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SUPPLEMENT TO “EFFICIENT REPEATED IMPLEMENTATION”
(Econometrica, Vol. 79, No. 6, November 2011, 1967-1994)

BY JIHONG LEE AND HAMID SABOURIAN

WE HERE PRESENT some formal results and proofs omitted from the main
paper.

A. TWO-AGENT CASE

PROOF OF THEOREM 3: Consider regime R defined in Section 4.2. We prove
the theorem via the following claims.

CLAIM A.1: Fix any o € O%(R). For any t > 1 and 0(t), if g = g, then
w'" > v(f) foralli=1,2.

The proof can be established by reasoning analogous to that behind
Lemma 2.

CLAM A.2: Fixany o € O%(R). Forany t and 6(t), if g*" = g, then m?(”’(’t =
(-,0) and m3"" = (-, 0) for any 6.

PROOF: Suppose not. Then, for some ¢, 6(¢), and 6', g"” = g and the con-
tinuation regime next period at h(6(?), 6") is either D' or ' # & for some i.
By reasoning similar to the three-or-more-player case, it then follows that, for
J# 1
(A1) 7" <l

Then, given (A.1), agent j can profitably deviate at (h(6(¢)), 6*) by announc-
ing the same state as o; and an integer higher than /’s integer choice at such a
history. This is because the deviation does not alter the current outcome (given
the definition of ¢ of g) but induces regime D/ in which, by (A.1), j obtains

vj > ﬂ-f(” " But this is a contradiction. QO.E.D.

CLAIM A.3: Assume that f is efficient in the range. For any o € 2°(R), ml® =
vi(f) forany i, t > 1,and 6(t).

Given Claims A.1 and A.2, and since f is efficient in the range, we can di-
rectly apply the proof of Lemma 4.

CLAIM A4: 0°(R) is nonempty if self-selection holds.
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PROOF: Consider a symmetric Markov strategy profile in which, for any 6,
each agent reports (6, 0). Given the output function ¢ of g, any unilateral de-
viation by i at any 6 after any history results either in no change in the current
period outcome (if he does not change his announced state) or it results in
current period outcome belonging to L;(8). Also, given the transition rules
of R, a deviation does not improve continuation payoff at the next period ei-
ther. Therefore, given self-selection, it does not pay i to deviate from his strat-

egy. Q.E.D.

Finally, given Claims A.3 and A.4, the proof of Theorem 3 follows by exactly
the same arguments as those behind Theorem 2. QE.D.

Alternative Condition to Self-Selection and Condition w

As mentioned at the end of Section 4.2, the conclusions of Theorem 3 can
be obtained using an alternative condition to self-selection and Condition w
if & is sufficiently large.

THEOREM A.1: Suppose that I = 2 and consider an SCF f such that there
exists a € A such that vi(a) < v;(f) for i =1, 2. If f is efficient in the range, there
exists a regime R and & such that, for any & > 8, 2°(R) is nonempty and, for any
o e 2®R), 77',-9(”(0, R) =v,(f) forany i, t > 2,and 0(¢). If f is strictly efficient
in the range, then, in addition, a®-* (o, R) = f(6") forany t > 2, 6(t), and ¢'.

PROOF: Following Lemma 1, let S’ be the regime alternating d(i) and ¢ (a)
from which i = 1, 2 can obtain payoff exactly equal to v;(f). For j # i, let 7;(S")
be the maximum payoff that j can obtain from regime S’ when i behaves ra-
tionally in d(i). Since S’ involves d(i), Assumption A implies that v} > ;(S").
Then, for any i, j, i # j, there must also exist € > 0 such that v;(a) < v;(f) — &

and 7;(S') < vj- — &. Next define p = max; g , o [u:(a, ) —u;(a’, )] and 6 = pig.

Mechanism g = (M, ) is defined such that, for all i, M; = ® x Z, and i is
such that the following conditions hold:

(i) If m; = (6, ) and m; = (6, -), then ¢(m) = f(0).

