ω∆) to
be empty so that (2.14) clearly holds. Hence, with this convention, (2.14) holds
for all p∆ ≥ 0�

Similarly, letting p∆
+ denote the price in P̄∆ just above p∆� the difference

in the agent’s payoff from bidding p∆
+ versus p∆ when his signal is ȳ∆ must be

nonpositive. Hence,

∫ ω̄∆

ω∆

(v(ȳ∆�ω)−p∆)(1 − λ(ω|p∆))h(ω|ȳ∆)dω(2.15)

+
∫ ω

∆

ω̄∆

(v(ȳ∆�ω)−p∆
+)λ(ω|p∆

+)h(ω|ȳ∆)dω≤ 0�
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where [ω̄∆�ω
∆
) is the (possibly empty) interval on which P∆(·) assumes the

value p∆
+� If p∆ is the highest price in P̄∆� then define [ω̄∆�ω

∆
) to be empty, so

that (2.15) holds because the highest price in the grid is at least v(1�1)�
Let us now consider the limits of (2.14) and (2.15) as ∆ → 0� Without loss, we

may assume that y∆ → y� ȳ∆ → ȳ� ω∆ → ω� ω∆ → ω� ω̄∆ → ω̄� and ω
∆ → ω�

Note that because ω̄∆ −ω∆ ≥ ε and ȳ∆ − y∆ ≥ η for all ∆� [ω�ω̄) and [y� ȳ) are
nondegenerate. On the other hand, the length of either of the intervals [ω�ω)

and [ω̄�ω) might be zero.
Recall that p∆ → p� Hence, p∆

− and p∆
+ also converge to p. Using the defin-

ition of λ(·|·)� one can directly compute the limits of λ(ω|p∆
−)� λ(ω|p∆)� and

λ(ω|p∆
+)� which exist, respectively, whenever the intervals [ω�ω)� [ω�ω̄), and

[ω̄�ω) are nonempty. Hence, when all three intervals are nonempty, there are
nonincreasing functions γ−(·)� γ(·)� and γ+(·)� each taking values in [0�1]�
such that λ(ω|p∆

−) → γ−(ω)� λ(ω|p∆) → γ(ω)� and λ(ω|p∆
+) → γ+(ω) for

all ω ∈ [ω�ω]� [ω�ω̄]� and [ω̄� ω]� respectively. (If an interval is empty, its
corresponding limit function can be defined arbitrarily because the limit of
the corresponding integral is zero.) Moreover, because [ω�ω̄) and [y� ȳ) are
nondegenerate, the strict monotone likelihood ratio property (MLRP) implies
that γ(·) is strictly decreasing on [ω�ω̄] unless y = 0 and ȳ = 1, in which
case γ is constant and equal to 1 − α; either way, γ(·) is not almost every-
where equal to 1 on [ω�ω̄]. So, because v(x�ω) and h(ω|x) are continuous in
(ω�x)� Lebesgue’s dominated convergence theorem implies that the limits of
(2.14) and (2.15) as ∆ → 0 are, respectively,

∫ ω

ω

(v(y�ω)−p)(1 − γ−(ω))h(ω|y)dω(2.16)

+
∫ ω̄

ω

(v(y�ω)−p)γ(ω)h(ω|y)dω≥ 0

and ∫ ω̄

ω

(v(ȳ�ω)−p)(1 − γ(ω))h(ω|ȳ) dω(2.17)

+
∫ ω

ω̄

(v(ȳ�ω)−p)γ+(ω)h(ω|ȳ) dω≤ 0�

Now, either v(y�ω)−p< 0 or v(y�ω)−p≥ 0� In the former case, because
v(x�ω) is nondecreasing, the first integral in (2.16) is nonpositive and so the
second is nonnegative. In the latter case, v(x�ω) being nondecreasing directly
implies that the second integral in (2.16) is nonnegative. Hence, in either case,
the second integral in (2.16) is nonnegative. A similar argument establishes
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that the first integral in (2.17) is nonpositive. However, because ȳ > y and be-
cause γ(·) is not almost everywhere equal to 1,

∫ ω̄

ω

(v(ȳ�ω)−p)

[
(1 − γ(ω))h(ω|ȳ)∫ ω̄

ω
(1 − γ(ω))h(ω|ȳ) dω

]
dω

≥
∫ ω̄

ω

(v(ȳ�ω)−p)

{
γ(ω)h(ω|ȳ)∫ ω̄

ω
γ(ω)h(ω|ȳ) dω

}
dω

>

∫ ω̄

ω

(v(y�ω)−p)

{
γ(ω)h(ω|y)∫ ω̄

ω
γ(ω)h(ω|y)dω

}
dω�

where the first inequality follows because v(x�ω) is nondecreasing and the
density in square brackets first-order stochastically dominates the density in
curly brackets,9 and the second inequality follows from Lemma 2.4. Hence, it
cannot be the case that the second integral in (2.16) is nonnegative and the
first integral in (2.17) is nonpositive. This contradiction completes the proof.

Q.E.D.

Suppose that b : [0�1] → P̄ is a double-auction equilibrium for E(α�v� f�
g�∆) and that the range of P(·) ≡ b(x(·)) is π1 < · · · < πL−1.10 For l =
1� � � � �L − 1� let [xl�xl+1) denote the (nonempty) interval on which b(·) is πl�
Then

x1 ≤ x(0) < x2 and xL−1 < x(1)≤ xL�

According to Lemma 2.2, when the grid of prices is fine enough (i.e., when
∆ is sufficiently small), P(·) has uniformly narrow steps. Consequently, because
on [0�1], x′(ω) is positive and continuous (and so bounded away from zero)
and P(·) = b(x(·)) for every ε > 0� there exists ∆̄ > 0 such that for all ∆ < ∆̄�
xl+1 − xl < ε whenever both xl and xl+1 are in [x(0)�x(1)]� Our next result,
maintaining the notation here, sharpens this to show also that x2 − x1 < ε and
xL −xL−1 < ε� The dependence of each xl and πl� and of L on ∆ is suppressed
throughout.

LEMMA 2.6: For every ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄ and
for every double-auction equilibrium, |x1 − x(0)| < ε� |xL − x(1)| < ε� and 0 <
xl − xl−1 < ε for all l = 2� � � � �L� Hence, L→ ∞ as ε → 0�

9In particular, for every pair of states ω̄ > ω� the relative likelihood of ω̄ versus ω is higher under
the density in square brackets because λ(ω) is a nonincreasing function of ω.
10Hence, each πl = kl∆ for some kl ∈ {0�1� � � � �K}�
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PROOF: In view of the discussion preceding the statement of the lemma and
because Lemma 2.2 implies that x2 → x(0) and xL−1 → x(1) as ∆ → 0� it suf-
fices to show that x1 → x(0) and xL → x(1) as ∆ → 0� We provide the ar-
gument only for x1� because the other argument is similar. Assume, by way
of contradiction, that x1 does not converge to x(0) as ∆ → 0� Then, because
x1 ≤ x(0)� we may assume that x1 → x∗

1 < x(0)�
Because an agent can always bid zero, his payoff must be nonnegative. In

particular, this must be the case when his signal is x1 and he submits his equi-
librium bid of π1. That is,

∫
ω:x(ω)∈[x1�x2)

(v(x1�ω)−π1)λ(ω|π1)h(ω|x1)dω≥ 0�(2.18)

Now, because for ∆ small enough, x1 < x(0) < x2� the set {ω :x(ω) ∈
[x1�x2)} = [0�ω(x2)) is nondegenerate.11 Consequently, we may divide (2.18)
by the positive quantity

∫ ω(x2)

0 λ(ω|π1)h(ω|x1)dω� yielding

∫ ω(x2)

0
v(x1�ω)

λ(ω|π1)h(ω|x1)∫ ω(x2)

0 λ(ω|π1)h(ω|x1)dω
dω≥ π1�(2.19)

Note that x2 → x(0) implies ω(x2) → 0� Consequently, because v(x�ω) is
continuous, taking the limit of (2.19) as ∆ → 0 gives, assuming without loss
that π1 → π∗ (each πl� a member of the changing price grid, depends on ∆),

v(x∗
1�0)≥ π∗�(2.20)

Consider now x̄ ∈ (x∗
1�x(0))� Because vx > 0� v(x̄�0) > π∗ + η for some

η> 0� Consequently, for ∆ small enough, it would be strictly better for an agent
with signal x ∈ (x̄� x(0)) to bid π ′ ∈ (π1�π

∗ +η) than to bid π1� where π ′ is the
price just above π1 in the grid. (Recall that the grid becomes arbitrarily fine as
∆ tends to zero.) This is because whether the price of the good is π ′ or π1� such
an agent strictly prefers to end up with it. Bidding π ′ guarantees that the agent
ends up with the good if the price is π1 and gives the agent a positive probability
of ending up with the good if the price is π ′. Bidding π1 gives no chance of
ending up with the good if the price is π ′ and only gives a probability less than
1 of ending up with it when the price is π1� Consequently, for ∆ small enough,
all agents with signals x ∈ (x̄� x(0)) are not optimizing by bidding π1� (This
argument is valid whether or not P(·) assumes the price π ′�) This contradiction
completes the argument. Q.E.D.

An implication of Lemma 2.6 is that if the grid size is small enough, then to
each double-auction equilibrium b(·) there are prices 0 < π1 < · · · < πL−1 <

11Recall that ω(x) is the state in which the αth percentile is closest to x� See RP Section 3.
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K∆ and signals 0 < x1 < · · · < xL < 1� where L ≥ 2� such that x1 ≤ x(0) < x2

and xL−1 < x(1)≤ xL� and for each l = 1� � � � �L− 1�

b(x) = πl for all x ∈ [xl�xl+1)�(2.21)

and where the range of P(·)≡ b(x(·)) is {π1� � � � �πL−1}�
The reader should keep in mind that (x1� � � � � xL) is not in general the jump-

point representation of b(·) as defined in (2.4). There are two reasons for this.
First, as we have seen, when ∆ is sufficiently small, b(·) takes on values strictly
below π1 and strictly above πL−1� and so there are additional jump points.
Second, the πl need not be consecutive grid prices because b(·)� and hence
P(·)� might jump from one grid price to another, while skipping over several in
between. In each case, the dimension of the jump-point vector that represents
b(·) as defined in (2.4) will be strictly greater than L− 1�

Nonetheless, the πl and xl are sufficient for describing the equilibrium b(·)
because all bids below π1 (resp., above πL−1) are equivalent to one another
because they ensure that the bidder does not (resp., does) end up with the
good, and switching one such bid for another has no effect on the equilibrium
outcome and the resulting bid function remains in equilibrium. Furthermore,
the missing jump-point dimensions are redundant because each missing entry,
for prices between π1 and πL−1� would be equal to one of the xl�

Now, in equilibrium, each agent’s bid, for l = 2� � � � �L� jumps from πl−1 to πl

when his signal is xl and so the agent must be indifferent between the two bids.
Also, when x1 is strictly positive, an agent with signal x1 must be indifferent
between bidding π1 and any price in the grid strictly below it because all such
lower prices leave the agent without a unit. Similarly, when xL is strictly less
than 1, an agent with signal xL must be indifferent between bidding πL−1 and
any price in the grid strictly above it.

Consequently, for all ∆ small enough, because x1 > 0 and xL < 1�
∫
ω:x(ω)∈[xl−1�xl)

(v(xl�ω)−πl−1)(1 − λ(ω|πl−1))h(ω|xl)dω(2.22)

+
∫
ω:x(ω)∈[xl�xl+1)

(v(xl�ω)−πl)λ(ω|πl)h(ω|xl)dω= 0�

must hold for all l = 1�2� � � � �L, where we define x0 = π0 = 0, xL+1 = 1, and
πL = K∆. Note then that when l = 1� the first integral (which is the only place
where π0 appears) is zero regardless of the value of π0� because it is integrated
over the set {ω :x(ω) ∈ [0�x1)}� which is empty because x1 ≤ x(0)� Similarly,
when l = L� the second integral (which is the only place where πL appears) is
zero regardless of the value of πL. Consequently, the definitions of π0 and πL

are rather arbitrary.
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By the definition of λ� for every ω such that x(ω) ∈ [xl�xl+1) and for every
l = 0�1�2� � � � �L�

λ(ω|πl)= F(xl+1|ω)− α

F(xl+1|ω)− F(xl|ω)
�

So, if we define

λ̄(ω|xl�xl+1)= F(xl+1|ω)− α

F(xl+1|ω)− F(xl|ω)

and substitute into (2.22), we obtain
∫
ω:x(ω)∈[xl−1�xl)

(v(xl�ω)−πl−1)(1 − λ̄(ω|xl�xl+1))h(ω|xl)dω(2.23)

+
∫
ω:x(ω)∈[xl�xl+1)

(v(xl�ω)−πl)λ̄(ω|xl�xl+1)h(ω|xl)dω= 0

for l = 1�2� � � � �L�
We next obtain a normalized version of the system of L equations in (2.23)

by dividing the lth equation by
∫
ω:x(ω)∈[xl−1�xl)

(1 − λ̄(ω|xl−1�xl))h(ω|xl)dω(2.24)

+
∫
ω:x(ω)∈[xl�xl+1)

λ̄(ω|xl�xl+1)h(ω|xl)dω�

Note that this quantity is nonzero because 0 = x0 < x1 < · · · < xL < xL+1 = 1
by (2.21).

The resulting equations for l = 1� � � � �L take the form

(1 −β(xl−1�xl� xl+1))(2.25)

×
(∫

ω:x(ω)∈[xl−1�xl)

v(xl�ω)h0(ω|xl−1�xl)dω−πl−1

)

+β(xl−1�xl� xl+1)

×
(∫

ω:x(ω)∈[xl�xl+1)

v(xl�ω)h1(ω|xl�xl+1)dω−πl

)
= 0�

where β(xl−1�xl� xl+1) ∈ [0�1] is given by
(∫

ω:x(ω)∈[xl�xl+1)

λ̄(ω|xl�xl+1)h(ω|xl)dω

)
(2.26)
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×
(∫

ω:x(ω)∈[xl−1�xl)

(1 − λ̄(ω|xl−1�xl))h(ω|xl)dω

+
∫
ω:x(ω)∈[xl�xl+1)

λ̄(ω|xl�xl+1)h(ω|xl)dω

)−1

�

and where

h0(ω|xl−1�xl)= (1 − λ̄(ω|xl−1�xl))h(ω|xl)∫
ω:x(ω)∈[xl−1�xl)

(1 − λ̄(ω|xl−1�xl))h(ω|xl)dω

and

h1(ω|xl�xl+1)= λ̄(ω|xl�xl+1)h(ω|xl)∫
ω:x(ω)∈[xl�xl+1)

λ̄(ω|xl�xl+1)h(ω|xl)dω
�

Note that for k = 0�1 and l = 1� � � � �L� hk(·|xl+k−1�xl+k) is a continuous den-
sity on {ω :x(ω) ∈ [xl+k−1�xl+k)}. Note also that β(xl−1�xl� xl+1) ∈ (0�1) for
l ∈ {2� � � � �L− 1} because both integrals in the denominator of (2.26) are pos-
itive because the intervals over which they are integrated are nondegenerate.

Thus, whenever the grid size is small enough, (2.25) must hold in every equi-
librium. We now employ Lemma 2.6 to show that as ∆� the fineness of the
grid, tends to zero, every double-auction equilibrium b(·) for E(α�v� f�g�∆)
converges uniformly to the essentially unique symmetric double-auction equi-
librium in the market with a fraction α of buyers and in which agents can bid
any nonnegative real number.

PROPOSITION 2.7: For each ∆ > 0� let b∆(·) be a double-auction equilib-
rium for E(α�v� f�g�∆)� Then b∆(x) → v(x�ω(x)) uniformly on [x(0)�x(1))
as ∆ → 0� where ω(x) is the state ω such that F(x|ω) = α� Also, P∆(ω) →
v(x(ω)�ω) uniformly on [0�1)� and so the market-clearing price function con-
verges uniformly to the unique fully revealing rational expectations equilibrium of
the limit economy E(α�v� f�g) with a continuum of agents and prices.

