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A NOTE ON ARROW–ENTHOVEN’S SUFFICIENCY THEOREM ON
QUASI-CONCAVE PROGRAMMING: CORRIGENDUM TO: QUASI-CONCAVE

PROGRAMMING

LUDOVIC A. JULIEN
EconomiX, UPL, Université Paris Nanterre, CNRS

In this note, we reconsider Arrow–Enthoven’s (1961) Sufficiency Theorem 1 on
quasi-concave programming [Econometrica, 29(4), p. 783]. One example illustrates the
fact that condition (c) of their Theorem 1 should include the twice continuous differen-
tiability of the quasi-concave objective function so that the conditions of the theorem
are sufficient to identify global optima.
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1. INTRODUCTION

The seminal contribution of Arrow and Enthoven (1961) on quasi-concave program-
ming has enlarged the set of functions to which optimization theory can be applied. Ar-
row and Intriligator (1982), Intriligator (2000), and Samuelson (1983) put forward the
importance of ordinal functions in economic theory. Koenker and Mizera (2010) used
quasi-concavity density estimation in probability and statistics. In this note, we recon-
sider Theorem 1 of Arrow and Enthoven (1961) (henceforth AET), which provides a
set of independent sufficient conditions so that the Kuhn and Tucker theorem holds in
quasi-concave programming maximization problems. The AET was extended notably by
Ferland (1972) to optimization problems with twice continuously differentiable objective
functions. Some characterizations of quasi-concavity properties were provided in Diew-
ert, Avriel, and Zang (1981).

It is common knowledge that the Kuhn and Tucker first-order conditions are not suf-
ficient to determine, unlike the first-order conditions in concave programming, global
optima of quasi-convex optimization problems, that is, problems with a quasi-concave
objective function and a convex constraint set. In AET, the objective function and the
constraint functions are assumed to be differentiable and quasi-concave, so that the Kuhn
and Tucker conditions are sufficient to determine global optima provided some additional
regularity conditions are met at the optimum point. More specifically, we focus on condi-
tion (c) in AET. Condition (c) states that, in the neighborhood of the optimum point, if
the objective function is twice differentiable, and its gradient is different from zero, then
the stationary point that meets the Kuhn and Tucker conditions solves the inequality con-
strained maximization problem. Through an example, we show that this condition also
requires the twice continuous differentiability of the quasi-concave objective function.

The remainder of the paper is organized as follows. In Section 2, we restate and discuss
the AET. In Section 3, we provide an example in which condition (c) fails to identify the
maximum. In Section 4, we conclude.
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2. ARROW AND ENTHOVEN’S THEOREM 1

Consider the following notational convention. Vectors are in bold and are expressed
in columns. The transpose of x is denoted by xT . Let x ∈ R

n
+. Then, x ≥ 0 means xi � 0,

i = 1� � � � � n; x > 0 means there is some i such that xi > 0, with x �= 0, and x � 0 means
xi > 0 for all i, i = 1� � � � � n. Let B(x� δ) be the ball of center x and radius δ > 0. Let
F : X ⊆ R

n → R
p, x �→ F(x), be a vector function, with n�p < ∞, where X is an open

set. The Jacobian matrix JF(x) = [ ∂(F1�����Fp)

∂(x1�����xn)
] is a function from X to L(Rn�Rp), the set of

linear transformations from R
n to R

p. When p= 1, JF(x) = [∇F(x)]T , where ∇F(x) is the
gradient of F . Let h ∈ R

n. The function dFx∗(·) : X ⊆ R
n → R

p, with dFx∗(h) = JF(x∗)h, is
the differential of F at x∗. The notation F ∈ C1(X�Rp) is used to say that F is continuously
differentiable on X , which we now define.