(i) If m; = (0',z"), m; = (6/,0), and z' # 0, then y(m) = f(6).

(iii) For any other m, y(m) =a. _

Let R denote any regime in which R(#) = g and, for any & = ((g', m"), ...,
(g ', m'1)) € H' such that ¢ > 1, and g'~! = g, the following transition rules
hold:

RULE A.L: If m!"' = (6,0) and m'™' = (6, 0), then R(h) = §.

RULEA.2: If m{™' = (6,0), m'™" = (¢, 0), and 6’ # ¢/, then R(h) = &°.
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RULEA3: If m{™' = (0, 2'), m™ = (¢, 0), and z' #0, then R|h = §'.

RULE A4: If m'~! is of any other type and i is the lowest-indexed agent
among those who announce the highest integer, then R|h = D'.

We next prove the theorem via the following claims.

CLAIM A.5: Fix any o € Q°(R). For any t > 1 and 6(¢t), if g = g, then
w'" > v(f) foralli=1,2.

PROOF: Suppose not. Then at some ¢ > 1 and 6(t), g” = g but 7/ < v,(f)
for some i. Let 8(t) = (6(t —1), 8'~"). Given the transition rules, it must be that

g""V =gand m{“ """ = m?(t_l)ﬂ’il = (6, 0) for some 0.

Consider i deviating at (h(6(z — 1)), 6'~') such that he reports 6 and a pos-
itive integer. Given the output function ¢ of mechanism g, the deviation does
not alter the current outcome, but, by Rule A.3 of regime R, can yield contin-

uation payoff v;(f). Hence, the deviation is profitable, implying a contradic-

tion. Q.E.D.
CLAIM A.6: Fixany 8 € (5,1) and o € Q°(R). Forany t and 6(t), if g*© = g,
then m! " = m? " = (0,0) for any 0.

PROOF: Suppose not. Then for some ¢, 6(t), and €', g’ = g but m*"-% is

not as in the claim. There are three cases to consider.
Case 1—m!" = (-, z') and mf(’)’et = (-, z)) with z' > z/ > 0: In this case,
given the definition of ¢ of g, a is implemented in the current period and,
by Rule A.4, a dictatorship by, say, i follows forever thereafter. But then, by
Assumption A, j can profitably deviate by announcing an integer higher than z’
at such a history; the deviation does not alter the current outcome from a but
switches dictatorship to himself as of the next period.

Case 2—mf(”’9’ = (-,z") and m;’(”’ot = (¢/,0) with z/ > 0: In this case,
given ¢, f(6’) is implemented in the current period and, by Rule A.3, con-
tinuation regime S’ follows thereafter. Consider j deviating to another strat-
egy identical to o; everywhere except at (h(6(¢)), 6) it announces an integer
higher than z'.

Given ¢ (condition (iii)) and Rule A.4, this deviation yields a continuation
payoff (1 — &)u;(a, 6") + dvj, while the corresponding equilibrium payoff does
not exceed (1 — 8)u;(f(6'), 6") + 8m;(S"). But since v} > 7;(§') + & and § > 5,
the former exceeds the latter and the deviation is profitable.

Case 3—m" """ = (#',0) and m;’(‘)’ot = (¢/,0) with 6" # ¢’: In this case,

i

given ¢, a is implemented in the current period and, by Rule A.2, in every
period thereafter. Consider any agent i deviating by announcing a positive
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integer at (h(6(t)), 6"). Given ¢ (condition (ii)) and Rule A.3, such a devi-
ation yields continuation payoff (1 — 8)u;(f(6/), 6") + dv;(f), while the cor-
responding equilibrium payoff is (1 — 8)u;(a, 6') + dv;(a). But since v;(f) >
vi(a) + ¢ and & > 6, the former exceeds the latter and the deviation is prof-
itable. O.E.D.

CLAIM A.7: Forany 6 € (8,1) and o € Qﬁ(ﬁ), 77;’(’) =v(f) forany i, t > 1,
and 0(t).

