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In this supplemental document, we first provide a brief summary of commonly used
function spaces and sieve spaces. We then provide mathematical proofs of all the the-
orems, corollaries, propositions, and lemmas that appear in the main text and the Ap-
pendix.

A. BRIEF SUMMARY OF FUNCTION SPACES AND SIEVES

HERE, WE BRIEFLY SUMMARIZE some definitions and properties of function
spaces that are used in the main text; see Edmunds and Triebel (1996) for
details. Let S(Rd) be the Schwartz space of all complex-valued, rapidly de-
creasing, infinitely differentiable functions on Rd . Let S ∗(Rd) be the space
of all tempered distributions on Rd , which is the topological dual of S(Rd).
For h ∈ S(Rd), we let ĥ denote the Fourier transform of h (i.e., ĥ(ξ) =
(2π)−d/2

∫
Rd exp{−iy ′ξ}h(y)dy) and let (g)∨ denote the inverse Fourier trans-

form of g (i.e., (g)∨(y) = (2π)−d/2
∫

Rd exp{iy ′ξ}g(ξ)dξ). Let ϕ0 ∈ S(Rd) be
such that ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2. Let ϕ1(x) =
ϕ0(x/2) − ϕ0(x) and ϕk(x) = ϕ1(2−k+1x) for all integer k ≥ 1. Then the se-
quence {ϕk :k≥ 0} forms a dyadic resolution of unity (i.e., 1 = ∑∞

k=0ϕk(x) for
all x ∈ Rd). Let ν ∈ R and p�q ∈ (0�∞]. The Besov space Bν

p�q(Rd) is the col-
lection of all functions h ∈ S ∗(Rd) such that ‖h‖Bνp�q is finite:

‖h‖Bνp�q ≡
( ∞∑
j=0

{
2jν‖(ϕjĥ)∨‖Lp(leb)

}q)1/q

<∞

(with the usual modification if q= ∞). Let ν ∈ R, p ∈ (0�∞), and q ∈ (0�∞].
The F space F ν

p�q(Rd) is the collection of all functions h ∈ S ∗(Rd) such that
‖h‖Fν

p�q
is finite:

‖h‖Fν
p�q

≡
∥∥∥∥∥
( ∞∑
j=0

{
2jν|(ϕjĥ)∨(·)|

}q)1/q∥∥∥∥∥
Lp(leb)

<∞

(with the usual modification if q= ∞). For ν > 0 and p�q≥ 1, it is known that
F −ν
p′�q′(Rd) (B−ν

p′�q′(Rd)) is the dual space of F ν
p�q(Rd) (Bν

p�q(Rd)) with 1/p′ +
1/p= 1 and 1/q′ + 1/q= 1.
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Let T ν
p�q(Rd) denote either Bν

p�q(Rd) or F ν
p�q(Rd). Then T ν

p�q(Rd) gets larger
with increasing q (i.e., T ν

p�q1
(Rd)⊆ T ν

p�q2
(Rd) for q1 ≤ q2), gets larger with de-

creasing p (i.e., T ν
p1�q
(Rd) ⊆ T ν

p2�q
(Rd) for p1 ≥ p2), and gets larger with de-

creasing ν (i.e., T ν1
p�q(Rd) ⊆ T ν2

p�q(Rd) for ν1 ≥ ν2). Also, T ν
p�q(Rd) becomes a

Banach space when p�q ≥ 1. The spaces T ν
p�q(Rd) include many well known

function spaces as special cases. For example, Lp(Rd� leb) = F 0
p�2(Rd) for

p ∈ (1�∞), the Hölder space Λr(Rd) = Br
∞�∞(Rd) for any real-valued r > 0,

the Hilbert–Sobolev space W k
2 (Rd)= Bk

2�2(Rd) for integer k > 0, and the (frac-
tional) Sobolev spaceW ν

p (Rd)= F ν
p�2(Rd) for any ν ∈ R and p ∈ (1�∞), which

has the equivalent norm ‖h‖W ν
p

≡ ‖((1 + | · |2)ν/2ĥ(·))∨‖Lp(leb) <∞ (note that
for ν > 0, the norm ‖h‖W −ν

p
is a shrinkage in the Fourier domain).

Let T ν
p�q(Ω) be the corresponding space on an (arbitrary) bounded domain

Ω in Rd . Then the embedding of T ν1
p1�q1

(Ω) into T ν2
p2�q2

(Ω) is compact if ν1 −ν2 >

dmax{p−1
1 −p−1

2 �0}� and −∞< ν2 < ν1 <∞, 0< q1� q2 ≤ ∞, and 0<p1�p2 ≤
∞ (0<p1�p2 <∞ for F ν

p�q(Ω)).
We define “weighted” versions of the space T ν

p�q(Rd) as follows. Let
w(·) = (1 + | · |2)ζ/2, ζ ∈ R, be a weight function and define ‖h‖T ν

p�q(Rd�w) =
‖wh‖T ν

p�q(Rd), that is, T ν
p�q(Rd�w) = {h :‖wh‖T ν

p�q(Rd) < ∞}. Then the embed-
ding of T ν1

p1�q1
(Rd�w1) into T ν2

p2�q2
(Rd�w2) is compact if and only if ν1 − ν2 >

d(p−1
1 − p−1

2 ), w2(x)/w1(x) → 0 as |x| → ∞, and −∞ < ν2 < ν1 < ∞, 0 <
q1� q2 ≤ ∞, and 0<p1 ≤ p2 ≤ ∞ (0<p1 ≤ p2 <∞ for F ν

p�q(Ω)).
If H ⊆ H is a Besov space, then a wavelet basis {ψj} is a natural choice of

{qj}j to satisfy Assumption 5.1 in Section 5. A real-valued function ψ is called
a mother wavelet of degree γ if it satisfies (a)

∫
R y

kψ(y)dy = 0 for 0 ≤ k ≤ γ,
(b) ψ and all its derivatives up to order γ decrease rapidly as |y| → ∞ and
(c) {2k/2ψ(2ky − j) : k� j ∈ Z} forms a Riesz basis of L2(leb), that is, the linear
span of {2k/2ψ(2ky − j) : k� j ∈ Z} is dense in L2(leb) and

∥∥∥∥∥
∞∑

k=−∞

∞∑
j=−∞

akj2k/2ψ(2ky − j)
∥∥∥∥∥

2

L2(R)



∞∑

k=−∞

∞∑
j=−∞

|akj|2

for all doubly biinfinite square-summable sequences {akj :k� j ∈ Z}. A scaling
function ϕ is called a father wavelet of degree γ if it satisfies (a′)

∫
R ϕ(y)dy = 1,

(b′) ϕ and all its derivatives up to order γ decrease rapidly as |y| → ∞, and (c′)
{ϕ(y − j) : j ∈ Z} forms a Riesz basis for a closed subspace of L2(leb).

Some examples of sieves follow:
Orthogonal Wavelets: Given an integer γ > 0, there exist a father wavelet ϕ

of degree γ and a mother wavelet ψ of degree γ, both compactly supported,
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such that for any integer k0 ≥ 0, any function h in L2(leb) has the wavelet γ−
regular multiresolution expansion

h(y)=
∞∑

j=−∞
ak0jϕk0j(y)+

∞∑
k=k0

∞∑
j=−∞

bkjψkj(y)� y ∈ R�

where {ϕk0j� j ∈ Z;ψkj�k ≥ k0� j ∈ Z} is an orthonormal basis of L2(leb); see
Meyer (1992, Theorem 3.3). For an integer Kn > k0, we consider the finite-
dimensional linear space spanned by this wavelet basis of order γ:

hn(y)=ψkn(y)′Π =
2Kn−1∑
j=0

πKn�jϕKn�j(y)� k(n)= 2Kn


Cardinal B-Spline Wavelets of Order γ:

hn(y)=ψkn(y)′Π =
Kn∑
k=0

∑
j∈Kn

πkj2k/2Bγ(2ky − j)� k(n)= 2Kn + 1�(SM.1)

where Bγ(·) is the cardinal B-spline of order γ:

Bγ(y)= 1
(γ− 1)!

