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APPENDIX

THE FOLLOWING TABLE of notation and definitions will be used throughout
this appendix:

co(A): the convex hull of a set A,
supp(Q): the support of a measure Q ∈ M,
suppP(g(X�θ)): the support of g(X�θ) when X is distributed according to
P ∈ M,

s(Q�θ): the dimension of the co(suppP(g(X�θ))).

The principal challenge in deriving our optimality result is establishing
part (a) of Theorem 3.1. For ease of exposition, we provide an outline of the
proof of this claim before its formal derivation:

Step 1. First we note that Λ1(η) ⊆ Λ̈1(η), where for

M̈0(Q) = {
P ∈ M :P � Q�Q � P� s(Q�θ) = m�EP[g(X�θ)]
= 0 for some θ ∈ Θ

}
�

the set Λ̈1(η) is given by

Λ̈1(η)=
{
Q ∈ M : inf

P∈M̈0(Q)
I(Q|P) ≥ η

}
�

Step 2. Lemma A.2 exploits Lemma A.1 to show that Λ̈1(η) is closed in the
weak topology. Sanov’s theorem (see Theorem 6.2.10 in Dembo and Zeitouni
(1998)) then implies that

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≤ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈1(η)}(A1)

≤ − inf
Q∈Λ̈1(η)

I(Q|P)�

Step 3. In Lemma A.3, we derive conditions (see (A37)) under which, for any
P ∈ P0, there is η̄(P) > 0 such that

inf
Q∈Λ̈1(η)

I(Q|P) ≥ η(A2)
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for all η≤ η̄(P), which, in light of equation (A1), establishes the desired result
pointwise in P ∈ P0.

Step 4. Part (a) of Theorem 3.1 is then established by showing that (A2)
in fact holds uniformly in P ∈ P0. In particular, we show that for all η > 0
sufficiently small,

inf
P∈P0

inf
Q∈Λ̈1(η)

I(Q|P) ≥ η�(A3)

These derivations exploit Lemmas A.4–A.9.

LEMMA A.1: Let {B1� � � � �Bd+1} be a collection of closed and bounded balls
in Rd such that for any collection of points {g1� � � � � gd+1} with gi ∈ Bi for each
1 ≤ i ≤ d + 1,

0 ∈ int
(
co({g1� � � � � gd+1})

)
(A4)

(relative to the topology on Rd). Then there exists ε > 0 such that for all 0 	= γ ∈
Rd , there exists j = j(γ) ∈ {1� � � � � d+ 1} such that γ′g < 0 and |γ′g| ≥ |g||γ|ε for
all g ∈ Bj .

PROOF: Let B(γ) be the maximal subset of {B1� � � � �Bd+1} such that for all
B ∈ B(γ), we have that γ′g < 0 for all g ∈ B. The desired claim follows if we
can show (i) B(γ) is nonempty for any 0 	= γ ∈ Rd and (ii)

inf
0	=γ∈Rd

ε(γ) > 0�

where

ε(γ)= max
B∈B(γ)

inf
g∈B

|γ′g|
|g||γ| �

To establish (i), consider the hyperplane Hγ = {g ∈ Rd :γ′g = 0} and note
that if γ 	= 0, then Hγ must strongly separate at least two balls Bi�Bk ∈
{B1� � � � �Bd+1} with i 	= k. Otherwise, for either γ̄ = γ or γ̄ = −γ, there ex-
ists a collection of points {g1� � � � � gd+1} with gi ∈ Bi and γ̄′gi ≥ 0 for each
1 ≤ i ≤ d + 1, which contradicts (A4). Therefore, since Hγ strongly separates
at least two balls Bi�Bk ∈ {B1� � � � �Bd+1} with i 	= k, it follows that there exists
a j = j(γ) such that γ′gj < 0 for all g ∈ Bj .

To establish (ii), note that we may assume without loss of generality that
|γ| = 1 and suppose by way of contradiction that there exists a sequence {γn}∞

n=1
such that ε(γn) → 0. Since |γn| = 1, we have that there exists a subsequence
{γnk}∞

k=1 such that γnk → γ∗ and |γ∗| = 1. Moreover, since B(γ∗) ⊆ B(γnk) for
all k sufficiently large, it follows that for such k,

ε(γnk)≥ max
B∈B(γ∗)

inf
g∈B

|γ′
nk
g|

|g| �(A5)
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Next note that

inf
g∈Bi

|g| > 0(A6)

for 1 ≤ i ≤ d + 1. To see this, note that if (A6) fails, there exists 1 ≤ i∗ ≤ d + 1
such that 0 ∈ Bi∗ since each Bi is closed. In this case, any collection of points
{g1� � � � � gd+1} with gi ∈ Bi for 1 ≤ i ≤ d + 1 and gi∗ = 0 will not satisfy (A4).
It thus follows that |γ′

nk
g|/|g| → |γ∗′g|/|g| uniformly over g ∈ B for each B ∈

B(γ∗). The right hand side of (A5) therefore tends to ε(γ∗). But since each B ∈
B(γ∗) is compact and there are only finitely many such B, ε(γ∗) > 0. Hence,
ε(γn) 	→ 0, from which the desired claim follows. Q.E.D.

LEMMA A.2: Let Assumptions 3.1 and 3.2 hold, and define the set of probabil-
ity measures

M̈0(Q) = {
P ∈ M :P � Q�Q � P� s(Q�θ) = m�(A7)

EP[g(X�θ)] = 0 for some θ ∈Θ
}
�

Accordingly, also denote the rejection region resulting from employing M̈0(Q) in-
stead of M0(Q) by

Λ̈1(η)=
{
Q ∈ M : inf

P∈M̈0(Q)
I(Q|P) ≥ η

}
�(A8)

It then follows that Λ̈1(η) is closed under the weak topology for any η> 0.

PROOF: Let {Qn}∞
n=1 be a sequence such that Qn → Q and Qn ∈ Λ̈1(η) for

all n. We wish to show that Q ∈ Λ̈1(η). Note that if M̈0(Q) = ∅, then

inf
P∈M̈0(Q)

I(Q|P) = +∞�

so Q ∈ Λ̈1(η). We may therefore assume further that M̈0(Q) 	= ∅.
Now suppose by way of contradiction that Q /∈ Λ̈1(η). Define the set

M̈0(Q�θ)= {
P ∈ M :P � Q�Q � P� s(Q�θ) =m�EP[g(X�θ)] = 0

}
(A9)

and note that M̈0(Q)= ⋃
θ∈Θ M̈0(Q�θ). Further define the set

Θ(Q)= {θ ∈ Θ : M̈0(Q�θ) 	= ∅}�(A10)

Since M̈0(Q) 	= ∅, it follows that Θ(Q) 	= ∅ and, therefore, the primal con-
straint qualification of Theorem 3.4 of Borwein and Lewis (1993) is satisfied
for all θ ∈ Θ(Q). Hence,

inf
P∈M̈0(Q)

I(Q|P) = inf
θ∈Θ(Q)

max
γ∈Rm

∫
log(1 + γ′g(x�θ))dQ�(A11)
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Therefore, since Q /∈ Λ̈1(η) by hypothesis, it follows from (A11) that there
exists θ∗ ∈Θ(Q) such that

max
γ∈Rm

∫
log(1 + γ′g(x�θ∗))dQ<η�(A12)

Further notice that since M̈0(Q�θ∗) 	= ∅, by virtue of θ∗ ∈ Θ(Q), it follows that

s(Q�θ∗)= m�(A13)

Next, we argue that

0 ∈ int
(
co

(
suppQ(g(X�θ∗))

))
(A14)

