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DO NOT BLAME BELLMAN: IT IS KOOPMANS’ FAULT
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We provide a unified approach to stochastic dynamic programming with recursive
utility based on an elementary application of Tarski’s fixed point theorem. We estab-
lish that the exclusive source of multiple values is the presence of multiple recursive
utilities consistent with the given aggregator, each yielding a legitimate value of the
recursive program. We also present sufficient conditions ensuring a unique value of
the recursive program in some circumstances. Overall, acknowledging the unavoidable
failure of uniqueness in general, we argue that the greatest fixed point of the Bellman
operator should have a privileged position.
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1. INTRODUCTION

OVER THE LAST DECADES, RECURSIVE UTILITY has gained increasing interest in macroe-
conomics and finance. Building on the earlier work of Koopmans (1960), the approach
postulates a stationary aggregator as a primitive representation of preferences over cur-
rent consumption and future uncertain utility and recovers a time-consistent intertempo-
ral utility function recursively. The representation of preferences by means of a stationary
Koopmans aggregator preserves the tractability of traditional discounted expected utility
while encompassing empirically relevant behavioral features, such as increasing marginal
impatience (Lucas and Stokey (1984)), the distinction of risk attitudes from intertem-
poral substitution (Epstein and Zin (1989)), preference for early resolution of uncer-
tainty (Kreps and Porteus (1978)), ambiguity aversion (Klibanoff, Marinacci, and Muk-
erji (2005)), and risk sensitivity and robustness (Hansen and Sargent (1995, 2001)). The
expanding domain of applications in macroeconomics and finance is demonstrated by,
among others, Backus, Routledge, and Zin (2005), Becker and Boyd III (1997), Hansen
and Sargent (2008), Hansen, Heaton, Lee, and Roussanov (2007), Miao (2014), and Ski-
adas (2009).
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The flourishing popularity of recursive preferences has recently fostered a resurgent in-
terest on foundational issues of existence and uniqueness. In fact, the most relevant spec-
ifications of the Koopmans aggregator (e.g., Epstein-Zin preferences) fail to satisfy the
traditional Blackwell’s discounting condition. As a consequence, an appeal to the Banach
contraction mapping theorem is of limited scope, and even establishing the existence of
a recursive utility function becomes an arduous task. More importantly, uniqueness and
convergence obtain only under certain restrictions on the Koopmans aggregator and its
domain. Recent developments along these research lines include Marinacci and Montruc-
chio (2010), who studied abstract value-concave (Thompson) aggregators, and Borovicka
and Stachurski (2020), Christensen (2022), and Hansen and Scheinkman (2012), who es-
tablished a connection between certain recursive utility equations and the spectral radius
of a related valuation operator.

Despite the substantial progress on recursive utility, less is known about its implications
for dynamic programming. The purpose of this paper is to provide a unified treatment of
recursive methods under minimal assumptions on the Koopmans aggregator and conven-
tional restrictions on the constraints. In particular, we develop an elementary approach
to dynamic programming with recursive utility based on Tarski’s fixed point theorem. We
establish the existence of a value of the recursive program and argue that, when the Koop-
mans aggregator identifies utility uniquely, the value of the recursive program is also
unique. As an implication, whenever a recursive program admits multiple values, each
corresponds to a different recursive utility consistent with the specification of the Koop-
mans aggregator. In general, without further restrictions, the recursive program yields a
least value and a greatest value.

On merely philosophical grounds, our analysis reveals that the multiplicity of fixed
points of the Bellman operator is exclusively caused by an underlying multiplicity of util-
ities generated by the Koopmans operator. In other terms, the Bellman operator is accu-
rate, and it is rather the planning objective that is imprecisely identified by the Koopmans
aggregator. On more practical grounds, our analysis suggests that the advantages of recur-
sive utility are forced to coexist with a risk of value multiplicity, and a consistent selection
criterion is unavoidable. We submit that, when all utilities generated by the Koopmans
aggregator are legitimate planning objectives, the greatest value should have a focal role
because of two relevant features: it is upper semicontinuous and it admits a stationary
recursive policy, permitting a sequential implementation for the greatest utility consis-
tent with the Koopmans aggregator. Other values might not admit a recursive policy, and
might only be approximated by nonstationary policies.