DEFINITION—Continuous Differentiability: The function F : X ⊆ R
n → R

p, x �→ F(x),
is continuously differentiable on the open set X if it is differentiable on X , and the (p�n)

matrix JF(x) = [ ∂(F1�����Fp)

∂(x1�����xn)
] is a continuous function from X to L(Rn�Rp). That is, for all x∗ ∈

X , and every ε > 0, there is a δ > 0 for which if x′ ∈ X and x′ ∈ B(x∗� δ), then ‖dFx∗(h)−
dFx′(h)‖< ε, where h ∈ R

n.

Therefore, F ∈ Cs(X�Rp) if each component function of F has first through sth con-
tinuous partial derivatives on X . Thus, F is twice continuously differentiable on X if and
only if F ∈ C2(X�Rp): the first- and second-order partial derivatives of F exist and are
continuous for all x ∈ X . A continuous function is of class C0, and a smooth function is of
class C∞. A twice differentiable function is of class C1.

Consider now the following inequality constrained maximization problem:

(P) : max
{x}

F(x)

subject to x ∈C =X ∩ {
x ∈ R

n : G(x) ≥ 0
}
� (1)

where F : X ⊆ R
n → R, x �→ F(x), and G : X ⊆ R

n → R
m, x �→ G(x), with Gj : X ⊆ R

n →
R, x �→Gj(x), j = 1� � � � �m. Let F and G be differentiable on X .

Assume that there exists a solution to (P) (Weierstrass’s theorem holds), that is, there
exists x∗ ∈ X : F(x∗)� F(x), for all x ∈ C .

Define L : X ×R
m
+ → R, with (x;λ) �→ L(x;λ) := F(x)+ ∑m

j=1 λjGj(x), where the La-
grangian L is differentiable on X . The Kuhn and Tucker theorem provides necessary
conditions for (P) to have a local maximum at x∗ ≥ 0, if the constraint qualification holds,
that is, if the set of effective constraints has the maximum possible rank, in which case
there exists a vector (λ∗)T = (λ∗

1� � � � � λ
∗
m) ∈ R

m
+ such that

∀i x∗
i � 0�

∂L(x;λ)
∂xi

∣∣∣∣
(x;λ)=(x∗;λ∗)

� 0� with x∗
i

∂L(x;λ)
∂xi

∣∣∣∣
(x;λ)=(x∗;λ∗)

= 0; (KT1)

∀j λ∗
j � 0� Gj

(
x∗) � 0� with λ∗

jGj

(
x∗) = 0� (KT2)

where ∂L(x;λ)
∂xi

|(x;λ)=(x∗;λ∗) = ∂F(x)
∂xi

|x=x∗ + ∑m

j=1 λ
∗
j

∂Gj(x)

∂xi
|x=x∗ , i = 1� � � � � n.
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As emphasized by Arrow and Enthoven (1961), if the objective and constraints vector
functions are concave, then (KT1) and (KT2) constitute a set of sufficient conditions for
a constrained maximum (see Kuhn (1968)). In order to extend the set of functions on
which the conditions of such a theorem might have applied, Arrow and Enthoven assumed
that the objective function F as well as the m-dimensional vector function G were quasi-
concave (for a complete characterization of quasi-concave functions, see, for instance,
Diewert, Avriel, and Zang (1981)). Before we restate the AET, we define the notion of a
relevant variable. A variable x∗

i is relevant if there is some point in the constraint set, say
x̄∗
i , at which x̄∗

i > 0.

THEOREM—Arrow and Enthoven: Let F : Rn → R, x �→ F(x), be a quasi-concave dif-
ferentiable function, and let G :Rn → R

m, x �→ G(x), be a quasi-concave differentiable vector
function, where Gj : Rn → R, x �→ Gj(x), j = 1� � � � �m , both defined for x ≥ 0. Let x∗ and
λ∗ satisfy (KT1)–(KT2), and let one of the following conditions be satisfied:

(a) ∂F(x)
∂xk

|x=x∗ < 0, for at least one variable x∗
k;

(b) ∂F(x)
∂xl

|x=x∗ > 0, for some relevant variable x∗
l ;

(c) JF(x∗) = ( ∂F(x)
∂x1

|x=x∗� � � � � ∂F(x)
∂xn

|x=x∗) �= 0 and F(x) is twice differentiable in the neighbor-
hood of x∗;

(d) F(x) is concave.
Then x∗ maximizes F(x) subject to the constraints G(x)≥ 0, x ≥ 0.