PROOF: Given b∆(·)� let π∆
0 � � � � �π

∆
L∆ and x∆

0 < x∆
1 < · · · < x∆

L∆+1 be as
in (2.21). Then (2.25) must hold when (x�π) = (x∆�π∆) for all l = 1�2� � � � �L∆�

Let x̄∆ be a sequence of signals in [x(0)�x(1)) such that x̄∆ → x̄ ∈
[x(0)�x(1)] and let π∆

l∆
= b∆(x̄∆)� Then [x∆

l∆
� x∆

l∆+1) is the interval on which
b∆(·) is π∆

l∆
and x̄∆ ∈ [x∆

l∆
� x∆

l∆+1) for every ∆ > 0� It suffices to show that
b∆(x̄∆) → v(x̄�ω(x̄)) as ∆ → 0�

For all ∆� the intersection [x∆
l∆
� x∆

l∆+1) ∩ [x(0)�x(1)) is nonempty because it
contains x̄∆� Therefore, x∆

l∆+1 > x(0) and x∆
l∆
< x(1), but because, by (2.21),

x∆
1 ≤ x(0) and x∆

L∆ ≥ x(1)� we must then have 0 < l∆ < L∆ for all ∆� Hence, the
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interval [x∆
l∆
� x∆

l∆+1) has two adjacent such intervals, one to the left and one to
the right, for all ∆. These adjacent intervals are [x∆

l∆−1�x
∆
l∆
) and [x∆

l∆+1�x
∆
l∆+2)�

By Lemma 2.6, the difference between any two of x∆
l∆−1�x

∆
l∆
� and x∆

l∆+1 con-
verges to zero. Consequently, because x̄∆ ∈ [x∆

l∆
� x∆

l∆+1)� each of x∆
l∆−1�x

∆
l∆
� and

x∆
l∆+1 converges to x̄ as ∆ → 0�
Consider now, for each ∆� the two equations in (2.25) for l = l∆ and l =

l∆ + 1 when (x�π) = (x∆�π∆)� Consider the limit of these two equations as
∆ → 0� extracting a subsequence along which all of the (finitely many) lim-
iting variables within the two equations converge. In particular, suppose that
β(xl∆−1�xl∆� xl∆+1) → β′, β(xl∆�xl∆+1�xl∆+2) → β′′� π∆

l∆−1 → π, π∆
l∆

→ π ′� and
π∆

l∆+1 → π ′′� Then, because x∆
l∆−1�x

∆
l∆
� and x∆

l∆+1 each converge to x̄ as ∆ → 0
and v(·� ·) is continuous, the limits of the two equations, l = l∆ and l = l∆ + 1�
are, respectively,

(1 −β′)
(
v(x̄�ω(x̄))−π

) +β′(v(x̄�ω(x̄))−π ′) = 0

and

(1 −β′′)
(
v(x̄�ω(x̄))−π ′) +β′′(v(x̄�ω(x̄))−π ′′) = 0�

where π ≤ π ′ ≤ π ′′ and β′�β′′ ∈ [0�1]� The first of these equations implies
that v(x̄�ω(x̄)) ≤ π ′� while the second implies that v(x̄�ω(x̄)) ≥ π ′� So,
v(x̄�ω(x̄))= π ′� Because b∆(x̄∆)= π∆

l∆
� we may conclude that

lim
∆→0

b∆(x̄∆)= lim
∆→0

π∆
l∆

= π ′ = v(x̄�ω(x̄))�(2.27)

Because (2.27) holds along every convergent subsequence, it holds for the orig-
inal sequence as well.

Finally, because P∆(ω) = b∆(x(ω)) for every ω ∈ [0�1)� (2.27) implies that
P∆(ω)→ v(x(ω)�ω) uniformly in ω on [0�1) as ∆ → 0� Q.E.D.

The next lemma states that for each ∆ > 0 small enough and generic, the
lengths of the intervals over which an equilibrium bidding function assumes the
highest and lowest equilibrium market-clearing prices are bounded away from
zero uniformly across equilibria of E(α�v� f�g�∆) (see Lemma 2.8 (c) and (d)).
Moreover, if [x� x̄) is the interval over which an equilibrium bidding func-
tion is the lowest market-clearing equilibrium price p� then v(x�0) − p + ∆

is strictly positive. Indeed, this difference is bounded away from zero across
all equilibria of E(α�v� f�g�∆); a similar result holds for the highest market-
clearing price (see Lemma 2.8 (a) and (b)). These properties will be important
later on when we construct an equilibrium for the large finite economy. This
is the only place where we directly employ RP Assumption A.4, namely that
vω(x�0)= vω(x�1)= 0� (Of course, RP Assumption A.4 is indirectly employed
whenever we appeal to the lemma we are about to prove.)
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LEMMA 2.8: For all ∆ > 0 sufficiently small and such that neither v(x(0)�0)
nor v(x(1)�1) is an integer multiple of ∆, there exists ε̄ > 0 such that, for all
x̂ ∈ coB(x̂), the following statements hold:

(a) v(x̂k1�0) > (k1 − 1)∆+ ε̄;
(b) v(x̂kL�1) < kL∆− ε̄;
(c) x̂k2 − x̂k1 > ε̄;
(d) x̂kL − x̂kL−1 > ε̄.

Here k1∆< · · ·< kL−1∆ is the range of P(·)≡ bx̂(x(·)) and kL ≡ kL−1 + 1�

PROOF: We prove (a) and (c) only because (b) and (d) are similar. We begin
with (a).

Because the set of fixed points of coB(·) is compact for each ∆ and because
v(x�0) is continuous, it suffices to show that for all ∆> 0 sufficiently small and
for all x̂ ∈ coB(x̂),

v(x̂k1�0) > (k1 − 1)∆�(2.28)

where the range of P(·)≡ bx̂(x(·)) is k1∆< · · ·<kL−1∆�
Consider then an arbitrary sequence ∆ → 0+ and for each ∆ along the se-

quence consider an arbitrary fixed point x̂∆ ∈ coB(x̂∆). Let k∆
1∆< · · ·<k∆

L∆−1∆

be the range of P∆(·) ≡ bx̂∆(x(·))� For l = 1� � � � �L − 1 and all ∆� let x∆
l = x̂∆

k∆
l

and π∆
l = k∆

l ∆� Without loss, we may assume that lim∆ x
∆
l and lim∆ π

∆
l exist

for all l (because x∆
l ∈ [0�1] and 0 ≤ π∆

l ≤ v(1�1) + ∆). It suffices to show
that (2.28) holds when x̂ = x∆ for all ∆ sufficiently small.

For ∆ sufficiently small, by Proposition 2.3, bx̂∆(·) is a double-auction equilib-
rium of E(α�v� f�g�∆), and so by (2.21) and Lemma 2.6, again for sufficiently
small ∆� we have L≥ 4 and 0 < x∆

1 ≤ x(0) < x∆
2 < x∆

3 < x(1)� For convenience,
we assume without loss that these conclusions hold for all ∆� Note also that
Lemma 2.6 implies that both x∆

1 and x∆
2 converge to x(0)�

Now, because bx̂∆(·) is an equilibrium, (2.25) must hold. For l = 1 and 2, we
therefore obtain, for every ∆�

∫ ω(x∆2 )

0
v(x∆

1 �ω)h1(ω|x∆
1 �x

∆
2 )dω= π∆

1(2.29)

and

(1 −β(x∆
1 �x

∆
2 �x

∆
3 ))

(∫ ω(x∆2 )

0
v(x∆

2 �ω)h0(ω|x∆
1 �x

∆
2 )dω−π∆

1

)
(2.30)

+β(x∆
1 �x

∆
2 �x

∆
3 )

(∫ ω(x∆3 )

ω(x∆2 )

v(x∆
2 �ω)h1(ω|x∆

2 �x
∆
3 )dω−π∆

2

)
= 0�
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where β(x∆
1 �x

∆
2 �x

∆
3 ) ∈ (0�1) (see the discussion following (2.25)) and each of

the hk(·|x∆
l � x

∆
l+1) are densities on the intervals over which the integrals in which

they appear are integrated. We next wish to establish the two inequalities

v(x∆
1 �ω(x∆

2 )) ≥ π∆
1(2.31)

and

v(x∆
2 �ω(x∆

2 ))−π∆
1 <∆�(2.32)

Inequality (2.31) follows immediately from (2.29) because v(x�ω) is non-
decreasing in ω� For (2.32), note that (2.29) implies that the first integral in
parentheses in (2.30) is strictly positive. This is because v(x�ω) is strictly in-
creasing in x and nondecreasing in ω� x∆

2 > x∆
1 � and h0(·|x∆

1 �x
∆
2 ) first-order

stochastically dominates h1(·|x∆
1 �x

∆
2 ).

12 Consequently, because β(x∆
1 �x

∆
2 �x

∆
3 ) ∈

(0�1)� the second integral in parentheses in (2.30) is strictly negative. This
has two implications. First, because v(x�ω) is nondecreasing in ω� we must
have v(x∆

2 �ω(x∆
2 ))− π∆

2 < 0� Second, and less obvious, is that there can be no
price in the grid strictly between π∆

1 and π∆
2 � If there were such a price π ′,

a buyer with signal x∆
2 would be strictly better off bidding π ′ rather than π∆

2
because both bids win (resp., do not win) a unit when the market-clearing
price is π∆

1 (resp., above π∆
2 ), but only the bid π∆

2 wins a unit with positive
probability and earns a negative expected payoff (because the second integral
in parentheses in (2.30) is strictly negative) when the market-clearing price
is π∆

2 � However, this yields a contradiction because, according to the equilib-
rium, bx̂∆(x

∆
2 ) = π∆

2 . Hence, there is no price in the grid strictly between π∆
1

and π∆
2 � Because π∆

2 > π∆
1 , we conclude that π∆

2 − π∆
1 = ∆� Combining this

with v(x∆
2 �ω(x∆

2 ))−π∆
2 < 0� we obtain (2.32).

Finally, we wish to establish that for all ∆ sufficiently small,

v(x∆
2 �ω(x∆

2 ))+ v(x∆
1 �0)

2
> v(x∆

1 �ω(x∆
2 ))�(2.33)

Before we establish (2.33), note that if it holds, then

π∆
1 +∆+ v(x∆

1 �0)
2

>
v(x∆

2 �ω(x∆
2 ))+ v(x∆

1 �0)
2

> v(x∆
1 �ω(x∆

2 ))

≥ π∆
1 �

12First-order stochastic dominance follows because h0(ω|x∆
1 �x

∆
2 )/h1(ω|x∆

1 �x
∆
2 ) is nondecreasing

in ω� which itself follows because λ̄(ω|x∆
1 �x

∆
2 ) is nonincreasing in ω� and f (x|ω) (and hence

h(ω|x)) satisfies the MLRP.
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where the first and third lines follow from (2.32) and (2.31), respectively, and
the second line follows from (2.33). Rearranging the outer expressions yields
v(x∆

1 �0) > π∆
1 −∆ = (k∆

1 − 1)∆� proving (2.28) when x̂ = x∆, as desired. Hence,
it remains only to prove (2.33).

Because x∆
2 > x∆

1 � we may rewrite (2.33) as

v(x∆
2 �ω(x∆

2 ))− v(x∆
1 �ω(x∆

2 ))

x∆
2 − x∆

1

+ v(x∆
1 �0)− v(x∆

1 �ω(x∆
2 ))

x∆
2 − x∆

1

> 0�(2.34)

Now, because vx(x�ω) is continuous, the first term on the left-hand side
of (2.34) converges to vx(x(0)�0) > 0. Consequently, it suffices to show that
the second term converges to zero. Because x∆

2 > x(0)� we have ω(x∆
2 ) > 0

and so the second term can be written as the product

ω(x∆
2 )

x∆
2 − x(0)

x∆
2 − x(0)
x∆

2 − x∆
1

v(x∆
1 �0)− v(x∆

1 �ω(x∆
2 ))

ω(x∆
2 )

�

Because x(0) > 0, the strict MLRP implies that Fω(x(0)|0) < 0� There-
fore, the limit of the first term in the preceding product exists and is
−Fx(x(0)|0)/Fω(x(0)|0).13 The second term is bounded; indeed, it is in [0�1]
because x∆

2 > x(0) > x∆
1 � Finally, because vω(x�ω) is continuous and ω(x∆

2 )→
ω(x(0)) = 0, the third term converges to −vω(x(0)�0)� which is zero by RP
Assumption A.4. This proves (2.33).

We now prove (c). By what we have just shown, we may choose ∆̄ > 0 ac-
cording to Proposition 2.3 and also so that (a) holds. Fix any ∆ < ∆̄ such that
k∆ = v(x(0)�0) for all k = 0�1� � � � � Let {x̂} be a sequence of fixed points of
coB(·)� and suppose without loss (because P̄ is finite given ∆) that the range of
P(·) ≡ bx̂(x(·)) is constant and equal to {k1∆� � � � �kL−1∆} along the sequence.
If, contrary to (c), |x̂k2 − x̂k1 | → 0� then because, by (2.21), x̂1 ≤ x(0) < x̂k2 ,
we must have x̂k1 → x(0) and x̂k2 → x(0)� However, taking the limit of (2.29),
which must hold because bx̂(·) is an equilibrium by Proposition 2.3, we obtain
v(x(0)�0)= k1∆� a contradiction, thus proving (c).

We have shown therefore that there is a single ∆̄ such that for every ∆< ∆̄�
(a) holds for some ε̄ and (c) holds for some possibly distinct ε̄� Clearly,
(a) and (c) hold simultaneously for the smaller of the two epsilons. Q.E.D.

In the course of proving Lemma 2.8, we showed that for ∆ sufficiently small,
k2∆ ≥ v(x̂k2�ω(x̂k2)) and k2 = k1 + 1 for all x̂ ∈ coB(x̂)� Consequently, be-
cause x̂k2 > x(0)� vx > 0� and vω ≥ 0� we obtain (k1 + 1)∆ > v(x(0)�0)� Sim-
ilarly, it can be shown that (kL−1 − 1)∆ < v(x(1)�1)� We record these results
for future reference.

13This can be derived from the fact that, by the definition of ω(·)� F(x∆
2 |ω(x∆

2 )) = α is constant
for all ∆ .
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LEMMA 2.9: For all ∆ > 0 sufficiently small and for all x̂ ∈ coB(x̂)� (a) (k1 +
1)∆ > v(x(0)�0) and (b) (kL−1 − 1)∆ < v(x(1)�1), where k1∆< · · · < kL−1∆ is
the range of P(·)≡ bx̂(x(·))�

2.2. Part B

As we have seen, when ∆ is small enough, every double-auction equilibrium
for E(α�v� f�g�∆) yields a vector of signals 0 < x1 ≤ x(0) < x2 < · · · < xL−1 <
x(1) ≤ xL < 1 and corresponding prices 0 < π1 < · · · < πL−1 < K∆ in P̄ that
satisfy (2.25). We now investigate certain genericity properties of such systems
of equations. To do so, we consider perturbations of both the value function v
and the fineness of the grid ∆�

Suppose we replace v(x�ω) in (2.25) with the function v(x�ω)+ ε1 + ε2x+
ε3x

2 + · · · + εLx
L−1 for some ε1� � � � � εL ∈ R� (It is not important that the

resulting function need not lie in V .) The system (2.25) then becomes, for
l = 1� � � � �L�

(1 −β(xl−1�xl� xl+1))(2.35)

×
(∫

ω:x(ω)∈[xl−1�xl)

v(xl�ω)h0(ω|xl−1�xl)dω−πl−1

)

+β(xl−1�xl� xl+1)

(∫
ω:x(ω)∈[xl�xl+1)

v(xl�ω)h1(ω|xl�xl+1)dω−πl

)

+ ε · pL(xl)= 0�

where ε = (ε1� � � � � εL) and pL(x) = (1�x�x2� � � � � xL−1)� and where we define
x0 = π0 = 0� xL+1 = 1� and πL =K∆�

Recalling that each πl = kl∆ for some nonnegative integer kl� the follow-
ing perspective will be useful. For any L ≥ 2 and any sequence of nonnega-
tive integers k0 < k1 < k2 < · · · < kL� replacing each πl by kl∆� we can view
the L equations in (2.35) as a system of equations in the variables x1� � � � � xL�
ε1� � � � � εL� and ∆� while holding fixed L, k0�k1� � � � � and kL� Let

Φ(x� ε�∆)= 0(2.36)

denote this system of equations, where x = (x1� � � � � xL)� and the zero on the
right-hand side is an L vector. We maintain the assumption that L ≥ 2 for the
remainder of this section.

Let U denote the open set of strictly increasing vectors, (x1� � � � � xL) ∈
(0�1)L such that x2 > x(0) and xL−1 < x(1)� Then Φ(x� ε�∆) is well defined
on U × R

L+1� Note that in addition to negative vectors ε� we allow here ∆ ≤ 0,
and also x1 > x(0) and xL < x(1)� This is convenient for the formal analysis of
the system of equations Φ�
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The function Φ(x� ε�∆) is linear in ε and its derivative with respect to ε is
the matrix

Φε(x� ε�∆)=




1 x1 x2
1 · · · xL−1

1

1 x2 x2
2 · · · xL−1

2
���

���
���

���
1 xL x2

L · · · xL−1
L


 �(2.37)

which has full rank because the xl are distinct.14

Hence, for every x ∈ U and every ∆ ∈ R� there is a unique ε ∈ R
L that

solves (2.35). Let us denote this solution by ε(x�∆)�
Now, although Φ(x� ε�∆) is differentiable in ε� it is not differentiable in x

on U� (Hence, ε(x�∆) is not differentiable either.) In fact, differentiability fails
when x1 = x(0) or xL = x(1)�15 To see this for x1 = x(0), note that when l = 1�
the left-hand side of (2.35) involves integration over the set of states ω such
that x(ω) ∈ [0�x1) and x(ω) ∈ [x1�x2)� Now, if x1 < x(0), then the first set
of states is empty and the second is locally independent of x1� Consequently,
the derivatives of the corresponding integrals do not depend on the limits of
integration, but if x1 > x(0)� both sets are nonempty and both vary with x1.
Moreover, this variation affects the derivative in a manner that is bounded
away from zero. Hence, differentiability at x1 = x(0) fails. Similarly, differen-
tiability at xL = x(1) fails.

These are the only points in U at which Φ(x� ε�∆) fails to be differentiable
in x� Indeed, it is otherwise continuously differentiable in all variables. Fortu-
nately, for every ∆> 0� the set of value perturbations ε that admit solutions x
to Φ(x� ε�∆)= 0 such that x1 = x(0) or xL = x(1) are rare. In fact, this set has
Lebesgue measure zero, as we now establish.

