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THIS SUPPLEMENT PROVIDES a more detailed study of conditions under which
the basic method of proof used for the sufficiency results in the main paper
can be applied, with an eye to understanding how much the method might
potentially be further generalized and whether the results still hold when the
method does not apply. We restrict ourselves to cardinal type spaces and no
transfers, as in Section 3.1.

All of the proofs of sufficiency results in the main paper follow the general
method of showing that the linear inequality corresponding to any desired in-
centive constraint can be obtained by adding up inequalities corresponding to
local incentive constraints. We show here that for finite type spaces, whenever
a set S of incentive constraints is sufficient, there exists a proof of sufficiency by
adding up (Lemma S-1 below). Moreover, with minor exceptions, whenever an
incentive constraint (u� v) is provable by adding up, there exists such a proof
that uses only types along the line segment [u�v] or types cardinally equivalent
to them (Proposition S-1). The conclusion, then, is that for finite type spaces,
there exist essentially no sufficiency results beyond those that can be proven
using the method of Proposition 1.

However, for infinite type spaces, the conclusions are not as tight. We give
an example (Proposition S-2) of a type space where local incentive constraints
are sufficient, but sufficiency cannot be proven by adding up. In that example,
we prove sufficiency by a combination of adding-up arguments and limiting
arguments exploiting the compactness of the space Δ(X).

To begin the investigation, we must first be precise about what it means for
an incentive constraint to be provable by adding up other constraints. Let T
be a cardinal type space and let S be a set of incentive constraints. Let 1 ∈ R

m

denote the vector all of whose components are 1 and let ep denote the pth unit
vector for p = 1� � � � �m. For any mechanism f , we have

1 · f (u) = 1(S-1)

for all u ∈ T and

ep · f (u) ≥ 0(S-2)

for p= 1� � � � �m and all u ∈ T . If f satisfies S, then we also have

u · (f (u)− f (v)) ≥ 0(S-3)

for each (u� v) ∈ S.
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We say that an incentive constraint (u∗� v∗) ∈ T × T is provable from S by
adding up if the inequality

u∗ · (f (u∗)− f (v∗))≥ 0(S-4)

can be obtained as a finite linear combination of the equation (S-1) and in-
equalities (S-2) and (S-3), with nonnegative coefficients on the inequalities.
That is, (u∗� v∗) is provable from S by adding up if there exist real numbers

• au for u ∈ T
• bpu for p= 1� � � � �m, u ∈ T
• cuv for (u� v) ∈ S

such that all but finitely many of these numbers are zero, such that all the bpu

and cuv are nonnegative, and such that adding up au times (S-1), bpu times
(S-2), and cuv times (S-3) gives (S-4). (For notational convenience, we assume
cuv to be defined for all u�v ∈ T , with cuv = 0 whenever (u� v) /∈ S.)

We can write out the adding-up conditions explicitly by comparing coeffi-
cients of f (u) for each u ∈ T . Assume u∗ �= v∗ (otherwise (S-4) just reads 0 = 0,
which is trivially provable by adding up). Then the adding-up condition says
that for each u, we have

au1 +
m∑

p=1

bpuep +
∑
v∈T

cuvu−
∑
v∈T

cvuv =
⎧⎨
⎩
u∗� if u= u∗,
−u∗� if u= v∗,
0� otherwise.

(S-5)

Also, for the constant terms, the adding-up condition is simply
∑
u∈T

au = 0�(S-6)

We say that the set S of incentive constraints implies the incentive constraint
(u∗� v∗) ∈ T × T if every mechanism that satisfies S also satisfies (u∗� v∗).

The present question is, If S implies (u∗� v∗), must the constraint (u∗� v∗)
necessarily be provable from S by adding up? When S is finite, the answer is
affirmative; this is just a form of the theorem of the alternative.

LEMMA S-1: If T is a cardinal type space and S is a finite set of incentive
constraints that implies the incentive constraint (u∗� v∗), then (u∗� v∗) is provable
from S by adding up.