(relative to the topology on Rm). If this is not the case, then there exists a
0 	= γ ∈ Rm such that γ′g(x�θ∗) ≥ 0 for all x ∈ supp(Q). Moreover, it must be
the case that γ′g(X�θ∗) > 0 with positive probability under Q, for otherwise
suppQ(g(X�θ∗)) will be contained in an m − 1 dimensional subspace of Rm,
which contradicts (A13). For such γ, we have for scalar α,

lim
α→∞

∫
log(1 + αγ′g(x�θ∗))dQ = ∞�

which contradicts (A12), so (A14) is thus established.
We now show M̈0(Qn�θ

∗) 	= ∅ for n sufficiently large. It follows from (A14)
that there exists a collection of points {g1� � � � � gs(Q�θ∗)+1} in suppQ(g(X�θ∗))
such that

0 ∈ int
(
co

({
g1� � � � � gs(Q�θ∗)+1

}))
(A15)

(relative to the topology on Rm). For 1 ≤ i ≤ s(Q�θ∗) + 1, let Bi be an open
neighborhood of gi so small that any collection of points {g̃1� � � � � g̃s(Q�θ∗)+1} with
g̃i ∈ B̄i for 1 ≤ i ≤ s(Q�θ∗)+ 1 will also satisfy (A15) with g̃i in place of gi. For
1 ≤ i ≤ s(Q�θ∗)+ 1, let

B−1
i = {x ∈ X :g(x�θ∗) ∈ Bi}�(A16)

Since each Bi is open and g(x�θ∗) is continuous, each B−1
i is also open. More-

over, since each Bi is an open neighborhood of a point in the support of
g(X�θ∗) under Q,

Q{X ∈ B−1
i } =Q{g(X�θ∗) ∈ Bi}> 0�(A17)

By the portmanteau lemma, we therefore have that for all n sufficiently large,

Qn{X ∈ B−1
i }> 0(A18)
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for all 1 ≤ i ≤ s(Q�θ∗) + 1. Thus, for n sufficiently large, (A14) holds with Qn

in place of Q. It follows that M̈0(Qn�θ
∗) 	= ∅ for n sufficiently large. Hence, the

primal constraint qualification of Theorem 3.4 of Borwein and Lewis (1993) is
satisfied for such values of n, from which it follows that

inf
P∈M̈0(Qn�θ∗)

I(Q|P) = max
γ∈Rm

∫
log(1 + γ′g(x�θ∗))dQn�(A19)

Next let

γ∗
n ∈ arg max

γ∈Rm

∫
log(1 + γ′g(x�θ∗))dQn�(A20)

We now argue that the {γ∗
n}∞

n=1 are uniformly bounded. If this were not the
case, then for each M > 0, there would exist a subsequence {γ∗

nk
}∞
k=1 for which

|γ∗
nk

| > M for all k. By Lemma A.1, there is then an ε > 0 and j(γ∗
nk
) ∈

{1� � � � � s(Q�θ∗)+ 1} such that

γ∗′
nk
g < 0 and

∣∣γ∗′
nk
g
∣∣ ≥ |g|∣∣γ∗

nk

∣∣ε(A21)

for all g ∈ Bj(γ∗
nk

). There exists a further subsequence {γ∗
nk�

}∞
�=1 along which

j(γ∗
nk�

) is constant. Let j∗ = j(γ∗
nk�

). For x such that g(x�θ∗) ∈ Bj∗ , we have
from (A21) that

γ∗′
nk�

g(x�θ∗) < 0 and
∣∣γ∗′

nk�
g(x�θ∗)

∣∣ ≥ |g(x�θ∗)|∣∣γ∗
nk�

∣∣ε�(A22)

Moreover, we also have from (A20) that

Qnk�

{
1 + γ∗′

nk�
g(X�θ∗) > 0

} = 1�

which, together with (A22), implies that

Qnk�

{
g(X�θ∗) ∈ Bj∗� |g(X�θ∗)|∣∣γ∗

nk�

∣∣ε > 1
} = 0�(A23)

Hence, we deduce from |γ∗
nk�

|>M for all � and result (A23) that

Qnk�

{
g(X�θ∗) ∈ Bj∗� |g(X�θ∗)|> 1

εM

}

≤Qnk�

{
g(X�θ∗) ∈ Bj∗� |g(X�θ∗)|∣∣γ∗

nk�

∣∣ε > 1
} = 0�

Thus, by the portmanteau lemma, we further conclude

Q

{
g(X�θ∗) ∈ Bj∗� |g(X�θ∗)|> 1

εM

}
= 0�
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which implies that

Q{g(X�θ∗) ∈ Bj∗} = Q

{
g(X�θ∗) ∈ Bj∗� |g(X�θ∗)| ≤ 1

εM

}
�

Letting M → ∞, we conclude from (A17) that 0 ∈ Bj∗ , which contradicts the
requirement that any collection of points {g̃1� � � � � g̃s(Q�θ∗)+1} with g̃i ∈ B̄i for
1 ≤ i ≤ s(Q�θ∗)+ 1 must satisfy (A15) with g̃i in place of gi. Hence, it must be
the case that the sequence {γ∗

n}∞
n=1 is uniformly bounded.

Therefore, there exists a subsequence {γ∗
nk

}∞
k=1 such that γ∗

nk
→ γ∗ and γ∗ ∈

Rm. We now show that

Q{1 + γ∗′g(X�θ∗) > 0} = 1�(A24)

To this end, for δ > 0, let

R−
δ = {x ∈ X : 1 + γ∗′g(x�θ∗) < δ}�(A25)

R+
δ = {x ∈ X : 1 + γ∗′g(x�θ∗)≥ δ}�

and note that∫
log

(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk(A26)

=
∫
R−
δ

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk +

∫
R+
δ

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk

≤
∫
R−
δ

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk +

∫
R+
δ

log
(
1 + ∣∣γ∗

nk

∣∣|g(x�θ∗)|)dQnk

≤
∫
R−
δ

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk + log

(
1 +M max

x∈X
|g(x�θ∗)|

)
�

where the equality holds by inspection, the first inequality holds by the Cauchy–
Schwarz inequality, and the second inequality holds because |γ∗

nk
| ≤ M for all

k and some M . Since 1 + γ∗′
nk
g(x�θ∗) → 1 + γ∗′g(x�θ∗) uniformly for x ∈ X ,

we have that for k sufficiently large, the integrand in the first term in (A26)
is bounded above by log(2δ). Thus, for k sufficiently large, (A26) is bounded
above by

Qnk{X ∈ R−
δ } log(2δ)+ log

(
1 +M max

x∈X
|g(x�θ∗)|

)
�(A27)

But

lim inf
nk→∞

Qnk{X ∈ R−
δ } ≥Q{X ∈ R−

δ } ≥Q{X ∈ R−
0 }�(A28)
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where the first inequality follows from the portmanteau lemma and the second
inequality follows from the fact that R−

0 ⊆ R−
δ for all δ > 0. If (A24) fails, then

from (A28) we have that

inf
δ>0

lim inf
nk→∞

Qnk{X ∈ R−
δ }> 0�

It now follows from (A26), (A27), and (A28) that for k sufficiently large,
∫

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk < 0

for δ > 0 sufficiently small, which contradicts (A20). Hence, (A24) is estab-
lished.