γ∑
i=0

(−1)i
(
γ

i

)
[max(0� y − i)]γ−1


Polynomial Splines of Order qn:

hn(y)= ψkn(y)′Π(SM.2)

=
qn∑
j=0

πj(y)
j +

rn∑
k=1

πqn+k(y − νk)qn+ � k(n)= qn + rn + 1�

where (y − ν)q+ = max{(y − ν)q�0} and {νk}k=1�


�rn are the knots. In the empir-
ical application, for any given number of knots value rn, the knots {νk}k=1�


�rn
are simply chosen as the empirical quantiles of the data.

Hermite Polynomials of Order k(n)− 1:

hn(y)=ψkn(y)′Π =
kn−1∑
j=0

πj(y − ν1)
j exp

{
−(y − ν1)

2

2ν2
2

}
�(SM.3)

where ν1 and ν2
2 can be chosen as the sample mean and variance of the data.
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B. CONSISTENCY: PROOFS OF THEOREMS

PROOF OF THEOREM 3.1: Under the assumption that E[m(X�h)′W (X)×
m(X�h)] is lower semicontinuous on finite-dimensional closed and bounded
sieve spaces Hk, we have that for all ε > 0 and each fixed k≥ 1,

g(k�ε)≡ inf
h∈HM0

k
:‖h−h0‖s≥ε

E
[‖m(X�h)‖2

W

]
≥ min

h∈Hk:‖h−h0‖s≥ε
E

[‖m(X�h)‖2
W

]
exists and is strictly positive (under Assumption 3.1(i) and (ii)). Moreover, for
fixed k, g(k�ε) increases as ε increases. For any fixed ε > 0, g(k�ε) decreases
as k increases, and could go to zero as k goes to infinity. Following the proof
of Lemma A.4(i) with T = ‖ · ‖s topology, HM0

k(n) ⊆ Hk(n), λnP(h)≥ 0, and ηn =
O(η0�n), we have, for all ε > 0 and n sufficiently large,

Pr(‖ĥn − h0‖s ≥ ε)
≤ Pr

(‖ĥn − h0‖s ≥ ε� ĥn ∈ HM0
k(n)

) + ε
≤ Pr

(
inf

h∈HM0
k(n)

:‖h−h0‖s≥ε

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤ c′E
[‖m(X�Πnh0)‖2

W

]
+Op(η0�n)+Op(δ̄2

m�n)+ λnP(h0)+Op(λn)
)

+ ε

≤ Pr
(

inf
h∈HM0

k(n)
:‖h−h0‖s≥ε

{
cE

[‖m(X�h)‖2
W

]} ≤ c′E
[‖m(X�Πnh0)‖2

W

]
+Op(η0�n)+Op(δ̄2

m�n)+ λnP(h0)+Op(λn)
)

+ ε

≤ Pr
(
g(k(n)�ε)

≤Op
(
max

{
δ̄2
m�n�η0�n�E

(‖m(X�Πnh0)‖2
W

)
�λn

})) + ε�

which goes to zero under max{δ̄2
m�n�η0�n�E(‖m(X�Πnh0)‖2

W )�λn} = o(g(k(n)�
ε)). Thus ‖ĥn − h0‖s = op(1). Q.E.D.

PROOF OF THEOREM 3.2: Under the assumptions that E[m(X�h)′W (X)×
m(X�h)] is lower semicontinuous and P(h) is lower semicompact on (H�
‖ · ‖s), we have that for all ε > 0,

g(ε)≡ min
h∈HM :‖h−h0‖s≥ε

E[m(X�h)′W (X)m(X�h)]



ESTIMATION OF NONPARAMETRIC CONDITIONAL MOMENT MODELS 5

exists (by Theorem 38.B in Zeidler (1985)) and is strictly positive (under As-
sumption 3.1(i) and (ii)) for HM = {h ∈ H :P(h) ≤ M} with some large but
finite M ≥M0. By Lemma A.4(i) with T = ‖ · ‖s topology, HM0

k(n) ⊆ HM , λn > 0,
P(h)≥ 0, ηn =O(η0�n), and max{η0�n�E[‖m(X�Πnh0)‖2

W ]} =O(λn), we have,
for all ε > 0 and n sufficiently large,

Pr(‖ĥn − h0‖s ≥ ε)
≤ Pr

(‖ĥn − h0‖s ≥ ε� ĥn ∈ HM0
k(n)

) + ε
≤ Pr

(
inf

h∈HM0
k(n)

:‖h−h0‖s≥ε

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤Op(δ̄2
m�n)+ λnP(h0)+Op(λn)

)
+ ε

≤ Pr
(

inf
h∈HM :‖h−h0‖s≥ε

E
[‖m(X�h)‖2

W

]
≤Op(δ̄2

m�n)+ λnP(h0)+Op(λn)
)

+ ε
≤ Pr

(
g(ε)≤Op(max{δ̄2

m�n�λn})
) + ε�

which goes to zero under max{δ̄2
m�n�λn} = o(1). Thus ‖ĥn − h0‖s = op(1).

Q.E.D.

PROOF OF THEOREM 3.3: We divide the proof in two steps: first we show
consistency under the weak topology; second we establish consistency under
the strong norm.

Step 1. We can establish consistency in the weak topology by applying
Lemma A.1, either verifying its conditions or following its proof directly.
Under stated conditions, ĥn ∈ Hk(n) with probability approaching 1. By
Lemma A.3(ii) with max{η0�n�E[‖m(X�Πnh0)‖2

W ]} = o(λn) and ηn =O(η0�n),
we have P(ĥn)−P(h0)≤ op(1); thus we can focus on the set {h ∈ Hk(n) :P(h)≤
M0} = HM0

k(n) for all n large enough. Let Bw(h0) denote any open neighbor-
hood (in the weak topology) around h0, and let Bc

w(h0) denote its complement
(under the weak topology) in H. By Lemma A.4(ii) with B T (h0) = Bw(h0),
λnP(h) ≥ 0, HM0

k(n) ⊆ H, ηn = O(η0�n), and max{η0�n�E[‖m(X�Πnh0)‖2
W ]} =

o(λn), we have, for all nonempty open balls Bw(h0), all ε > 0, and n sufficiently
large,

Pr(ĥn /∈ Bw(h0))

≤ Pr
(
ĥn /∈ Bw(h0)� ĥ ∈ HM0

k(n)

) + ε
≤ Pr

(
inf

HM0
k(n)

:h/∈Bw(h0)

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}
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≤Op(δ̄2
m�n)+ λnP(h0)+ o(λn)

)
+ ε

≤ Pr
(

inf
H:h/∈Bw(h0)

E
[‖m(X�h)‖2

W

] ≤Op(max{δ̄2
m�n�λn})

)
+ ε


Let E[‖m(X�h)‖2
W ] be weak sequentially lower semicontinuous on H. Since

H ∩ Bc
w(h0) is weakly compact (weakly closed and bounded), by Assump-

tion 3.4(ii) and Theorem 38.A in Zeidler (1985), there exists h∗(B) ∈ H ∩
Bc
w(h0) such that infH:h/∈Bw(h0) E[‖m(X�h)‖2

W ] = E[‖m(X�h∗(B))‖2
W ]. It must

hold that g(B) ≡ E[‖m(X�h∗(B))‖2
W ] > 0; otherwise, by Assumption 3.1(i)

and (ii), ‖h∗(B)− h0‖s = 0. But if this is the case, then for any t ∈ H∗ we have
|〈t�h∗(B)− h0〉H∗�H| ≤ const
× ‖h∗(B) − h0‖s = 0, a contradiction to the fact
that h∗(B) /∈ Bw(h0). Thus

Pr
(
ĥn /∈ Bw(h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
E

[∥∥m(X�h∗(B))
∥∥2

W

] ≤Op(max{δ̄2
m�n�λn})

)
�

which goes to zero since max{δ̄2
m�n�λn} = o(1). Hence Pr(ĥn /∈ Bw(h0))→ 0.

