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PROOFS OF LEMMAS 10 AND 11 AND THEOREMS 12 AND 13

Throughout this supplementary material, C will denote a generic positive
constant that may be different in different uses. Also, we will abbreviate the
phrases with probability approaching 1 as w.p.a.1, positive semidefinite as
p.s.d., and positive definite as p.d.; Apin(A), Ama(A), and AY* will denote the
minimum eigenvalues, the maximum eigenvalues, and the square root, respec-
tively, of a symmetric matrix A. Let ). denote )" . Also, let CS, M, and T
refer to the Cauchy-Schwarz, Markov, and triangle inequalities, respectively.
Also, let CM refer to the following well known result: If E[|Y,||Z,] = O,(r,),
then Y, = O,(r,).

PROOF OF LEMMA 10: The joint PDF of (x, n) is fz(x — n)f,(n), where
fz(-) is the PDF of Z and f,(-) is the PDF of 7. By a change of variable v =
F,(n), the PDF of (x, v) is

fz(x = F'(v)),

where F,(-) is the CDF of 7. Consider « =& + 6 > (1 — R*)/R* = 0} /03.
Then for n=F,"'(v) and 0 <v <1,

X — F—l v 1 _ 2 —a —a
—fZ( 0 ®) =Cexp|—= = )] " () _a .
ve(1—v)® 2\ o} oy oy
It is well known that ¢ (u)/®(u) is monotonically decreasing, so there is C > 0

such that @(u)~! > Cp(u)~!, u <0, and similarly @(u)™' > Cd(u)~', u > 0.
Then by @(u)~! > 1 for all u,

Q)" P(—u)' = Ch(u)~.
Therefore, for n = 0,97 (v),
fz(X—F,Tl(v)) 1/x—7n\ 1an?
Lo zcon| (57 Jeo(557)
—-x* xm n* [aoi
—Cexpl— 420, T 1)}
exp: 202 * o’ + 20%( o2
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The expression following the equality is bounded away from zero for |x| < B
andallmn e Rbya > o} /07.

The upper bound follows by a similar argument, using the fact that there is
a C with ¢ (u)/P(u) < |u| + C for all u. O.E.D.

Before proving Lemma 11, we prove some preliminary results. Let g; =
q"(Z;) and w; =1(Xy; < Xyi) — Fx,2(X11Z)).

LEMMA S.1: For Z =(Z,, ..., Z,) and L x 1 vectors of functions b;(Z) (i =
1,...,n),if > bi(Z)YQbi(Z)/n=0,(r,), then

n

n 2
Z{bxzy quw,-,»/ﬁz} / n=0,(r).
j=1

i=1

PROOF: Note that |w;| < 1. Consider j # k and suppose without loss of gen-
erality that j # i (otherwise reverse the role of j and k because we cannot have
i =j and i = k). By independence of the observations,

E[w,-]—w,-k|Z] = E[E[wijw,-k|Z, X, Xk]|Z]
= E[wiElw;|Z, X;, X1 Z]
= E[oiElw;lZ;, Z;, X )| Z]
= E[wa{EIN(X; < X)|Z;, Z;, X
— Fx,z(Xu|1Zp}1Z] =0.
Therefore, it follows that

S

i=1

< bezy{ > q,E[w,»,wiuZ]q;/n}bi<Z)/n

i=1 jok=1
= mezy{quE[w%,wZ]q;/n}bi(Z)/n <Y bi(Z)YOb(Z)/n,

i=1 j=1 i=1

so the conclusion follows by CM. Q.E.D.

LEMMA S.2—Lorentz (1986, p. 90, Theorem 8): If Assumption 3 is satisfied,
then there exists C such that for each x there is y(x) with sup,_, |Fx, z(x|z) —

PRiI(2)y(x)| < CK; ™.
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LEMMA S.3: If Assumption 4 is satisfied, then for each K there exists a non-
singular constant matrix B such that p%2(w) = Bp*2(w) satisfies E[ p*>(w;) x
P(w)] = Ig,, sup,., 1P (w)ll < CKpK,, sup,, [dp%2(w)/dV| <
CK} Ky, and sup, o, | P57 ()| < CK™.

PROOF: For u € [0, 1], let PJ‘?‘ (u) be the jth orthonormal polynomial with

respect to the weight u*(1 — u)®. Denote X = ]_[22;11 [x,, X.]. By the fact that the
order of the power series is increasing and that all terms of a given order are
included before a term of higher order, for each k£ and A(k, £) with p,(w) =

[To_, wy™", there exists by; (j < k) such that

r’zl

Zbk]mw)—]"[ 0 oy (X — X, 1/[Fe = x,DPS (D).