LEMMA 2.10: Fix any ∆ ∈ R� For almost every ε ∈ R
L� if x ∈ U solves

Φ(x� ε�∆)= 0� then x1 = x(0) and xL = x(1)�

PROOF: Fix ∆ ∈ R and denote the function ε(x�∆) simply by ε(x)� We must
show that the set of ε ∈ R

L for which Φ(x� ε�∆)= 0 possesses a solution x ∈ U
such that either (a) x1 = x(0) and xL = x(1)� (b) x1 = x(0) and xL = x(1), or
(c) x1 = x(0) and xL = x(1) has Lebesgue measure zero.

We provide the argument for case (a) only; the other two cases are sim-
ilar. Fix x1 = x(0) and xL = x(1)� and consider ε(x(0)�x2� � � � � xL−1�x(1))
as a function that maps vectors z = (x2� � � � � xL−1) such that x(0) < x2 <
· · · < xL−1 < x(1) into R

L� Note that if L = 2� then z is the null vector and
ε(x(0)�x2� � � � � xL−1�x(1))= ε(x(0)�x(1)) is constant.

14The matrix maps a nonzero vector (a0� a1� � � � � aL−1) to the zero vector if and only if each xl is
a root of the nonconstant polynomial a0 + a1x+ · · · + aL−1x

L−1� However, this polynomial has at
most L− 1 distinct roots and so this would imply that the xl are not distinct.
15Recall that because f > 0� 0 < x(0) < x(1) < 1�
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Note that the range of ε(x(0)� z�x(1)) gives precisely the set of perturba-
tions ε for which Φ(x� ε�∆) = 0 possesses a solution x� with x1 = x(0) and
xL = x(1)� To take care of case (a), it suffices to show that this range has mea-
sure zero in R

L�
Because Φ(x(0)� z�x(1)� ε�∆) is continuously differentiable in the argu-

ments z� ε�∆� (recall that x(0) < x2 < · · · < xL−1 < x(1)) and because, as al-
ready established, Φε has full rank, the implicit function theorem implies that
ε(x(0)� z�x(1)) is continuously differentiable in z on its domain.

Now, the derivative εz(x(0)� z�x(1)) has rank at most L − 2� the number
of coordinates of z� Hence, because ε(x(0)� z�x(1)) takes values in R

L� every
value of ε(x(0)� z�x(1)) is critical, by definition. By Sard’s theorem, the set of
critical values of ε(x(0)� z�x(1)) has measure zero in R

L� We conclude that the
range of ε(x(0)� z�x(1))� as z varies over its domain, has measure zero in R

L

as desired. Q.E.D.

Lemma 2.10 has the following immediate implication.

LEMMA 2.11: Let U0 = {x ∈ U :x1 = x(0) and xL = x(1)}� Then Φ(x� ε�∆) is
continuously differentiable on U0 × R

L × R and, for every ∆ ∈ R� there is a subset
C of R

L whose complement has Lebesgue measure zero such that for every ε ∈ C�
all solutions x ∈U to Φ(x� ε�∆)= 0 are in U0�

PROOF: Continuous differentiability of Φ(x� ε�∆) on U0 ×R
L+1 follows from

the continuous differentiability of the functions involved in its definition, and
the measure zero result follows directly from Lemma 2.10. Q.E.D.

Having established that it is rarely the case that solutions x to Φ(x� ε�∆)= 0
involve either x1 = x(0) or xL = x(1)� we now consider another possible prop-
erty of these solutions and establish that it too rarely obtains. Specifically, we
wish to establish that if an agent with signal xl is indifferent, in equilibrium,
between bidding πl−1 and πl� then, typically, the agent’s expected payoff from
bidding the higher price πl is not zero, conditional on (i) his signal, (ii) πl be-
ing the market-clearing price, and (iii) ending up with the good subsequent to
whatever rationing takes place.

The following lemma provides a precise statement. Recall that πl = kl∆ for
some nonnegative integers k0 < · · ·<kL and that, by definition,

h1(ω|xl�xl+1)= λ̄(ω|xl�xl+1)h(ω|xl)∫
ω:x(ω)∈[xl�xl+1)

λ̄(ω|xl�xl+1)h(ω|xl)dω

is the agent’s posterior density of the state ω� conditional on (i) the agent’s
signal xl� (ii) the market-clearing price being πl (i.e., x(ω) ∈ [xl�xl+1)), and
(iii) the agent ending up with good subsequent to any rationing.
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LEMMA 2.12: For almost every (ε�∆) ∈ R
L+1� every solution x ∈ U to Φ(x� ε�

∆)= 0 is such that x1 = x(0)� xL = x(1)� and
∫
ω:x(ω)∈[xl�xl+1)

v(xl�ω)h1(ω|xl�xl+1)dω+ ε · pL(xl)− kl∆ = 0(2.38)

for every l such that xl ∈ (x(0)�x(1)).

PROOF: By Lemma 2.11 and Fubini’s theorem, there is a Borel subset E
of R

L+1� whose complement has Lebesgue measure zero, such that for every
(ε0�∆0) ∈ E� every solution x0 ∈ U to Φ(x� ε0�∆0) = 0 is such that x0 ∈ U0.
It therefore suffices to establish (2.38) for all x ∈ U0. Note that Φ(x� ε�∆) is
continuously differentiable on U0 × R

L+1�
Given l = 1� � � � �L� consider modifying the system of L equations Φ(x� ε�

∆)= 0 by replacing its lth equation by the two equations
∫
ω:x(ω)∈[xl−1�xl)

v(xl�ω)h0(ω|xl−1�xl)dω+ ε · pL(xl)− kl−1∆ = 0(2.39)

and ∫
ω:x(ω)∈[xl�xl+1)

v(xl�ω)h1(ω|xl�xl+1)dω+ ε · pL(xl)− kl∆ = 0�(2.40)

Denote this new system of L + 1 equations by Ψl(x� ε�∆)� Note that the left-
hand sides of (2.40) and (2.38) are identical.

The lth equation removed from Φ(x� ε�∆) = 0 is a strict convex combina-
tion of the two equations (2.39) and (2.40) whenever xl ∈ (x(0)�x(1)). Conse-
quently, xl ∈ (x(0)�x(1)) and Ψl(x� ε�∆)= 0 imply Φ(x� ε�∆)= 0� In addition,
the strict convex combination means that (2.38) can fail for some x such that
Φ(x� ε�∆) = 0 and such that xl ∈ (x(0)�x(1)) only if both (2.40) and (2.39)
hold, and so only if Ψl(x� ε�∆) = 0� Hence, it suffices to show that, for each
l = 1�2� � � � �L and for almost every (ε�∆) ∈ R

L+1� the system Ψl(x� ε�∆) = 0
has no solution x ∈ U0�

For any fixed x0 ∈ U0� we first argue that there is a unique (ε0�∆0) such that
Ψl(x0� ε0�∆0) = 0� To see this, note that, given x0� any such (ε0�∆0) must sat-
isfy (2.40) and (2.39). Subtracting either one of these equations from the other
eliminates ε and yields an equation in ∆ alone. Because kl−1 < kl, there is a
unique ∆ that solves this equation and so we may write ∆0 = ∆(x0)� Moreover,
again because kl−1 < kl� the function ∆(x) is continuously differentiable. Now,
because x0 solves Ψl(x� ε0�∆0) = 0� it must also solve Φ(x� ε0�∆0) = 0� How-
ever, this means that ε0 = ε(x0�∆0) = ε(x0�∆(x0))� Letting ε̄(x) = ε(x�∆(x))�
we have that ε̄(x) is continuously differentiable on U0� being the composition
of such functions.
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Therefore, for each x ∈ U0� (ε̄(x)�∆(x)) is the unique solution (ε�∆) to
Ψl(x� ε�∆) = 0� Consequently, the range of (ε̄(x)�∆(x)) as x varies through-
out U0 is the entire set of (ε�∆) such that Ψl(x� ε�∆) = 0 possesses a solu-
tion x ∈ U0� It suffices then to demonstrate that the range of (ε̄(x)�∆(x)) has
Lebesgue measure zero in R

L+1�
The function (ε̄(x)�∆(x)) is a continuously differentiable map from the open

set U0 ⊂ R
L into R

L+1� Consequently, the rank of its derivative (ε̄x(x)�∆x(x))
is at most L for every x ∈ U0� Therefore, by definition, each value in the
range of (ε̄(x)�∆(x)) is critical. By Sard’s theorem, the set of critical values
of (ε̄(x)�∆(x)), and hence its entire range, has Lebesgue measure zero, as de-
sired. Q.E.D.

Recall from RP that V denotes the subset of functions, v(x�ω) that sat-
isfy RP Assumptions A.3 and A.4, and that RP define a norm on V by
‖v‖ = maxx�ω v(x�ω), thereby inducing a topology on V .16

LEMMA 2.13: There is a residual subset V 0 of V such that for every v ∈ V 0�
v(0�0) > 0 and the following scenario holds for a residual set of ∆ ∈ R: For every
positive integer L ≥ 2 and every strictly increasing sequence of nonnegative integers
k0 < k1 < · · · < kL� if 0 = x0 < x1 < · · · < xL < xL+1 = 1 satisfies x2 > x(0)�
xL−1 < x(1)� and

∫
ω:x(ω)∈[xl−1�xl)

(v(xl�ω)− kl−1∆)(1 − λ̄(ω|xl−1�xl))h(ω|xl)dω(2.41)

+
∫
ω:x(ω)∈[xl�xl+1)

(v(xl�ω)− kl∆)λ̄(ω|xl�xl+1)h(ω|xl)dω= 0

for each l = 1�2� � � � �L� then

x1 = x(0)� xL = x(1)�(2.42)

and ∫
ω:x(ω)∈[xl�xl+1)

(v(xl�ω)− kl∆)λ̄(ω|xl�xl+1)h(ω|xl)dω = 0(2.43)

for every l such that xl ∈ (x(0)�x(1))�

PROOF: Because {v ∈ V :v(0�0) > 0} is an open and dense subset of V , it
suffices to prove the statement while ignoring the condition v(0�0) > 0. Let

16Any topology on V that is at least this strong and for which linear combinations of elements
of V are continuous in the coefficients will do.
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Φ(x� v�∆�L) denote the system (2.36), but where ε = 0 and where we explicitly
keep track of v ∈ V and the dimension L ≥ 2� Recall that U denotes the open
set of strictly increasing vectors (x1� � � � � xL) ∈ (0�1)L such that x2 > x(0) and
xL−1 < x(1)�

Define ŪL�n to be the compact subset of strictly increasing vectors x in U
such that the distance between any two coordinates of x is at least 1/n� and
such that x1 ≥ 1/n� x2 ≥ x(0) + 1/n, xL−1 ≤ x(1) − 1/n� and xL ≤ 1 − 1/n�
Note that, given L� the union over n of the ŪL�n is U�

Define AL�n = {(v�∆) ∈ V × R : every solution x ∈ ŪL�n to Φ(x� v�∆�L) = 0
is such that (2.42) and (2.43) hold}. Because ŪL�n is compact, AL�n is open.
Moreover, by Lemma 2.12, if (v�∆) ∈ V × R is not in AL�n� then for some
ε ∈ R++ arbitrarily close to the origin, and some ∆′ ∈ R arbitrarily close
to ∆� (v + pL · ε�∆′) ∈ AL�n� Consequently, AL�n is dense in V × R� The set
A = ⋂

n�L AL�n is therefore residual and has the property that every (v�∆) ∈ A
satisfies the conclusion of the lemma. By the Kuratowski–Ulam theorem (see
Oxtoby (1980, p. 56, Theorem 15.1)), there exists a residual subset V 0 of V
such that for every v ∈ V 0� {∆ ∈ R : (v�∆) ∈ A} is a residual subset of R�

Q.E.D.

2.3. Part C

Consider again the economy E(α�v� f�g�∆) with a unit mass of agents, of
whom α ∈ (0�1) are buyers, and where all agents are restricted to the discrete
grid of prices P = {0�∆�2∆� � � �}�

Our objective here is to allow buyers and sellers to behave asymmetri-
cally, within a certain range, even though they are symmetric in this contin-
uum agent setting. We shall define a particularly useful correspondence from
pairs of asymmetric buyer–seller bid functions, (b(·)� s(·)) into subsets of them
and demonstrate that every fixed point (b̄(·)� s̄(·)) of this correspondence is
such that both b̄(·) and s̄(·) are each (symmetric) double-auction equilib-
ria for E(α�v� f�g�∆)� Furthermore, the two equilibria are outcome equiva-
lent.

Because much of what follows is similar to the presentation in Part A, we
need not dwell on the details. Let P̄ = {0�∆�2∆� � � � �K∆} = {p0�p1� � � � �pK}�
where K∆ ≥ v(1�1) > (K − 1)∆� Recall that XK is the set of nondecreas-
ing vectors in [0�1]K and that each of these represents a right-continuous
monotone bidding function. Buyers’ bidding functions are represented by
x ∈ XK and sellers’ bidding functions are represented by y ∈ XK� For ε ≥ 0�
let Cε = {(x� y) ∈ XK ×XK : maxk |xk − yk| ≤ ε}� Hence, Cε is a nonempty, com-
pact, convex set.

Consider a buyer (sellers have equivalent preferences). If all other buyers
employ x ∈ XK and all sellers employ y ∈ XK� respectively, then the buyer’s
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payoff when his signal is x and he bids p is

u(p�x|x� y) =
∫
ω:P(ω)<p

(v(x�ω)− P(ω))h(ω|x)dω(2.44)

+
∫
ω:P(ω)=p

(v(x�ω)−p)λ(ω|p�x� y)h(ω|x)dω�

where P(ω) is the market-clearing price in state ω ∈ [0�1]� and λ(ω|p�x� y) is
the probability that the buyer ends up with the good when P(ω) = p� These
latter two functions are determined by the others’ strategies x and y as follows.

For k = 0�1� � � � �K� according to the strategy x� a buyer bids pk when his
signal is in [xk�xk+1)� and according to the strategy y� a seller bids pk when
his signal is in [yk� yk+1)� where x0 = y0 = 0 and xK+1 = yK+1 = 1� The market-
clearing price in state ω must be such that the mass of agents bidding strictly
above that price is no more than 1 − α� the number of units of the good, and
such that the mass of agents bidding strictly less than that price is no more
than α� Hence, the price pk is a potential market-clearing price in state ω ∈
[0�1] if

αF(xk|ω)+ (1 − α)F(yk|ω)≤ α≤ αF(xk+1|ω)+ (1 − α)F(yk+1|ω)�(2.45)

Note that because x0 = y0 = 0 and xK+1 = yK+1 = 1� (2.45) holds for at least
one k = 0�1� � � � �K� However, if x and y yield buyer–seller bid functions in
which there is no trade, there may be many prices pk that satisfy (2.45). This
happens only when, for some k� one of xk and yk is zero and the other is one.
Such vectors can be avoided by restricting attention to (x� y) ∈ Cε for ε ∈ [0�1)�
In this case, for all but perhaps finitely many ω ∈ [0�1]� there is a unique pk

that satisfies (2.45). We state this formally:

LEMMA 2.14: If ε ∈ [0�1) and (x� y) ∈ Cε, then for all but perhaps finitely many
ω ∈ [0�1]� there exists a unique k= 0�1� � � � �K such that

αF(xk|ω)+ (1 − α)F(yk|ω) < α< αF(xk+1|ω)+ (1 − α)F(yk+1|ω)�(2.46)

PROOF: Given strict affiliation, we have Fω(x|ω) < 0 for all x ∈ (0�1)� Con-
sequently, if

αF(xk|ω)+ (1 − α)F(yk|ω)= α(2.47)

for some k = 0�1� � � � �K + 1� then, because α ∈ (0�1) and |xk − yk| ≤ ε < 1�
either xk or yk must be strictly between zero and one. However, this means
that the left-hand side of (2.47) is strictly decreasing in ω and so, for that k�
the equality can hold for exactly one value of ω�



30 P. J. RENY AND M. PERRY

Hence, for all but finitely many ω� when (2.45) holds for some k (and it
must hold for at least one k), both inequalities are strict, i.e., (2.46) holds. This
clearly implies that it holds for precisely one value of k� Q.E.D.

So, when ε ∈ [0�1) and (x� y) ∈ Cε, the price function P(·) determined by the
market-clearing condition (2.45) is essentially uniquely determined. Note also
that it is nondecreasing. At each of the finitely many ω ∈ [0�1] where P(ω)
is not uniquely determined, we may define P(ω) so that it is right-continuous
at ω and continuous at ω if ω = 1� The unique price function P : [0�1] → P
determined in this way is said to be that induced by (x� y).

Assume, for the remainder of this part of the proof, that ε ∈ [0�1) so that
the market-clearing price induced by any (x� y) ∈Cε is well defined.