We complete the proof by establishing
∫

log(1 + γ∗′g(x�θ∗))dQ ≥ η�(A29)

which is a contradiction to (A12). To this end, note that
∫

max
{
log(1 + γ∗′g(x�θ∗))� log(δ)

}
dQ(A30)

=
∫

max
{
log(1 + γ∗′g(x�θ∗))� log(δ)

}(
dQ− dQnk

)
(A31)

+
∫

max
{
0� log(δ)− log

(
1 + γ∗′

nk
g(x�θ∗)

)}
dQnk(A32)

+
∫ (

max
{
log(1 + γ∗′g(x�θ∗))� log(δ)

}
(A33)

− max
{
log

(
1 + γ∗′

nk
g(x�θ∗)

)
� log(δ)

})
dQnk

+
∫

log
(
1 + γ∗′

nk
g(x�θ∗)

)
dQnk�(A34)

By virtue of Qn → Q, (A31) tends to zero, while (A32) is nonnegative. Since

max
{
log

(
1 + γ∗′

nk
g(x�θ∗)

)
� log(δ)

}
→ max

{
log(1 + γ∗′g(x�θ∗))� log(δ)

}
uniformly on x ∈ X , (A33) tends to zero. Finally, because of (A19), (A20),
and the fact that Qnk ∈ Λ̈1(η) for all k, (A34) is weakly greater than η. Thus,
(A30) is weakly greater than η. By letting δ ↘ 0, we see from (A24) and the
monotone convergence theorem that (A29) holds, which contradicts (A12) as
desired. Q.E.D.
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LEMMA A.3: Suppose Xi� i = 1� � � � � n, is an i.i.d. sequence of random vari-
ables with distribution P on X . Suppose further that Assumptions 3.1, 3.2, and
3.4 hold, that P ∈ P0, and that there exists ω > 0 such that all Q � P with
P{X ∈ supp(Q)}> exp(−ω) satisfy M̈0(Q�θ0(P)) 	= ∅, where

M̈0(Q�θ)= {
P ∈ M :P � Q�Q � P� s(Q�θ) =m�EP[g(X�θ)] = 0

}
�(A35)

Also let

Γ (η�P) = {
γ ∈ Rm :e−η ≤ P

{
1 + γ′g(X�θ0(P)) ≥ 0

} ≤ 1
}
�(A36)

If η<ω and η satisfies

inf
γ∈Γ (η�P)

sup
λ0�λ1≥0

λ0 +ηλ1(A37)

− exp(λ0 − 1)
∫

exp
(
λ1 log

(
1 + γ′g(x�θ0(P))

))

× I
{
1 + γ′g(x�θ0(P)) > 0

}
dP

≥ η�

then it follows that

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≤ −η�

PROOF: Let Λ̈1(η�P) = {Q ∈ M : infR∈M̈0(Q�θ0(P)) I(Q|R) ≥ η} and note that

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈1(η)} ≤ − inf
Q∈Λ̈1(η)

I(Q|P)

≤ − inf
Q∈Λ̈1(η�P)

I(Q|P)�

where the first inequality follows from Lemma A.2 and Sanov’s theorem (see
Theorem 6.2.10 in Dembo and Zeitouni (1998)), while the final inequality fol-
lows from Λ̈1(η) ⊆ Λ̈1(η�P). To complete the proof, it therefore suffices to
show that if η<ω satisfies (A37), then

inf
Q∈Λ̈1(η�P)

I(Q|P) ≥ η�(A38)

For S ⊆ supp(P), let M(S)= {Q ∈ M : supp(Q)⊆ S}. Note that

inf
Q∈M(S)

I(Q|P) = − log(P{X ∈ S})�(A39)
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To see this, observe that the left hand side of (A39) is greater than or equal
to the right hand side of (A39) by Jensen’s inequality and that I(Q|P) =
− log(P{X ∈ S}) for Q given by the distribution P conditional on S . Next note
that for any Q such that P{X ∈ supp(Q)} ≤ exp(−η), we have that

I(Q|P) ≥ inf
μ∈M(supp(Q))

I(μ|P) = − log
(
P{X ∈ supp(Q)}) ≥ η�(A40)

Note further that if Q is not dominated by P , then I(Q|P) = +∞. Hence, for

Λ̃1(η�P)= {
Q ∈ Λ̈1(η�P) :Q � P�P{X ∈ supp(Q)} ≥ exp(−η)

}
�

we have that

inf
Q∈Λ̈1(η�P)

I(Q|P) ≥ min
{

inf
Q∈Λ̃1(η�P)

I(Q|P)�η
}
�(A41)

We may assume that Λ̃1(η�P) 	= ∅, for otherwise the right hand side of (A41)
equals η, thus establishing (A38). Furthermore, since η < ω, we also have by
assumption that for any Q ∈ Λ̃1(η�P), M̈0(Q�θ0(P)) 	= ∅. Hence, the primal
constraint qualification of Theorem 3.4 of Borwein and Lewis (1993) is satis-
fied, so that for all Q ∈ Λ̃1(η�P), we have

inf
R∈M̈0(Q�θ0(P))

I(R|Q) = max
γ∈Rm

∫
log

(
1 + γ′g(x�θ0(P))

)
dQ ≥ η�

where the inequality is implied by Q ∈ Λ̈1(η�P). Next we define

Γ =
{
γ ∈ Rm :∃Q ∈ Λ̃1(η�P)

s.t. γ ∈ arg max
λ∈Rm

∫
log

(
1 + λ′g(x�θ0(P))

)
dQ

}
�

S(γ)=
{

S ⊆ supp(P) :∃Q ∈ Λ̃1(η�P) s.t. S = supp(Q)�

γ ∈ arg max
λ∈Rm

∫
log

(
1 + λ′g(x�θ0(P))

)
dQ

}
�

R(γ� S)=
{
Q ∈ Λ̃1(η�P) :γ ∈ arg max

λ∈Rm

∫
log

(
1 + λ′g(x�θ0(P))

)
dQ�

S = supp(Q)

}
�
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With these definitions, we write

Λ̃1(η�P)=
⋃
γ∈Γ

⋃
S∈S(γ)

R(γ� S)�

Hence,

inf
Q∈Λ̃1(η�P)

I(Q|P) = inf
γ∈Γ

inf
S∈S(γ)

inf
Q∈R(γ�S)

I(Q|P)�(A42)

Note that if Q ∈ R(γ� S), then (i) Q � P , (ii) S = supp(Q), and (iii)
∫

log(1 +
γ′g(x�θ0(P)))dQ ≥ η. We therefore have for δ > 0 sufficiently small, that

inf
Q∈R(γ�S)

I(Q|P)(A43)

≥ inf
{∫

S
log(φ(x))φ(x)dP :φ ∈L1(S)�φ > 0�

∫
S

log
(
1 + γ′g(x�θ0(P))

)
φ(x)dP ≥ η�

∫
S
φ(x)dP = 1

}

≥ inf
{∫

S
log(φ(x))φ(x)dP :φ ∈L1(S)�φ > 0�

∫
S

log
(
1 + γ′g(x�θ0(P))

)
I{x ∈R+

δ }φ(x)dP ≥ η�

∫
S
φ(x)dP = 1

}
�

where the first inequality follows from the preceding statements (i), (ii), and
(iii), and the second inequality follows from the definition of R+

δ in (A25) but
with (θ0(P)�γ) in place of (θ∗�γ∗).

We now use Corollary 4.8 of Borwein and Lewis (1992a) and part (vi) of
Example 6.5 of Borwein and Lewis (1992b) to find the dual problem of (A43).
To this end, first note that since Λ̃1(η�P) 	= ∅, we have that R(γ� S) 	= ∅ for
at least one γ ∈ Γ and S ∈ S(γ). For any such γ and S , we have as a result
that there exists a φ satisfying the constraints of (A43). Next note that the map
A :L1(S)→ R defined by

A(φ)=
∫

S
log

(
1 + γ′g(x�θ0(P))

)
I{x ∈ R+

δ }φ(x)dP

is continuous because log(1 + γ′g(x�θ0(P)))I{x ∈ R+
δ } lies in L∞(S) as a re-

sult of S being a subset of the compact set X and g(x�θ0(P)) being continuous
on X . Using Corollary 4.8 of Borwein and Lewis (1992a) and part (vi) of Ex-
ample 6.5 of Borwein and Lewis (1992b) to find the dual problem of (A43)
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implies

inf
Q∈R(γ�S)

I(Q|P)(A44)

≥ lim inf
δ↘0

sup
λ0�λ1≥0

λ0 +ηλ1

− exp(λ0 − 1)
∫

S
exp

(
λ1 log

(
1 + γ′g(x�θ0(P))