We supplement our approach with a study of additional conditions ensuring a unique
value of the recursive program. Indeed, we provide a generalized discounting criterion,
consisting in identifying a sort of supergradient to the Bellman operator and verifying that
its spectral radius is less than unity. This method is particularly suited to recursive utilities
involving time-varying discounting. Unfortunately, the nature of the supergradient is in
general case-specific, and this substantially limits the scope of the theory.

Our Tarski-type approach to dynamic programming requires a preliminary determina-
tion of an appropriate domain for the recursive program. For completeness, we present
a method to identify suitable bounds in frameworks with homogeneous aggregators, so
enhancing the applicability of the theory. We use the spectral radius to estimate the ex-
pansion of values in the feasible set and relate it to the contractionary force due to im-
patience implied by the recursive aggregator. We finally illustrate this method by means
of an application to optimal investment in a risky asset under long-run risk and persistent
shocks to labor income.



DO NOT BLAME BELLMAN 113

The paper is organized as follows. In Section 2, we briefly present a non-exhaustive
discussion of some related literature. In Section 3, we introduce an abstract recursive
program encompassing all relevant applications in the literature, and present our major
theorems. In Section 4, we prove a sort of principle of optimality: the extreme values of
the recursive program are implemented by the extreme utility functions generated by the
given aggregator, possibly with nonstationary policies. In Section 5, we discuss sufficient
conditions ensuring that the value is unique. In Section 6, we present our operational ap-
proach to identify an interval on which the recursive program is properly defined. Finally,
in Section 7, we show how our theory applies to the widely studied optimal investment
program with a risky asset and possibly growing labor income. All proofs, irrespective of
their relevance, are collected in Appendix A. Appendix B presents a short introduction to
the spectral radius of monotone sublinear operators, and Appendix C provides a known
extension of the Feller property to unbounded values.

2. RELATED LITERATURE

A copious literature has studied dynamic programming with unbounded returns un-
der traditional discounting. Boyd III (1990) introduced the Weighted Contraction ap-
proach to economic applications, a method further developed by Alvarez and Stokey
(1998) and Duran (2000, 2003). An alternative Local Contraction approach was presented
by Rincon-Zapatero and Rodriguez-Palmero (2003) and Martins-da-Rocha and Vailakis
(2010). Recently, Rincon-Zapatero (2024) extended this method to a stochastic environ-
ment. Le Van and Morhaim (2002), Le Van and Vailakis (2005), Kamihigashi (2014),
and Wiszniewska-Matyszkiel and Singh (2021) proposed a more primitive transversality
condition to identify an appropriate space of candidate value functions. Jaskiewisz and
Nowak (2011) and Matkowski and Nowak (2011) presented a systematic study of all these
approaches under uncertainty. Finally, a recent paper by Ma, Stachurski, and Akira Toda
(2022) exploited a transformation of the Bellman operator, along with boundedness of
the expected reward, to turn unbounded into bounded programs, so that conventional
contraction techniques apply.

Dynamic programming with recursive utility was initially approached by Streufert
(1990) and Ozaki and Streufert (1996). They introduced a notion of biconvergence, a
condition ensuring that utility values can be arbitrarily approximated by increasing and
decreasing orbits. Recently, along similar lines, Bich, Drugeon, and Morhaim (2018) pro-
vided a study of deterministic recursive programs under minimal assumptions on primi-
tives. Though foundational, all these biconvergence criteria are not fully operational.