When P(ω) = pk and the buyer bids pk� he will typically be rationed with
positive probability. All agents who bid strictly more than pk end up with
a unit of the good. The mass of such agents is α(1 − F(xk+1|ω)) + (1 −
α)(1 − F(yk+1|ω))� which is no more than 1 − α� the number of units of the
good. The leftover units are randomly (uniformly) allocated to those agents
who bid pk� whose mass is α(F(xk+1|ω) − F(xk|ω)) + (1 − α)(F(yk+1|ω) −
F(yk|ω))� Hence, the probability that an agent bidding pk ends up with a unit
is

λ(ω|pk�x� y)(2.48)

= αF(xk+1|ω)+ (1 − α)F(yk+1|ω)− α

α(F(xk+1|ω)− F(xk|ω))+ (1 − α)(F(yk+1|ω)− F(yk|ω))
�

Given (x� y) ∈ Cε� let Ψε(x� y) denote the set of (x′� y′) ∈ Cε such x′ and y′

each solve the ex ante maximization problem

max
z∈XK

∫ 1

0
u(bz(x)�x|x� y)f (x)dx�(2.49)

As we shall demonstrate next, the integral in (2.49) is continuous in (x� y� z)
so that Ψε(x� y) is upper hemicontinuous and nonempty-valued. The latter fol-
lows because (z0� z0) ∈ Ψε(x� y) for any solution z0 to (2.49). Let us now demon-
strate the continuity of the integral in (x� y� z) ∈Cε ×XK�

LEMMA 2.15: The integral
∫ 1

0 u(bz(x)�x|x� y)f (x)dx is continuous in (x� y� z)
on Cε ×XK�

PROOF: Suppose that (xn� yn� zn)→ (x� y� z)� Let P(·) denote the price func-
tion induced by (x� y) and, for each n� let Pn(·) denote the price function in-
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duced by (xn� yn)� Then
∫ 1

0
u(bzn(x)�x|xn� yn)f (x)dx(2.50)

=
∫ 1

0

[∫
ω:Pn(ω)<bzn (x)

(v(x�ω)− Pn(ω))h(ω|x)dω
]
f (x)dx

+
∫ 1

0

[∫
ω:Pn(ω)=bzn (x)

(v(x�ω)− bzn(x))λ(ω|Pn(ω)�xn� yn)

× h(ω|x)dω
]
f (x)dx�

Note first that for every x ∈ [0�1]\{z1� � � � � zK}� bzn(x) = bz(x) for all n large
enough. Consequently, if for almost every ω ∈ [0�1]� Pn(ω) = P(ω) for all n
large enough, then by Lebesgue’s dominated convergence theorem, the right-
hand side of (2.50) converges to the same expression without the subscript or
superscript n’s. That is, it converges to

∫ 1
0 u(bz(x)�x|x� y)f (x)dx� as desired.

Hence, it remains only to establish that for almost every ω ∈ [0�1]� Pn(ω) =
P(ω) for all n large enough. We will in fact establish slightly more.

Recall that by Lemma 2.14, because (x� y) ∈ Cε� (2.46) holds for some k
for all but perhaps finitely many ω ∈ [0�1]� Let ω be any such state and let
pk be the unique price such that (2.46) holds for k� Consequently, P(ω)= pk�
However, (2.46) clearly holds for the same k when (x� y) is replaced by (xn� yn)
and n is large enough. Hence, Pn(ω) = pk for all n large enough. Because
ω was arbitrary, we have established that for all but perhaps finitely many ω ∈
[0�1]� Pn(ω)= P(ω) for all n large enough. Q.E.D.

Thus, Ψε(·� ·) is a nonempty-valued, compact-valued, upper hemicontinuous
correspondence from Cε into subsets of itself. However, it need not be convex-
valued. Letting coΨε(x� y) denote the convex hull of Ψε(x� y)� it follows from
Kakutani’s theorem that (x̂� ŷ) ∈ coΨε(x̂� ŷ) for some (x̂� ŷ) ∈ Cε� We now es-
tablish two important results concerning the fixed points of coΨε(·� ·).

LEMMA 2.16: For every η̄ > 0 and every ε̂ ∈ [0�1)� there exists ∆̄ > 0 such that
for all ∆< ∆̄� all ε ∈ [0� ε̂]� and all (x̄� ȳ) ∈ coΨε(x̄� ȳ)� the length of each interval
over which the (x̄� ȳ)-induced price function P(·) is constant is strictly less than η̄�

PROOF: The proof is virtually identical to that of Lemma 2.2, whose steps
can be followed mutatis mutandis, with the following two observations. First,
consider arbitrary sequences εr ∈ [0�1) and (xr� yr) ∈ coΨεr (xr� yr), and the in-
duced sequence of price functions Pr(·)� Fix some price pk in the grid P̄∆ (the
grid is independent of r). If the length of the interval of states on which Pr is pk
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is bounded away from zero along the sequence, then one of the differences
xr
k+1 −xr

k or yr
k+1 − yr

k is also bounded away from zero. This follows from (2.45)
and the strict MLRP.

Second, the rationing probability λ(ω|pk�x� y) in (2.48) is strictly decreasing
in ω unless xk = yk = 0 and xk+1 = yk+1 = 1�17 Consequently, because (xr� yr) ∈
Cε̄ and ε̄ < 1� the pointwise limit of λ(·|pk�xr� yr) is strictly decreasing on the
relevant interval of states. Q.E.D.

Recall from RP Section 3 that x(ω) is the αth percentile of F(·|ω). Let
us call two bidding functions, b(·) and s(·)� outcome-equivalent if b(x(ω)) =
s(x(ω)) for every ω ∈ [0�1)� Hence, outcome-equivalent bidding functions co-
incide at signals between x(0) and x(1)� We will also say that x� y ∈ XK are
outcome-equivalent if bx(·) and by(·) are outcome-equivalent.

The next lemma states that for all ε ∈ [0�1) and for all sufficiently small ∆�
all fixed points of coΨε(·� ·) are pairs of outcome-equivalent vectors, each of
which is a fixed point of B(·). Loosely speaking, if the price grid is sufficiently
fine, the only equilibria of the continuum economy in which buyers and sellers
use distinct strategies are equilibria with arbitrarily little trade.

LEMMA 2.17: For every ε̂ ∈ [0�1)� there exists ∆̄ > 0 such that for all ∆ < ∆̄
and all ε ∈ [0� ε̂]� if (x̄� ȳ) ∈ coΨε(x̄� ȳ), then x̄ ∈ B(x̄), ȳ ∈ B(ȳ)� and x̄ and ȳ are
outcome-equivalent.

PROOF: Choose η̄ > 0 as in Lemma 2.5. Given η̄ and ε̂ ∈ [0�1)� choose ∆̄ ac-
cording to Lemma 2.16 and also so that the conclusion of Lemma 2.3 holds. Fix
any ∆ ∈ (0� ∆̄)� any ε ∈ [0� ε̂]� and any (x̄� ȳ) ∈ coΨε(x̄� ȳ)� Because u(p�x|x̄� ȳ)
is constant in p ∈ P̄∆ for both p below P(0) and also for p above P(1)� Lem-
mas 2.16 and 2.5 together imply that u(p�x|x̄� ȳ) satisfies single crossing on
[0�1] × P̄∆� Consequently, u(p�x|x̄� ȳ) has a nondecreasing pointwise maxi-
mizer and Ψε(x̄� ȳ) is convex so that (x̄� ȳ) ∈Ψε(x̄� ȳ), which together imply that
both bx̄(x) and bȳ(x) maximize u(p�x|x̄� ȳ) over p ∈ P̄∆ for every x ∈ [0�1].
Now, because Lemma 2.5 yields strict single crossing for all price pairs that con-
tain a price in the range of P(·) weakly between them, when a pointwise max-
imizer of u(p�x|x̄� ȳ) is weakly between P(0) and P(1)� it is unique except for
finitely many x ∈ [0�1]� Hence, because bx̄(·) and bȳ(·) are right-continuous,
for all p weakly between P(0) and P(1)� b−1

x̄ (p) = b−1
ȳ (p)� so that bx̄(x(ω)) =

bȳ(x(ω)) for all ω ∈ [0�1)� However, then P(ω)= bx̄(x(ω)) = bȳ(x(ω)) for all
ω ∈ [0�1)� Consequently, bx̄(·) and bȳ(·) are outcome-equivalent and both are
symmetric equilibria. The latter implies x̄ ∈ B(x̄) and ȳ ∈ B(ȳ)� Q.E.D.

17To see this, let a(ω) = αF(xk|ω)+(1−α)F(yk|ω) and b(ω)= αF(xk+1|ω)+(1−α)F(yk+1|ω)�
and note that λ(ω|p)= (b(ω)−α)/[(b(ω)−α)+ (α− a(ω))]� that all terms in parentheses are
nonnegative, and that a′(ω) ≤ 0� b′(ω) ≤ 0.
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2.4. Part D

Consider the finite economy E(n�m�v� f�g�∆) with n buyers, m sellers, and
price grid P = {0�∆�2∆� � � �}� We wish to argue that even though one’s bid can
effect the price here, for the purposes of equilibrium existence, it remains with-
out loss to restrict attention to the price grid P̄ = {0�∆�2∆� � � � �K∆}� where
(K − 1)∆ < v(1�1) ≤ K∆� Indeed, suppose that m > 1 and all bidders other
than i submit bids weakly below K∆� Let p denote the ex post market-clearing
price if bidder i were to submit the bid K∆� Clearly, p ≤ K∆� If instead i bids
b′ >K∆, the price must weakly increase to p′ (by the auction rules; see RP Sec-
tion 4), but it must remain weakly below K∆ (otherwise there would be excess
supply because m> 1). Hence b′ is guaranteed to win a unit at price p′ ≥ p�
Therefore, b′ is strictly worse than bidding K∆ if p < p′ ≤ K∆� because both
bids are sure to win, but b′ wins at a higher price, and b′ is no better than K∆
if p= p′ =K∆ because b′ wins for sure and K∆≥ v(1�1)�

Fix α ∈ (0�1) for the remainder of the proof. We wish to establish our
main result, namely, that for a residual set of value functions v ∈ V � there
exists ∆̄ > 0 such that for a residual set of ∆ ∈ (0� ∆̄) and all unbounded
sequences of natural numbers {nr}� {mr} such that nr/(nr + mr) →r α� the
economy E(nr�mr� v� f�g�∆) possesses a double-auction equilibrium for all r
sufficiently large.

For x� y ∈ XK� let uβ
r (p�x|x� y) denote the double-auction expected payoff of

a buyer in E(nr�mr� v� f�g�∆) whose signal is x when he bids p ∈ P̄� all other
nr − 1 buyers employ the bidding function bx(·), and all mr sellers employ the
bidding function by(·)� Similarly, let uσ

r (p�x|x� y) denote the double-auction
expected payoff of a seller whose signal is x when he bids p ∈ P̄ , all nr buyers
employ bx(·), and all other mr − 1 sellers employ by(·)�

Formally, the buyer’s payoff uβ
r (p�x|x� y) is

∫ 1

0

∑
Br :ρr(Br �p)<p

(v(x�ω)− ρr(Br�p))Pr(Br |x� y�ω)h(ω|x)dω(2.51)

+
∫ 1

0

∑
Br :ρr(Br �p)=p

(v(x�ω)− ρr(Br�p))λr(Br�p)Pr(Br |x� y�ω)

× h(ω|x)dω�

where Br = (Br
1� � � � �B

r
nr+mr−1) is the vector of all others’ bids, from highest

Br
1 to lowest Br

nr+mr−1; ρr(Br�p) is the market-clearing price that lies weakly
between the mrth highest and (mr + 1)st highest among all nr + mr bids18

p�Br
1� � � � �B

r
nr+mr−1; Pr(Br |x� y�ω) is the probability that the others’ ordered

18The values taken on by ρr(Br �p) are not required to lie in P� unless, of course, the mth and
(m+ 1)st highest bids are identical, in which case ρr(Br �p) must be equal to that bid.
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vector of bids is Br conditional on the state ω and conditional on the others’
strategies (x� y); and λr(Br�p) is the probability the buyer receives a unit when
his bid is p and the vector of the others’ bids is Br � Formally,

λr(Br�p)=



0� if ρr(Br�p) > p,
mr−#{bids>p}

#{bids=p} � if ρr(Br�p)= p,
1� if ρr(Br�p) < p,

where the term “bids” refers to all bids, including p� among the nr + mr bids
in the vector (Br�p)�

When necessary, we will let B̃r = (B̃r
1� � � � � B̃

r
nr+mr−1) denote the random vec-

tor that takes on the value Br with probability Pr(Br |x� y�ω)� given x� y� and ω�
Now, strictly speaking, the seller’s payoff is

∫ 1

0

∑
Br :ρr(Br �p)>p

(ρr(Br�p)− v(x�ω))Pr(Br |x� y�ω)h(ω|x)dω

+
∫ 1

0

∑
Br :ρr(Br �p)=p

(ρr(Br�p)− v(x�ω))(1 − λr(Br�p))Pr(Br |x� y�ω)

× h(ω|x)dω�

It will be convenient for the statements and proofs of several results (in par-
ticular, Lemmas 2.18 and 2.21) to define the seller’s payoff as the preceding
expression plus a function that is independent of p� the seller’s choice variable.
This of course has no effect on the seller’s best replies and hence no effect on
the set of equilibria.19 Formally then, define the seller’s payoff, uσ

r (p�x|x� y) to
be

∫ 1

0

∑
Br :ρr(Br �p)>p

(ρr(Br�p)− v(x�ω))Pr(Br |x� y�ω)h(ω|x)dω(2.52)

+
∫ 1

0

∑
Br :ρr(Br �p)=p

(ρr(Br�p)− v(x�ω))(1 − λr(Br�p))Pr(Br |x� y�ω)

× h(ω|x)dω

+
∫ 1

0

∑
Br

(Br
mr

− v(x�ω))Pr(Br |x� y�ω)h(ω|x)dω�

19A similar device was used in Part A when we noted there, because of the continuum of agents,
that the addition of a suitable constant to the seller’s payoff function rendered it identical to the
buyer’s.
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Note that we are abusing notation here because the random variable B̃r from
a seller’s perspective is not the same as B̃r from the buyer’s perspective. For
each agent, Br is the ordered vector of bids of all other agents. Consequently,
Pr(Br|x� y�ω) is different in the two expressions because a buyer faces nr − 1
buyers and mr sellers, whereas a seller faces nr buyers and mr − 1 sellers.
However, there is no need to introduce additional notation for this distinction
because we will henceforth not explicitly employ the formula for the seller’s
payoff; our analysis of the seller will follow by analogy from the results that we
prove for the buyer.

For x̂� ŷ ∈ XK� the pair of functions (bx̂(·)�bŷ(·)), each mapping [0�1] into P̄�
constitutes a double-auction equilibrium for E(nr�mr� v� f�g�∆) if for every x ∈
[0�1]�

bx̂(x) solves maxp∈P̄ uβ
r (p�x|x̂� ŷ)

and

bŷ(x) solves maxp∈P̄ uσ
r (p�x|x̂� ŷ)�

A double-auction equilibrium (bx̂(·)�bŷ(·)) is called nontrivial if trade occurs
with positive probability. That is, if for every k= 1� � � � �K� (x̂k� ŷk) = (1�0).

Recall that u(p�x|x� y)� given by (2.44), is the double-auction expected pay-
off of an agent i (buyer or seller) in the continuum economy E(α�v� f�g�∆)
in which a fraction α of the agents are buyers, when agent i’s signal is x and
he bids p� and when, except for agent i� all buyers employ bx(·) and all sellers
employ by(·)� We next show that an agent’s finite economy payoff converges
uniformly to his continuum economy payoff.

For the remainder of the proof, it is assumed that nr/(nr +mr) →r α�

LEMMA 2.18: If ε ∈ [0�1)� then as r → ∞�

uβ
r (p�x|x� y) and uσ

r (p�x|x� y) converge to u(p�x|x� y)

and

∂

∂x
uβ
r (p�x|x� y) and

∂

∂x
uσ
r (p�x|x� y)

converge to
∂

∂x
u(p�x|x� y)�

where in each case the convergence is uniform in p ∈ P̄� x ∈ [0�1], and (x�
y) ∈Cε�

PROOF: We consider the buyer only; the proof for the seller is similar. Be-
cause P̄ is finite and both [0�1] and Cε are compact, it suffices to consider a
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fixed price p ∈ P̄� and sequences xr → x and (xr� yr) → (x� y)� and to show
that

lim
r
uβ
r (p�x

r|xr� yr)= u(p�x|x� y)�(2.53)

Note that if Br
mr−1 = Br

mr
= Br

mr+1� then the market-clearing price ρr(Br�p)
is independent of the buyer’s bid p and is equal to Br

mr
� Let Er denote the set

of the others’ ordered bids (Br
1� � � � �B

r
nr+mr−1) such that Br

mr−1 = Br
mr

= Br
mr+1.