)
I{x ∈ R+

δ })dP�

By definition, for every S ∈ S(γ), there exists Q such that S = supp(Q) and

γ ∈ arg max
λ∈Rm

∫
log

(
1 + λ′g(x�θ0(P))

)
dQ�(A45)

For any such Q, we must have that

Q
{
1 + γ′g(X�θ0(P)) ≤ 0

} =Q
{
1 + γ′g(X�θ0(P)) ≤ 0�X ∈ S

} = 0�(A46)

from which it follows that

P
{
1 + γ′g(X�θ0(P)) ≤ 0�X ∈ S

} = 0(A47)

as well. Hence, by letting δ↘ 0, we see by the monotone convergence theorem
that ∫

S
exp

(
λ1 log

(
1 + γ′g(x�θ0(P))

)
I{x ∈ R+

δ })dP
is right-continuous at δ = 0. Following arguments as in Lemma 17.29 in
Aliprantis and Border (2006), it is possible to show that the supremum in (A44)
is lower semicontinuous at δ = 0 as well. Hence, the right hand side of (A44)
is greater than or equal to

sup
λ0�λ1≥0

λ0 +ηλ1 − exp(λ0 − 1)(A48)

×
∫

S
exp

(
λ1 log

(
1 + γ′g(x�θ0(P))

)
I
{
1 + γ′g(x�θ0(P)) ≥ 0

})
dP�

Since the integrand in (A48) is nonnegative, we have from (A44) and (A48)
that

inf
S∈S(γ)

inf
Q∈R(γ�S)

I(Q|P)(A49)

≥ inf
S∈S(γ)

sup
λ0�λ1≥0

λ0 +ηλ1
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− exp(λ0 − 1)
∫

S
exp

(
λ1 log

(
1 + γ′g(x�θ0(P))

))

× I
{
1 + γ′g(x�θ0(P)) > 0

}
dP

≥ sup
λ0�λ1≥0

λ0 +ηλ1

− exp(λ0 − 1)
∫

exp
(
λ1 log

(
1 + γ′g(x�θ0(P))

))

× I
{
1 + γ′g(x�θ0(P)) > 0

}
dP�

By definition, for every γ ∈ Γ , there exists a Q ∈ Λ̃1(η�P) such that γ satis-
fies (A45). Thus, as before, (A46) holds, from which it follows that

supp(Q) ⊆ {
x ∈ Rd : 1 + γ′g(x�θ0(P)) ≥ 0

}
�

Therefore,

P
{
1 + γ′g(X�θ0(P)) ≥ 0

} ≥ P{X ∈ supp(Q)} ≥ exp(−η)

by Q ∈ Λ̃1(η�P). Hence, γ ∈ Γ (η�P), which implies Γ ⊆ Γ (η�P). It therefore
follows from (A49) that

inf
γ∈Γ

inf
S∈S(γ)

inf
Q∈R(γ�S)

I(Q|P)
≥ inf

γ∈Γ (η�P)
sup

λ0�λ1≥0
λ0 +ηλ1

− exp(λ0 − 1)
∫

exp
(
λ1 log

(
1 + γ′g(x�θ0(P))

))

× I
{
1 + γ′g(x�θ0(P)) > 0

}
dP�

The desired claim (A38) thus follows for η<ω, satisfying (A37). Q.E.D.

LEMMA A.4: If Assumptions 3.1, 3.2, 3.3, and 3.4 hold, then P0 is closed under
the weak topology and, in addition, θ0(P) is continuous on P0 under the weak
topology.

PROOF: Let Pn → P with Pn ∈ P0 for all n and denote

θn = θ0(Pn)�

where θ0(Pn) is a singleton by Pn ∈ P0 and Assumption 3.4. Let θ∗ be a limit
point of {θn}∞

n=1 and let {θnk}∞
k=1 be a subsequence such that θnk → θ∗. It then
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follows that∣∣∣∣
∫

g(x�θ∗)dP

∣∣∣∣ = lim
nk→∞

∣∣∣∣
∫

g(x�θ∗)dPnk

∣∣∣∣(A50)

= lim
nk→∞

∣∣∣∣
∫ (

g(x�θ∗)− g
(
x�θnk

))
dPnk

∣∣∣∣
≤ lim

nk→∞
sup
x∈X

∣∣g(x�θ∗)− g
(
x�θnk

)∣∣
= 0�

where the first equality follows by Pn → P and g(x�θ∗) continuous and
bounded. The second equality is implied by θnk = θ0(Pnk), the inequality fol-
lows by inspection, and the final result is due to the uniform continuity of
g(x�θ). However, since P is closed, it follows that P ∈ P and, therefore, (A50)
implies P ∈ P0 which establishes that P0 is closed as claimed. Moreover, we
also conclude from (A50) and P ∈ P0 that

θ∗ = θ0(P)�(A51)

Therefore, θ0(P) is the unique limit point of {θn}∞
n=1, which establishes the con-

tinuity of θ0(P). Q.E.D.

LEMMA A.5: If Assumptions 3.1–3.5 hold, then there exists a ς > 0 such that

sup
P∈P0

sup
γ 	=0

P
{
γ′g(X�θ0(P)) ≥ 0

} ≤ 1 − ς�(A52)

PROOF: We establish the claim by contradiction. Suppose that contrary to
(A52), we have

sup
P∈P0

sup
|γ|=1

P
{
γ′g(X�θ0(P)) ≥ 0

} = 1�(A53)

By Lemma A.4, P0 ⊂ M is closed in the weak topology. Therefore, since M
is compact in the weak topology by Theorem 15.11 in Aliprantis and Border
(2006), it follows that P0 is compact as well. Letting Sm denote the unit sphere
on Rm, we then obtain that P0 × Sm is compact and hence by (A53), there
exists a sequence {(Pn�γn)}∞

n=1 satisfying (Pn�γn) ∈ P0 ×Sm for all n, (Pn�γn)→
(P∗�γ∗) ∈ P0 × Sm, and

lim
n→∞

Pn

{
γ′
ng(X�θ0(Pn))≥ 0

} = 1�(A54)

Defining the sets A+
n = {x ∈ X :γ′

ng(x�θ(Pn)) > 0} and A−
n = {x ∈ X :γ′

ng(x�
θ(Pn)) < 0}, we then obtain from (A54),

∫
g(x�θ0(Pn))dPn = 0, and g(x�θ)
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bounded on X ×Θ that

lim sup
n→∞

∫ ∣∣γ′
ng(x�θ0(Pn))

∣∣dPn(A55)

= lim sup
n→∞

{∫
A+

n

γ′
ng(x�θ0(Pn))dPn −

∫
A−

n

γ′
ng(x�θ0(Pn))dPn

}

= lim sup
n→∞

∫
A−

n

2
∣∣γ′

ng(x�θ0(Pn))
∣∣dPn

≤ lim sup
n→∞

sup
x∈X �θ∈Θ

2|g(x�θ)| × Pn{A−
n }

= 0�

Since (Pn�γn) → (P∗�γ∗), Lemma A.4 and compactness imply supx∈X |γ′
ng(x�

θ0(Pn))− γ∗′g(x�θ0(P
∗))| → 0. Hence, (A55), Pn → P∗, and g(x�θ0(P

∗)) con-
tinuous and bounded yield

∫ ∣∣γ∗′g(x�θ0(P
∗))

∣∣dP∗(A56)

≤ lim sup
n→∞

∫ ∣∣γ∗′g(x�θ0(P
∗))

∣∣(dP∗ − dPn)

+ lim sup
n→∞

∫ ∣∣γ∗′g(x�θ0(P
∗))− γ′

ng(x�θ0(Pn))
∣∣dPn

+ lim sup
n→∞

∫ ∣∣γ′
ng(x�θ0(Pn))

∣∣dPn

= 0�

It follows from (A56) that P∗ ∈ D0, which contradicts P∗ ∈ P0 and Assump-
tion 3.5. Q.E.D.