Marinacci and Montrucchio (2010, 2019) introduced a contraction-type approach to
recursive utility under an assumption of value-concavity of the Koopmans aggregator, an
issue further investigated by Becker and Rincon-Zapatero (2021). This property is shared
by a large class of aggregators commonly used in applications, beginning with Epstein—
Zin preferences. Dynamic programming with a value-concave aggregator was studied by
Balbus (2020), Bloise and Vailakis (2018), and Ren and Stachurski (2021). This promising
approach is frustrated by the fact that uniqueness only obtains in the interior of the do-
main, or subject to some appropriate boundary condition. In many relevant applications,
this sort of boundary condition is unnatural.

Recent literature has studied recursive utility in a stochastic environment, with a spe-
cific focus on Epstein—Zin preferences. The approach was initially proposed by Hansen
and Scheinkman (2012) and consists in establishing a connection between the recursive
utility equation and the spectral radius of a related valuation operator. Borovicka and
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Stachurski (2020) established that Hansen and Scheinkman (2012)’s spectral radius con-
dition is necessary and sufficient for the existence of Epstein—Zin recursive utility. Finally,
Christensen (2022) further developed this method, providing a characterization of recur-
sive utility under risk sensitivity, ambiguity, and Epstein—Zin preferences. Uniqueness ob-
tains only under certain restrictions on the state space and the Markov transition. None
of these papers studies dynamic programming with recursive utility.

3. ABSTRACT RECURSIVE PROGRAM

Let X and Z be complete separable metric spaces, and let G be a correspondence from
X to Z. We interpret X as the state space, whereas Z is the action space. Feasibility is
embedded in the correspondence G : X — Z, that is, G(x) C Z is the set of admissible
actions at state x in X. We use I' C X x Z to denote the graph of the feasibility corre-
spondence. If needed, we also consider a (measurable) Markov transition IT: I — A(X)
governing the evolution of the state over time, that is, I1(x, z) is a probability measure on
the state space X, endowed with its Borel algebra.

We let £ be the space of all maps f : X — R, endowed with the product topology and
the natural ordering. We introduce the complete lattice F of £ given by

F={feE:f<f=f}

where f: X — R and f: X — R are given bounds. We let V be the class of measurable
maps v: X — R in F, that is,

V = {v e F:vis (Borel) measurable}.

Notice that V is not a complete lattice, though it is embedded in a complete lattice to
ensure the applicability of Tarski’s fixed point theorem (see Aliprantis and Border (2006,
Theorem 1.11)).

The objective of the planner is given as an aggregator W : I' x V — R. The nature of
this aggregator will depend on the application of the theory. The most traditional example
is given by

W(x,z,v)=(1-96)u(x,z)+ 8/ v(WII(x, 2)(dy),

where 6 in (0, 1) C R* is the discount factor and u : I' — R is the return, or reward, func-
tion. Our abstract formulation, inspired by Bertsekas (2018), encompasses many other
instances of recursive preferences. A large variety of applications is discussed in, among
others, Christensen (2022), Marinacci and Montrucchio (2010), and Ren and Stachurski
(2021).

We impose restrictions on fundamentals that are satisfied in typical applications. In
particular, Assumption 2 requires that the lower and upper bounds define a suitable in-
variant interval. Assumption 3 ensures the applicability of the maximum theorem (see
Aliprantis and Border (2006, Section 17.5)), in addition to requiring monotonicity. Fi-
nally, Assumption 4 reproduces the logic of Levi’s convergence theorem. We notice that,
under Assumption 4, the property in Assumption 3(b) is weaker than the canonical Feller
property in conventional bounded dynamic programming. In Appendix C, we provide
more primitive conditions enforcing this sort of weak Feller property when values are
unbounded.
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ASSUMPTION 1—Semicontinuous bounds: Both f and f in F are upper semicontinuous.