Then we may write the buyer’s payoff (2.51) as

uβ
r (p�x

r |xr� yr)(2.54)

=
∫ 1

0

( ∑
Br∈Er :Br

mr <p

(v(xr�ω)−Br
mr
)Pr(Br |xr� yr�ω)h(ω|xr)

)
dω

+
∫ 1

0

( ∑
Br∈Er :Br

mr =p

(v(xr�ω)−Br
mr
)

× λr(Br�p)Pr(Br |xr� yr�ω)h(ω|xr)

)
dω

+
∫ 1

0

( ∑
Br /∈Er :ρr(Br �p)<p

(v(xr�ω)− ρr(Br�p))

× Pr(Br |xr� yr�ω)h(ω|xr)

)
dω

+
∫ 1

0

( ∑
Br /∈Er :ρr(Br �p)=p

(v(xr�ω)− ρr(Br�p))

× λr(Br�p)Pr(Br|xr� yr�ω)h(ω|xr)

)
dω�

Let P(·) be the price function induced by (x� y) in E(α�v� f�g�∆)� Then by
Lemmas 2.19 and 2.20 (see subsequent text),

lim
r

Pr
(
B̃r ∈ Er and B̃r

mr
= P(ω)|xr� yr�ω

) = 1(2.55)

and

lim
r

∑
Br∈Er :Br

mr =P(ω)

λr(Br� P(ω))Pr(Br |xr� yr�ω)= λ(ω|P(ω)�x� y)(2.56)

for all but finitely many ω ∈ [0�1]�
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Consider now each of the four functions of ω that appear in parentheses
in (2.54). By (2.55) and because xr → x� the function on the first line converges
to

(v(x�ω)− P(ω))IP(ω)<p(ω)h(ω|x)�
and those on the third and fourth lines converge to zero. By (2.55), (2.56), and
because xr → x� the function in parentheses on the second line converges to

(v(x�ω)− P(ω))λ(ω|P(ω)�x� y)IP(ω)=p(ω)h(ω|x)�
where, in each case, convergence is pointwise in ω ∈ [0�1] except possibly at
finitely many points. Hence, by Lebesgue’s dominated convergence theorem,
we have

lim
r
uβ
r (p�x

r|xr� yr)

=
∫
ω:P(ω)<p

(v(x�ω)− P(ω))h(ω|x)dω

+
∫
ω:P(ω)=p

(v(x�ω)− P(ω))λ(ω|p�x� y)h(ω|x)dω

= u(p�x|x� y)�

as desired.
The result for ∂uβ

r (p�x
r |xr� yr)/∂x follows similarly because this partial

derivative is equal to∫ 1

0

∑
Br :ρr(Br �p)<p

vx(x
r�ω)Pr(Br |xr� yr�ω)h(ω|xr)dω

−
∫ 1

0

∑
Br :ρr(Br �p)<p

ρr(Br�p)Pr(Br |xr� yr�ω)hx(ω|xr)dω

+
∫ 1

0

∑
Br :ρr(Br �p)=p

vx(x
r�ω)λr(Br�p)Pr(Br |xr� yr�ω)h(ω|xr)dω

−
∫ 1

0

∑
Br :ρr(Br �p)=p

ρr(Br�p)λr(Br�p)Pr(Br|xr� yr�ω)hx(ω|xr)dω

and, as before, this expression converges to∫
ω:P(ω)<p

vx(x�ω)h(ω|x)dω

−
∫
ω:P(ω)<p

P(ω)hx(ω|x)
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+
∫
ω:P(ω)=p

vx(x�ω)λ(ω|p�x� y)h(ω|x)dω

−
∫
ω:P(ω)=p

P(ω)λ(ω|p�x� y)hx(ω|x)dω

= ∂

∂x
u(p�x|x� y)�

as desired. Q.E.D.

We now state and prove the two lemmas referred to in the preceding proof.

LEMMA 2.19: If (xr� yr) ∈ Cε for ε ∈ [0�1) and every r� and (xr� yr) → (x� y)�
then for all but finitely many ω ∈ [0�1]�

lim
r

Pr
(
B̃r

mr−1 = B̃r
mr

= B̃r
mr+1 = P(ω)|xr� yr�ω

) = 1�

PROOF: It suffices to show that

lim
r

Pr(B̃r
mr−1 = P(ω)|xr� yr�ω) = 1�

lim
r

Pr(B̃r
mr

= P(ω)|xr� yr�ω)= 1�(2.57)

and

lim
r

Pr(B̃r
mr+1 = P(ω)|xr� yr�ω) = 1�

We show only (2.57); the proofs of the other two equalities are similar. Recall
from the proof of Lemma 2.18 that (xr� yr) → (x� y) ∈ Cε and that ε ∈ [0�1)�
Also recall that P(·) is the price function induced by (x� y) in E(α�v� f�g�∆)�
By Lemma 2.14, for all but finitely many ω ∈ [0�1]� P(ω) = pk, where k satis-
fies

αF(xk|ω)+ (1 − α)F(yk|ω) < α< αF(xk+1|ω)+ (1 − α)F(yk+1|ω)�(2.58)

Choosing such an ω ∈ [0�1]� it suffices to show that (2.57) holds for this ω�
The remainder of the argument is conditional on this ω�

Recall that B̃r
mr

is the mrth highest bid among nr +mr −1 agents, where nr −1
are buyers who each employ xr and where mr are sellers who each employ yr �
Consequently, a buyer bids less than pk when his signal is less than xr

k and a
seller bids less than pk when his signal is less than yr

k�

Let θ̃r
β be the fraction of the nr − 1 buyers whose signals are less than xr

k and
let θ̃r

σ be the fraction of the mr sellers whose signals are less than yr
k. Hence,



RATIONAL EXPECTATIONS EQUILIBRIUM 39

when the nr − 1 buyers employ xr and the mr sellers employ yr� the number of
them who bid less than pk is

(nr − 1)θ̃r
β +mrθ̃

r
σ �(2.59)

The mean and variance of θ̃r
β are F(xr

k|ω) and F(xr
k|ω)(1 − F(xr

k|ω))/

(nr − 1)� respectively, and the mean and variance of θ̃r
σ are F(yr

k|ω) and
F(yr

k|ω)(1 −F(yr
k|ω))/mr� respectively.20 Hence, for every η> 0, Chebyshev’s

inequality yields

lim
r

Pr
(|θ̃r

β − F(xr
k|ω)|<η

) = lim
r

Pr
(|θ̃r

σ − F(yr
k|ω)|<η

) = 1�

Hence, because xr
k → xk and yr

k → yk�

lim
r

Pr
(|θ̃r

β − F(xk|ω)|<η
) = lim

r
Pr

(|θ̃r
σ − F(yk|ω)|<η

) = 1�

which, for brevity, we write instead as

P lim
r
θ̃r
β = F(xk|ω) and P lim

r
θ̃r
σ = F(yk|ω)�

Therefore, because nr/(nr +mr)→ α�

P lim
r

(
nr − 1

nr +mr − 1
θ̃r
β + mr

nr +mr − 1
θ̃r
σ

)
(2.60)

= αF(xk|ω)+ (1 − α)F(yk|ω)

< α

= lim
r

nr − 1
nr +mr − 1

�

where the inequality follows from (2.58). Consequently,

1 = lim
r

Pr
(

nr − 1
nr +mr − 1

θ̃r
β + mr

nr +mr − 1
θ̃r
σ <

nr − 1
nr +mr − 1

)

= lim
r

Pr((nr − 1)θ̃r
β +mrθ̃

r
σ < nr − 1)�

= lim
r

Pr(#{bids strictly less than pk}< nr − 1)�

20For example, note that θ̃r
β is the average of nr − 1 independent and identically distributed ran-

dom variables each of whose value is zero if the corresponding buyer’s signal is below xk and is
one otherwise.
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which implies that

lim
r

Pr(B̃r
mr

≥ pk|ω�xr� yr)= 1�

By employing xr
k+1 and yr

k+1 to construct random variables that count the
fractions of buyer and seller bids strictly above pk� a similar argument estab-
lishes that

lim
r

Pr(B̃r
mr

≤ pk|ω�xr� yr)= 1�

which completes the proof. Q.E.D.

LEMMA 2.20: If (xr� yr) ∈ Cε for ε ∈ [0�1) and every r� and (xr� yr) → (x� y)�
then for all but finitely many ω ∈ [0�1]�

lim
r

∑
Br∈Er :Br

mr =P(ω)

λr(Br� P(ω))Pr(Br |xr� yr�ω)= λ(ω|P(ω)�x� y)�

PROOF: As shown in the proof of Lemma 2.19, for all but finitely many ω ∈
[0�1] there is a unique k that satisfies (2.46). Fix any such ω for the remainder
of the proof.

Because, by Lemma 2.19,

lim
r

Pr
(
B̃r ∈ Er and B̃r

mr
= P(ω)|xr� yr�ω

) = 1�

it suffices to show that

lim
r

∑
Br

λr(Br� P(ω))Pr(Br |xr� yr�ω) = λ(ω|P(ω)�x� y)�

and for this it suffices to show that

P lim
r
λr(B̃r� P(ω))= λ(ω|P(ω)�x� y)�

Now, for each value Br assumed by B̃r�

λr(Br� P(ω))=



0� if ρr(Br� P(ω)) > P(ω),
mr−#{bids>P(ω)}

#{bids=P(ω)} � if ρr(Br� P(ω)) = P(ω),
1� if ρr(Br� P(ω)) < P(ω).

Hence, because Lemma 2.19 implies that

lim
r

Pr
(
ρr(B̃r� P(ω))= P(ω)|xr� yr�ω

) = 1�
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it suffices to show that

P lim
r

mr − #{bids >P(ω)}
#{bids = P(ω)} = λ(ω|P(ω)�x� y)�

which is equivalent to

limr
mr

nr+mr
− P limr

#{bids>P(ω)}
nr+mr

P limr
#{bids=P(ω)}

nr+mr

= λ(ω|P(ω)�x� y)�(2.61)

as long as the denominator is not zero, and where all the agents’ bids are con-
sidered, even the distinguished buyer whose bid is fixed and equal to P(ω)�

Let us begin with the numerator of (2.61). The random quantity

#{bids >P(ω)}
nr +mr

is the fraction of bids among the random vector of bids (B̃r� P(ω)) that are
strictly greater than P(ω)� In (2.60) we showed that among bids in the random
vector B̃r� the fraction that are strictly less than P(ω) = pk has probability
limit equal to αF(xk|ω) + (1 − α)F(yk|ω)� Because buyers bid strictly more
than P(ω) = pk when their signal is greater than xk+1 and sellers bid strictly
more than P(ω)= pk when their signal is greater than yk+1� a similar argument
establishes that

P lim
r

#{bids >P(ω)}
nr +mr

= α(1 − F(xk+1|ω))+ (1 − α)(1 − F(yk+1|ω));
together, the two results establish that

P lim
r

#{bids = P(ω)}
nr +mr

= α(F(xk+1|ω)− F(xk|ω))+ (1 − α)(F(yk+1|ω)− F(yk|ω))�

Hence, because mr/(nr +mr)→ 1 − α� the left-hand side of (2.61) becomes

αF(xk+1|ω)+ (1 − α)F(yk+1|ω)− α

α(F(xk+1|ω)− F(xk|ω))+ (1 − α)(F(yk+1|ω)− F(yk|ω))
�

which is precisely λ(ω|P(ω)�x� y) (see(2.48)). Finally, note that the denomi-
nator is nonzero because (2.46) holds. Q.E.D.

As we have seen in RP Section 3, where bids can be any nonnegative real
number, there is an indeterminacy in the equilibrium of the continuum econ-
omy. This remains true when bids are restricted to a grid. In particular, if b(·) is
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a double-auction equilibrium for the continuum economy E(α�v� f�g�∆) with
grid size ∆� there may be prices in the range of b(·) that never arise as market-
clearing prices. Indeed, if b(x) < b(x(0)) or b(x) > b(x(1))� then p = b(x)
is such a price because P(ω) = b(x(ω)) ∈ [b(x(0))�b(x(1))] for all ω ∈ [0�1].
Consequently, all bids below P(0) are equally good and all bids above P(1)
are equally good, and changing an equilibrium bidding function outside the
range of P(·) does not upset the equilibrium. Of course, all such equilibria
are outcome-equivalent. This indeterminacy of equilibria in the continuum
economy makes it difficult to pin down, in large finite economies, the inter-
val of signals over which bidders bid prices that are outside the range of the
limit price function P(·). In particular, the length of these intervals and, conse-
quently, the probability that the associated prices occur, can vanish in the limit
as the number of traders grows. This, in turn, makes it difficult to establish the
single-crossing property for such prices. We overcome this by forcing bidders
to submit bidding functions whose step widths are bounded away from zero for
potentially problematic prices, a restriction that is ultimately not binding. We
require some definitions.

Let K0 = {k ≥ 0 :v(0�0)−∆< k∆< v(x(0)�0)} and let K1 = {k≥ 0 :v(x(1)�
1) < k∆ < v(1�1) + ∆}� The set K0 contains indices that correspond to low
grid prices, at most one of which is below v(0�0)� and K1 contains indices that
correspond to high grid prices, at most one of which is above v(1�1). These
“extreme” prices are those that can occur as equilibrium prices with vanishingly
small probability in large finite economies.

For ε ≥ 0� let Xε
K = {x ∈XK :xk+1 −xk ≥ ε for all k ∈K0 ∪K1}, where x0 = 0

and xK+1 = 1� Hence, to be a member of Xε
K a vector of jump points must

induce a nondecreasing function such that, for every k ∈K0 ∪K1� the length of
the interval over which the function is k∆ is at least ε� Clearly, Xε

K is compact
and convex. A sufficient condition for nonemptiness is ε ≤ 1/(K+ 1)� We shall
restrict bidders’ vectors of jump points to be in the set Xε

K�
We now define a correspondence for the finite economy E(nr�mr� v� f�g�∆)

whose fixed points will be shown to be double-auction equilibria when nr and
mr are sufficiently large. Fix ε ∈ [0�1) and define C0

ε = Cε2 ∩ (Xε
K ×Xε

K)� Note
the presence of the ε2� This implies that when ε ∈ (0�1) and (x� y) ∈ C0

ε� we
have xk+1 −yk = (xk+1 −xk)+(xk−yk) ≥ ε−ε2 = ε(1−ε) > 0� for k ∈K0 ∪K1�
Similarly, yk+1 − xk > 0�

The set C0
ε is nonempty whenever Xε

K is nonempty. For each (x� y) ∈ C0
ε� let

Ψr
ε(x� y) denote the set of solutions to the ex ante maximization problem

max
(x′�y′)∈C0

ε

[∫ 1

0
uβ
r (bx′(x)�x|x� y)f (x)dx+

∫ 1

0
uσ
r (by′(x)�x|x� y)f (x)dx

]
�(2.62)

As with the related maximization problems (2.5) and (2.49), the objective
function here is jointly continuous in x, x′, y, and y′� Hence, Ψr

ε(·� ·) is
nonempty-valued when Xε

K = ∅ and upper hemicontinuous, but it need not
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be convex-valued. Kakutani’s theorem guarantees the existence of (xr� yr) ∈
coΨr

ε(x
r� yr)�

We now connect the fixed points of the finite economy correspondence
coΨr

ε(·� ·) with those of the continuum economy correspondence coΨε(·� ·)
from Part C.

LEMMA 2.21: Suppose that ε ∈ [0�1) and (xr� yr) ∈ coΨr
ε(x

r� yr) for r =
1�2� � � � � If (xr� yr)→ (x� y)� then (x� y) ∈ coΨε(x� y)�

PROOF: Note that (xr� yr) ∈ coΨr
ε(x

r� yr) implies that xr� yr ∈ Xε
K so that

Xε
K = ∅� By Caratheodory’s theorem, for every r� (xr� yr) ∈ coΨr

ε(x
r� yr) ⊆ R

2K

can be expressed as a convex combination of 2K + 1 or fewer elements,
(xr�1� yr�1)� � � � � (xr�2K+1� yr�2K+1)� of Ψr

ε(x
r� yr)� By Lemma 2.18, the finite econ-

omy payoffs of the buyers and sellers converge uniformly to their common
payoff in the continuum economy. Hence, for each j = 1� � � � �2K+ 1� the limit
(xj� yj) of (xr�j� yr�j) must solve the maximization problem

max
(x′�y′)∈C0

ε

[∫ 1

0
u(bx′(x)�x|x� y)f (x)dx+

∫ 1

0
u(by′(x)�x|x� y)f (x)dx

]
�(2.63)

Let z0 ∈ Xε
K solve

max
z∈Xε

K

∫ 1

0
u(bz(x)�x|x� y)f (x)dx�(2.64)

Then (z0� z0) ∈C0
ε solves (2.63). Consequently, for each k� both xj and yj must

solve (2.64), but because Cε2 ⊆ Cε� this implies (see (2.49)) that (xj� yj) ∈
Ψε(x� y) for each j� Hence, because (x� y) is a convex combination of the
(xj� yj)� we have (x� y) ∈ coΨε(x� y)� as desired. Q.E.D.

We next present a consequence of Assumption A.2 in RP that f (x|ω) satis-
fies the strict monotone likelihood ratio property.