The AET stipulates that only one of these four conditions (there may be others) needs
to be satisfied for x∗ to maximize F(x) subject to the constraints if (KT1) and (KT2) hold
at x∗. It is worth noticing that, from (a) and (b), it follows that the condition JF(x∗) �=
0 is sufficient if all variables xi are relevant. In this note, we focus on condition (c) to
put forward the importance of the twice continuous differentiability of the quasi-concave
objective function.

Sufficient condition (c) says that x∗ is not a stationary point of the quasi-concave objec-
tive function F , and that F is twice differentiable (so F ∈ C1(X�R)). It is worth noticing
that a concave function defined on an open and convex set is continuously differentiable
everywhere on this set, except possibly at a set of points of Lebesgue measure zero. But
a quasi-concave function may be discontinuous, and then it may not be differentiable,
in the interior of its domain. We put forward that condition (c) should also include the
twice continuous differentiability of the quasi-concave objective function. Therefore, the
following example illustrates that condition (c) alone is not sufficient for AET to hold.

3. CONDITION (C): AN EXAMPLE

Consider the problem (P) with X =R
n
+ and F and G given by

F(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� if x = x̄;(
n∑

i=1

xi − 1
r

)4

sin

(
1

n∑
i=1

xi − 1
r

)
+

n∑
i=1

xi − 1
r
� if x �= x̄� (2)
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where x̄ = ( 1
nr
� � � � � 1

nr
)T , with 1 � r < ∞, and

G1(x)= π + r

πr
−

n∑
i=1

xi and G2(x)=

⎧⎪⎪⎨
⎪⎪⎩

(
2
r

−
n∑

i=1

xi

)2

− 1
r2 � if 0 ≤ x ≤ x̄�

0� if x > x̄�

(3)

As the objective function F is continuous on the compact constraint set C = {x ∈ R
n
+ :

G1(x) � 0 and G2(x) � 0}, then, by the Weierstrass theorem, there exists a global maxi-
mum to (P).

The remainder of this section is devoted to the characterization of the set of optima.
First, we check that (2) and (3) satisfy the assumptions as well as condition (c) of AET.
Second, we set up the Lagrangian and determine its stationary points by using (KT1) and
(KT2). Third, we show condition (c) of AET is not sufficient.

The functions G1(x) and G2(x) are differentiable and quasi-concave on R
n
+, and the

function F(x) is twice differentiable on R
n
+. As F(x) is differentiable on R

n
+, the Jacobian

matrix JF(x) of F(x) exists, and it may be written

[JF(x)]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F(x)
∂x1
���

∂F(x)
∂xj

���
∂F(x)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4a3 sin
(

1
a

)
− a2 cos

(
1
a

)
+ 1

���

4a3 sin
(

1
a

)
− a2 cos

(
1
a

)
+ 1

���

4a3 sin
(

1
a

)
− a2 cos

(
1
a

)
+ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (4)

where a≡ ∑n

i=1 xi − 1
r
. As JF(x) � 0 for all x ∈ R

n
+, the function F is strictly increasing with

respect to each xi, then, it is quasi-concave in x on R
n
+. In addition, as JF(x̄) = [1� � � � �1] �=

0, the function F satisfies condition (c) of AET. Finally, as F is twice differentiable, for all
x ∈ R

n
+, the bordered Hessian matrix H̄F(x) = [ 0 JF(x)

[JF(x)]T HF(x)