PROOF: We may as well assume that T consists only of u∗, v∗, and the types
that appear in constraints of S. Thus, T is finite. A mechanism f satisfying S
then consists simply of a choice of m · |T | real numbers—the components of the
|T | vectors f (u) for u ∈ T—satisfying (S-1), (S-2), and also (S-3) for (u�v) ∈ S.
The hypothesis is that any such numbers must also satisfy (S-4).
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This can be recast as a linear programming statement: for any choice of
m · |T | real numbers satisfying the nonnegativity constraints (S-2), the linear
equations (S-1), and inequalities (S-3), the minimum value of the linear func-
tion u∗ · (f (u∗) − f (v∗)) is 0. (This minimum is attained, for example, by any
mechanism such that f (u) is constant across all u.) The duality theorem of lin-
ear programming then tells us that (S-4) is expressible as a linear combination
of (S-1), (S-2), and (S-3) with nonnegative coefficients on the inequalities; that
is, (u∗� v∗) is provable from S by adding up. Q.E.D.

To proceed further, it is helpful to have an alternative, cleaner definition of
provability by adding up. Let Π ⊆ R

m be the hyperplane orthogonal to 1, as in
Section 4. For any u ∈ R

m, let u denote its orthogonal projection onto Π.

LEMMA S-2: Assume u∗ �= v∗. Then (u∗� v∗) is provable from S by adding up if
and only if there exist numbers cuv ≥ 0, finitely many of which are nonzero, such
that the equation

∑
v∈T

cuvu−
∑
v∈T

cvuv =
⎧⎨
⎩
u∗� if u= u∗,
−u∗� if u= v∗,
0� otherwise,

(S-7)

holds for each u ∈ T , and cuv = 0 unless (u�v) ∈ S.

PROOF: First suppose that (u∗� v∗) is provable from S by adding up under
the original definition. Let au, bpu, and cuv be the coefficients satisfying (S-5).
By summing (S-5) over all choices of u, we get

∑
u au1 + ∑

p

∑
u bpuep = 0.

(On the left side, each cuv occurs once multiplied by u and once multiplied
by −u. On the right side, we get one u∗, one −u∗, and all zeroes otherwise.)
From (S-6), this reduces to

∑
p

∑
u bpuep = 0. Since the bpu are nonnegative,

they must all be zero. Once we know this, then, taking (S-5) and projecting
orthogonally onto Π gives (S-7).

Conversely, suppose there are coefficients cuv that satisfy (S-7). Put bpu = 0
for all p and all u. Note that (S-7) implies that for each u, the expression

∑
v

cuvu−
∑
v

cvuv− u∗� if u= u∗�

∑
v

cuvu−
∑
v

cvuv+ u∗� if u= v∗�

∑
v

cuvu−
∑
v

cvuv� otherwise�

must be some multiple of 1. Choose au so that this expression is equal to −au1.
Then it is immediate that (S-5) is satisfied for each u. Moreover, summing (S-5)
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across all u ∈ T , the cuv terms cancel as in the previous paragraph and we are
simply left with

∑
u au1 = 0; hence, with this choice of au, (S-6) is satisfied as

well. Finally, au �= 0 only when u = u∗� v∗ or when cuv or cvu is nonzero for
some v; thus, only finitely many of the au are nonzero. Thus, the original defi-
nition of provability by adding up is satisfied. Q.E.D.

We need just a few more definitions. Say that two types u and v are equivalent
if v = αu + β1 for some α�β ∈ R, α > 0, and that a type is indifferent if it is
equivalent to 0. For u∗� v∗ ∈ T , let T[u∗�v∗] be the set of all types in T that are
equivalent to some type on the segment [u∗� v∗] and let

S[u∗�v∗] =
{
(u�v) ∈ S | u�v ∈ T[u∗�v∗]

}
�

We now arrive at the main result of this supplement.

PROPOSITION S-1: Let T be a cardinal type space and let S be a set of incentive
constraints such that (u∗� v∗) is provable from S by adding up. Assume that v∗ is
not equivalent to −u∗. Then (u∗� v∗) is provable from S[u∗�v∗] by adding up.

This result says that if an incentive constraint (u∗� v∗) can be proved by
adding up constraints in S, then it can be proved by adding up in a way that only
uses types equivalent to convex combinations of u∗ and v∗. Thus, the method
used to prove Proposition 1 is (almost) the only possible adding-up argument.

The proof of Proposition S-1 is a bit long, but the main idea is straightfor-
ward. It consists of taking the coefficients cuv that satisfy (S-7) and successively
replacing them with zeroes, checking that (S-7) still holds at each step, until
only constraints in S[u∗�v∗] have nonzero coefficients.