LEMMA 2.22: For all ω0 ∈ (0�1]� there exists ε0 > 0 such that for all ε < ε0�
if |x − y| ≤ ε2 and ε(1 − ε) ≤ x ≤ 1/2� then (a) F(x|ω0/2) > F(y|ω0) and
(b) F(1 − x|1 −ω0) > F(1 − y|1 −ω0/2)�

PROOF: We prove (a) only, because the proof of (b) is similar. Suppose
that (a) fails. Then there exists ω0 ∈ (0�1] and convergent sequences xn�
yn ∈ [0�1] and εn → 0 such that |xn − yn| ≤ ε2

n� εn(1 − εn) ≤ xn ≤ 1/2� and
F(xn|ω0/2) ≤ F(yn|ω0) for every n� Hence, xn and yn must converge to the
same limit, x̂� say, where x̂ ≤ 1/2 and F(x̂|ω0/2) ≤ F(x̂|ω0)� Therefore, x̂ = 0
because Fω(x|ω) < 0 for x ∈ (0�1)� So, we have xn� yn → 0�
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For every n� F(xn|ω0/2) ≤ F(yn|ω0) implies yn > xn because F(x|ω) is
strictly increasing in x and strictly decreasing in ω� Therefore,

0 ≤ F(yn|ω0)− F(xn|ω0/2)
yn − xn

= F(yn|ω0)− F(xn|ω0)+ F(xn|ω0)− F(xn|ω0/2)
yn − xn

= F(yn|ω0)− F(xn|ω0)

yn − xn

+ F(xn|ω0)− F(xn|ω0/2)
xn

xn

yn − xn

→ −∞�

a contradiction, where the limit is justified as follows. The first term con-
verges to f (0|ω0) and so is bounded. As for the second term, (F(xn|ω0) −
F(xn|ω0/2))/xn → f (0|ω0)−f (0|ω0/2)� while xn/(yn −xn)≥ εn(1−εn)/ε

2
n →

+∞� Hence, the limit follows if f (0|ω0) < f(0|ω0/2). Now, because ω0 > 0�
strict MLRP implies that f (x|ω0)/f (x|ω0/2) is strictly increasing in x� Hence,
because both f (·|ω0) and f (·|ω0/2) are positive and integrate to unity over
[0�1]� neither can be almost everywhere above the other. Therefore, we must
have f (0|ω0) < f(0|ω0/2) as desired. Q.E.D.

LEMMA 2.23: For every β > 0� there exists θ ∈ (0�1) such that for all
a�b� c�d ≥ 0, if 0 ≤ b−a≤ 1 and d ≥ max(b� c)+β� then for all positive integers
n and m�

∫ b

a
zn(1 − z)m dz∫ d

c
zn(1 − z)m dz

≤ 2
β
θn+m� whenever

n

n+m
≥ d�

PROOF: Without loss, assume a < b and let c′ denote the average of
max(b� c) and d� Hence, d > c′ > c� If d ≤ n/(n+m)� then

∫ b

a
zn(1 − z)m dz∫ d

c
zn(1 − z)m dz

<

∫ b

a
zn(1 − z)m dz∫ d

c′ zn(1 − z)m dz

= b− a

d − c′

1
b−a

∫ b

a
[zn/(n+m)(1 − z)m/(n+m)]n+m dz

1
d−c′

∫ d

c′ [zn/(n+m)(1 − z)m/(n+m)]n+m dz

<
1

β/2

[
bn/(n+m)(1 − b)m/(n+m)

(c′)n/(n+m)(1 − c′)m/(n+m)

]n+m
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≤ 1
β/2

[
bn/(n+m)(1 − b)m/(n+m)

(b+β/2)n/(n+m)(1 − (b+β/2))m/(n+m)

]n+m

�

where the second strict inequality follows because b−a≤ 1� d− c′ ≥ β/2� and
zγ(1 − z)1−γ is strictly increasing in z on [0�γ] for all γ ∈ (0�1]; note that a <
b < c′ < d ≤ n/(n + m)� The fourth line again follows from the monotonicity
of zγ(1 − z)1−γ and because b+β/2 ≤ c′ ≤ n/(n+m)� Hence, considering the
term in square brackets in the last line, it suffices to show that

sup
b�γ

bγ(1 − b)1−γ

(b+β/2)γ(1 − (b+β/2))1−γ
< 1�

where, given β > 0� the supremum is taken over all b�γ ≥ 0 such that b +
β/2 ≤ γ ≤ 1� The desired result follows because, by the previously mentioned
monotonicity property of zγ(1−z)1−γ� the ratio in the supremum can approach
one only if γ approaches zero, which is impossible because γ ≥ β/2� Q.E.D.

We state the following lemma without proof. It is a straightforward conse-
quence of our assumptions that v and f are continuously differentiable on their
domains. Recall that h(ω|x)= f (x|ω)g(ω)/

∫
f (x|ω)g(ω)dω�

LEMMA 2.24: Suppose a sequence of probability measures {µr} on [0�1] con-
verges weakly to a mass point at ω∗ ∈ [0�1]. For x ∈ [0�1] and each r, define

γr(x)=
∫ 1

0
v(x�ω)

h(ω|x)∫ 1
0 h(ω|x)dµr(ω)

dµr(ω)�

Then γr(x) →r v(x�ω
∗) and γ′

r(x)→r vx(x�ω
∗)� both uniformly in x on [0�1].

Recall that ω(x) is the state ω in which the αth percentile of F(·|ω) is closest
to x� The following result proves (i) and (ii) of RP Theorem 6.1.

THEOREM 2.25: Given α ∈ (0�1)� let V 0 denote the residual subset of V
from Lemma 2.13, and suppose that nr�mr → ∞ and nr/(nr + mr) → α� For
every v ∈ V 0 and every η0 > 0� there exists ∆̄ > 0 such that for a residual
set of ∆ ∈ (0� ∆̄)� the finite economy E(nr�mr� v� f�g�∆) possesses a nontrivial
double-auction equilibrium (bxr (·)�byr (·)) for all sufficiently large r� Furthermore,
limr bxr (x) = limr byr (x) = b̂(x), where the convergence is uniform in x ∈ [0�1]
and where b̂(·) is a double-auction equilibrium for the continuum economy
E(α�v� f�g�∆)� such that supx∈[0�1] |b̂(x)− v(x�ω(x))|< η̄�

PROOF: Fix any η0 > 0� ε̂ ∈ (0�1), and any v ∈ V 0� Bacause V 0 is as in
Lemma 2.13, v(0�0) > 0� Choose η̄ > 0 as in Lemma 2.5. Choose 0 < ∆̄ <
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min(η̄�η0) and a residual subset D of (0� ∆̄) on which the conclusions of
Proposition 2.3 and Lemmas 2.8, 2.9, 2.13, 2.16, and 2.17 all hold, and such
that for every ∆ ∈ D� none of v(0�0)� v(1�1)� v(x(0)�0), or v(x(1)�1) is an in-
teger multiple of ∆� At the same time, choose ∆̄ < v(0�0) and such that for
all ∆ ∈ (0� ∆̄) and all double-auction equilibria b(·) of E(α�v� f�g�∆)� we have
supx∈[x(0)�x(1)) |b(x)− v(x�ω(x))| <η0 (see Lemma 2.7).

Fix now any ∆ ∈ D� and choose K so that (K − 1)∆ < v(1�1) ≤ K∆� This
determines P̄ = {0�∆�2∆� � � � �K∆} and the correspondence B(·)� as defined
in Section 2.1. Given the choices of v� ∆̄� and ∆� we may choose ε̄ > 0 accord-
ing to Lemma 2.8. We may also choose ζ0 > 0 such that vx(x�ω) > ζ0 for all
x and ω�

Let k = minK0. Note that k ≥ 1 because v(0�0) > ∆̄ > ∆ and note that K =
maxK1� Define x0

k ≡ 0 and, for each k < k ∈ K0, define x0
k > 0 so that

v(x0
k�0) = k∆� Define x1

K ≡ 1 and, for each K > k ∈ K1, define x1
k < 1 so that

v(x1
k�1)= k∆� Because v is strictly increasing in x� we may choose ζ1 > 0 such

that (i) for ω= 0�1� xω
k+1 −xω

k > ζ1 for all k�k+1 ∈Kω, and (ii) xk1 −x0
k1−1 > ζ1

and x1
KL

− xKL−1+1 > ζ1 for all x ∈ B(x), where k1∆ < · · · < kL−1∆ is the range
of P(·)≡ bx(x(·))� Note that (ii) can be satisfied by Lemma 2.8(a) and (b), and
because vx > 0 is bounded away from zero.

Choose ε0 > 0 such that ε0 · ζ0 < min(v(0�0) − k∆�K∆ − v(1�1)� ζ1/2�1)�
where the first two terms in the min are positive because neither v(0�0) nor
v(1�1) is an integer multiple of ∆� By Lemma 2.24, we may choose ω0 ∈ (0�1)
such that for all sequences of probability measures, {µr} on [0�1]� if γr(x) is
defined as in Lemma 2.24, then for all r sufficiently large,

|γr(x)− v(x�0)| + |γ′
r(x)− vx(x�0)|< ζ0 · ε0 if µr([0�ω0])→r 1(2.65)

and

|γr(x)− v(x�1)| + |γ′
r(x)− vx(x�1)|< ζ0 · ε0(2.66)

if µr([1 −ω0�1])→r 1�

By Lemma 2.22, we may choose ε1 > 0 such that for all ε ∈ (0� ε1)� if |x−y| ≤
ε2 and ε(1 − ε) ≤ x ≤ 1/2, then F(x|ω0/2) > F(y|ω0) and F(1 − x|1 − ω0) >
F(1 − y|1 −ω0/2)�

Finally, fix any strictly positive ε < min(ε̄� ε0� ε1�
1

K+1)� Together with our
choice of ∆� this determines the correspondence Ψε(·� ·) as defined in Sec-
tion 2.3 and, given nr and mr for each r� also determines Ψr

ε(·� ·) as defined in
Section 2.4.

Because ε < 1/(K + 1)� Cε2 ∩ (Xε
K × Xε

K) is nonempty. Hence, for each
r = 1�2� � � � � Kakutani’s theorem guarantees the existence of (xr�
yr) ∈ coΨr

ε(x
r� yr)� where Ψr

ε(·� ·) is defined as in (2.62) in the economy
E(nr�mr� v� f�g�∆)� We shall first show that for all r sufficiently large,
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(bxr (·)�byr (·)) constitutes a nontrivial double-auction equilibrium for E(nr�mr�
v� f�g�∆)�

Without loss, we may suppose that (xr� yr) converges to, say, (x̂� ŷ)� Conse-
quently, (x̂� ŷ) ∈ Ψε(x̂� ŷ) by Lemma 2.21, and so x̂ ∈ coB(x̂) and ŷ ∈ coB(ŷ)
are outcome-equivalent by Lemma 2.17. Letting k1∆ < · · · < kL−1∆ be the
common range of bx̂(x(·)) and bŷ(x(·))� we therefore have x̂kl = ŷkl for l =
1�2� � � � �kL� where kL ≡ kL−1 + 1� The choice of ∆ and Lemma 2.9 yield

k ∈K0 implies k≤ k1(2.67)

and

k ∈K1 implies k≥ kL−1�(2.68)

For each k ∈ K0\{k1} define x∗
k = x0

k� for each k ∈ K1\{kL} define x∗
k =

x1
k−1� and for k ∈ {k1� � � � �kL} define x∗

k = x̂k� Let K ≡K0 ∪ {k1� � � � �kL} ∪ K1

and suppose that the following two conditions hold (we will establish them
shortly):

(I) For all r large enough, uβ
r (p�x|xr� yr) satisfies strict single crossing in

(p�x) for all x ∈ [0�1] and all prices p ∈ P̄ that are, in the rth economy,
best replies for the buyer for some signal x ∈ [0�1].21

(II) For all k ∈K0 ∪K1� all k′ = k, and all r large enough,

uβ
r (k∆�x|xr� yr) > uβ

r (k
′∆�x|xr� yr)� for all x ∈ (x∗

k + ε�x∗
k+1 − ε)�

for all x ∈ [0�x∗
k+1 − ε) when k = k� and for all x ∈ (x∗

K + ε�1] when
k= K�

Condition (I) implies that for all r large enough, there is a unique and non-
decreasing function, b̄β

r (·) say, whose values solve for each x ∈ [0�1] the prob-
lem maxuβ

r (p�x|xr� yr) over p ∈ P̄ � Consequently, b̄β
r (x) = k∆ for all k and x

as in (II). Now, by (2.67) and (2.68), and given the definition of x∗
k� for every

k ∈ K0 ∪ K1, the length of the interval (x∗
k + ε�x∗

k+1 − ε) is x∗
k+1 − x∗

k − 2ε >
ζ1 − 2ε > ε� Consequently, if x̄r ∈ XK is the jump-point vector representation
of b̄β

r (·)� then x̄r
k+1 − x̄r

k > ε for all k ∈K0 ∪K1� so that x̄r ∈Xε
K�

Hence, x̄r ∈ Xε
K is the unique solution to (note that the maximum is over XK)

max
z∈XK

∫ 1

0
uβ
r (bz(x)�x|xr� yr)f (x)dx�(2.69)

A similar argument establishes that some ȳr ∈Xε
K is the unique solution to

max
z∈XK

∫ 1

0
uσ
r (bz(x)�x|xr� yr)f (x)dx�(2.70)

21That is, if p̄ maximizes uβ
r (p� x̄|xr � yr ) on P̄� then for all p < p̄� if φ(x) ≡ uβ

r (p̄�x|xr � yr ) −
uβ
r (p�x|xr � yr ) is zero at x= x̄� then it is positive for x > x̄ and negative for x < x̄�
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Then, for r large enough, (x̄r� ȳr) ∈ C0
ε2 and so, being feasible for (2.62),

(x̄r� ȳr) must be the unique solution to (2.62). If this is the case, then for all
r large enough, Ψr

ε(x
r� yr) = {(x̄r� ȳr)} and so we must have (xr� yr) = (x̄r� ȳr)�

Hence, bxr (·) = bx̄r (·) = b̄β
r (·) maximizes a buyer’s ex ante payoff among all

measurable bidding functions, and similarly for byr (·) and a seller. Hence,
(bxr (·)�byr (·)) is a double-auction equilibrium for E(nr�mr� v� f�g�∆). More-
over, because (xr� yr) ∈ Cε2 and ε < 1� the equilibrium is nontrivial.

Because xr → x̂� and because, for r large enough, the steps of bxr (·) are
bounded away from zero, each of bxr (·) converges uniformly to bx̂(·)� By the
choice of ∆̄ and because bx̂(·) is an equilibrium of E(α�v� f�g�∆), we have
supx∈[x(0)�x(1)) |bx̂(x) − v(x�ω(x))| < η0. Moreover, because bx̄r (x) = k∆ for
all x and k as in (II), and because v(x̂k1�0) > (k1 − 1)∆ + ε̄ and v(x̂kL�1) <
kL∆ − ε̄ by Lemma 2.8, the construction of x∗ ensures that |bx̄r (x) −
v(x�ω(x))| < ∆ < ∆̄ < η0 on [0� x̂k1] and on [x̂kL�1]. Hence, |bx̂(x) −
v(x�ω(x))|<η0 for all x ∈ [0�1]� So, to complete the proof, we must establish
(I) and (II). We begin with (I).

For all r large enough and for all x ∈ [0�1]� no p ∈ P̄ such that k1∆ < p <
kL−1∆ and p /∈ {k1∆� � � � �kL−1∆} maximizes u(p�x|x̂) over P̄� by Lemma 2.13.
Hence, the same holds true for u(p�x|x̂� ŷ) = u(p�x|x̂)� because x̂ and ŷ are
outcome-equivalent. However, then by Lemma 2.18, the same holds true for
uβ
r (p�x|xr� yr) for r large enough. Suppose that p̄ ∈ {k1∆� � � � �kL−1∆} and that

p < p̄� By Lemma 2.16, the length of each step of the price function in-
duced by (x̂� ŷ) is less than η̄. Consequently, because u(p�x|x̂� ŷ) = u(p�x|x̂)�
Lemma 2.5 and the choice of η̄ and ∆ imply that there is a positive C1 function
d(·) such that

d

dx

u(p̄�x|x̂� ŷ)− u(p�x|x̂� ŷ)

d(x)
> η̄�

However, then, for all r large enough and all x ∈ [0�1]�

d

dx

uβ
r (p̄�x|xr� yr)− uβ

r (p�x|xr� yr)

d(x)
>

η̄

2
�

by Lemma 2.18. Hence, the desired strict single-crossing property holds for
all p ∈ P̄ between k1∆ and kL−1∆� To complete the proof of (I) it remains to
consider p < k1∆ and p > kL−1∆� We will consider the former only, the latter
being similar.22

22The analogous proof for p> kL−1∆ employs (2.66) in a manner similar to that in which we will
eventually employ (2.65) here, but (2.66) will not otherwise be explicitly employed in the present
proof.
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Suppose p̄ ∈ {k∆ :k ∈K0�k < k1} and p< p̄� For p ∈ P̄� let Pr(B̃r
mr

= p and
trade|xr� yr� x) denote, from a buyer’s perspective when he bids p, the proba-
bility that the mrth highest bid of the others is equal to p and that he will trade,
conditional on his signal being x� and given that the remaining nr − 1 buyers
employ the bid function bxr (·) and all mr sellers employ the bid function byr (·)�
Define

φr(x)= uβ
r (p̄�x|xr� yr)− uβ

r (p�x|xr� yr)

Pr(B̃r
mr

= p̄ and trade|xr� yr� x)
�(2.71)

Define Pr(B̃r
mr

= p and trade|xr� yr�ω) precisely as Pr(B̃r
mr

= p and trade|xr�
yr� x) except that the former conditions on the state ω rather than on the sig-
nal x� Recall the choice of ε1 and recall also that ε < ε1� Hence, whenever
|x − y| ≤ ε2 and ε(1 − ε) ≤ x ≤ 1 − ε(1 − ε), we have F(x|ω0/2) > F(y|ω0)�
We first show that this implies

Pr(B̃r
mr

= p|xr� yr�ω)

Pr(B̃r
mr

= p̄ and trade|xr� yr�ω)
→ 0 uniformly in ω ∈ [0�1](2.72)

and

Pr(B̃r
mr

= p̄ and trade|xr� yr� ω̄)