Given Claims A.5 and A.6, and since f is efficient in the range, to prove the
claim, we can directly apply the proofs of Lemmas 3 and 4.

CLAIM A.8: Forany 6 € (8, 1), !25(1?) is nonempty.

PROOF: Consider a symmetric Markov strategy profile in which the true
state and zero integer are always reported. At any history, each agent i can
deviate in one of the following three ways:

(i) Announce the true state but a positive integer. Given ¢ (condition (i))
and Rule A.3, such a deviation is not profitable.

(ii) Announce a false state and a positive integer. Given ¢ (condition (ii))
and Rule A.3, such a deviation is not profitable.

(iii) Announce zero integer but a false state. In this case, by ¢ (condi-
tion (iii)), a is implemented in the current period and, by Rule A.2, in ev-
ery period thereafter. The gain from such a deviation cannot exceed (1 —
8) max, ¢[u;(a, 0) — u;(a, 6)] — de < 0, where the inequality holds since & > 6.
Thus, the deviation is not profitable. Q.E.D.

B. PERIOD 1: COMPLEXITY CONSIDERATIONS

Here, we introduce players with preference for less complex strategies to
the main sufficiency analysis of our paper with pure strategies and show that if
players have an aversion to complexity at the very margin, an SCF that satisfies
efficiency in the range and Condition w can be implemented from period 1.

Fix an SCF f and consider the canonical regime with I > 3, R*. (Corre-
sponding results for the two-agent case can be similarly derived and, hence, are
omitted.) Consider any measure of complexity of a strategy under which taking
the same action at every history with an identical state is simpler than one that
takes different actions at different dates. Formally, we introduce a very weak
partial order on the set of strategies that satisfies the following definition.!

This partial order on the strategies is similar to the measure of complexity that we used in Lee
and Sabourian (2011) on finite mechanisms. The result in this section also holds if we replace
Definition B.1 with any measure of complexity that stipulates that Markov strategies are less
complex than non-Markov ones.
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DEFINITION B.1: For any player i, strategy o7 is said to be less complex than
strategy o if they are identical everywhere except that there exists 8’ € ® such
that o always takes the same action after observing 6" and o] does not. More
formally, for any i, o7 is less complex that o; if the following conditions hold:

(i) o/(h,0)=0;(h, 6) for allh and all 6 # 6'.
(i) o/(h, 0)=o/(W, @) for all h, h' € H®.
(iii) o;(h, ) # o;(h’, 6') for some h, h' € H* .

Next, consider the following refinement of Nash equilibrium of regime R*:
a strategy profile o = (o1, ..., o) constitutes a Nash equilibrium with com-
plexity cost (NEC) of regime R if, for all 7, (i) o; is a best response to o_; and
(ii) there exists no o] such that o7 is a best response to o—_; and o7 is less com-
plex than ;. Then, since a NEC is also a Nash equilibrium, Lemmas 3 and 4
hold for any NEC. In addition, we derive the following result.

LEMMA B.1: Every NEC, o, of R* is Markov: for all i, o;(W', 0) = o;(h", 0)
forall W, h" € H*® and all 6.

PROOF: Suppose not. Then there exists some NEC, o, of R* such that
oi(h, 0) # o;(h”, ) for some i, &,h’, and h”. Let 6 be the state announced
by o; in period 1 after observing 6'. Next, consider i deviating to another strat-
egy o) that is identical to o; except that at state ¢, irrespective of the past
history, it always announces state 6 and integer 1; thus, o/(h, 6) = o;(h, 0) for
allh and all 6 ', and o/(h, 6') = (6, 1) for all h.

Clearly, o7 is less complex than o;. Furthermore, for any 6' € O, by part (ii)
of Lemma 3 and the definitions of g* and R*, we have a(’l(al.’ ,0_i, R*) =
a’ (o, R*) and w;’l(ag, o_i, R*) = v;(f). Moreover, we know from Lemma 4
that 771."1 (o, R*) = v;(f). Thus, the deviation does not alter i’s payoff. But since

o} is less complex than o;, such a deviation makes i better off. This contradicts
the assumption that o is a NEC. Q.E.D.