]
of F exists, and the ijth element

of the Hessian matrix HF(x) = [ ∂2F(x)
∂xi∂xj

]1�i�j�n of F may be written

∀i� j ∂2F(x)
∂xi∂xj

= (12a− 1) sin
(

1
a

)
− 6a cos

(
1
a

)
� (5)

Let us now characterize the solution to (P). The Lagrangian associated with this in-
equality constrained maximization problem may be written

L(x;λ1�λ2) :=
(

n∑
i=1

xi − 1
r

)4

sin

(
1

n∑
i=1

xi − 1
r

)
+

n∑
i=1

xi − 1
r

+ λ1

(
π + r

πr
−

n∑
i=1

xi

)
+ λ2

((
2
r

−
n∑

i=1

xi

)2

− 1
r2

)
� (6)

where λ1�λ2 � 0, and with x ≥ 0.
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The stationary points of L are given by (KT1) and (KT2), which may be written

∀i xi � 0�
∂F

∂xi

− λ1 − 2λ2

(
1
r

− a

)
� 0� with xi

(
∂F

∂xi

− λ1 − 2λ2

(
1
r

− a

))
= 0; (7)

and

λ1 � 0�
1
π

− a� 0� with λ1

(
1
π

− a

)
= 0; (8)

λ2 � 0�
(

1
r

− a

)2

− 1
r2 � 0� with λ2

((
1
r

− a

)2

− 1
r2

)
= 0� (9)

where ∂F
∂xi

is given by (4), and G1, G2, ∂G1
∂xi

, and ∂G2
∂xi

are expressed in terms of a.
If x = x̄ (in which case a = 0), then, by the complementary slackness conditions given

by (8)–(9), as G1(x̄) > 0 and G2(x̄) = 0, we deduce λ1 = 0, and from (7), as, for each i,
∂F(x)
∂xi

|x=x̄ = 1, we deduce λ2 � r
2 . Then, x = x̄ satisfies (7)–(9).1 Therefore, there is a pair

(λ1�λ2) ∈R
2
+, which satisfies (8)–(9). But x̄ does not maximize F(x) subject to x ∈ C, while

the point x = x∗ (in which case a = 1
π

), where x∗ = (π+r
nπr

� � � � � π+r
nπr

� � � � � π+r
nπr

)T , with λ∗
1 � 1

and λ∗
2 = 0, does!2

Therefore, the stationary point x = x̄ satisfies condition (c) of AET, but does not solve
problem (P). The reason stems from the fact that the objective function is not twice con-
tinuously differentiable at x = x̄, that is, F /∈ C2(Rn

+�R), even if F ∈ C1(Rn
+�R). Indeed, as

F is differentiable on R
n
+, that is, dFx(h) ∈ L(Rn

+�R), h ∈ R
n, it is differentiable at x̄, and

we have

dFx̄(h)=JF(x̄)dh + ‖h‖ηx̄(h)� with lim
‖h‖→0�‖h‖�=0

ηx̄(h)= 0� (10)

Thus, for each i ∈ {1� � � � � n}, let ei ∈ R
n
+ be the vector in the ith direction. Let h = tei,

t ∈R. The directional derivative of F in the direction ei at x̄ is given by

∂F(x)
∂xi

∣∣∣∣
x=x̄

= lim
t→0

(
F(x̄ + tei)− F(x̄)

t

)

= lim
t→0

( t4 sin
(

1
t

)
+ t

t

)
= 1� (11)

as F(x̄) = 0, and |t3 sin( 1
t
)| � t3 as | sin( 1

t
)| � 1. Likewise, we have ∂F(x)

∂xj
|x=x̄ = 1, for all

j �= i. In addition, by using (4), with xj = 1
nr

, for all j �= i, we deduce

∀i lim
xi→ 1

nr

∂F(x)
∂xi

= lim
a→0

[
4a3 sin

(
1
a

)
− a2 cos

(
1
a

)
+ 1

]
= 1� (12)