Step 2. Consistency under the weak topology implies that 〈t0� ĥn − h0〉H∗�H =
op(1). By Assumption 3.4(i), P(ĥn)−P(h0)≥ 〈t0� ĥn−h0〉H∗�H +g(‖ĥn−h0‖s).
Lemma A.3(ii) implies that P(ĥn)− P(h0)≤ op(1) under max{η0�n�E[‖m(X�
Πnh0)‖2

W ]} = o(λn), ηn = O(η0�n). Thus g(‖ĥn − h0‖s) = op(1) and ‖ĥn −
h0‖s = op(1) by our assumption over g(·). This, 〈t0� ĥn − h0〉H∗�H = op(1), and
Assumption 3.4(i) imply that P(ĥn) − P(h0) ≥ op(1). But P(ĥn) ≤ P(h0) +
op(1) by Lemma A.3(ii). Thus P(ĥn)− P(h0)= op(1). Q.E.D.

VERIFICATION OF REMARK 3.2: Claim (i) follows from Proposition 38.7 of
Zeidler (1985). Claim (ii) follows from Corollary 41.9 of Zeidler (1985). For
claim (iii), the fact that

√
W (·)m(·�h) : H → L2(fX) is compact and Frechet

differentiable implies that its Frechet derivative is also a compact operator; see
Zeidler (1985, Proposition 7.33). This and the chain rule imply that the func-
tional E[‖m(X� ·)‖2

W ] : H → [0�∞) is Frechet differentiable and its Frechet
derivative is compact on H. Hence E[‖m(X�h)‖2

W ] has a compact Gateaux
derivative on H and, by claim (ii), is weak sequentially lower semicontinuous
on H. Q.E.D.

PROOF OF THEOREM A.1: For result (i), we first show that the set of mini-
mum penalization solutions, MP

0 , is not empty. Since E[‖m(X�h)‖2
W ] is convex

and lower semicontinuous in h ∈ H and H is a convex, closed, and bounded
subset of a reflexive Banach space (Assumption 3.4(ii)), by Proposition 38.15
of Zeidler (1985), M0 is convex, closed, and bounded (and nonempty). Since
P(·) is convex and lower semicontinuous on M0, by applying Proposition 38.15
of Zeidler (1985), we have that the set MP

0 is nonempty, convex, closed, and a
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bounded subset of M0. Next, we show uniqueness of the minimum penaliza-
tion solution. Suppose that there exist h1�h0 ∈ MP

0 such that ‖h1 − h0‖s > 0.
Since MP

0 is a subset of M0 and since M0 is convex, h′ = λh1 +(1−λ)h0 ∈ M0.
Since P(·) is strictly convex on M0 (in ‖ · ‖s), thus P(h′) < P(h0), but this is
a contradiction since h0 is a minimum penalization solution. Thus we have es-
tablished result (i).

For result (ii), first, as already shown earlier, ĥn ∈ Hk(n) with probabil-
ity approaching 1. We now show its consistency under the weak topol-
ogy. To establish this, we adapt Step 1 in the proof of Theorem 3.3 to
the case where Assumption 3.1(ii) (identification) may not hold, but h0 is
the minimum penalization solution. Let Bw(h0) denote any open neighbor-
hood (in the weak topology) around h0, and let Bc

w(h0) denote its comple-
ment (under the weak topology) in H. By Lemma A.3(ii), P(ĥn) = Op(1).
By Lemma A.4(ii) with B T (h0) = Bw(h0), HM0

k(n) ⊆ Hk(n), ηn = O(η0�n), and
max{δ̄2

m�n�η0�n�E[‖m(X�Πnh0)‖2
W ]} = o(λn), we have, for all nonempty open

balls Bw(h0),

Pr
(
ĥn /∈ Bw(h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
inf

HM0
k(n)

:h/∈Bw(h0)

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤ λnP(h0)+ op(λn)
)

≤ Pr
(

inf
Hk(n):h/∈Bw(h0)

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤ λnP(h0)+ op(λn)
)



By Assumptions 3.1(iii) and 3.4(ii), Hk(n) is weakly sequentially com-
pact. Since Bc

w(h0) is closed under the weak topology, the set Hk(n) ∩
Bc
w(h0) is weakly sequentially compact. By Assumption 3.4(ii) and the as-

sumption that E[‖m(X�h)‖2
W ] is convex and lower semicontinuous on H,

cE[‖m(X�h)‖2
W ] + λnP(h) is weakly sequentially lower semicontinuous on

Hk(n). Thus g(k(n)�ε�λn)≡ infHk(n)∩Bcw(h0){cE[‖m(X�h)‖2
W ] + λnP(h)} ≥ 0 ex-

ists, and we denote its minimizer as hn(ε) ∈ Hk(n) ∩ Bc
w(h0). Hence, with

max{δ̄2
m�n�η0�n�E[‖m(X�Πnh0)‖2

W ]} = o(λn) and λn > 0, we have

Pr
(
ĥn /∈ Bw(h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
cE

[∥∥m(X�hn(ε))∥∥2

W

] + λnP(hn(ε))≤ λnP(h0)+ op(λn)
)

= Pr
(
g(k(n)�ε�λn)− λnP(h0)

λn
≤ op(1)

)
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If lim infn E[‖m(X�hn(ε))‖2
W ] = const
 > 0, then Pr(ĥn /∈ Bw(h0)� ĥn∈ HM0

k(n))→
0 trivially. So we assume lim infn E[‖m(X�hn(ε))‖2

W ] = const
 = 0. Since
H ∩ Bc

w(h0) is weakly compact, there exists a subsequence {hnk(ε)}k that con-
verges (weakly) to h∞(ε) ∈ H ∩ Bc

w(h0). By weakly lower semicontinuity of
E[‖m(X�h)‖2

W ] on H, h∞(ε) ∈ M0. By definition of h0 and the assumption
that P(h) is strictly convex in h ∈ M0, it must be that P(h∞(ε)) − P(h0) ≥
const
 > 0 by result (i). Note that this is true for any convergent subsequence.
Therefore, we have established that

lim inf
n

g(k(n)�ε�λn)− λnP(h0)

λn
≥ const
 > 0;

thus Pr(ĥn /∈ Bw(h0)� ĥn ∈ HM0
k(n))→ 0. Hence, by similar calculations to those

in Lemma A.4(ii), for any ε > 0 and sufficiently large n, Pr(ĥn /∈ Bw(h0)) ≤
Pr(ĥn /∈ Bw(h0)� ĥn ∈ HM0

k(n))+ ε≤ 2ε.
Given the consistency under the weak topology, Assumption 3.4(i) and

Lemma A.3(ii), we obtain ‖ĥn − h0‖s = op(1) and P(ĥn)− P(h0) = op(1) by
following Step 2 in the proof of Theorem 3.3. Q.E.D.

C. CONSISTENCY: PROOFS OF LEMMAS

PROOF OF LEMMA A.1: By definition of the infimum, α̂n always exists, and
α̂n ∈ Ak(n) with outer probability approaching 1 (α̂n may not be measurable). It
follows that for all B T (α0),

Pr∗(α̂n ∈ Ak(n)� α̂n /∈ B T (α0)
)

≤ Pr∗
(

inf
α∈Ak(n):α/∈BT (α0)

Q̂n(α)≤ Q̂n(Πnα0)+Op∗(ηn)
)

≤ Pr∗
(

inf
α∈Ak(n):α/∈BT (α0)

{KQn(α)−Op∗(cn)}

≤K0Qn(Πnα0)+Op∗(c0�n)+Op∗(ηn)
)

≤ Pr∗
(

inf
α∈Ak(n):α/∈BT (α0)

Qn(α)≤Op∗
(
max{cn� c0�n�Qn(Πnα0)�ηn}

))
≤ Pr∗(g0(n�k(n)�B)≤Op∗

(
max{cn� c0�n�Qn(Πnα0)�ηn}

))
by condition a(ii) in Lemma A
1�

which goes to 0 by condition d(iii) in Lemma A.1. Q.E.D.
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PROOF OF LEMMA A.2: Under condition c(ii) of Lemma A.2, α̂n is well de-
fined and measurable. It follows that for any ε > 0,

Pr(‖α̂n − α0‖s > ε)
≤ Pr

(
inf

α∈Ak(n):‖α−α0‖s≥ε
Q̂n(α)≤ Q̂n(Πnα0)+Op(ηn)

)
≤ Pr

(
inf

α∈Ak(n):‖α−α0‖s≥ε
{
Qn(α)− |Q̂n(α)−Qn(α)|

}
≤Qn(Πnα0)+ |Q̂n(Πnα0)−Qn(Πnα0)| +Op(ηn)

)
≤ Pr

(
inf

α∈Ak(n):‖α−α0‖s≥ε
Qn(α)≤ 2̂cn +Qn(Πnα0)+Op(ηn)

)
= Pr

(
inf

α∈Ak(n):‖α−α0‖s≥ε
Qn(α)−Qn(α0)

≤ 2̂cn +Qn(Πnα0)−Qn(α0)+Op(ηn)
)

≤ Pr
(
g0(n�k(n)�ε)≤ 2̂cn + |Qn(Πnα0)−Qn(α0)| +Op(ηn)

)
which goes to 0 by condition d of Lemma A.2. Q.E.D.