This lemma, together with Lemma 4, shows that for every NEC, each player’s
continuation payoff at any history on the equilibrium path (including the initial
history) is equal to his target payoff. Moreover, since a Markov strategy has
minimal complexity (i.e., no other strategy exists that is less complex than the
Markov strategy), it also follows that the Markov Nash equilibrium described
in Lemma 5 is itself a NEC. Thus, if we use NEC as the solution concept, then
the conclusions of Theorem 2 hold from period 1.

THEOREM B.1: Suppose that I > 3 and consider an SCF f that satisfies Con-
dition . If f is efficient in the range, it is payoff-repeatedly implementable in Nash

2We have suppressed the argument g* in the definition of strategies here to simplify the expo-
sition.
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equilibrium with complexity cost. If f is strictly efficient in the range, it is repeatedly
implementable in Nash equilibrium with complexity cost.

Note that the notion of NEC requires that each player’s equilibrium strat-
egy has minimal complexity among all strategies that are best responses to
the strategies of the other agents. As a result, NEC strategies need only be
of sufficient complexity to achieve the highest payoff on-the-equilibrium path;
off-the-equilibrium payoffs do not figure into these complexity considerations.
However, it may be argued that players adopt complex strategies also to deal
with the off-the-equilibrium paths. In Lee and Sabourian (2011), we introduce
an alternative equilibrium refinement based on complexity that is robust to
this criticism (so as to explore what can be achieved by regimes that employ
only finite mechanisms). Specifically, we considered the set of subgame perfect
equilibria and required players to adopt minimally complex strategies among
the set of strategies that are best responses at every history, not merely at the
beginning of the game. We say that a strategy profile o is a weak perfect equi-
librium with complexity cost (WPEC) of regime R if, for all 7, (i) o is a subgame
perfect equilibrium (SPE); and (ii) there exists no o7 that is less complex than
o; and best responds to o_; at every (on-or off-the-equilibrium) information
set.

In this equilibrium concept, complexity considerations are given less pri-
ority than both on- and off-the-equilibrium payoffs. Nevertheless, the same
implementation result from period 1 can also be obtained using this equilib-
rium notion. For this result, we have to modify the regime R* slightly. Define
g = (M, ) as the following mechanism: M; = ® x Z, for all i and  is such
that the following conditions hold:

(i) If m; = (6, -) for at least I — 1 agents, then ¢ (m) = f(6).

(ii)) Otherwise, ¥s(m) = f(0'), where ¢’ is the state announced by the lowest-
indexed agent announcing the highest integer.

Let R be any regime such that R(#) = g and, for any & = ((g',m"), ...,
(g, m' 1)) € H' such that t > 1 and g'~! = g, the following transition rules
hold:

RULE B.1: If m!™' = (-, 0) for all i, then R(h) =g.

RULE B.2: If, for some i, m{™' = (-,0) for all j # i and mj™' = (-, z') with
z' #0, then R|h =S’ (Lemma 1).

RULE B.3: If m'~! is of any other type and i is the lowest-indexed agent
among those who announce the highest integer, then R|h = D".

This regime is identical to R* except for the output function defined for the
one-period mechanism when two or more agents play distinct messages; in
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such cases, the immediate outcome for the period results from the state an-
nounced by the agent announcing the highest integer.

Then, by the same argument as above for NEC, it suffices to show that any
WPEC must also be Markov. To see this, assume not. Then there exists some
WPEGC, o, of R* such that o;(h', 8") # o;(h”, §) for some i, ¢, ', and h”.

