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1 Software Requirement

The code calls the constrained optimization solver KNITRO in MATLAB using the TOM-

LAB interface, a 3rd-party optimization toolbox. Users need to purchase a KNITRO license

(along with a TOMLAB license) directly from TOMLAB Optimization.

KNITRO can now be called directly from the MATLAB Optimization Toolbox using

ktrlink. We post a version of our code that calls KNITRO directly from MATLAB (without

TOMLAB interface) on the website:

http://faculty.chicagobooth.edu/jean-pierre.dube/vita/MPEC%20code.htm

By using ktrlink, users need to purchase KNITRO from Ziena Optimization, Inc. (www.ziena.com);

users do not need to purchase the TOMLAB toolbox.

2 Main Script Files

The following script files are used to produce the Monte Carlo results reported in the

paper.

• Table 1. MonteCarlos June5 2008 startvalues.m

• Table 2. runNevo tight loose MPEC.m

• Table 3 and 4. MonteCarlos 2010 12 30 01.m

• Table 5 and 6. For MPEC: main MPEC sparse.m

For NFP, use the code for Table 3 and 4.

• Table 7. Change the number of markets/products in the code used for Table 3 and 4

• Table 8 and 9. For MPEC: DynamicBLP 2typeMPEC MAD price.m

For NFP: DynamicBLP 2typeNFP MAD price.m
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3 Implementation

Supplying Derivatives and Sparsity Patterns.

To see the exact syntax used to call KNITRO through TOMLAB, please refer to the function

runGMMMPECTOMLAB.m. The code is able to handle a reasonably large number of products

and markets, and hence constraints. This fact is due primarily to the fact that the MPEC

optimization problem (for BLP) is sparse. An important step in using the constrained

optimization algorithm is to specify the sparsity pattern of the constraints.

In addition, we supply the analytic first-order and second-order derivatives:

• gradients of the MPEC GMM objective function: GMMMPEC grad.m

• Jacobian of the constraints: GMMMPEC dc.m

• Hessian of the MPEC GMM objective function, GMMMPEC hess.m

• Hessian of the constraints: GMMMPEC d2c.m

Large-Scale Problems.

For models with more than 5,000 markets share equations (as in Table 5 and 6), users

need to use sparse matrix representation for the constraint Jacobian, Hessian and their

respective sparsity patterns. Sparse matrices are critical to economize on memory usage.

We have successfully solved instances of BLP models with 30,000 market share equations

(150 markets and 20 products) using 500 MB RAM and 50,000 market share equations (250

markets and 20 products) using 1.5 GB RAM. Please refer to the code used for Table 5 – 6.

Options for KNITRO 7.0.

The code was run successfully in 2010 and 2011 using the KNITRO solver (version 6.0.0) to

produce Monte Carlo results reported in Table 1 to 9 in the paper. The following options

need to be supplied if a newer version of KNITRO (7.0 or above) is used:

blasoption 0

linsolver 4

bar directinterval 100000
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