PROOF OF LEMMA A.3: We first show that ĥn ∈ Hn w.p.a.1. The infimum
infHn Q̂n(h) exists w.p.a.1 and hence, for any ε > 0, there is a sequence,
(hj�n(ε))j ⊆ Hn such that Q̂n(hj�n(ε)) ≤ infHn Q̂n(h) + ε w.p.a.1. Let ĥn ≡
hn�n(ηn). Then such a choice satisfies ĥn ∈ Hn w.p.a.1.

Next, by definition of ĥn, we have for any λn > 0�

λnP̂n(ĥn) ≤ 1
n

n∑
i=1

‖m̂(Xi� ĥn)‖2
Ŵ

+ λnP̂n(ĥn)

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ λnP̂n(Πnh0)+Op(ηn)

and

λn{P(ĥn)− P(h0)} + λn{P̂n(ĥn)− P(ĥn)}

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ λn{P̂n(Πnh0)− P(Πnh0)}

+ λn{P(Πnh0)− P(h0)} +Op(ηn)
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Thus

λn{P(ĥn)− P(h0)}

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ 2λn sup
h∈Hn

|P̂n(h)− P(h)|

+ λn|P(Πnh0)− P(h0)| +Op(ηn)
≤Op

(
η0�n +E[‖m(X�Πnh0)‖2

W

]) + 2λn sup
h∈Hn

|P̂n(h)− P(h)|

+ λn|P(Πnh0)− P(h0)|�

where the last inequality is due to Assumption 3.3(i) and ηn =O(η0�n). There-
fore, for all M > 0�

Pr(P(ĥn)− P(h0) >M)

= Pr
(
λn{P(ĥn)− P(h0)}> λnM

)
≤ Pr

(
Op

(
η0�n +E[‖m(X�Πnh0)‖2

W

]) + 2λn sup
h∈Hn

|P̂n(h)− P(h)|

+ λn|P(Πnh0)− P(h0)|> λnM
)



(i) Under Assumption 3.2(b), λn suph∈Hn
|P̂n(h) − P(h)| + λn|P(Πnh0) −

P(h0)| =Op(λn), we have

Pr(P(ĥn)− P(h0) >M)

≤ Pr
(
Op

(
max

{
η0�n +E[‖m(X�Πnh0)‖2

W

]
�λn

})
> λnM

)
≤ Pr

(
Op

(
η0�n +E[‖m(X�Πnh0)‖2

W ]
λn

)
+Op(1) >M

)
�

which, under max{η0�n�E[‖m(X�Πnh0)‖2
W ]} =O(λn), goes to zero asM → ∞.

Thus P(ĥn)− P(h0)=Op(1). Since 0 ≤ P(h0) <∞, we have P(ĥn)=Op(1).
(ii) Under Assumption 3.2(c), λn suph∈Hn

|P̂n(h) − P(h)| + λn|P(Πnh0) −
P(h0)| = op(λn), we have

Pr(P(ĥn)− P(h0) >M)

≤ Pr
(
Op

(
η0�n +E[‖m(X�Πnh0)‖2

W ]
λn

)
+ op(1) >M

)
�
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which, under max{η0�n�E[‖m(X�Πnh0)‖2
W ]} = o(λn), goes to zero for all

M > 0. Thus P(ĥn)− P(h0)≤ op(1). Q.E.D.

PROOF OF LEMMA A.4: It suffices to consider λnP(·) > 0 only. By the
fact that Pr(A) ≤ Pr(A ∩ B) + Pr(Bc) for any measurable sets A and B, we
have

Pr(ĥn /∈ B T (h0))≤ Pr(ĥn /∈ B T (h0)�P(ĥn)≤M0)+ Pr(P(ĥn) >M0)


For any ε > 0, choose M0 ≡ M0(ε) such that Pr(P(ĥn) > M0) < ε for suf-
ficiently large n. Note that such a M0 always exists by Lemma A.3. Thus,
we can focus on the set HM0

k(n) ≡ {h ∈ Hk(n) :λnP(h) ≤ λnM0} and bound
Pr(ĥn /∈ B T (h0)�P(ĥn)≤M0).

By definition of ĥn andΠnh0, Assumptions 3.3 and 3.1(iii), and ηn =O(η0�n),
we have, for all B T (h0),

Pr
(
ĥn /∈ B T (h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
inf

h∈HM0
k(n)

:h/∈BT (h0)

{
1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

+ λnP̂(h)
}

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ λnP̂(Πnh0)+Op(ηn)
)

≤ Pr
(

inf
h∈HM0

k(n)
:h/∈BT (h0)

{
cE

[‖m(X�h)‖2
W

] + λnP̂(h)
}

≤ c′E
[‖m(X�Πnh0)‖2

W

] +Op(δ̄2
m�n)+ λnP̂(Πnh0)+Op(η0�n)

)



By Assumption 3.2(b), we have λn suph∈Hn
|P̂(h) − P(h)| = Op(λn) and

λn|P(Πnh0) − P(h0)| = O(λn). Thus, with max{η0�n�E[‖m(X�Πnh0)‖2
W ]} =

O(λn), for all B T (h0),

Pr
(
ĥn /∈ B T (h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
inf

h∈HM0
k(n)

:h/∈BT (h0)

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤Op(δ̄2
m�n)+ λnP(h0)+Op(λn)

)



By Assumption 3.2(c), we have λn suph∈Hn
|P̂(h) − P(h)| = op(λn) and

λn|P(Πnh0) − P(h0)| = o(λn) for λn > 0. Thus, with max{η0�n�E[‖m(X�
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Πnh0)‖2
W ]} = o(λn), for all B T (h0),

Pr
(
ĥn /∈ B T (h0)� ĥn ∈ HM0

k(n)

)
≤ Pr

(
inf

h∈HM0
k(n)

:h/∈BT (h0)

{
cE

[‖m(X�h)‖2
W

] + λnP(h)
}

≤Op(δ̄2
m�n)+ λnP(h0)+ op(λn)

)



Hence we obtain results (i) and (ii). Q.E.D.

D. CONVERGENCE RATE: PROOFS OF THEOREMS

The proof of Theorem 4.1 directly follows from Lemma B.1 and the defi-
nition of ωn(δ�Hosn). The proof of Corollary 5.1 directly follows from The-
orem 4.1 and Lemma B.2. The proof of Corollary 5.2 directly follows from
Theorem 4.1 and Lemmas B.2 and B.3.

PROOF OF COROLLARY 5.3: By Theorem 4.1, Lemmas B.2 and B.3(ii), re-
sults of Corollary 5.2 are obviously true. We now specialize Corollary 5.2 to the
PSMD estimator using a series LS estimator m̂(X�h). For this case, we have
δ∗2
m�n = J∗

n

n

 b2

m�J∗
n
.