Next, let 6 € argmax, u;(f(0), ') and consider i deviating to another strat-
egy o) that is identical to o; except that at state ¢, irrespective of the past
history, it always reports state 6 and integer 1; thus, oi(h, 0) = o;(h, §) for
allh and all 0 # ¢, and o;(h, ') = (6, 1) for all h.

Clearly, o/ is less complex than o;. Furthermore, by applying the same ar-
guments as in Lemmas 2-4 to the notion of SPE, it can be shown that, at any
history beyond period 1 at which g is being played, the equilibrium strategies
choose integer 0 and each agent’s equilibrium continuation payoff at this his-
tory is exactly the target payoff.

Thus, since o] chooses 1 at any h if the realized state is ', it follows that,
at any such history, (i) o] induces S’ in the continuation game and the target
utility is achieved, and (ii) either other I — 1 agents report the same state and
the outcome in the current period is not affected, or other players disagree on
the state and f(6) is implemented (see the modified outcome function ¢ of the
mechanism). Therefore, o] induces a payoff no less than o; after any history.
Since o7 is also less complex than o;, we have a contradiction to ¢ being a
WPEC.

C. MIXED STRATEGIES

We next extend the main analysis of the paper (Section 4.2) to incorpo-
rate mixed/behavioral strategies (also see Section 5). Let b;:H® x G x O —
A(U,yeq M7) denote a mixed (behavioral) strategy of agent i, with b denot-
ing a mixed strategy profile. With some abuse of notation, given regime R
and any history h' € H, let g* (b, R) = (M" (b, R), y* (b, R)) be the mech-
anism played at h’, let a"" (b, R) € A be the outcome implemented at h’
when the current message profile is m', and let 7" (b, R) be agent i’s ex-
pected continuation payoff at h’ if the strategy profile b is adopted. We write
(b, R) = 7" (b, R).

Also, for any strategy profile b and regime R, let H (6(¢), b, R) be the set of
t — 1 period histories that occur with positive probability given state realizations
6(t) and let M™% (b, R) be the set of message profiles that occur with positive
probability at any history h’ after observing 6‘. The arguments in the above
variables will be suppressed when the meaning is clear.

We denote by B°(R) denote the set of mixed strategy Nash equilibria of
regime R with discount factor 6. We modify the notion of Nash repeated im-
plementation to incorporate mixed strategies as follows.

DEFINITION C.1: An SCF f is payoff-repeatedly implementable in mixed
strategy Nash equilibrium from period 7 if there exists a regime R such that
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(i) B’(R) is nonempty and (ii) every b € B?(R) is such that 7" (b, R) = v;(f)
for any i, t > 7, 6(¢), and h' € H'(6(t), b, R). An SCF f is repeatedly im-
plementable in mixed strategy Nash equilibrium from period 7 if, in addi-
tion, every b € B?(R) is such that & (R) = f(0') for any t > 7, 6(1), 6,
h' e H'(6(t), b, R), and m' € M- (b, R).

We now state and prove the result for the case of three or more agents. The
two-agent case can be analogously dealt with and, hence, is omitted to avoid
repetition.

THEOREM C.1: Suppose that I > 3 and consider an SCF f that satisfies Con-
dition w. If f is efficient, it is payoff-repeatedly implementable in mixed strategy
Nash equilibrium from period 2. If f is strictly efficient, it is repeatedly imple-
mentable in mixed strategy Nash equilibrium from period 2.

PROOF: Consider the canonical regime R* in the main paper. Fix any b €
B?(R*), and also fix any ¢, 6(¢), and h’ € H'(0(¢), b, R*) such that g“' =g~
Also, suppose that 6 is observed in the current period ¢.

Let r;(m;) denote player i’s randomization probability of announcing mes-
sage m; = (6, z') at this history (h', ") with r(m) = r;(m;) x - - - x r;(my). Also,
denote the marginals by r;(6") =Y r;(0', z') and r:(z") = Y_ i r:(0', 2°).

We write agent i’s continuation payoff at the given history, after observing
(h', 6", as

b, Ry = Y rm)[(1 = Suy(a (b, RY), 0)

me[@xZy ]!
t pt
+ 8" (b, RY].