PROOF OF PROPOSITION S-1: We may assume that u∗ is not indifferent, since
otherwise the conclusion is immediate: (S-7) holds with all cuv equal to 0. We
also assume u∗ �= v∗; otherwise the conclusion is again trivial.

Let cuv be the coefficients that satisfy (S-7), with cuv > 0 only if (u� v) ∈ S.
We may as well assume that S consists only of the (finitely many) incentive
constraints (u� v) for which cuv > 0, and T consists only of the types appearing
in these constraints.

Now consider any fixed vector w ∈ Π with the following properties:
(i) w · u∗ > 0;

(ii) w · v∗ ≥ 0;
(iii) if u ∈ T and w · u= 0, then u= 0.
We claim that if (u�v) ∈ S such that either
(a) w · u > 0 and w · v < 0 or
(b) w · u > 0 and w · v = 0 and v �= v∗ or
(c) w · u < 0 and w · v ≥ 0,

then cuv = 0.
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To prove the claim, consider any u ∈ T such that w · u < 0. Take the dot
product of w with (S-7). We get

∑
v∈T

cuv(w · u)−
∑
v∈T

cvu(w · v) = 0

(note that u �= u∗� v∗). Now sum over all u such that w · u < 0. For each incen-
tive constraint (u� v) ∈ S such that w · u < 0 and w · v < 0, the term cuv(w · u)
appears once with a + sign and once with a − sign, so they cancel out. The
remaining terms give us

∑
w·u<0;w·v≥0

cuv(w · u)−
∑

w·u<0;w·v≥0

cvu(w · v) = 0�

Since each cuv is nonnegative, every term in the first sum is less than or equal
to 0 and every term in the second sum is greater than or equal 0. Hence, every
term must be equal to zero. This implies that whenever w ·u < 0 and w · v ≥ 0,
cuv = 0, and, moreover, when w · v > 0, we also have cvu = 0.

This covers (a) and (c). For (b), when w · v = 0 and v �= v∗, (S-7) for v gives∑
u cvuv − ∑

u cuvu = 0. Taking the dot product with w gives
∑

u cuv(w · u) = 0
(after canceling). We have already established that cuv = 0 if w ·u < 0, so all the
terms on the left are nonnegative and hence they must all be zero. So cuv = 0
whenever w · u > 0. This proves the claim.

Next, for each u�v ∈ T , define c′
uv = cuv if w · u ≥ 0 and w · v ≥ 0, and define

c′
uv = 0 otherwise. We claim that we again have, for each u

∑
v

c′
uvu−

∑
v

c′
vuv =

⎧⎨
⎩
u∗� if u= u∗,
−u∗� if u= v∗,
0� otherwise.

(S-8)

To prove this claim, proceed as follows: if u is such that w · u < 0, then (S-8)
is trivial since both sides are zero. If w ·u > 0, then the left side of (S-8) differs
from the left side of (S-7) by the terms cuvu and −cvuv for w · v < 0. These
are all zero, by cases (a) and (c) of the previous claim, respectively; thus (S-8)
follows from (S-7). If w · u = 0 and u �= v∗, then again all the left-hand-side
terms of (S-8) are zero:

• All the c′
uvu are zero because u= 0, by condition (iii) on w.

• c′
vuv = 0 for w · v > 0 by (b) of the previous claim.

• c′
vuv = 0 for w · v = 0 again by (iii) on w.

• c′
vuv = 0 for w · v < 0 by definition of c′

vu.
So both sides of (S-8) are zero and it again holds.

Thus, (S-8) is verified for all u except possibly for u= v∗. But summing (S-8)
over all u ∈ T gives the identity 0 = 0, so if it holds for all u except u = v∗, it
must hold for u= v∗ as well.
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At this point, we have shown the following: If we start with coefficients cuv
for which (S-7) holds, pick any w ∈ Π satisfying (i)–(iii), and replace cuv with 0
whenever w · u < 0 or w · v < 0, then (S-7) still holds.

If we find any finite set of vectors w1� � � � �wq ∈ Π, each satisfying conditions
(i)–(iii), and for each wk, we successively replace cuv with 0 whenever wk ·u < 0
or wk · v < 0, then the resulting coefficients still satisfy (S-7).