ASSUMPTION 2—Invariance: Forevery vinV,

f(x) < inf) Wi(x,z,v) < sup W(x,z,v) < f(x)

zeG(x 2€G(x)

ASSUMPTION 3—Basic properties: (a) The feasible correspondence G : X — Z is up-
per hemicontinuous with nonempty compact values. (b) If v in F is measurable (respectively,
upper semicontinuous), the map (x, z) — W (x, z, v) is measurable (respectively, upper semi-
continuous) on I'. (¢) The aggregator is monotone in V, that is,

v =" implies W(x,z,v)=W(x,z,V").
ASSUMPTION 4—Monotone convergence: For any sequence (v,)qx in V monotonically
convergingtovin )V,

lim W (x, z,v,) = W(x, z, v).

A major obstacle in stochastic dynamic programming is due to the difficulty in preserv-
ing measurability (see Miao (2014), Stachurski (2009), and Stokey, Lucas, and Prescott
(1989)). To avoid these complicated issues, we innocuously extend the utility aggregator
to possibly non-measurable values.! Formally, for any f in 7, we define

W*(x, z, f) =sup{W(x, z,v):v < f}.

vey

Notice that, by monotonicity, W*(x, z, v) = W(x, z, v) whenever v is an element of the

original domain V. It is simple to verify that the extended utility aggregator W*: ' x F —

R satisfies the invariance property (Assumption 2) and monotonicity (Assumption 3(c)).

To simplify, with some abuse of notation, we denote the extension itselfas W : I' x F — R.
The recursive program is described by the Bellman operator 7' : V — F given as

(Tv)(x) = sup W(x, z,v).

zeG(x)

Notice that, due to the mentioned issues of measurability, the Bellman operator returns
values in the extended space F. A value of the recursive program (or, simply, a value) is
a fixed point of the Bellman operator, that is, an element v of V such that v = (Tv). By
means of Tarski’s fixed point theorem (see Aliprantis and Border (2006, Theorem 1.11)),
we establish the existence of values and provide a basic computational approach. Remark-
ably, upper semicontinuity of the greatest value emerges independently of the monotone
convergence assumption (Assumption 4).

PROPOSITION 1—EXxistence: Under Assumptions 1-4, the recursive program admits a
least value v in V and a greatest value v in V. Furthermore, the greatest value v in V is
upper semicontinuous. Finally,

v=1lim(7T"f) and v=lim(T"f).

n—oo - n—oo

This extension is innocuous because it involves no substantial alteration of the original preferences. In fact,
it will be exploited only in intermediate steps of the analysis, so permitting the application of Tarski’s fixed
point theorem, and in the end all values will be consistent with the unextended utility aggregator.
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Endowed with this basic existence theorem, we present our major contribution: the
multiplicity of values only occurs because of an ambiguous identification of the planning
objective. A policy is a measurable map g : X — Z such that g(x) lies in G(x). Let G
be the space of all such policies. For a policy g in G, consider the Koopmans operator
T,:V —V given by

(Tyv)(x) = W(x, g(x), v).

We assume that utility values are unambiguously identified by the policy, that is, the Koop-
mans operator admits a unique fixed point. Subject to this property, the value of the re-
cursive program is certainly unique.

ASSUMPTION 5—Unambiguous identification: For every policy g in G, there exists a
unique v, in 'V such that v, = (T,v,).

PROPOSITION 2—Uniqueness: Under Assumptions 1-5, the recursive program admits a
unique value vin V.

We interpret Proposition 2 as establishing that the only source of potential multiplicity
of values is the misrepresentation of preferences: the aggregator is consistent with dif-
ferent utilities and, as a consequence, the Bellman operator returns multiple values. As
we clarify with an example, multiple values cannot be discarded in general, even with
bounded returns and a compact state space.

EXAMPLE 1—Multiplicity: In a deterministic framework, set X = [0, 1], Z =R"*, and
G(x) =0, x] ¢ R*. The utility aggregator is

W(x,z,v) =min{x, 8z + v(x — z)}, with € (0,1) CR".

One fixed point is v(x) = dx, with indeterminate optimal policy g(x) = z for any z in
G(x). Another fixed point is v(x) = x, with optimal policy g(x) =0.