Then we can also write i’s continuation payoff at h’ prior to observing a state
as

" (b, R) =Y p(0)m"" (b, R").

0'c®

We proceed by establishing the following claims. First, at the given history,
we obtain a lower bound on each agent’s expected equilibrium continuation
payoff at the next period.

Cramm C.1: ) r(m)ﬂ-;'t’et”” > vi(f) forall i.

meOxZy

PROOF: Suppose not. Then, for some i, there exists £ > 0 such that
> r(m)rr;‘t’(’t’m < v(f) — e. Let u = min, , g u;(a, ) and fix any & > 0 such
that &' (v;(f) — u) < e. Also, fix any integer z such that, given b, at (h’, §") the
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probability that an agent other than i announces an integer greater than Z is
less than &’ (since the set of integers is infinite, it is always feasible to find such
an integer).

Consider agent i deviating to another strategy which is identical to the equi-
librium strategy b; except that at (h’, 6") it reports z + 1. Note from the def-
inition of mechanism g* and the transition rules of R* that such a deviation
at (h’, 6") does not alter the current period #’s outcomes and expected utility,
while the continuation regime at the next period is S’ or D’ with probability at
least 1 — &'. The latter implies that the expected continuation payoff as of the
next period ¢ + 1 from the deviation is at least

(C.1) (1 —=&Yyv(f)+ €u.

Also, by assumption, the corresponding equilibrium expected continuation
payoff as of ¢ + 1 is at most v;(f) — &, which, since &' (v;(f) — u) < &, is less
than (C.1). Recall that the deviation does not affect the current period ¢’s out-
comes/payoffs. Therefore, the deviation is profitable—a contradiction. Q.E.D.

CLamM C2: ) r(m)w?t’et’m =v;(f) forall i.
Given efficiency of f, this follows immediately from the previous claim.
CLAIM C3: ) ,7:(6,0) =1 forall i.

PROOF: Suppose otherwise. Then there exists a message profile m’ which
occurs with a positive probability at (h’, ) such that, for some i, m, = (-, z*)
with z' > 0. Since f is efficient, by similar arguments as for Claim 2 in the
proof of Lemma 3, there must exist j # i such that 77;.'[’0[”"/ < vj Then, given
Claim C.2, it immediately follows that there exists & > 0 such that

(C2) vf >v;(f) +e.
Next, fix any &’ € (0, 1) such that
(C.3) gW(f) —u) <er(m').

Also fix any integer Z > z’ such that, given b, at (h’, ") the probability that an
agent other than j announces an integer greater than z is less than &'.
Consider j deviating to another strategy which is identical to the equilibrium
strategy b; except that it reports zZ + 1 at the given history (h’, "). Again, this
deviation does not alter the expected outcomes in period ¢, but, with proba-
bility (1 — &'), the continuation regime at the next period is either S/ or D/
(Rules B.2 and B.3). Furthermore, since z > z', the continuation regime is D’
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with probability ’1(1"8/,). Thus, at (h’, 6) the expected continuation payoff at the

next period ¢ + 1 resulting from this deviation is at least

r(m') v+ (1 — g — m>vj(f) +éu

1—g¢ 7/ 1-¢

We know from Claim C.2 that the corresponding equilibrium expected con-
tinuation payoff at ¢ + 1 is v;(f). By (C.2) and (C.3), and since the deviation
does not alter the current period outcomes, the deviation is profitable—a con-
tradiction. O.E.D.

It follows from Claims C.1-C.3 that g* must always be played on the equi-
librium path. Therefore, by applying similar arguments to Lemma 2 and using
the efficiency of f, it must be that ﬂ-}‘t =v;(f) forall i, t > 1, 6(¢), and h' €
H'(0(¢), b, R*). The remainder of the proof follows arguments analogous to
those for the corresponding results with pure strategies in Section 4.2. Q.E.D.
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