Let B, denote a K, x 1 vector B, = (bry, ..., b, 0, bix # 0, where 0
is a (K — k)-dimensional zero vector, and let B be the K, x K, matrix
with kth row B,. Then B is a lower triangular matrix with nonzero diag-
onal elements and so is nonsingular. As shown in Andrews (1991), there
is C such that |Pf(w)| < C(j**'? + 1) < Cj**"* and |dP§(u)/du| < Cj*+>"?
for all u € [0,1] and j € {1,2,...}. Then for pX2(w) = BpX2(w), it fol-
lows that |px(w)| < CA(k, s)**!/? ]_[f;i Ak, €)', so that || pX2(w)|| < CKEK,,
and sup,_,,, |9 p%2(w)/dt|| < CK}™K,. Then by Assumption 4, it follows
that Qx, = E[pX2(w;) p¥>(w;)'] = Cly,. Let B = Q> and define p*>(w) =
Bpf(w). Then [pR(w)ll = VpRw)plw) < /pRw)yQpR(w) <
C|| p**(w)| and an analogous inequality holds for ||dp%2(w)/dt||, giving the
conclusion. O.E.D.

Henceforth define { = CK{ K, and {; = CK&“KZ. Also, since the estimator
is invariant to nonsingular linear transformations of pX2(w), we can assume
that the conclusion of Lemma S.3 is satisfied with pX2(w) replacing p%2(w).

PROOF OF LEMMA 11: Let §; = Fx,z(XulZ;) — q}yKl(Xl,-), with |5;] <
K;d‘/” by Lemma S.2. Then for V; = sz(lxl —x,n(Z),

Vi— Vim Al4 AT 4 AT,
where

A=q0 Y qoy/n, Al =q)0" Y q;8;/n, A'=-5;.
j=1 j=1

Note that |[A"| < CK; /" by Lemma S.2. Also, by Q p.s.d. and symmetric,
there exists a diagonal matrix of eigenvalues A and an orthonormal matrix B
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such that O = BAB'. Let A~ denote the diagonal matrix of inverse of nonzero
eigenvalues and zeros, andlet O~ = BA"B'. Then ) ,q/Q ¢q;=tr(QQ) < CL.
By CS and Assumption 3,

Y @Al /n< Z(q;qu > 8?,/n> [n=CY (@0 gL n
i=1 i=1 j=1 i=1
= CK; """ tr(Q~Q) < CK,; """,

Note that for b;(Z) = q/Q~//n we have

Y bi(ZYQbi(Z)/n=1x(QQ~Q0")/n=1x(QQ)/n
i=1
=< CKl/n = Op(Kl/n)’

so it follows by Lemma S.1 that )" (A})?/n = O,(L/n). The conclusion then
follows by T and by |7(V) — (V)| < [V — V|, which gives Y_,(V; — V))*/n <
(Vi V) n. Q.E.D.

Before proving other results, we give some useful lemmas. For these results

let pi~= pKz(wi), ﬁi = pKz(iZ)i)a p = [pla ey pn]7 ﬁ = [ﬁl: sy ﬁn]a P = ﬁ/ﬁ/na
and P = p'p/n, P = E[p;p]. Also, as in Newey (1997), it can be shown that
without loss of generality we can set P = I, .

LEMMA S.4: If the hypotheses of Theorem 1 are satisfied, then E[Y|X, Z] =
m(X, V).

PROOF: By the proof of Theorem 1, V' = Fy,z(X;|Z) is a function of X,
and Z that is invertible in X, with inverse X, = h(Z, V), where h(z, v) is the

inverse of Fy, z(x|z) in its first argument. Therefore, (V/, Z) is a one-to-one
function of (X, Z). By independence of Z and (&, 1), ¢ is independent of Z
conditional on V, so that by equation (4),
ElY|X,Z]=EYIV,Z]1=E[g(h(Z,V), &)IV, Z]
= [ b2V, OFzstaeiz.v)

=/g(iz(z, V), e)F,y(delV) =m(X, V). Q.E.D.

Letu, =Y, —m(X;,V;) andlet u = (uy, ..., u,).
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LEMMA S.5: If ), Wi = Vi?/n= O,(A?) and Assumptions 3-6 are satisfied,
the following equalities hold:

(i) IP =Pl =0,(yKs/n),

(ii) Ilp'u/nll =0,(/Ks/n),

(iil) 19— plP/n=0,(543),

(iv) IIP = Pl = 0,(314) + VK201 A,),

) (P = pYu/nll = O,(LHA,//n).

PROOF: The first two results follow as in equation (A.1) and page 162 of
Newey (1997). For (iii), a mean value expansion gives p;, = p; + [dp%2(w;)/
&V](IZ-— V), where w; = (xi-, I7i) and 171 lies in between I}, and V. Since 171 and V;
lie in [0, 1], it follows that V; € [0, 1], so that by Lemma S.3, ||dp*2(w;)/dV|| <
C¢Z. Then by CS, || p; — pill < CL|V; — V;|. Summing up gives

S1)  Np—plP/n=>_lIpi— pill’/n=0,(54).
i=1

For (iv), by Lemma S.3, "7, [ p:lI*/n = O,(E[| p:|I*]) = tr(Ix,) = K. Then by
T, CS, and M,

1P =PIl <Y 1pib,— pipil/n<) b= pill*/n
i=1

i=1

” 12, , 1/2
+2<Z||ﬁ,-—p,~||2/n> (an,wf/n)
i=1 i=1

Finally, for (v), for 7 = (Zy,...,Z,) and X = (Xy,..., X,), it follows
from Lemma S.4, Assumption 6, and independence of the observations that
E[uu/|/_Y), 7] < CI,, so that by p and p depending only on Z and 7,
E[I(p = pyu/nP|X, Z] =tu{(p— pYElwu'|X , Z1(p— p)/n’}
= Cllp—plI*/n* =054, /n). QED.