Now let T[u∗�v∗]+ consist of the types in T[u∗�v∗] together with all indifferent
types (alternatively stated, all types that are equivalent to αu∗ + βv∗ for some
α�β ≥ 0) and let S[u∗�v∗]+ = {(u�v) ∈ S|u�v ∈ T[u∗�v∗]+}. We show that for any
u ∈ T that is not in T[u∗�v∗]+ , there is some w ∈ Π that satisfies (i)–(iii) with
w · u < 0. If we consider each such w in turn and successively replace cuv’s
with 0 as in the previous paragraph, we will be left with coefficients cuv ≥ 0 that
still satisfy (S-7) and such that cuv = 0 unless u�v ∈ T[u∗�v∗]+ . Therefore, we will
have shown that (u�v) is provable from S[u∗�v∗]+ by adding up.

Thus, consider any u ∈ T \ T[u∗�v∗]+ . We wish to show that there exists w ∈ Π
that satisfies (i)–(iii) with w · u < 0. The assumptions that v∗ is not equivalent
to −u∗ and u∗ is not indifferent imply that there exists w′ ∈ Π with

w′ · u∗ > 0� w′ · v∗ ≥ 0�

and the latter inequality holds strictly unless v∗ = 0. The assumption u /∈
T[u∗�v∗]+ implies that u is not a nonnegative combination of u∗ and v∗; hence
there is some w′′ ∈ Π such that

w′′ · u∗ ≥ 0� w′′ · v∗ ≥ 0� w′′ · u < 0�

Taking w = w′ + κw′′ for large κ gives (i), (ii), and w · u < 0. Finally, by per-
turbing w slightly, we can ensure w ·v �= 0 for all v ∈ T , v �= 0, without breaking
any of the strict inequalities; thus we get (iii) as well.

At this point, we have finished showing that (u∗� v∗) is provable from S[u∗�v∗]+
by adding up.

If v∗ is indifferent, then S[u∗�v∗]+ = S[u∗�v∗] and so we are done. Otherwise,
we have to do just a little more work. Let cuv now be the coefficients used
to prove (u∗� v∗) from S[u∗�v∗]+ by adding up (i.e., the coefficients that satisfy
(S-7)). Whenever u= 0, we can replace cuv with 0 without affecting the validity
of (S-7) (since cuv only ever appears as part of the product cuvu). So we may
assume cuv = 0 whenever u is indifferent.

Since u∗ and v∗ are both non-indifferent and v∗ is not equivalent to −u∗, we
can find w ∈ Π such that w · u∗ > 0 and w · v∗ > 0. Thus, for any element of
T[u∗�v∗]+ that is not indifferent, its projection has a positive dot product with w.

Now for any indifferent u, considering (S-7) and taking the dot product with
w gives −∑

v cvu(w · v) = 0. Each term in the sum is nonnegative, so they must
all be zero. Hence cvu = 0 whenever v has a positive dot product with w, and the
remaining v ∈ T[u∗�v∗]+ are indifferent, so cvu = 0 for them too by assumption.
Thus, if u is indifferent, then cuv� cvu = 0 for all v. But this means that (S-7)
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holds with cuv zero unless u�v ∈ T[u∗�v∗], so in fact (u∗� v∗) is provable from
S[u∗�v∗] by adding up. Q.E.D.

Proposition S-1 is stated as a description of the form of proofs by adding up.
However, it also provides us with a tool to show when a particular constraint
is not provable by adding up. In particular, we can apply it to give an example
of an infinite type space and a set of local incentive constraints that are suffi-
cient, but whose sufficiency cannot be proven by adding up, as promised at the
beginning of this supplement. In fact, we give a stronger example: a type space
such that any set of local incentive constraints is sufficient, yet there exist fairly
large such sets whose sufficiency cannot be proven by adding up.

Let X have four elements and let w be some utility function on X that is not
indifferent. Let Tw+ be the set of all cardinal types that are either indifferent
or equivalent to w and let T = R

4 \ Tw+ be the set of cardinal types not in Tw+ .
Say that two types u�v ∈ T are Tw+ -opposed if [u�v] ∩ Tw+ �= ∅. Let S be any
set of local incentive constraints such that if u and v are Tw+ -opposed, then
(u�v) /∈ S.