LEMMA A.6: If Assumptions 3.1–3.5 hold and ς is as in Lemma A.5, then for
any δ such that 0 < δ< ς,

Γ (η�P) = {
γ ∈ Rm :e−η ≤ P

{
1 + γ′g(X�θ0(P)) ≥ 0

} ≤ 1
}

(A57)

is nonempty, compact valued, and upper hemicontinuous on (η�P) ∈ [0�
− log(1 − ς + δ)] × P0 under the product of the topology on R and the weak
topology.

PROOF: The correspondence Γ (η�P) is clearly not empty since 0 ∈ Γ (η�P)
for all (η�P) ∈ [0�− log(1 − ς + δ)] × P0. To establish upper hemicontinuity,
we wish to show that if Pn → P and ηn → η with (ηn�Pn) ∈ [0�− log(1 − ς +
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δ)] × P0 for all n, then any sequence {γn}∞
n=1 with γn ∈ Γ (ηn�Pn) for all n has a

limit point in Γ (η�P). For this purpose, we first show that the sequence {γn}∞
n=1

is uniformly bounded. Suppose by way of contradiction that

lim sup
n→∞

|γn| = +∞�(A58)

It follows that there exists a subsequence {γnk}∞
k=1 satisfying, for all k,

∣∣γnk

∣∣ ≥ nk�(A59)

In addition, by compactness there exists an additional subsequence {γnkl
}∞
l=1

such that

γnkl

|γnkl
| → γ1�(A60)

Along such a subsequence, however, we have

e−η = lim
nkl

→∞
e

−ηnkl(A61)

≤ lim sup
nkl

→∞
Pnkl

{
1 + γ′

nkl
g
(
X�θ0

(
Pnkl

)) ≥ 0
}

= lim sup
nkl

→∞
Pnkl

{ γ′
nkl

|γnkl
|g

(
X�θ0

(
Pnkl

)) ≥ − 1
|γnkl

|
}

≤ lim inf
ε↘0

lim sup
nkl

→∞
Pnkl

{ γ′
nkl

|γ′
nkl

|g
(
X�θ0

(
Pnkl

)) ≥ −ε

}

≤ lim inf
ε↘0

lim sup
nkl

→∞
Pnkl

{
γ′

1g(X�θ0(P)) ≥ −2ε
}

≤ lim inf
ε↘0

P
{
γ′

1g(X�θ0(P)) ≥ −2ε
}

= P
{
γ′

1g(X�θ0(P)) ≥ 0
}
�

where the first equality follows by assumption and the first inequality follows
by γnkl

∈ Γ (ηnkl
�Pnkl

) for all l. The second equality follows by inspection. The
second inequality is implied by (A59) and the third inequality is implied by
θ0(Pnkl

)→ θ0(P) by Lemma A.4, (A60), and the uniform continuity of g(x�θ).
The final inequality and equality follow by the portmanteau and the bounded
convergence theorems, respectively. Hence,

1 − ς < e−η ≤ P
{
γ′

1g(X�θ0(P)) ≥ 0
}

(A62)
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by (A61) and ηnkl
∈ [0�− log(1 − ς + δ)] for all l. Result (A62), however, con-

tradicts P ∈ P0 by Lemma A.5.
Because the sequence {γn}∞

n=1 is uniformly bounded, it follows that there ex-
ists a subsequence such that

lim
nj→∞

γnj = γ2�(A63)

To conclude establishing upper hemicontinuity, we show that γ2 ∈ Γ (η�P),
which is implied by

e−η = lim
nj→∞

e−ηnj(A64)

≤ lim sup
nj→∞

Pnj

{
1 + γ′

nj
g
(
X�θ0

(
Pnj

)) ≥ 0
}

≤ lim inf
ε↘0

lim sup
nj→∞

Pnj

{
1 + γ′

2g(X�θ0(P)) ≥ −ε
}

≤ lim inf
ε↘0

P
{
1 + γ′

2g(X�θ0(P)) ≥ −ε
}

= P
{
1 + γ′

2g(X�θ0(P)) ≥ 0
}
�

where the first equality follows by assumption and the first inequality follows
by γnj ∈ Γ (ηnj �Pnj ) for all j. By Lemma A.4, θ0(Pnj ) → θ0(P) and, therefore,
the second inequality follows by the uniform continuity of g(x�θ). The final in-
equality and equality follow by the portmanteau and the bounded convergence
theorems, respectively.

The arguments in (A58)–(A61), but for {γn}∞
n=1 an unbounded sequence in

Γ (η�P) and ηn = η, Pn = P for all n, show that Γ (η�P) is bounded. Simi-
larly, the arguments in (A64), but with ηn = η and Pn = P for all n, show that
Γ (η�P) is closed. Hence, Γ (η�P) is compact. Q.E.D.

LEMMA A.7: If Assumptions 3.1, 3.2, 3.3, and 3.4 hold, then the function

f (λ1�γ�P)=
∫ (

1 + γ′g(x�θ0(P))
)λ1I

{
1 + γ′g(x�θ0(P)) > 0

}
dP

is lower semicontinuous on (λ1�γ�P) ∈ R+ × Rm × P0, where P0 is endowed with
the weak topology.

PROOF: Let (λ1�n� γn�Pn) → (λ1�γ�P). To establish the lemma, we aim to
show that

lim inf
n→∞

f (λ1�n� γn�Pn)≥ f (λ1�γ�P)�(A65)
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For this purpose, we define the auxiliary variable

εm ≡ sup
x∈X �m0≥m

∣∣γ′
m0
g
(
x�θ0

(
Pm0

)) − γ′g(x�θ0(P))
∣∣�(A66)

Notice that due to Lemma A.4 and Assumption 3.1, we have limm→∞ εm = 0.
Also define

λ̄1�m ≡ sup
m0≥m

λm0�(A67)

λ1�m ≡ inf
m0≥m

λm0

as well as the function

Lm(u) = uλ1�mI{u > 1} + uλ̄1�mI{0 < u ≤ 1}�(A68)

Then notice that pointwise in x ∈ X , we have that

inf
m0≥m

(
1 + γ′

m0
g
(
x�θ0

(
Pm0

)))λm0 I
{
1 + γ′

m0
g
(
x�θ0

(
Pm0

))
> 0

}
(A69)

≥ inf
m0≥m

(
1 + γ′

m0
g
(
x�θ0

(
Pm0

)))λm0 I
{
1 + γ′g(x�θ0(P)) > εm

}

≥ inf
m0≥m

(
1 + γ′g(x�θ0(P))− εm

)λm0 I
{
1 + γ′g(x�θ0(P)) > εm

}

≥Lm

(
1 + γ′g(x�θ0(P))− εm

)
�

where the first two inequalities are implied by (A66), and the final inequality
follows by (A68) and direct calculation. Next, exploiting standard manipula-
tions and (A69), we are able to conclude

lim inf
n→∞

f (λ1�n� γn�Pn)(A70)

= lim
n→∞

inf
n0≥n

∫ (
1 + γ′

n0
g
(
x�θ0

(
Pn0

)))λn0

× I
{
1 + γ′

n0
g
(
x�θ0

(
Pn0

))
> 0

}
dPn0

≥ lim
n→∞

inf
n0≥n

inf
m0≥m

∫ (
1 + γ′

m0
g
(
x�θ0

(
Pm0

)))λm0

× I
{
1 + γ′

m0
g
(
x�θ0

(
Pm0

))
> 0

}
dPn0

≥ lim inf
m→∞

lim inf
n→∞

inf
m0≥m

∫ (
1 + γ′

m0
g
(
x�θ0

(
Pm0

)))λm0

× I
{
1 + γ′

m0
g
(
x�θ0

(
Pm0

))
> 0

}
dPn
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≥ lim inf
m→∞

lim inf
n→∞

∫
inf

m0≥m

(
1 + γ′

m0
g
(
x�θ0

(
Pm0

)))λm0

× I
{
1 + γ′

m0
g
(
x�θ0

(
Pm0

))
> 0

}
dPn

≥ lim inf
m→∞

lim inf
n→∞

∫
Lm

(
1 + γ′g(x�θ0(P))− εm

)
dPn�

Further, observe from (A68) that if λ̄1�m > 0, then Lm(u) is continuous, while
if λ̄1�m = 0, then we have Lm(u) = I{u > 0}. In both cases, since g(x�θ0(P))
is continuous and X is compact, we obtain by the portmanteau lemma and
Pn → P in the weak topology,

lim inf
m→∞

lim inf
n→∞

∫
Lm

(
1 + γ′g(x�θ0(P))− εm

)
dPn(A71)