LEMMA S.6: If Assumptions 3-6 are satisfied and K,{ A2 — 0, thenw.p.a.l,
Anin(P) 2 C, Ayin(P) = C.

PROOF: By Lemma S.3 and {?K,/n < CK,{}K,/n, we have 1P — P>

0 and |P — P|| 5 0, so the conclusion follows as on page 162 of Newey
(1997). Q.E.D.
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Let m= (m(wy), ..., m(w,)),and m = (m(w,), ..., m(w,)) .

LEMMA S.7: If ), Wi — VilI?/n = O,(A%), Assumptions 3-6 are satisfied,
VK4 A, — 0, and K, /n — 0, then for a = ﬁ”ﬁ/n%/n and a = ﬁ’]ﬁ/m/n,
the following equalities hold:

(i) lla—all=0,(/Ky/n),
(ii) lla—al =0,(4,),

(iii) |& — a2 = 0,(K; ™).
PROOF: For (i),
E[|P"@a-a)|1X,Z]
— Eu pP ' pu/n?| X, Z1
— te{P 2P Efuu| X, Z1pP )/
< Ctr{pP'p'}/n* < Citr(Ix,)/n
= CKz/n.

Since by Lemma S.6, Amin(P) > C w.p.a.1, this implies that E[|& — 61||2|j(),
7 1< CK,/n. Similarly, for (ii),

|P'2(@ —&)|” < COh—m) pP~" ' — m)/n* < Clisin — m|*/n
=0,(4),
which follows from m(w) being Lipschitz in IV, so that also ||& — a||* = O,(A2).
Finally for (iii),
|PV2@ - o*)|* = & — P ' pa /)
< Clh— p'a’>) pP~'p'h = p'a)/m?

< |l — pa’2|*/n < C sup |my(w) — p* (w) a2
wew

=0,(K;**'™),
so that [|P'2(& — aX2) |2 = 0, (K;*?'"). Q.E.D.
PROOF OF THEOREM 12: Note that by Lemma 11, for A> =K, /n+K 11_2d1/ "

we have Y, Vi — Vi|1*/n = 0,(4%), so by K,*/n < CK,{K, /n, the hypothe-
ses of Lemma S.7 are satisfied. Also by Lemma S.7 and T, ||& — o%?|? =
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0,(Ky/n+ K, ®'™ 4 A?). Then
/[ﬁ’t(w) — m(w)F,,(dw)
= / [P () (& — &) + p*2(w)'a®> — m(w)]'F,(dw)
< Clla — a2 |> 4+ CK; ™" = 0, (Ko /n+ K; 2™ 4 A2).

For the second part of Theorem 12,

sup | (w) — m(w)|
wew

= sup | pM2(w)' (& — &) + p2(w) a2 — B(w)|

wew
= 0,(¢{(Ka/n+ K™ + 42)') + 0, (K; ')
=Op(§(Kz/n—|-K;2d2/'2 —I-Af,)]/z). Q.E.D.

PROOF OF THEOREM 13: Let j = [, p¥v(¢) dt and note that by Lemma S.3,
p'p < CK;H. Also,

def

1
(5:2) ﬁ(x)=/ pX(w)dt = p*(x) ® p.
0

As above, E [uu/|7(), 7] < Cl,, so that by Fubini’s theorem,
E[ / () (& — &) Fy(dn)[X, 7}
= f [p(x) P pEw| X, Z1pP~ p(x) ) Fx (dx)/n?

= C{E[p"(X) p"(X)1(p'DP)}/n = K.K}**/n.

It then follows by CM that [{p(x) (& — @)}*Fx(dx) = O,(K . K;"*/n). Also,

/ PO P Fx(dx) = Ix, ® pjp < Cl, ' p < CL K™,
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so that by Lemma S.7 and T,
/{ﬁ(x)’(éz — a®)PFx(dx)

<(a—a®) / P(x)p(x)'Fx(dx)(& — o)
< CKF™|a —of | = 0, (KF™ (K, " + A2)).

Also, by CS,
/ (F(0)'a® — u(x)PFy(dx)

1
S// {pK(w)/C(_B(w)}ZdVFX(dx):O(K;Zdz/s)'
0

Then the conclusion follows by T and
/[/&(X) — u(0)PFy(dx)

= /{ﬁ(x)/(& —a®) + p(x)aX — u(x))Fx(dx)

— OP(K’2/+2a(Kx/n+K;2d2/rz +Ai))- Q.E.D.
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