Pr(B̃r
mr

= p̄ and trade|xr� yr�ω)
→ 0(2.73)

for every p̄ ∈ {k∆ : k ∈ K0 and k < k1}, every p < p̄� and every ω̄�ω ∈ [0�1]
such that 2ω<ω0 < ω̄�

Let us begin with (2.72). Given that the buyer bids p and given that Br
mr

= p�
the probability that the buyer trades must be at least 1/(nr + 1)� because no
more than mr − 1 agents bid above p and no more than nr + 1� including the
buyer, bid p� Consequently, if p̄ = k̄∆ and p = k∆� then

Pr(B̃r
mr

= k∆|xr� yr�ω)

Pr(B̃r
mr

= k̄∆ and trade|xr� yr�ω)
≤ Pr(B̃r

mr
= k∆|xr� yr�ω)

Pr(B̃r
mr

= k̄∆|xr� yr�ω) 1
nr+1

= (nr + 1)
Pr(B̃r

mr
= k∆|xr� yr�ω)

Pr(B̃r
mr

= k̄∆|xr� yr�ω)
�

Let ar = min(xr
k� y

r
k)� br = max(xr

k+1� y
r
k+1)� cr = max(xr

k̄
� yr

k̄
)� and dr =

min(xr
k̄+1

� yr
k̄+1

)� Clearly, ar ≤ br ≤ cr� Note that, because k̄ ∈ K0 and (xr� yr) ∈
Cε2 ∩ (Xε

K × Xε
K)� dr − cr = min(xr

k̄+1
� yr

k̄+1
) − max(xr

k̄
� yr

k̄
) ≥ ε(1 − ε) > 0 for

all r� Hence, ar ≤ br ≤ cr < dr < x(0)� Indeed, dr is bounded away from x(0)
because xr

k̄+1
→ x̂k̄+1 and k̄ < k1 implies x̂k̄+1 ≤ x̂k1 < x(0)�
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For the mrth highest bid of the others to be equal to k∆� the mrth highest sig-
nal of the others must lie in [ar� br]� Hence, Pr(B̃r

mr
= k∆|xr� yr�ω)≤ Pr(X̃r

mr
∈

[ar� br]|xr� yr�ω)� where X̃r
mr

is the mrth highest signal of the other nr +mr − 1
agents in the rth economy. Also, if Xr

mr
∈ [cr� dr]� then it is necessarily the case

that Br
mr

= k̄∆� Hence, Pr(B̃r
mr

= k̄∆|xr� yr�ω) ≥ Pr(X̃r
mr

∈ [cr� dr]|xr� yr�ω)�
Putting these together yields

Pr(B̃r
mr

= k∆|xr� yr�ω)

Pr(B̃r
mr

= k̄∆|xr� yr�ω)
≤ Pr(X̃r

mr
∈ [ar� br]|xr� yr�ω)

Pr(X̃r
mr

∈ [cr� dr]|xr� yr�ω)

=
∫ br

ar
Fnr−1(x|ω)f(x|ω)(1 − F(x|ω))mr−1 dx∫ dr

cr
Fnr−1(x|ω)f(x|ω)(1 − F(x|ω))mr−1 dx

=
∫ F(br |ω)

F(ar |ω)
znr−1(1 − z)mr−1 dz∫ F(dr |ω)

F(cr |ω)
znr−1(1 − z)mr−1 dz

�

where we have employed the change of variable z = F(x|ω)�
Now, because dr − cr ≥ ε(1 − ε) and f (x|ω) > 0 for all x and ω� there exists

β> 0 such that minω(F(dr|ω)− F(cr |ω)) ≥ β for all r� By Lemma 2.23, given
this β> 0, there exists θ ∈ (0�1) such that

∫ F(br |ω)

F(ar |ω)
znr−1(1 − z)mr−1 dz∫ F(dr |ω)

F(cr |ω)
znr−1(1 − z)mr−1 dz

≤ 2
β
θnr+mr−2(2.74)

because dr < x(0) implies F(dr |w) < F(x(0)|w) ≤ F(x(0)|0) = α, so that for
all r large enough,

nr − 1
nr +mr − 2

≥ F(dr |ω)�

Consequently,

(1 + nr)
Pr(B̃r

mr
= k∆|xr� yr�ω)

Pr(B̃r
mr

= k̄∆|xr� yr�ω)
→ 0

uniformly in ω ∈ [0�1]� proving (2.72).
Consider next (2.73)� Let ar = min(xr

k̄
� yr

k̄
)� cr = max(xr

k̄
� yr

k̄
)� dr = min(xr

k̄+1
�

yr
k̄+1

)� and br = max(xr
k̄+1

� yr
k̄+1

)� Clearly, ar ≤ cr ≤ dr ≤ br� Note that because
k̄ ∈ K0 and (xr� yr) ∈ Cε2 ∩ (Xε

K × Xε
K) for all r� dr − cr = min(xr

k̄+1
� yr

k̄+1
) −

max(xr
k̄
� yr

k̄
)≥ ε(1 −ε) > 0 and ar ≤ cr < dr ≤ br < x(0)� Indeed, br is bounded

away from x(0) because xr
k̄+1

→ x̂k̄+1� y
r
k̄+1

→ ŷk̄+1, and k̄ < k1 implies x̂k̄+1 ≤
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x̂k1 < x(0) and ŷk̄+1 ≤ ŷk1 < x(0)� Therefore, because ε was chosen so that
ε < 1 − x(0)� we have ε(1 − ε)≤ dr < x(0) < 1 − ε(1 − ε)�

Because Xr
mr

∈ [cr� dr] implies Br
mr

= k̄∆ implies Xr
mr

∈ [ar� br] and, condi-
tional on Br

mr
being equal to the buyer’s bid of k̄∆, the probability that the

buyer trades is between 1 and 1/(nr + 1)� we have

Pr(B̃r
mr

= k̄∆ and trade|xr� yr� ω̄)

Pr(B̃r
mr

= k̄∆ and trade|xr� yr�ω)
(2.75)

≤ (nr + 1)
Pr(X̃r

mr
∈ [ar� br]|xr� yr� ω̄)

Pr(X̃r
mr

∈ [cr� dr]|xr� yr�ω)
�

Now, as before,

Pr(X̃r
mr

∈ [ar� br]|xr� yr� ω̄)

Pr(X̃r
mr

∈ [cr� dr]|xr� yr�ω)
=

∫ F(br |ω̄)

F(ar |ω̄)
znr−1(1 − z)mr−1 dz∫ F(dr |ω)

F(cr |ω)
znr−1(1 − z)mr−1 dz

�(2.76)

Because dr − cr > ε(1 − ε)� F(dr |ω) − F(cr|ω) is strictly positive and
bounded away from zero. Also, |br −dr | = max(xr

k̄+1
� yr

k̄+1
)− min(xr

k̄+1
� yr

k̄+1
)≤

ε2 because (xr� yr) ∈ Cε2 , and we have already noted that ε(1 − ε) ≤ dr <
x(0) < 1 − ε(1 − ε). Hence, given the choice of ω0 and ε� F(dr|ω0/2) −
F(br |ω0) is strictly positive and bounded away from zero. Therefore, be-
cause 2ω ≤ ω0 ≤ ω̄� F(dr |ω) − F(br |ω̄) is also strictly positive and bounded
away from zero. Consequently, there exists β > 0 such that F(dr|ω) ≥
max(F(br |ω̄)�F(cr|ω))+β for all r�

Given this β> 0� there exists, by Lemma 2.23, θ ∈ (0�1) such that
∫ F(br |ω̄)

F(ar |ω̄)
znr−1(1 − z)mr−1 dz∫ F(dr |ω)

F(cr |ω)
znr−1(1 − z)mr−1 dz

≤ 2
β
θnr+mr−2

because dr < x(0) implies F(dr|w) < F(x(0)|w) ≤ F(x(0)|0) = α so that for
all r large enough,

nr − 1
nr +mr − 2

≥ F(dr |ω)�

The remainder of the argument proceeds along the lines of the previous argu-
ment following (2.74). This proves (2.73).

If a buyer bids p� let Pr(B̃r
mr

< p and trade|x� y�ω) denote the probability
that the mrth highest bid of the other nr +mr − 1 agents is strictly less than p
and that the buyer trades at the market-clearing price (which might be p),
conditional on the state ω and given that the other nr − 1 buyers employ the
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bidding function bx(·) and all mr sellers employ the bidding function by(·)�
Then

uβ
r (p�x|x� y)

=
∫ 1

0
(v(x�ω)−p)Pr(B̃r

mr
= p and trade|x� y�ω)h(ω|x)dω

+
∫ 1

0
(v(x�ω)− ρ̄r(p�x� y�ω))Pr(B̃r

mr
< p and trade|x� y�ω)

× h(ω|x)dω�

where ρ̄r(p�x� y�ω) is the expected value of the market-clearing price given
the buyer’s bid of p� the common strategy bx(·) of the remaining buyers, the
common strategy by(·) of the sellers, and conditional on (i) the mrth highest
bid of the other agents being strictly less than p, (ii) the buyer trading at the
market-clearing price, and (iii) the state ω� The function ρ̄r(p�x� y�ω) is con-
tinuous in ω for each r and takes values in [0�p] because p>Br

mr
implies that

the market-clearing price is no higher than p�
Hence,

uβ
r (p̄�x|xr� yr)− uβ

r (p�x|xr� yr)

=
∫ 1

0
(v(x�ω)− p̄)Pr(B̃r

mr
= p̄ and trade|xr� yr�ω)h(ω|x)dω

+ other terms,

where

other terms

=
∫ 1

0
(v(x�ω)− ρ̄r(p̄�xr� yr�ω))h(ω|x)

× Pr(B̃r
mr

< p̄ and trade|xr� yr�ω)dω

−
∫ 1

0
(v(x�ω)−p)h(ω|x)Pr(B̃r

mr
= p and trade|xr� yr�ω)dω

−
∫ 1

0
(v(x�ω)− ρ̄r(p�xr� yr�ω))h(ω|x)

× Pr(B̃r
mr

< p and trade|xr� yr�ω)dω�
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Hence, the absolute value of the “other terms” as well as the absolute value
of its derivative with respect to x is bounded above by the sum of finitely many
terms each of the form

∫ 1

0
φ(x�ω)Pr(B̃r

mr
= p|xr� yr�ω)dω�

where the φ(x�ω)� which may be distinct in each such term, is continuous
in both variables and p < p̄� Furthermore, the finite number of such terms is
independent of r�

Therefore, φr(x) in (2.71) can be written as γr(x)− p̄+ ξr(x)� where

γr(x)=
∫ 1

0 (v(x�ω))Pr(B̃r
mr

= p̄ and trade|xr� yr�ω)h(ω|x)dω
Pr(B̃r

mr
= p̄ and trade|xr� yr� x)

(2.77)

and

ξr(x)=
∫ 1

0 φ(x�ω)Pr(B̃r
mr

= p|xr� yr�ω)dω

Pr(B̃r
mr

= p̄ and trade|xr� yr� x)
�(2.78)

Note that

Pr(B̃r
mr

= p̄ and trade|xr� yr� x)

=
∫ 1

0
Pr(B̃r

mr
= p̄ and trade|xr� yr�ω)h(ω|x)dω�

so that (2.77) can be rewritten as

γr(x)=
∫ 1

0
v(x�ω)

h(ω|x)ϕr(ω)∫ 1
0 ϕr(ω)h(ω|x)dω dω�(2.79)

where ϕr(ω)= Pr(B̃r
mr

= p̄ and trade|xr� yr�ω)� Consequently,

γr(x)=
∫ 1

0
v(x�ω)

h(ω|x)∫ 1
0 h(ω|x)dµr(ω)

dµr(ω)�

where the probability measure µr on [0�1] is defined to have density ϕr(ω)/∫ 1
0 ϕr(ω)dω at ω� We next show that µr([0�ω0])→r 1�
It suffices to show that

∫ 1
ω0
ϕr(ω)dω∫ ω0/2

0 ϕr(ω)dω
→r 0�
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The definitions of ϕr(ω) and (2.73) imply that ϕr(ω̄)/ϕr(ω)→ 0 for all ω̄ > w0

and all ω<ω0/2� Hence,
∫ 1
ω0
ϕr(ω)dω∫ ω0/2

0 ϕr(ω)dω
=

∫ 1

ω0

[∫ ω0/2

0

ϕr(ω)

ϕr(ω̄)
dω

]−1

dω̄

→ 0�

because the integral in square brackets, a function of ω̄� converges pointwise
to +∞.

Consequently, µr([0�ω0]) →r 1 and the choice of ω0 implies that γr(x) sat-
isfies the inequality in (2.65) for r large enough and all x ∈ [0�1]. Following
similar lines but using (2.72) rather than (2.73), it can be shown that ξr(x)
and ξ′

r(x) converge uniformly to zero on [0�1]� Hence, because γr and ξr

and their derivatives are continuous, we have that for all r large enough,
|φr(x)− (v(x�0)− p̄)|< ζ0 ·ε0 and |φ′

r(x)−vx(x�0)|< ζ0 ·ε0 for all x ∈ [0�1].
The latter inequality implies that φ′

r(x) > (1 − ε0)ζ0 > 0� because ε0 < 1 and
vx > ζ0� This completes the proof of (I) as long as no p < k∆ is a best re-
ply for any signal and for r large enough. However, this follows by combin-
ing the two inequalities because when p̄ = k∆� the former implies φr(0) >
v(0�0) − k∆ − ε0ζ0 > 0 (by the choice of ε0), so that no p < k∆ is as good as
k∆ when one’s signal is zero, but then the latter implies that the same is true
for all signals.

To see that condition (II) holds, note that it must hold for all p̄ ∈ {k∆ :k ∈
K0�k < k1}, because |φr(x) − (v(x�0) − p̄)| < ζ0 · ε0 and vx > ζ0, and it must
hold for p̄ = k1∆ by a continuity argument, because k1∆ is the unique best
reply for x ∈ (x̂k1� x̂k1+1) at the limit (x̂� ŷ)� This proves (II) for K0� The proof
for K1 is similar. Q.E.D.

Our final result proves (iii) and (iv) of RP Theorem 6.1. Indeed, Theo-
rem 2.26 (i) and (ii) are slightly stronger than (iii) and (iv) of RP Theorem 6.1.

THEOREM 2.26: Suppose that for every r and every ∆ ∈ D a residual subset of
(0� ∆̄)� E(nr�mr� v� f�g�∆) possesses a double-auction equilibrium, (b∆

r (·)� s∆r (·))
such that limr b

∆
r (x) = limr s

∆
r (x) = b∆(x) uniformly in x ∈ [0�1] and where b∆(·)

is a double-auction equilibrium for the continuum economy E(α�v� f�g�∆)�
For each equilibrium (b∆

r (·)� s∆r (·)), let P̃∆
r denote the random double-auction

market-clearing price and let β̃∆
r denote the random fraction of agents whose

signals are strictly below the mr th highest signal and who (inefficiently) end up
with the good. Then, for every ε > 0� there exists ∆′ > 0 such that for every
∆ ∈ (0�∆′)∩D, the following equalities hold:

(i) limr Pr(|P̃∆
r − v(x(ω̃)� ω̃)|< ε)= 1;

(ii) limr Pr(β̃∆
r < ε)= 1�
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PROOF: For each equilibrium (b∆
r (·)� s∆r (·)) and conditional on each state

ω ∈ [0�1]� let P̃∆
r (ω) denote the random double-auction market-clearing price

and let β̃∆
r (ω) denote the random fraction of agents whose signals are strictly

below the mrth highest signal and who (inefficiently) end up with the good.
Also, let Z̃∆

r denote the mrth highest signal among all nr +mr agents.
Suppose that for every ε > 0� there exists ∆′ > 0 such that for every ∆ ∈

(0�∆′)∩D and almost every state of the good ω ∈ [0�1]� the following equali-
ties hold:

(i′) limr Pr(|P̃∆
r (ω)− v(x(ω)�ω)| < ε|ω)= 1;

(ii′) limr Pr(β̃∆
r (ω) < ε|ω)= 1�

Then, by (i′) and the dominated convergence theorem,

Pr
(|P̃∆

r − v(x(ω̃)� ω̃)| < ε
)

=
∫ 1

0
Pr

(|P̃∆
r (ω)− v(x(ω)�ω)|< ε|ω)

g(ω)dω

→ 1� as r → ∞�

Similarly, (ii′) yields

Pr(β̃∆
r < ε)→ 1� as r → ∞�

Hence, it suffices to establish (1′) and (2′).
Fix ε > 0� By Lemma 2.7, P∆(ω) = b∆(x(ω)) → v(x(ω)�ω) uniformly in

ω ∈ [0�1) as ∆ → 0 in D� Hence, we may choose ∆′ ∈ (0� ∆̄) such that

|P∆(ω)− v(x(ω)�ω)|< ε

for every ω ∈ [0�1) and every ∆ ∈ (0�∆′)∩D� Hence, for every ω ∈ [0�1)�

Pr
(|P̃∆

r (ω)− v(x(ω)�ω)| < ε|ω)
≥ Pr(P̃∆

r (ω)= P∆(ω)|ω)

≥ Pr
(
B̃r�∆

mr−1 = B̃r�∆
mr

= B̃r�∆
mr+1 = P∆(ω)|ω)

�

By Lemma 2.19 the last expression converges to unity as r → ∞ for all but
finitely many ω ∈ [0�1] (all probabilities are implicitly conditional on the equi-
librium strategies (b∆

r (·)� s∆r (·))). Hence, (i′) holds.
It suffices to separately find ∆′ so that (ii′) holds. For each ∆ ∈ D� the

limit equilibrium b∆(·) for E(α�v� f�g�∆) is right-continuous and continuous
at x = 1 by definition (and by construction; see the proof of Theorem 2.25). Let
P̄ = {0�∆�2∆� � � � �K∆}� where (K − 1)∆ < v(1�1) ≤ K∆ and the dependence
of K on ∆ is suppressed. Then b∆(·) is uniquely determined by its nondecreas-
ing vector of jump points x∆ = (x∆

1 � � � � � x
∆
K) ∈ XK�
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Fix ε > 0� By Lemma 2.6, we may choose ∆′ > 0 such that for all ∆ ∈ (0�
∆′)∩D� the vector of jump points that determine b∆(·) satisfies

max
ω∈[0�1]

(
F(x∆

k+1|ω)− F(x∆
k |ω)

)
< ε/2(2.80)

whenever (x∆
k�x

∆
k+1) and (x(0)�x(1)) have nonempty intersection.