≥ lim inf
m→∞

∫
Lm

(
1 + γ′g(x�θ0(P))− εm

)
dP

≥
∫

lim inf
m→∞

Lm

(
1 + γ′g(x�θ0(P))− εm

)
dP�

where the second inequality follows by Fatou’s lemma. Finally, by λ̄1�m → λ1,
λ1�m → λ1, and εm → 0, direct calculation reveals that pointwise in x ∈ X , we
have

lim inf
m→∞

Lm

(
1 + γ′g(x�θ0(P))− εm

)
(A72)

≥ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
�

Combining (A70), (A71), and (A72) establishes the claim of the lemma.
Q.E.D.

LEMMA A.8: Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and for
(λ0�λ1�η�γ�P) ∈ [0�2]2 × R+ × Rm × P0 with P0 endowed with the weak topol-
ogy, define the function

F(λ0�λ1�η�γ�P)

= λ0 +η(λ1 − 1)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP�

In addition, consider the correspondences

E(η�γ�P)

= {(λ0�λ1� y) ∈ [0�2]2 × R : y ≤ F(λ0�λ1�η�γ�P)}�
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Π(η�γ�P)

= {y ∈ R : (λ0�λ1� y) ∈E(η�γ�P) for some (λ0�λ1) ∈ [0�2]2}�
It then follows that Π(η�γ�P) is lower hemicontinuous on R+ × R × P0.

PROOF: As in Lemma A.7, we define the function

f (λ1�γ�P)=
∫ (

1 + γ′g(x�θ0(P))
)λ1I

{
1 + γ′g(x�θ0(P)) > 0

}
dP�(A73)

We first show that f (λ1�γ�P) is continuous at all points on [0�2] × Rm × P0

with λ1 	= 0. For this purpose, let (λ1�n� γn�Pn) → (λ1�γ�P), and note that by
Lemma A.4 and X being compact, we have

lim
n→∞

sup
x∈X

∣∣γ′
ng(x�θ0(Pn))− γ′g(x�θ0(P))

∣∣ = 0�(A74)

Further, notice that since λ1 > 0, then by λ1�n → λ1, we have λ1�n > 0 for n large
enough, which implies

lim
n→∞

sup
x∈X

∣∣(1 + γ′
ng(x�θ0(Pn))

)λ1�n(A75)

× I
{
1 + γ′

ng(x�θ0(Pn)) > 0�1 + γ′g(x�θ0(P)) ≤ 0
}∣∣ = 0

as a result of (A74). By direct calculations, we then obtain from (A74) and
(A75) that

lim
n→∞

sup
x∈X

∣∣(1 + γ′
ng(x�θ0(Pn))

)λ1�nI
{
1 + γ′

ng(x�θ0(Pn)) > 0
}

(A76)

− (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}∣∣ = 0�

By (A76) and noting that the integrand is a continuous bounded function for
λ1 > 0, Pn → P establishes

f (λ1�n� γn�Pn)(A77)

=
∫ (

1 + γ′g(x�θ0(P))
)λ1I

{
1 + γ′g(x�θ0(P)) > 0

}
dPn + o(1)

→ f (λ1�γ�P)�

hence proving the desired continuity of f (λ1�γ�P) at all points (λ1�γ�P) ∈
[0�2] × R+ × P0 with λ1 > 0.

We now establish lower hemicontinuity of Π(η�γ�P). This requires show-
ing that for any y ∈ Π(η�γ�P) and (ηn�γn�Pn) → (η�γ�P), there exists a
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subsequence {ηnk�γnk�Pnk}∞
k=1 and ynk ∈ Π(ηnk�γnk�Pnk) with ynk → y . Since

y ∈ Π(η�γ�P), there exists a (λ0(y)�λ1(y)) ∈ [0�2]2 with

y ≤ F(λ0(y)�λ1(y)�η�γ�P)�(A78)

If λ1(y) > 0, then we immediately have from (A77) that

F(λ0(y)�λ1(y)�ηn�γn�Pn)→ F(λ0(y)�λ1(y)�η�γ�P)�(A79)

from which it follows that there exists yn ∈ Π(ηn�γn�Pn) with yn → y . To ad-
dress the case λ1(y)= 0, notice that

lim sup
n→∞

F(λ0(y)�0�ηn�γn�Pn)(A80)

= λ0(y)+η− eλ0(y)−1 × lim inf
n→∞

Pn

{
1 + γ′

ng(X�θ0(Pn)) > 0
}

≥ λ0(y)+η− eλ0(y)−1 × P
{
1 + γ′g(X�θ0(P)) > 0

}
= F(λ0(y)�0�η�γ�P)�

where the inequality is implied by Pn → P , (A74), Theorem 1.11.1 in van der
Vaart and Wellner (1996), and the portmanteau lemma. The final equality in
(A80) is definitional. The existence of a subsequence {γnk�ηnk�Pnk}∞

k=1 with
ynk ∈Π(γnk�ηnk�Pnk) and ynk → y then follows. Q.E.D.

LEMMA A.9: If Assumptions 3.1–3.5 hold, then for every Q ∈ P0, there exists an
open neighborhood N(Q) in P0 with respect to the weak topology and a η̄(Q) > 0
such that for all η ∈ [0� η̄(Q)],

inf
P∈N(Q)

inf
γ∈Γ (η�P)

sup
λ0�λ1≥0

λ0 +η(λ1 − 1)(A81)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP ≥ 0�

PROOF: First notice that since by Lemma A.6, the correspondence Γ (0�Q)
is compact valued, there exists a compact set A such that,

Γ (0�Q)⊂ A�

Furthermore, since by Lemma A.6, Γ (η�P) is also upper hemicontinuous at
(η�P)= (0�Q), there exists a α(Q) > 0 and an open neighborhood B(Q) in P0

such that for all 0 ≤ η≤ α(Q) and P ∈ B(Q), we have

Γ (η�P) ⊂A�(A82)
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Thus, since [0�2]2 ⊂ R × R+, it immediately follows that for all 0 ≤ η ≤ α(Q)
and P ∈ B(Q),

inf
γ∈Γ (η�P)

sup
λ0�λ1≥0

λ0 +η(λ1 − 1)(A83)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP

≥ inf
γ∈A

sup
(λ0�λ1)∈[0�2]2

λ0 +η(λ1 − 1)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP�

We establish the lemma by showing that for η sufficiently small, the right hand
side of (A83) is nonnegative on an open neighborhood of Q. For this purpose,
define the function

F(λ0�λ1�η�γ�Q)(A84)

= λ0 +η(λ1 − 1)

− eλ0−1

∫ (
1 + γ′g(x�θ0(Q))

)λ1I
{
1 + γ′g(x�θ0(Q)) > 0

}
dQ�

By Lemmas A.7 and A.8 and Theorem 2 in Ausubel and Deneckere (1993), it
follows that

C(γ�η�Q)= max
(λ0�λ1)∈[0�2]2

F(λ0�λ1�η�γ�Q)(A85)

is continuous on (γ�η�Q) ∈ Rm × R+ × P0. Moreover, since A is compact,
applying Berge’s theorem of the maximum establishes that the correspondence