This requirement on S can be easily satisfied. Indeed, for each u ∈ T ,
start with any neighborhood Nu and let d(u�Tw+) > 0 be the Euclidean dis-
tance from u to Tw+ . Then the set N ′

u = {v ∈ Nu|d(u�v) < d(u�Tw+)} is again
an open neighborhood of u, not containing any types Tw+ -opposed to u. So
S = {(u� v)|u ∈N ′

v or v ∈ N ′
u} is a set of local incentive constraints meeting our

requirement.

PROPOSITION S-2: With T and S as above, S is sufficient. However, for any
u∗� v∗ ∈ T that are Tw+ -opposed, with u∗ not equivalent to −v∗, the constraint
(u∗� v∗) is not provable from S by adding up.

PROOF: First we show that S is sufficient. Let f be any mechanism that sat-
isfies S. For any possible incentive constraint (u� v), if u and v are not Tw+ -
opposed, then the entire line segment from u to v is contained in T . Therefore,
the usual argument from Proposition 1 of the main paper shows that f satisfies
(u�v).

So we need only deal with the case where u and v are Tw+ -opposed. In this
case, notice that we can choose uk ∈ T arbitrarily close to (u+v)/2 such that uk

is not Tw+ -opposed to either u or v. (Any type Tw+ -opposed to u must lie on the
hyperplane Πuw generated by u, w, and 1. Similarly, any type Tw+ -opposed to v
must lie on the hyperplane generated by v�w, and 1, which is again Πuw. There
are types in T arbitrarily close to (u+ v)/2 that do not lie on this hyperplane.)
For any such uk, then, we have already shown that f satisfies the constraints
(u�uk), (v�uk), and (uk� v); that is,

u · (f (u)− f (uk))≥ 0�(S-9)

v · (f (v)− f (uk))≥ 0�(S-10)

uk · (f (uk)− f (v)) ≥ 0�(S-11)
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So we can choose a sequence of types u1�u2� � � � in T with uk → (u + v)/2
such that (S-9)–(S-11) are satisfied for each uk. Moreover, because the image
of f is contained in the compact set Δ(X), we may assume by passing to a
subsequence that f (uk) converges to some limit f ∗. Then, taking limits, we get

u · (f (u)− f ∗)≥ 0�(S-12)

v · (f (v)− f ∗)≥ 0�(S-13)
u+ v

2
· (f ∗ − f (v)) ≥ 0�(S-14)

Adding (S-12), (S-13), and twice (S-14) gives

u · (f (u)− f (v)) ≥ 0�

so f satisfies the constraint (u� v). This shows that S is sufficient.
It remains to prove that if u∗� v∗ ∈ T are Tw+ -opposed and u∗ is not equiv-

alent to −v∗, then (u∗� v∗) is not provable from S by adding up. By Proposi-
tion S-1, if (u∗� v∗) were provable from S by adding up, then it would be prov-
able from S[u∗�v∗] by adding up. So we just need to show that the latter is not the
case.

For any α ∈ [0�1], let uα = (1 − α)u∗ + αv∗. Let α∗ ∈ (0�1) be such that
uα∗ ∈ Tw+ . Notice that if u and v are equivalent to uα and uβ respectively, and
(u� v) ∈ S, then α and β are either both less than α∗ or both greater than α∗:
otherwise u and v are Tw+ -opposed.

Suppose that (u∗� v∗) is provable from S[u∗�v∗] by adding up. Let cuv be the co-
efficients that satisfy (S-7). Let T< be the set of types in T[u∗�v∗] that are equiva-
lent to some uα for α < α∗. The observation of the previous paragraph implies
that if cuv > 0, and one of u or v is in T<, then the other is as well.

Sum up (S-7) over all u ∈ T<. The cuvu terms on the left side appear in pairs
of opposite sign, which cancel; thus we are left with 0 = u∗. Since u∗ ∈ T cannot
be indifferent, we have a contradiction. Q.E.D.

Dept. of Economics, Massachusetts Institute of Technology, 50 Memorial Drive,
E52-391, Cambridge, MA 02142, U.S.A.; gdc@mit.edu.

Manuscript received July, 2010; final revision received June, 2011.

mailto:gdc@mit.edu

	Author's Addresses