By Assumption 5.4(ii) and the condition that either P(h)≥ ∑∞
j=1 ν

2α
j |〈h�qj〉s|2

for all h ∈ Hos or Hos ⊆ Hellipsoid, we have, for all h ∈ Hos,

c2E[m(X�h)′W (X)m(X�h)] ≤ ‖h− h0‖2

≤ const

∞∑
j=1

{ϕ(ν−2
j )}〈h− h0� qj〉2

s 


On the other hand, the choice of penalty and the definition of Hos imply
that

∑
j ν

2α
j 〈h − h0� qj〉2

s ≤ const
 for all h ∈ Hos. Denote ηj = {ϕ(ν−2
j )}〈h −

h0� qj〉2
s . Then

∑
j ν

2α
j {ϕ(ν−2

j )}−1ηj ≤ M . Therefore, the class {g ∈ L2(X �
‖ · ‖L2(fX)

) :g(·) = √
W (·)m(·�h)� h ∈ Hos} is embedded in the ellipsoid

{g ∈ L2(X �‖ · ‖L2(fX)
) :‖g‖2

L2(fX)
= ∑

j ηj , and
∑

j ν
2α
j {ϕ(ν−2

j )}−1ηj ≤ M ′} for
some finite constant M ′. By invoking the results of Yang and Barron (1999),
it follows that the Jnth approximation error rate of this ellipsoid satisfies
b2
m�Jn

≤ const
ν−2α
Jn

{ϕ(ν−2
Jn
)}. Hence δ∗2

m�n = J∗
n

n

 b2

m�J∗
n

≤ const
ν−2α
J∗
n

{ϕ(ν−2
J∗
n
)} and

‖ĥ− h0‖s =Op(ν−α
J∗
n
)=Op(

√
J∗
n

n
{ϕ(ν−2

J∗
n
)}−1). Q.E.D.
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E. CONVERGENCE RATE: PROOFS OF LEMMAS

PROOF OF LEMMA B.1: Let r2
n = max{δ2

m�n�λnδP�n�‖Πnh0 − h0‖2�

λn|P(Πnh0)−P(ĥn)|} = op(1). Since ĥn ∈ Hosn with probability approaching 1,
we have, for all M > 1,

Pr
(‖ĥn − h0‖

rn
≥M

)

≤ Pr

(
inf

{h∈Hosn:‖h−h0‖≥Mrn}

{
1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

+ λnP̂n(h)
}

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ λnP̂n(Πnh0)+Op(ηn)
)

≤ Pr

(
inf

{h∈Hosn:‖h−h0‖≥Mrn}

{
1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

+ λnP(h)
}

≤ 1
n

n∑
i=1

‖m̂(Xi�Πnh0)‖2
Ŵ

+ λnP(Πnh0)+ 2λnδP�n +Op(ηn)
)
�

where the last inequality is due to suph∈Hosn
|P̂n(h)−P(h)| =Op(δP�n)=Op(1).

By Assumption 3.3 with η0�n = O(δ2
m�n) and ηn = O(η0�n), and definitions of

Hosn and δ2
m�n, there are two finite constants c� c0 > 0 such that

cE
(‖m(X� ĥn)‖2

W

) + λnP(ĥn)(SM.4)

≤Op(δ2
m�n + λnδP�n)+ c0E

(‖m(X�Πnh0)‖2
W

) + λnP(Πnh0)�

which implies

cE
(‖m(X� ĥn)‖2

W

) ≤ Op(δ2
m�n + λnδP�n)+ c0E

(‖m(X�Πnh0)‖2
W

)
+ λn|P(Πnh0)− P(ĥn)|


This, ‖ĥn − h0‖s = op(1), and Assumption 4.1 imply that

Pr
(‖ĥn − h0‖

rn
≥M

)
≤ Pr

(
M2r2

n

≤Op
(
max

{
δ2
m�n�λnδP�n�‖Πnh0 − h0‖2�λn|P(Πnh0)− P(ĥn)|

}))
�
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which, given our choice of rn, goes to zero as M → ∞; hence ‖ĥn − h0‖ =
Op(rn).

By definition of Hosn (or under Assumption 3.2(b)), λn|P(Πnh0)− P(ĥn)| =
Op(λn) and δP�n =Op(1); hence result (i) follows.

Under Assumption 3.2(c), λn|P(Πnh0)− P(ĥn)| = op(λn) and δP�n = op(1);
hence result (ii) follows.

For result (iii), using the same argument as that for results (i) and (ii),
inequality (SM.4) still holds. By condition (iii) of Theorem 4.1, λn(P(ĥn) −
P(Πnh0))≥ λn〈t0� ĥn −Πnh0〉H∗�H. Thus

cE
(‖m(X� ĥn)‖2

W

) + λn〈t0� ĥn −Πnh0〉H∗�H

≤Op(δ2
m�n + λnδP�n)+ c0E

(‖m(X�Πnh0)‖2
W

);
hence

cE
(‖m(X� ĥn)‖2

W

) ≤ Op(δ2
m�n + λnδP�n)+ c0E

(‖m(X�Πnh0)‖2
W

)
+ const
λn‖ĥn −Πnh0‖s


By Assumption 4.1, Lemma B.1(iii) follows by choosing r2
n = max{δ2

m�n�λnδP�n�

‖Πnh0 − h0‖2�λn‖ĥn −Πnh0‖s} = op(1). Q.E.D.

PROOF OF LEMMA B.2: To simplify notation, we denote bj = ϕ(ν−2
j ). Re-

sult (i) follows directly from the definition of ωn(δ�Hosn) as well as the fact
that {qj}∞

j=1 is a Riesz basis, and hence for any h ∈ Hosn, there is a finite con-
stant c1 > 0 such that

c1‖h‖2
s ≤

∑
j≤k(n)

|〈h�qj〉s|2

≤
(

max
j≤k(n)

b−1
j

) ∑
j≤k(n)

bj|〈h�qj〉s|2 ≤ 1
cbk(n)

‖h‖2�

where the last inequality is due to Assumption 5.2(i) and {bj} nonincreasing.
Similarly, Assumption 5.2(ii) implies result (ii) since

c2‖h0 −Πnh0‖2
s ≥

∑
j>k(n)

|〈h0 −Πnh0� qj〉s|2

≥ c
(

min
j>k(n)

b−1
j

) ∑
j>k(n)

bj|〈h0 −Πnh0� qj〉s|2

≥ c′

bk(n)
‖h0 −Πnh0‖2
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for some finite positive constants c2, c, and c′. Result (iii) directly follows from
results (i) and (ii). Q.E.D.

PROOF OF LEMMA B.3: Denote bj = ϕ(ν−2
j ). For any h ∈ Hos with ‖h‖2 ≤

O(δ2) and for any k≥ 1, Assumptions 5.3 and 5.4(i) imply that there are finite
positive constants c1 and c such that

c1‖h‖2
s ≤

∑
j≤k

〈h�qj〉2
s +

∑
j>k

〈h�qj〉2
s

≤
(

max
j≤k

b−1
j

)∑
j

bj〈h�qj〉2
s +M2(νk+1)

−2α

≤ 1
c
b−1
k δ

2 +M2(νk+1)
−2α


Given that M > 0 is a fixed finite number and δ is small, we can assume
M2(ν2)

−2α > 1
c
δ2/b1. Since {bj} is nonincreasing and {νj}∞

j=1 is strictly increas-
ing in j ≥ 1, we have that there is a k∗ ≡ k∗(δ) ∈ (1�∞) such that

δ2

bk∗−1
< cM2(νk∗)−2α and

δ2

bk∗
≥ cM2(νk∗)−2α ≥ cM2(νk∗+1)

−2α

and

ω(δ�Hos)≡ sup
h∈Hos :‖h−h0‖≤δ

‖h− h0‖s ≤ const

δ√
bk∗

;

thus result (i) holds. Result (ii) follows from Lemma B.2 and result (i).
Q.E.D.

F. PROOFS OF LEMMAS FOR SERIES LS ESTIMATION OF m(·)
Denote m̃(X�h) ≡ pJn(X)′(P ′P)−1P ′m(h) and m(h) = (m(X1�h)� 
 
 
 �

m(Xn�h))
′.