Fix ∆ ∈ (0�∆′)∩D� Because α ∈ (0�1) and because F(x|ω) is strictly increas-
ing in x and strictly decreasing in ω for every state ω ∈ [0�1]� except perhaps
finitely many� there exists precisely one k= 0�1� � � � �K such that

F(x∆
k |ω) < α< F(x∆

k+1|ω)�(2.81)

where x∆
0 = 0 and x∆

K+1 = 1� Choose any state ω0 ∈ [0�1] other than one of
the finitely many exceptional ones and suppose that ω0 and k0 satisfy (2.81). It
suffices to show that limr Pr(β̃∆

r (ω
0) < ε|ω0)= 1�

Because F(x(ω)|ω) = α for all ω� (2.81) implies that x(ω0) ∈ (x∆
k0�x

∆
k0+1)�

so that (x∆
k0�x

∆
k0+1) and (x(0)�x(1)) have nonempty intersection. Hence,

by (2.80),

F(x∆
k0+1|ω0)− F(x∆

k0 |ω0) < ε/2�(2.82)

Suppose that the state is ω0 and consider for each r the equilibrium
(b∆

r (·)� s∆r (·))� Let γ̃∆
r be the random fraction of agents whose signals are in

(x∆
k0�x

∆
k0+1) and let η̃∆

r be the random fraction of agents who receive the good
and whose signals are less than x∆

k0 � Note that if the agents’ signals are such
that the realization of Z̃∆

r � the mrth highest signal, is less than x∆
k0+1� then the

realizations of γ̃∆
r , η̃∆

r � and β̃∆
r (ω

0) must satisfy

γ∆
r +η∆

r ≥ β∆
r (ω

0)�(2.83)

Now, techniques similar to those in the proofs of Lemmas 2.55 and 2.56 can
be employed to establish three equalities:

(a) limr Pr(Z̃∆
r < x∆

k0+1|ω0)= 1;
(b) limr Pr(γ̃∆

r < ε/2|ω0) = 1;
(c) limr Pr(η̃∆

r < ε/2|ω0)= 1�
Informally, (a) follows because x(ω0)� the αth percentile of F(·|ω0), is

strictly less than x∆
k0+1 by (2.81), and the mrth highest signal converges with

probability 1 to x(ω0) by the law of large numbers as r tends to infinity because
nr/(nr + mr) → α� The limit in (b) also follows by the law of large numbers,
using (2.82). Finally, (c) too follows from the law of large numbers, because
buyers and sellers with signals less than x∆

k0 bid less than k∆ in the limit, and,
by (2.81), k∆ is the market-clearing price with probability 1 in the limit.
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Hence,

lim
r

Pr(β̃∆
r (ω

0) < ε|ω0) = lim
r

Pr
(
β̃∆

r (ω
0) < ε and Z̃∆

r < x∆
k0+1|ω0

)

≥ lim
r

Pr(γ̃∆
r + η̃∆

r < ε and Z̃∆
r < x∆

k0+1|ω0)

= lim
r

Pr(γ̃∆
r + η̃∆

r < ε|ω0)

≥ lim
r

Pr(γ̃∆
r < ε/2 and η̃∆

r < ε/2|ω0)

= 1�

where the first and third lines follow from (a), the second line follows
from (2.83), and the fourth line follows from (b) and (c). Q.E.D.

3. NONEXISTENCE OF MONOTONE BEST REPLIES IN
DOUBLE AUCTIONS: AN EXAMPLE

We present here a finite-agent example in which one agent’s only best reply
to the nondecreasing strategies of the others is decreasing. Agents’ bids are
restricted to the discrete grid of prices P = {0�1�2� � � �}�

In Section 5 of RP, two potential sources for the failure of monotone best
replies are discussed: the strategic effect and the rationing effect. An example
in which nondecreasing best replies fail due to the rationing affect was also
provided. Now, because the rationing effect arises only when ties occur with
positive probability, it is absent when agents employ strictly increasing bid-
ding functions, the distribution of private information is atomless, and the bid
space is a continuum (the “standard” model). Consequently, the rationing ef-
fect alone is unlikely to be a serious deterrent to establishing the existence of
nondecreasing equilibria in standard finite double auctions. The more serious
deterrent comes from the strategic effect.

Our purpose here is to provide a discrete bid-space example in which non-
decreasing best replies fail and only the strategic effect is present. Because the
strategic effect is present even in the standard model and even when strictly
increasing bidding functions are employed, our example suggests that it is not
possible to establish the existence of nondecreasing best replies in finite double
auctions with interdependent values and affiliated private information, even if
values are private (as they are in our subsequent example).

To isolate the strategic effect, we assume here that the agent we focus on—
a buyer—is never rationed. That is, this buyer’s demand is filled whenever the
price is less than or equal to his bid.

Consider a market with seven sellers, one buyer, and another “undecided”
buyer who is contemplating his best response to the rest of the market.
Bids must be nonnegative integers. Because all agents employ step func-
tions, we may assume, without loss, that the signals are discrete. Let X =
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{0�1�2�3�4�5�6} denote the set of possible signals. Also, we suppose that there
are two states of the good, ω = 0 and 1� each being equally likely.

All agents have private values with value function v(x) = 5�16 + x/600� Let
the conditional distribution of signals be given by

Pr(x|ω = 0)=




ε� if x = 0,
(1 − ε− ε2)0�262001� if x = 1,
(1 − ε− ε2)0�002625� if x = 2,
(1 − ε− ε2)0�242958� if x = 3,
(1 − ε− ε2)0�468673� if x = 4,
(1 − ε− ε2)0�023743� if x = 5,
ε2� if x = 6

and

Pr(x|ω = 1)=




ε2� if x = 0
(1 − ε− ε2)0�188757� if x = 1,
(1 − ε− ε2)0�001892� if x = 2,
(1 − ε− ε2)0�176519� if x = 3,
(1 − ε− ε2)0�353832� if x = 4,
(1 − ε− ε2)0�279000� if x = 5,
ε� if x = 6.

It is easy to check that the affiliation property is satisfied.
Let x1 denote the undecided buyer’s signal. Note that, in the limit as ε → 0�

the signal x1 = 0 identifies the state as ω = 0 and the signal x1 = 6 identifies
the state as ω = 1� Hence, in the limit as ε → 0� when the undecided buyer
receives a signal of x1 = 0, he infers that the others’ signals are independent
and identically distributed according to

Pr(x|x1 = 0)=




0�262001� if x = 1,
0�002625� if x = 2,
0�242958� if x = 3,
0�468673� if x = 4,
0�023743� if x = 5,

and when he receives a signal of x1 = 6, he infers that the others’ signals are
independent and identically distributed according to

Pr(x|x1 = 6)=




0�188757� if x = 1,
0�001892� if x = 2,
0�176519� if x = 3,
0�353832� if x = 4,
0�279000� if x = 5.
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Assume all agents in the market adopt the monotone strategies

s(x)= x+ 1 and b(x) = x− 1

and that the market-clearing price is determined by the seventh highest bid.23

If the seventh and eighth highest bids are equal and equal to the undecided
buyer’s bid, then the undecided buyer receives a unit at that price with proba-
bility 1. This eliminates the rationing effect and so isolates the strategic effect.

We are interested in comparing the undecided buyer’s best responses, first
when his signal is x1 = 0 and then when it goes up to x1 = 6, in the limit as
ε → 0� Let u(0�p) and u(6�p) denote the undecided buyer’s expected pay-
off when his signal x1 = 0 (x1 = 6) and he submits a bid of p� Recall that
v(0)= 5�16, v(6) = 5�17� and that, given the undecided buyer’s two signals,
in the limit as ε → 0� the others’ signals are independent and identically dis-
tributed according to Pr(x|x1 = 0) and Pr(x|x1 = 6)� Because the undecided
buyer’s incentives will be strict under these limiting conditional distributions,
they will also be strict for ε > 0 sufficiently small.

Note that given the strategies of the others, the set of possible market-
clearing prices is P = {2�3�4�5�6}� Direct computations show that24

u(0�2) = 2�3221�

u(0�3) = 2�3228�

u(0�4) = 2�1441�

u(0�5) = 2�1146�

u(0�6) = 2�1146

and

u(6�2) = 1�6814�

u(6�3) = 1�675�

u(6�4) = 1�6716�

u(6�5) = 1�5134�

u(6�6) = 1�5109�

23Formally, negative bids (i.e., b(0) = 0 − 1 = −1) are not allowed, but because the undecided
buyer regards the signal x= 0 to have probability 0, this is irrelevant here. Alternatively, one can
suppose that the other buyer employs the strategy b(x) = max(0�x− 1)� The result would be the
same.
24We wish to thank Oren Rigbi for carrying out the programming required to obtain the parame-
ters and payoffs in this example.
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Thus, the “undecided” buyer’s unique best response when his signal is 0 is
p = 3, while it is p = 2 when his signal is 6� (Note that because the undecided
buyer receives the good whenever the market-clearing price is weakly below
his bid, his payoff from bidding p ≥ 7 is identical to his payoff from bidding
p = 6� Also, his payoff from bidding p = 0 or 1 is zero because he is sure not
to trade.)

4. APPROXIMATING THE DENSITY IN RP SECTION 5.2

In Section 5.2 of RP, the following conditional density function is employed
for convenience: f (x|ω) = 3/2 if (x�ω) ∈ ([0�2/3] × [0�1/2)) ∪ ([1/3�1] ×
[1/2�1]) and f (x|ω) = 0 otherwise. We show here that this conditional density
function can be uniformly approximated by one that satisfies RP Assumptions
A.1 and A.2.

For ε > 0 and a ∈ [0�1 − ε)� let λa
ε : [0�1] → [0�1] be any strictly positive

C1 function with strictly positive derivative such that λa
ε(x) ≤ ε for x ≤ a and

λa
ε(x) ≥ 1 − ε for x ≥ a+ ε� For (x�ω) ∈ [0�1]2� define

hε(x�ω)= [1 − λ1/2
ε (ω)]λ1/3

ε (1 − x)+ λ1/2
ε (ω)λ1/3

ε (x)

and define

fε(x|ω)= hε(x�ω)∫ 1
0 hε(x�ω)dx

�

Then fε(x|ω) satisfies RP Assumptions A.1 and A.2 for every ε < 1/2, and
fε(x|ω) converges uniformly to f (x|ω) as ε → 0�

5. A MEASURE-MOTIVATED CONCEPT OF GENERICITY

We now show that the main result in RP, namely Theorem 6.1, also holds
when the topological notion of genericity—residual sets—is replaced by a
measure-motivated notion. To make such a statement precise, we require a
notion of “full measure” for the infinite-dimensional Banach space C1 of con-
tinuously differentiable value functions v(x�ω) on [0�1]2 endowed with the
supremum metric ‖v‖ = maxx�ω[v(x�ω)+vx(x�ω)+vω(x�ω)]� Unfortunately,
there is no analogue of Lebesgue measure in such spaces. However, it is pos-
sible to limit oneself to defining a class of sets that generalizes the idea of
Lebesgue measure zero in Euclidean spaces. One such class of sets is defined
in Christensen (1974).

Let X be a separable Banach space.25 Christensen (1974) defines a measur-
able subset A of X to be a Haar zero set if there exists a probability measure

25A Banach space, namely a complete normed linear space, is separable if it has a countable dense
subset. The space of continuous functions on [0�1] with the supremum norm is an example, as is
any Euclidean space.
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µ on X such that µ(A + x) = 0 for all x ∈ X .26,27 Following Hunt, Sauer, and
Yorke (1996), we shall call the complement of a Haar zero set prevalent. Fur-
thermore, when Y is a subset of X with nonempty interior and Z = X ′ ∩Y for
some prevalent subset X ′ of X , we say that Z is a prevalent subset of Y� We
then have the following:

THEOREM 5.1: Theorem 6.1 of RP remains valid when “residual” is everywhere
replaced by “prevalent” and where the topology on C1 is induced by the metric
‖v‖ = maxx�ω[v(x�ω)+ vx(x�ω)+ vω(x�ω)]�

REMARK 1: Because a prevalent subset of (0� ∆̄) is a subset of full Lebesgue
measure (i.e., of measure ∆̄), the second occurrence of “residual” in RP The-
orem 6.1 can equivalently be replaced by “full Lebesgue measure.”

To prove Theorem 5.1, it suffices to prove that Lemma 2.13 remains valid
when “residual” is replaced with “prevalent.” This is because the conclusions
of Theorems 2.25 and 2.26 will then also hold when “residual” is replaced with
“prevalent.” Thus, it suffices to establish the following:

LEMMA 5.2: The conclusion of Lemma 2.13 remains valid when “residual” is
replaced with “prevalent.”

PROOF: Recall that V ⊆ C1 is the set of value functions v(x�ω) that satisfy
RP Assumptions A.3 and A.4. Let us say that v ∈ V is regular at L ≥ 2 if the
statement

(2.42) and (2.43) hold for every ∆ ∈ D, for every
k0 <k1 < · · ·< kL, and for every 0 = x0 < x1 < · · ·< xL+1 = 1
such that x2 > x(0), xL−1 < x(1) and such that (2.41) holds

(∗)

is satisfied for some full Lebesgue measure subset D of R� Let us say that v ∈ V
is regular at L≥ 2 and ∆ ∈ R if (∗) is satisfied when D = {∆}�

For each integer L ≥ 2� let VL = {v ∈ V :v is not regular at L}.28 Let C1
∗ =

{v ∈ C1 :v(0�0) = 0}� Because V has nonempty interior in C1� it suffices to
show that V 0 = (V ∩ C1

∗)\
⋃∞

L=2 VL is a prevalent subset of V . Because C1
∗ is a

26In Euclidean spaces, it can be shown that the Haar zero sets coincide with the sets of Lebesgue
measure zero.
27Recently, Hunt, Sauer, and Yorke (1992) rediscovered Christensen’s definition. Their “shy” set
is equivalent to Christensen’s Haar zero set. Andersen and Zame (2000) take these equivalent
concepts a step further by generalizing them to cover subtle, yet economically relevant, situations
in which the ambient space is a “small” convex subset of a linear topological space. In the present
more straightforward setting in which the ambient space is a Banach space, the definitions of An-
derson and Zame, Hunt, Sauer, and Yorke, and Christensen, coincide. We thank George Mailath
for calling our attention to Andersen and Zame’s (2000) notion of “shyness.”
28It is straightforward to show that VL is a Borel subset of C1.
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prevalent subset29 of C1 and because countable unions of Haar zero sets are
Haar zero sets (Christensen (1974)), it suffices to show that each VL is a Haar
zero subset of C1�

Fix L ≥ 2� Lemma 2.12 implies that for every v ∈ V � the set {(ε�∆) ∈
R

L+1 :v + εpL is not regular at L and ∆} has Lebesgue measure zero. By Fu-
bini’s theorem, for every v ∈ V and almost every ε ∈ R

L� {∆ ∈ R :v+ εpL is not
regular at L and ∆} has Lebesgue measure zero. Consequently, for all v ∈ V �
{ε ∈ R

L :v+ εpL ∈ VL} has Lebesgue measure zero.
Define the probability measure µ on C1 as follows. For any Borel subset

A of C1� let µ(A) = γ{ε ∈ R
L :εpL ∈ A}� where γ is the standard normal

Gaussian measure in R
L� Fix any z ∈ C1� Then

µ(VL + z)= γ{ε ∈ R
L :εpL ∈ VL + z} = γ{ε ∈ R

L :−z + εpL ∈ VL}�
Now, if for every ε ∈ R

L� −z+εpL /∈ VL� then clearly µ(VL+z)= 0� Otherwise,
there exists ε0 ∈ R

L such that −z + ε0pL ∈ VL� Let E = {ε ∈ R
L : (−z + ε0pL)+

εpL ∈ VL} and note that {ε ∈ R
L :−z + εpL ∈ VL} = E + ε0� so that µ(VL +

z) = γ(E + ε0)� By the conclusion of the previous paragraph, E has Lebesgue
measure zero. The translation invariance of Lebesgue measure implies that
E + ε0 also has Lebesgue measure zero. Consequently, because Gaussian and
Lebesgue measure are mutually absolutely continuous, µ(VL +z)= 0. Because
z ∈C1 was arbitrary, we conclude that VL is a Haar zero subset of C1� Q.E.D.
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