1It is worth noticing that the constraint qualification holds at x = x̄ as G2(x) is the only effective constraint,
that is, G2(x̄) = 0, and rank[JG2(x̄)] = 1, with JG2(x̄) = (− 2

r
� � � � �− 2

r
), while the constraint G1(x)� 0 is slack at

x = x̄. Thus, (KT1)–(KT2) are here also necessary.
2Indeed, we have F(π+r

nπr
� � � � � π+r

nπr
� � � � � π+r

nπr
)= 1

π
, as sin(π)= 0 (in radians). Then, from (7), we have λ∗

1 � r
2 ,

and from (9), we have λ∗
2 = 0, as G2 = 0 when x > x̄.
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as | sin( 1
a
)| � 1 and | cos( 1

a
)| � 1, so (12) is well defined. Then, dFx̄(h) given by (10) satis-

fies the definition, so F ∈ C1(Rn
+�R) in the neighborhood of x = x̄.

Next, as F is twice differentiable on R
n
+, that is, d2Fx(h�k) ∈ L(Rn

+�L(Rn
+�R)), h�k ∈

R
n, it is twice differentiable at x̄. Then, there exists a Hessian matrix with n2 terms, that

is, HF(x̄) = [ ∂2F(x)
∂xi∂xj

|x=x̄]1�i�j�n, such that

∀(h�k) ∈ R
n ×R

n d2Fx̄(h�k)= hTHF(x̄)k� (13)

In particular, by using (4), we have

∀i� j ∂2F(x)
∂xi∂xj

∣∣∣∣
x=x̄

= lim
t→0

1
t

(
∂F(x)
∂xj

∣∣∣∣
x=x̄+tei

− ∂F(x)
∂xj

∣∣∣∣
x=x̄

)

= lim
t→0

(4t3 sin
(

1
t

)
− t2 cos

(
1
t

)
t

)
= 0� (14)

But, by using (5), and proceeding in the same way as for (12), we deduce

∀i� j lim
a→0

∂2F(x)
∂xi∂xj

= lim
a→0

[
(12a− 1) sin

(
1
a

)
− 6a cos

(
1
a

)]

= − lim
a→0

sin
(

1
a

)
� (15)

which is undefined at x = x̄. Then, limx→x̄ HF(x) is undefined, so d2Fx(h�k) is not contin-
uous at x̄. We conclude that F /∈ C2(Rn

+�R) in the neighborhood of x = x̄. Therefore,
while F satisfies condition (c) of AET at x̄, F does not satisfy the conditions for a local
maximum, so it does not reach a global maximum at x = x̄.

4. CONCLUDING REMARKS

The conclusion follows: if the objective function is not of class C2 everywhere on the
constraint set, some points could satisfy the Kuhn and Tucker conditions without being
optima. Then, condition (c) is replaced by condition (c′) in AET:

(c′) JF(x∗) �= 0, and F(x) is twice continuously differentiable in the neighborhood of x∗.

It turns out that this stronger condition holds in the original proof of Arrow and En-
thoven’s result (see on pages 785 to 787). In what follows, we only point out the role played
by the twice continuous differentiability of the quasi-concave objective function in their
proof. To this end, consider on page 787, equation (2.23), that is, u(v)φu(0�v)

v
�φv(0� v). To

generate their contradiction, they studied the limit of φu(0�v)
v

as v approaches zero, that is,
limv→0

1
v
(φu(0�v)

v
)= limv→0

φu(0�v)−φu(0�0)
v−0 as φu(0�0)= 0 in equation (2.13) on page 785. This

limit should be φuv(0�0), with φuv(0�0) = ∂φu(u�v)

∂v
|(u�v)→(0�0) = ∂2φu(u�v)

∂v∂u
|(u�v)→(0�0). But, even

if we have φuv(0�0) = limv→0
φu(0�v)−φu(0�0)

v−0 , the limit as v approaches 0 of φu(u�v) need
not be well defined for v in a neighborhood of 0 unless the partial derivative of φu(0�v)

v
is

continuous at zero.
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