LEMMA SM.1: Let Assumptions C.1 and C.2(i) hold. Then there are finite con-
stants c� c′ > 0 such that, w.p.a.1,

cEX
[‖m̃(X�h)‖2

W

] ≤ 1
n

n∑
i=1

‖m̃(Xi�h)‖2
Ŵ

≤ c′EX
[‖m̃(X�h)‖2

W

]
uniformly in h ∈ HM0

k(n)
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PROOF: Denote 〈g�g〉n�X ≡ 1
n

∑n

i=1 g(Xi)g(Xi) and 〈g�g〉X ≡ EX[g(X)×
g(X)], where g(X) and g(X) are square integrable functions of X . We want
to show that for all t > 0,

lim
n→∞

Pr
(

sup
h∈HP

k(n)

∣∣∣∣ 〈m̃(·�h)� m̃(·�h)〉n�X − 〈m̃(·�h)� m̃(·�h)〉X
〈m̃(·�h)� m̃(·�h)〉X

∣∣∣∣> t) = 0
(SM.5)

Let Gn ≡ {g :g(x) = ∑Jn
k=1πkpk(x);πk ∈ R� supx |g(x)| < ∞}. By construc-

tion m̃(X�h) = arg ming∈Gn n−1
∑n

i=1 ‖m(Xi�h) − g(Xi)‖2
I , so m̃(X�h) ∈ Gn

and

sup
h∈HP

k(n)

∣∣∣∣ 〈m̃(·�h)� m̃(·�h)〉n�X − 〈m̃(·�h)� m̃(·�h)〉X
〈m̃(·�h)� m̃(·�h)〉X

∣∣∣∣
≤ sup

g∈Gn:‖g‖X=1
|〈g�g〉n�X − 〈g�g〉X |


Define An ≡ supg∈Gn
supx |g(x)|√
E[(g(X))2]

. Then, under Assumption C.1(i)–(iii) and the

definition of Gn, we have An 
 ξn. Thus, by Assumption C.1(iv), Lemma 4
of Huang (1998) for general linear sieves {pk}Jnk=1, and Corollary 3 of Huang
(2003) for polynomial spline sieves, equation (SM.5) holds. So with t = 0
5, we
obtain that uniformly over h ∈ HM0

k(n),

0
5EX
[‖m̃(X�h)‖2

I

] ≤ 1
n

n∑
i=1

‖m̃(Xi�h)‖2
I ≤ 2EX

[‖m̃(X�h)‖2
I

]
except for an event w.p.a.0. By Assumption C.1(v), there are finite constants
K�K′ > 0 such thatKI ≤W (X)≤K′I for almost allX . Thus,K‖m̃(X�h)‖2

I ≤
‖m̃(X�h)‖2

W ≤ K′‖m̃(X�h)‖2
I for almost all X . Also by Assumption C.1(v),

uniformly over h ∈ Hk(n),

‖m̃(X�h)‖2
Ŵ

= m̃(X�h)′{Ŵ (X)−W (X)+W (X)}m̃(X�h)
≤ sup

x∈X
|Ŵ (x)−W (x)| × ‖m̃(X�h)‖2

I + ‖m̃(X�h)‖2
W

≤ (K′ + op(1))‖m̃(X�h)‖2
I 


Similarly,

‖m̃(X�h)‖2
Ŵ

≥ (K − op(1))‖m̃(X�h)‖2
I 
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Note that for n large, min{K′�K} ± op(1) > 0. Therefore, uniformly over
h ∈ HM0

k(n),

const
×EX
[‖m̃(X�h)‖2

W

] ≤ 1
n

n∑
i=1

‖m̃(Xi�h)‖2
Ŵ

≤ const
′ ×EX
[‖m̃(X�h)‖2

W

]
except for a set w.p.a.0. Q.E.D.

PROOF OF LEMMA C.1: By Assumption C.1(i) and (v) it suffices to establish
the results for W = I. Result (i) directly follows from our Assumption C.1 and
Lemma A.1 Part (C) of Ai and Chen (2003).

Result (iii) can be established in the same way as that of result (ii). For re-
sult (ii), let ε(Z�h)≡ ρ(Z�h)−m(X�h) and ε(h)≡ (ε(Z1�h)� 
 
 
 � ε(Zn�h))

′.
For any symmetric and positive matrix Ω (d× d), we have the spectral decom-
position Ω = UΛU ′, where Λ = diag{λ1� 
 
 
 � λd} with λi > 0 and UU ′ = Id .
Denote λmin(Ω) as the smallest eigenvalue of the matrix Ω. By definition, we
have

sup
h∈HM0

k(n)

1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
I

= sup
h∈HM0

k(n)

1
n

n∑
i=1

Tr{pJn(Xi)
′(P ′P)−1P ′ε(h)ε(h)′P(P ′P)−1pJn(Xi)}

= sup
h∈HM0

k(n)

1
n

n∑
i=1

Tr{ε(h)′P(P ′P)−1pJn(Xi)p
Jn(Xi)

′(P ′P)−1P ′ε(h)}

= sup
h∈HM0

k(n)

1
n

Tr

{
ε(h)′P(P ′P)−1

n∑
i=1

{pJn(Xi)p
Jn(Xi)

′}(P ′P)−1P ′ε(h)

}

= sup
h∈HM0

k(n)

1
n

Tr{ε(h)′P(P ′P)−1P ′ε(h)}

= sup
h∈HM0

k(n)

1
n2

Tr{ε(h)′P(P ′P/n)−1P ′ε(h)}

≤ (λmin(P
′P/n))−1 × sup

HM0
k(n)

1
n2

Tr{ε(h)′PP ′ε(h)}
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Note that

ε(h)′PP ′ε(h)=
Jn∑
j=1

(∣∣∣∣∣
n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2




Let rn = Jn
n
Cn. We have, for all M ≥ 1,

Pr

(
sup

h∈HM0
k(n)

1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
I >Mrn

)

≤ Pr

(
(λmin(P

′P/n))−1

× sup
h∈HM0

k(n)

Jn∑
j=1

(∣∣∣∣∣ 1
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2

>Mrn

)

≤ Pr

(
(λmin(P

′P/n))−1

×
Jn∑
j=1

(
sup

h∈HM0
k(n)

∣∣∣∣∣ 1
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2

>Mrn

)



Following Newey (1997, p. 162) and under Assumption C.1(i)–(iv), we have:
(λmin(P

′P/n))−1 = Op(1). Thus, to bound Pr(supHM0
k(n)

n−1
∑n

i=1 ‖m̂(Xi�h) −
m̃(Xi�h)‖2

I >Mrn), it suffices to bound the probability

Pr

(
Jn∑
j=1

(
sup

h∈HM0
k(n)

∣∣∣∣∣1
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2

>Mrn

)

≤ 1
Mrn

EZn

[
Jn∑
j=1

(
sup

h∈HM0
k(n)

∣∣∣∣∣1
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2]

≤ Jn

nrnM
max

1≤j≤Jn
EZn

[(
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2]

�

where the first inequality is by Markov inequality and EZn(·) denotes the expec-
tation with respect to Zn ≡ (Z1� 
 
 
 �Zn). By Theorem 2.14.5 in Van der Vaart
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and Wellner (1996) (VdV-W; also see Pollard (1990)), we have

max
1≤j≤Jn

EZn

[(
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2]

≤ max
1≤j≤Jn

(
EZn

[
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
]

+
√
E

[|pj(X)ρ̄n(Z)|2
])2




By Assumption C.2(i) and max1≤j≤Jn E[|pj(X)|2] ≤ const
, we have

max
1≤j≤Jn

E
[|pj(X)ρ̄n(Z)|2

] ≤ const
 <∞


By Theorem 2.14.2 in VdV-W, we have (up to some constant)

max
1≤j≤Jn

EZn

[
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
]

≤ max
1≤j≤Jn

{√
E

[|pj(X)ρ̄n(Z)|2
]

×
∫ 1

0

√
1 + logN[]

(
wK�Ejn�‖ · ‖L2(fZ)

)
dw

}
≤K max

1≤j≤Jn

∫ 1

0

√
1 + logN[]

(
wK�Ejn�‖ · ‖L2(fZ)