Ξ(η�P) = arg min
γ∈A

C(γ�η�P)(A86)

is well defined and upper hemicontinuous on R+ × P0.
We now show Ξ(0�Q)= {0}. If γ ∈ A\Γ (0�Q), then Q{1+γ′g(X�θ0(Q))≥

0}< 1 and hence

F(1�0�0�γ�Q)= 1 −Q
{
1 + γ′g(X�θ0(Q)) > 0

}
> 0�(A87)

Alternatively, for any 0 	= γ ∈ Γ (0�Q), we have Q{1 + γ′g(X�θ0(Q))≥ 0} = 1.
Therefore,

F(1�1�0�γ�Q)= 1 −
∫ (

1 + γ′g(X�θ0(Q))
)
dQ = 0(A88)
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by virtue of Q ∈ P0. Further, since Q ∈ P0, Assumption 3.5 implies that for
γ 	= 0,

0 <Q
{
γ′g(X�θ0(Q))≥ 0

}
< 1�(A89)

Next use the dominated convergence theorem to exchange the order of differ-
entiation and integration in (A88) and conclude that for 0 	= γ ∈ Γ (0�Q),

∂

∂λ1
F(1�λ1�0�γ�Q)

∣∣∣∣
λ1=1

(A90)

=
∫ (

1 + γ′g(x�θ0(Q))
)

log
(
1 + γ′g(x�θ0(Q))

)

× I
{
1 + γ′g(x�θ0(Q)) > 0

}
dQ

> 0�

where the inequality holds by (A89), which implies γ′g(x�θ0(Q)) is not con-
stant on suppQ(g(X�θ0(Q))) and, therefore, Jensen’s inequality holds strictly.
Hence, if 0 	= γ ∈ Γ (0�Q), there exists 1 ≤ λ̃1 ≤ 2 such that

F(1� λ̃1�0�γ�Q) > 0�(A91)

Thus, so far we have established through (A87) and (A91) that if 0 	= γ ∈ A,
then

C(γ�0�Q) > 0�

Alternatively, it follows from direct calculation that C(0�0�Q) = 0, and hence
we conclude

Ξ(0�Q)= {0}�(A92)

Next notice that continuity of g(x�θ) in (x�θ) and compactness of X and Θ
imply that

sup
θ∈Θ

sup
x∈X

|g(x�θ)| <∞�(A93)

Furthermore, since, as argued, Ξ(η�P) is upper hemicontinuous at (η�P) =
(0�Q), it follows from (A92) and (A93) that there exist an α(Q) ≥ η̄(Q) > 0
and an open neighborhood N(Q) ⊆ B(Q) such that if η ∈ [0� η̄(Q)] and P ∈
N(Q), then

sup
γ∈Ξ(η�P)

|γ|< 1
supx∈X |g(x�θ0(P))| �(A94)
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We therefore conclude that if 0 ≤ η ≤ η̄(Q), P ∈N(Q), and γ ∈Ξ(η�P), then

P
{
1 + γ′g(X�θ0(P)) ≥ 0

} = 1�

It follows that if 0 ≤ η ≤ η̄(Q) and P ∈N(Q), then

Ξ(η�P) ⊆ Γ (0�P)�

Consequently, we obtain that for all 0 ≤ η ≤ η̄(Q) and P ∈N(Q),

min
γ∈A

max
(λ0�λ1)∈[0�2]2

λ0 +η(λ1 − 1)(A95)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP

= min
γ∈Γ (0�P)

max
(λ0�λ1)∈[0�2]2

λ0 +η(λ1 − 1)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP�

Arguing as in (A88), it then follows that F(1�1�η�γ�P)= 0 for all γ ∈ Γ (0�P)
and any η. To conclude, note that since the minimum is attained, we establish
using (A95) that

min
γ∈Γ (0�P)

max
(λ0�λ1)∈[0�2]2

λ0 +η(λ1 − 1)(A96)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I
{
1 + γ′g(x�θ0(P)) > 0

}
dP ≥ 0�

Therefore (A83), (A95) and (A96) establish the claim of the lemma. Q.E.D.

PROOF OF THEOREM 3.1: (a) Let M̈0(Q), M̈0(Q�θ), and Λ̈1(η) be as de-
fined in (A7), (A9), and (A8), respectively. Observe that since M̈0(Q) ⊆
M0(Q), it follows that Λ1(η)⊆ Λ̈1(η). Hence

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} ≤ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈1(η)}�(A97)

The proof then proceeds by showing that the conditions of Lemma A.3 hold for
all P ∈ P0 if η> 0 is sufficiently small. Toward this end, for ς as in Lemma A.5,
define

ω1 = − log(1 − ς)�(A98)
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We first show that for all P ∈ P0, if Q � P and P{X ∈ supp(Q)} > exp(−ω1),
then M̈0(Q�θ0(P)) 	= ∅. For this purpose, note that

sup
γ 	=0

P
{
X ∈ supp(Q)�γ′g(X�θ0(P)) ≥ 0

} ≤ sup
γ 	=0

P
{
γ′g(X�θ0(P)) ≥ 0

}
(A99)

≤ 1 − ς

< P{X ∈ supp(Q)}�
where the first inequality follows by inspection, the second inequality follows
by P ∈ P0 and Lemma A.5, and the last inequality follows by hypothesis. It
follows from (A99) that for all γ ∈ Rm,

P
{
X ∈ supp(Q)�γ′g(X�θ0(P)) ≥ 0

}
> 0�(A100)

P
{
X ∈ supp(Q)�γ′g(X�θ0(P)) < 0

}
> 0�(A101)

Hence, there exists no hyperplane separating suppQ(g(X�θ0(P))) and {0},
which implies

0 ∈ int
(
co

(
suppQ

(
g(X�θ0(P))

)))

(relative to the topology on Rm). We therefore conclude M̈0(Q�θ0(P)) 	= ∅ as
desired.

To complete the proof, we verify that (A37) holds uniformly in P ∈ P0 for η>
0 sufficiently small. By Lemma A.9, for every P ∈ P0, there exists an η̄(P) > 0
and an open neighborhood in the weak topology N(P) in P0 such that for all
0 ≤ η≤ η̄(P), we have

inf
Q∈N(P)

inf
γ∈Γ (η�Q)

sup
λ0�λ1≥0

λ0 +η(λ1 − 1)

− eλ0−1

∫ (
1 + γ′g(x�θ0(Q))

)λ1I
{
1 + γ′g(x�θ0(Q)) > 0

}
dQ ≥ 0�

By Theorem 15.11 in Aliprantis and Border (2006), M is compact under the
weak topology, and hence since P0 ⊂ M is closed by Lemma A.4, it is compact
as well. Consequently, as

P0 =
⋃
P∈P0

N(P)

and N(P) are open for all P ∈ P0, compactness implies the existence of a finite
subcover such that

P0 =
k⋃
i=1

N(Pi)�(A102)
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To conclude, let

ω2 = min{η̄(P1)� � � � � η̄(Pk)}(A103)

and notice that by construction, ω2 > 0 and, in addition, for all 0 ≤ η≤ω2,

inf
P∈P0

inf
γ∈Γ (η�P)

sup
λ0�λ1≥0

λ0 +η(λ1 − 1)(A104)

− eλ0−1

∫ (
1 + γ′g(x�θ0(P))

)λ1I{1 + γ′g(x�θ0) > 0}dP ≥ 0�

Letting η̄ = min{ω1�ω2} implies that the conditions of Lemma A.3 are sat-
isfied for all P ∈ P0 and 0 ≤ η≤ η̄, which establishes claim (a) of the theorem.