)
dw�

where Ejn ≡ {pj(·)ε(·�h) :h ∈ HM0
k(n)}. Note that for any h�h′ ∈ HM0

k(n), we have∣∣pj(X)(ε(Z�h)− ε(Z�h′))
∣∣ ≤ |pj(X)|

{|ρ(Z�h)− ρ(Z�h′)|
+ ∣∣E[ρ(Z�h)|X] −E[ρ(Z�h′)|X]∣∣}

and

|pj(X)|
∣∣E[ρ(Z�h)|X] −E[ρ(Z�h′)|X]∣∣

≤ |pj(X)|E
[|ρ(Z�h)− ρ(Z�h′)||X]
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Recall that Ojn ≡ {pj(·)ρ(·�h) :h ∈ HM0
k(n)} and that

max
1≤j≤Jn

∫ 1

0

√
1 + logN[]

(
wK�Ojn�‖ · ‖L2(fZ)

)
dw≤

√
Cn <∞

by Assumption C.2(iii). We have:

max
1≤j≤Jn

∫ 1

0

√
1 + logN[]

(
wK�Ejn�‖ · ‖L2(fZ)

)
dw≤ const
×

√
Cn <∞

and hence

max
1≤j≤Jn

EZn

[
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
]

≤ const
×
√
Cn


It then follows that

Jn

nrnM
max

1≤j≤Jn
EZn

[(
sup

h∈HM0
k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi�h)

∣∣∣∣∣
)2]

≤ const
× JnCn

nrnM
�

so rn = Jn
n
Cn and letting M → ∞, the desired result follows. Q.E.D.

PROOF OF LEMMA C.2: The proofs of results (i) and (iii) are the same as
that of result (ii). For result (ii), by the fact (a− b)2 + b2 ≥ 1

2a
2, we have that

uniformly over h ∈ Hk(n),

1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

≥ 1
2

1
n

n∑
i=1

‖m̃(Xi�h)‖2
Ŵ

− 1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ



By Lemma SM.1, there is a finite constant c > 0 such that, w.p.a.1 and uni-
formly over h ∈ HM0

k(n),

1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

≥ c

2
EX

[‖m̃(X�h)‖2
W

] − 1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ
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≥ c

4
EX

[‖m(X�h)‖2
W

] −
(
c

2
EX

[‖m(X�h)− m̃(X�h)‖2
W

]
+ 1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ

)

≥KEX
[‖m(X�h)‖2

W

] −Op
(
b2
m�Jn

+ Jn

n
Cn

)
�

where the second inequality is due to the fact that (a− b)2 + b2 ≥ 1
2a

2 and the
last inequality is due to Lemma C.1, Assumption C.2(ii), and c

4 ≡K > 0.
Similarly, by the fact (a+ b)2 ≤ 2a2 + 2b2, we have that uniformly over h ∈

Hk(n),

1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

≤ 2
1
n

n∑
i=1

‖m̃(Xi�h)‖2
Ŵ

+ 2
1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ



By Lemma SM.1, there is a finite constant c′ > 0 such that, w.p.a.1 and uni-
formly over h ∈ HM0

k(n),

1
n

n∑
i=1

‖m̂(Xi�h)‖2
Ŵ

≤ 2c′EX
[‖m̃(X�h)‖2

W

] + 2
1
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ

≤ 4c′EX
[‖m(X�h)‖2

W

] +
(

4c′EX
[‖m̃(X�h)−m(X�h)‖2

W

]
+ 2
n

n∑
i=1

‖m̂(Xi�h)− m̃(Xi�h)‖2
Ŵ

)

≤K′EX
[‖m(X�h)‖2

W

] +Op
(
b2
m�Jn

+ Jn

n
Cn

)
�

where the second inequality is again due to the fact (a+ b)2 ≤ 2a2 + 2b2, and
the last inequality is due to Lemma C.1, Assumption C.2(ii), and 4c′ ≡ K′ <
∞. Q.E.D.

PROOF OF LEMMA C.3: By Assumption C.1(i) and (v), it suffices to establish
the results forW = I. Using the same notation and following the steps as in the
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proof of Lemma C.1, we obtain

sup
h∈Nosn

1
n

n∑
i=1

‖m̂(Xi�h)− m̂(Xi�h0)− m̃(Xi�h)‖2
I

= sup
h∈Nosn

1
n2

Tr
{[ε(h)− ε(h0)]′P(P ′P/n)−1P ′[ε(h)− ε(h0)]

}
≤ (λmin(P

′P/n))−1

× sup
h∈Nosn

1
n2

Tr
{[ε(h)− ε(h0)]′PP ′[ε(h)− ε(h0)]

}
= (λmin(P

′P/n))−1

× sup
h∈Nosn

1
n2

Jn∑
j=1

(∣∣∣∣∣
n∑
i=1

pj(Xi)[ε(Zi�h)− ε(Zi�h0)]
∣∣∣∣∣
)2




Let rn = Jn
n
(δs�n)

2κ. For all M ≥ 1, to bound

Pr

(
sup
h∈Nosn

1
n

n∑
i=1

‖m̂(Xi�h)− m̂(Xi�h0)− m̃(Xi�h)‖2
I >Mrn

)
�

it suffices to bound the probability

Pr

(
Jn∑
j=1

(
sup
h∈Nosn

∣∣∣∣∣1
n

n∑
i=1

pj(Xi)[ε(Zi�h)− ε(Zi�h0)]
∣∣∣∣∣
)2

>Mrn

)

≤ Jn

nrnM

× max
1≤j≤Jn

EZn

[(
sup
h∈Nosn

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)[ε(Zi�h)− ε(Zi�h0)]
∣∣∣∣∣
)2]




Let �ε(Zi�h)≡ ε(Zi�h)− ε(Zi�h0). By Theorem 2.14.5 in VdV-W, we have

max
1≤j≤Jn

EZn

[(
sup
h∈Nosn

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)�ε(Zi�h)

∣∣∣∣∣
)2]

≤ max
1≤j≤Jn

(
EZn

[
sup
h∈Nosn

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)�ε(Zi�h)

∣∣∣∣∣
]
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+
√
E

[
sup
h∈Nosn

|pj(X)�ε(Z�h)|2
])2




By Jensen’s inequality,

E
[

sup
h∈Nosn

∣∣pj(X){m(X�h)−m(X�h0)}
∣∣2

]
≤E

[
sup
h∈Nosn

∣∣pj(X){ρ(Z�h)− ρ(Z�h0)}
∣∣2

]



Hence

max
1≤j≤Jn

√
E

[
sup
h∈Nosn

|pj(X)�ε(Z�h)|2
]

≤ max
1≤j≤Jn

√
2E

[
sup
h∈Nosn

∣∣pj(X){ρ(Z�h)− ρ(Z�h0)}
∣∣2

]
≤ const
× (δs�n)κ

by condition (i) in Lemma C.3.
By Theorem 2.14.2 in VdV-W, Remark C.1, and conditions (i) and (ii) of

Lemma C.3, we have (up to some constant)

max
1≤j≤Jn

EZn

[
sup
h∈Nosn

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)�ε(Zi�h)

∣∣∣∣∣
]

≤ max
1≤j≤Jn

{
(δs�n)

κ

∫ 1

0

(
1 + logN[]

(
w(δs�n)

κ�

{pj(·)�ε(·�h) :h ∈ Nosn}�‖ · ‖L2(fZ)

))1/2
dw

}
≤ (δs�n)κ

∫ 1

0

√
1 + logN

(
w1/κ�Nosn�‖ · ‖s

)
dw≤ const
× (δs�n)κ


Hence

max
1≤j≤Jn

EZn

[(
sup
h∈Nosn

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)�ε(Zi�h)

∣∣∣∣∣
)2]

=O((δs�n)2κ)


The desired result follows. Q.E.D.
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G. APPLICATION: PROOFS OF PROPOSITIONS

PROOF OF PROPOSITION 6.1: We obtain the result by verifying that all the
assumptions of Theorem 3.2 (lower semicompact penalty) are satisfied with
Ŵ =W = I.

First, Assumption 3.1(i) is trivially satisfied with W = I. For any h ∈ H,
we denote h(y1� y2) = h1(y1) + h2(y2), �h(y1� y2) = h(y1� y2) − h0(y1� y2) =
�h1(y1)+�h2(y2), and �hl(yl)= hl(yl)−h0l(yl) for l= 1�2. By the mean value
theorem, Condition 6.1(iv), and the definitions of Kl�h[�hl](X), we have

m(X�h)−m(X�h0)(SM.6)

=E[
FY3|Y1�Y2�X(h1(Y1)+ h2(Y2))

− FY3|Y1�Y2�X(h01(Y1)+ h02(Y2))|X
]

=E
[{∫ 1

0
fY3|Y1�Y2�X(h0(Y1�Y2)+ t�h(Y1�Y2))dt

}
× [�h1(Y1)+�h2(Y2)]

∣∣∣X]
=K1�h[�h1](X)+K2�h[�h2](X)


Therefore, for any h ∈ H such that m(X�h)−m(X�h0)= 0 almost surely X ,
under Condition 6.2(ii), we have K1�h[�h1](X) = 0� K2�h[�h2](X) = 0 al-
most surely X , which implies �hl = 0 almost surely Yl for l = 1�2 (by
Condition 6.2(ii)). Thus, the identification Assumption 3.1(ii) holds. Given
our choices of H and Hn (Condition 6.2(i) and (iii)), and ‖h‖s = ‖h‖sup =
supy1

|h1(y1)| + supy2
|h2(y2)|, the sieve space Hn is closed and we have, for

h0 ∈ H, that there is Πnh0 ∈ Hn such that

‖h0 −Πnh0‖s = ‖h0 −Πnh0‖sup

≤ c{k1(n)}−r1 + c′{k2(n)}−r2

= o(1)� with rl = αl/d;
thus Assumption 3.1(iii) holds. For any h ∈ H with �h(y1� y2) = �h1(y1) +
�h2(y2) and �hl(yl)= hl(yl)− h0l(yl), l= 1�2, equation (SM.6) implies that

|m(X�h)−m(X�h0)|
≤E

[
sup
t∈[0�1]

fY3|Y1�Y2�X(h0(Y1�Y2)+ t�h(Y1�Y2))
∣∣X]

×
[
sup
y1

|�h1(y1)| + sup
y2

|�h2(y2)|
]
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Since m(X�h0)= 0 and by Condition 6.1(iv), we have

E
[|m(X�h)|2

] = E
[|m(X�h)−m(X�h0)|2

]
≤ E

[(
sup
t∈[0�1]

fY3|Y1�Y2�X(h0(Y1�Y2)+ t�h(Y1�Y2))
∣∣X)]2

× (‖h− h0‖s)2

≤ const
× [‖h− h0‖s]2


This and ‖Πnh0 − h0‖s = o(1) imply

E
[|m(X�Πnh0)|2

] ≤ const
‖Πnh0 − h0‖2
s

≤ c{k1(n)}−2r1 + c′{k2(n)}−2r2 = o(1);

hence Assumption 3.1(iv) holds. Assumption 3.2(b) directly follows from our
choice of P̂(·)= P(·).

Next, Condition 6.1(i) and (ii) and Ŵ = W = I imply that Assump-
tion C.1 holds. Assumption C.2(i) follows trivially with ρ̄n(Z) ≡ 1 since
suph∈H |ρ(Z�h)| ≤ 1. Condition 6.1(ii) and (iii) implies that Assumption C.2(ii)
holds with b2

m�Jn
= J−2rm

n . Thus Lemma C.2 result (i) is applicable and As-
sumption 3.3(i) is satisfied with η0�n = Jn

n
+ J−2rm

n . This, E([m(X�Πnh0)]2) =
O(max[{k1(n)}−2r1� {k2(n)}−2r2]), and max[{k1(n)}−2r1� {k2(n)}−2r2� Jn

n
+J−2rm

n ] =
O(λn) together imply that Lemma A.3(i) holds. Moreover, it follows by our
choice of penalty that P(Πnh0) = O(1) and P(ĥn) = Op(1). By our choice of
sieves space it follows that logN(w1/2�HM0

k(n)�‖ · ‖L∞) ≤ min{ 1
2k(n) log(1/w)�

const
(1/w)d/2α}, where α ≡ min{α1�α1} > 0 (and const
 can depend on
M0, but not n); see, for example, Chen (2007) and Chen, Linton, and
van Keilegom (2003). Following the verifications of Examples 1 and 2 in
Chen, Linton, and van Keilegom (2003), we have that condition (18) in Re-
mark C.1 holds with κ = 1/2. Hence, by Remark C.1 (with κ = 1/2), we
have that Assumption C.2(iii) is satisfied with either Cn ≤ const
 × k(n) if
α ≤ d or Cn = const
 < ∞ if α > d. By Lemma C.2 result (ii) and the fact
that Jnk(n)

n
= o(1), it follows that δ̄2

m�n = o(1) and hence Assumption 3.3(ii)
holds.

By the mean value theorem and Condition 6.1(iv), we have, for all h�h′ ∈ H,
‖h− h′‖s = ‖h− h′‖sup = supy1

|h1(y1)− h′
1(y1)| + supy2

|h2(y2)− h′
2(y2)|. Then

|m(X�h)−m(X�h′)|
≤E

[
sup
t∈[0�1]

fY3|Y1�Y2�X(h
′(Y1�Y2)+ t{h− h′}(Y1�Y2))

∣∣X]
‖h− h′‖s
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This, Condition 6.1(iv), and supx∈X �h∈H |m(x�h)| ≤ 1 imply that

E
[|m(X�h)|2

] −E[|m(X�h′)|2
] ≤ 2E

[|m(X�h)−m(X�h′)|]
≤ const
× ‖h− h′‖s


Thus E[|m(X�h)|2] is continuous on (H�‖ · ‖s). We have that for any M <∞,
the embedding of the set {h ∈ H :P(h) = ‖h1‖Λα1 + ‖h2‖Λα2 ≤ M} into H is
compact under the norm ‖ · ‖s = ‖ · ‖sup; hence P(·) is lower semicompact.

The condition max[{k1(n)}−2r1� {k2(n)}−2r2� Jn
n

+ J−2rm
n ] = O(λn) and Theo-

rem 3.2 now imply the desired consistency results. Q.E.D.

PROOF OF PROPOSITION 6.2: We obtain the results by verifying that all the
assumptions of Corollary 5.1 are satisfied.

We first show that δm�n = Jn
n

+ b2
m�Jn

. Similar to the proof of Proposition 6.1,
logN(w1/2�Hosn�‖ · ‖L∞) ≤ min{ 1

2k(n) log(1/w)� const
(1/w)d/2α}, where α ≡
min{α1�α1} > d. By Remark C.1 (with κ = 1/2), we have that Assump-
tion C.2(iv) is satisfied with C <∞. Thus Lemma C.2 result (iii) is applicable
and yields δ2

m�n = Jn
n

+ J−2rm
n = o(1).

Assumptions 3.1, 3.2, and 3.3 (with η0�n = δ2
m�n = Jn

n
+ J−2rm

n ) are already ver-
ified in the proof of Proposition 6.1. Given the choice of the norm ‖h‖s, As-
sumption 5.1 is satisfied with ‖h0 −Πnh0‖s = O({k(n)}−r) with r = α/d. Con-
dition 6.3(ii) implies Assumption 5.2. It remains to verify Assumption 4.1. By
Condition 6.1(iv), we have

dm(X�h0)

dh
[h− h0] = Th0[h− h0]

= E
[
fY3|Y1�Y2�X(h01(Y1)+ h02(Y2))

× [h1(Y1)− h01(Y1)+ h2(Y2)− h02(Y2)]|X
]
�

‖h− h0‖2 =E
[
dm(X�h0)

dh
[h− h0]

]2

≤ const
‖h− h0‖2
s ;

hence Assumption 4.1(i) holds. Since

m(X�h)−m(X�h0)=K1�h[h1 − h01](X)+K2�h[h2 − h02](X)�
Condition 6.3(i) implies Assumption 4.1(ii). The results now follow from
Corollary 5.1. Q.E.D.
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