The proof of part (b) closely follows arguments in Kitamura (2001) and
Dembo and Zeitouni (1998). Define the set of probability measures

R(η)=
{
Q ∈ M : inf

P∈M0\P0
I(Q|P) ≥ η

}
�(A105)

We first aim to show that the proposition

Λ0(η)∩ R(η)⊆ Ω0�n ∩ R(η)(A106)

holds for all n > n0 and n0 sufficiently large. Suppose by way of contradiction
that there exists an infinite sequence of probability measures {ξn}∞

n=1 such that
ξn ∈ Λ0(η) ∩ R(η) and ξn ∈ Ω1�n ∩ R(η). Since M is compact under the weak
topology by Theorem 15.11 in Aliprantis and Border (2006), there exists a sub-
sequence {ξnk}∞

k=1 such that

ξnk → ξ(A107)

for some ξ ∈ M. Hence, there exists a k0 such that for all k ≥ k0, it follows that
ξnk ∈ B(ξ�δ/2) and, therefore, B(ξ�δ/2) ⊂ Ωδ

1�nk
. Hence, by Sanov’s theorem

(see Theorem 6.2.10 in Dembo and Zeitouni (1998)) and various inclusion
restrictions, it follows that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
1�n} ≥ sup

P∈P0

lim inf
nk→∞

1
nk

logPnk
{
P̂nk ∈Ωδ

1�nk

}
(A108)

≥ sup
P∈P0

lim inf
n→∞

1
n

logPn{P̂n ∈ B(ξ�δ/2)}

≥ sup
P∈P0

− inf
Q∈B(ξ�δ/2)

I(Q|P)

≥ sup
P∈P0

−I
(
ξnk0

|P)
�
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Since ξnk0
∈ Λ0(η)∩ R(η), it must be that

inf
P∈M0

I
(
ξnk0

|P) ≤ inf
P∈M0(ξnk0

)
I
(
ξnk0

|P)
<η(A109)

by virtue of M0(ξnk0
) ⊆ M0 and ξnk0

∈ Λ0(η). Furthermore, since ξnk0
∈ R(η),

we have

inf
P∈M0\P0

I
(
ξnk0

|P) ≥ η�(A110)

Hence, combining (A109), (A110), and P0 ⊂ M0, we conclude

inf
P∈P0

I
(
ξnk0

|P)
<η�(A111)

Therefore, it follows from results (A108) and (A111) that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
1�n} >−η�(A112)

which contradicts the assumptions on (Ω0�n�Ω1�n) and hence (A106) must be
true. Therefore,

lim sup
n→∞

1
n

logQn{P̂n ∈Λ0(η)∩R(η)} ≤ lim sup
n→∞

1
n
Qn{P̂n ∈Ω0�n}�(A113)

To conclude the proof of claim (b) of Theorem 3.1, we aim to establish that

lim sup
n→∞

1
n

logQn{P̂n ∈Λ0(η)} = lim sup
n→∞

1
n

logQn{P̂n ∈Λ0(η)∩R(η)}(A114)

for all Q ∈ P satisfying (18) in the main text, which together with inequality
(A113) yields the desired result. Toward this end, let Rc(η) = M \ R(η) and
note that since I(Q|P) ≥ 2d2

PL(Q�P), it follows from (A105) that

Rc(η) ⊆
{
Q ∈ M : inf

P∈M0\P0
2d2

PL(Q�P) ≤ η
}
�(A115)

We conclude from (A115) that Rc(η) ⊆ M0 \ P0

√
η/2

. Thus appealing to
Sanov’s theorem, we obtain

lim sup
n→∞

1
n

logQn{P̂n ∈Λ0(η)∩Rc(η)}(A116)

≤ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ0(η)∩Rc(η)}
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≤ − inf
P∈Λ0(η)∩Rc(η)

I(Q|P)

≤ − inf
P∈M0\P0

√
η/2

I(Q|P)�

Next let Λ̈0(η) = M \ Λ̈1(η) for Λ̈1(η) as defined in (A8), and notice that since
P0 ⊆ Λ̈0(η) ⊆ Λ0(η) and Λ̈0(η) is open as a consequence of Lemma A.2, it
follows that

P0 ⊆Λo
0(η)�(A117)

Moreover, since from result (A115) it is possible to conclude that
{
Q ∈ M : inf

P∈M0\P0
2d2

PL(Q�P) > η
}

⊆R(η)(A118)

and since the left hand side of (A118) is open, we obtain P0 \ M0 \ P0

√
η/2 ⊂

Ro(η). Thus, by (A117) and (A118),

P0 \ M0 \ P0

√
η/2 ⊆ (Λ0(η)∩R(η))o�(A119)

Hence, appealing once again to Sanov’s theorem and exploiting (A119), we
establish

lim inf
n→∞

1
n

logQn{P̂n ∈ Λ0(η)∩R(η)}(A120)

≥ lim inf
n→∞

1
n

logQn
{
P̂n ∈ (Λ0(η)∩R(η))o

}
≥ − inf

P∈(Λ0(η)∩R(η))o
I(Q|P)

≥ − inf
P∈P0\M0\P0

√
η/2

I(Q|P)�

Therefore, combining (A116) and (A120), we obtain that for any Q satisfying
(18) in the main text, we have

lim sup
n→∞

1
n

log
Qn{P̂n ∈ Λ0(η)∩Rc(η)}
Qn{P̂n ∈Λ0(η)∩R(η)} ≤ 0�(A121)

which in turn implies that for any κ> 0, there is an n0 such that for all n > n0,

Qn{P̂n ∈ Λ0(η)∩Rc(η)}
Qn{P̂n ∈Λ0(η)∩R(η)} ≤ eκn�(A122)
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Moreover, employing Λ0(η) ∩ R(η) ⊆ Λ0(η), result (A122), and simple ma-
nipulations yields that

0 ≤ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ0(η)}(A123)

− lim sup
n→∞

1
n

logQn{P̂n ∈ Λ0(η)∩R(η)}

≤ lim sup
n→∞

1
n

log
{

1 + Qn{P̂n ∈Λ0(η)∩Rc(η)}
Qn{P̂n ∈ Λ0(η)∩R(η)}

}

≤ lim sup
n→∞

1
n

log{1 + eκn}

≤ 2κ�

Because κ > 0 was arbitrary, we conclude that (A114) holds, which together
with (A113) establishes the theorem. Q.E.D.

PROOF OF COROLLARY 3.1: Let P̃ = P \ Dε/2
0 and notice that under the as-

sumptions of the corollary, Assumptions 3.3, 3.4, and 3.5 hold with P̃ in place
of P. Therefore, since

{
P ∈ P̃ :EP[g(X�θ)] = 0 for some θ ∈ Θ

} = P0 \ Dε/2
0 �(A124)

it follows from Theorem 3.1 that there exists an η̄1(ε) > 0 such that for all
η̄1(ε)≥ η> 0, we have

sup
P∈P0\Dε/2

0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃1(η) \ Dε
0}(A125)

≤ sup
P∈P0\Dε/2

0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)}

≤ −η�

Moreover, by Λ̃1(η) \ Dε
0 ⊆ (Dε

0)
c , Sanov’s theorem, and the inequality

I(Q|P) ≥ 2d2
PL(Q�P), we obtain

sup
P∈P0∩Dε/2

0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃1(η) \ Dε
0}(A126)

≤ sup
P∈P0∩Dε/2

0

lim sup
n→∞

1
n

logPn{P̂n ∈ (Dε
0)

c}
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≤ sup
P∈P0∩Dε/2

0

− inf
Q∈(Dε

0)
c
I(Q|P)

≤ − inf
P∈P0∩Dε/2

0

inf
Q∈(Dε

0)
c
2d2

PL(Q�P)�

Therefore, results (A125), (A126), and setting η̄(ε) ≤ min{η̄1(ε)�ε
2/2} estab-

lishes part (a) of the corollary. Furthermore, the same arguments as in (A107)–
(A112) yield Λ̃0(η)∪Dε

0 ⊆Ω0�n ∪Dε
0 for n large enough, which implies Λ̃0(η) ⊆

Ω0�n for n large enough, thus yielding part (b) of the corollary. Q.E.D.
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