We conclude with a conventional argument which, under further continuity restrictions,
establishes uniform convergence of the iterates of the Bellman operator. Continuity re-
flects a sort of Feller property when the utility aggregator is bounded. We remark that,
under monotone convergence (Assumption 4), Assumption 7(b) implies the upper semi-
continuity property in Assumption 3(b).

ASSUMPTION 6—Continuous bounds: Both f and f in F are continuous.

ASSUMPTION 7—Basic properties strengthened: (a) The feasible correspondence G :
X — Z is continuous with nonempty compact values. (b) If v in V is continuous, the map
(x,z) > W(x, z,v) is continuous on I'.

PROPOSITION 3—Uniform convergence: Under Assumptions 1-7, the only value v* in V
of the recursive program is continuous. Furthermore, given any v, in V, on every compact set
KcX,

lim sup|(T"vy) (x) — v*(x)| =0.

h—00 xeK
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Throughout the rest of this paper, we postulate Assumptions 1-4, except when explicitly
stated otherwise. Thus, in general, we cannot prevent the occurrence of multiple values.
We notice that Assumptions 1-4 are maintained for narrative convenience, even though
weaker restrictions would be sufficient to establish some of our claims in the following
analysis.

4. PRINCIPLE OF OPTIMALITY

We argue that the extreme fixed points of the Bellman operator correspond to the
sequential values of the planning program for extreme utility functions generated by the
given aggregator. In particular, the greatest fixed point is the value for the greatest utility
function defined on stationary policies, whereas the least fixed point returns the value
for the least utility function defined on possibly nonstationary policies. By means of an
example, we prove that this gap cannot be closed and nonstationary policies are in general
needed to implement the least fixed point. We also show that the optimal recursive policy
of the least value, even when it exists, might be misleading. This suggests that the greatest
value should have a focal role, even when computing the least value would seem more
natural, as explained in Remark 2.

A (stationary) utility function U : G x X — R is recursively generated whenever

Uy(x) =W (x, 8(x), Uy).

Thus, we interpret U,(x) in R as the utility obtained adopting policy g in G evaluated be-
ginning from state x in X. A recursively generated utility function determines a sequential
value v in F, namely,
v(x) =sup U, (x).
8eg

In principle, there could be multiple recursively generated utility functions and, hence,
multiple associated sequential values. B

We select the greatest among such utilities, U : G x X — R, that is, for every policy g in
G, U, in V is the greatest fixed point U, = (T,U,). This utility function can be computed
as

0 (x) = lim (77.f) (x).

We establish that the greatest fixed point of the Bellman operator is indeed the sequential
value for the greatest recursively generated utility.

PROPOSITION 4—Upper value: The greatest value of the recursive program v in V satisfies

(x) = sup U, (x).

8€g

We also argue that the least fixed point of the Bellman operator corresponds to the
value for the least nonstationary utility function. A nonstationary policy y = (g,) ey in GV
describes a time-varying rule of behavior, where g, in G is the policy adopted in period n
in N. An extended utility function U : GY x X — R is recursively generated whenever

U(gﬁ)(x) = W(x’ g(X), Uy)a
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where U, (x) in R is the utility obtained adopting policy y in G" evaluated beginning from
state x in X. The least utility function on nonstationary policies can be computed, given
vin GV, as

Uy(x) = lim (Ty, 0 Ty, 0+ 0 Ty, f)(¥).

This limit is well-defined because it is taken with respect to an increasing sequence. We
show that the least fixed point of the Bellman operator is indeed the sequential value
corresponding to this least utility function defined on possibly nonstationary policies.

PROPOSITION 5—Lower value: The least value of the recursive program v in V satisfies

v(x) = sup Uy(x).

yeghN

Our general theory ensures that the greatest value is upper semicontinuous and, hence,
that a stationary optimal policy exists. Furthermore, the value is achieved by the greatest
recursive utility under this policy. Both properties are not shared by the least value. In
general, we cannot establish that the least value is upper semicontinuous and, even when
it is, the corresponding recursive policy might not be enforcing the least value. Propo-
sition 5 only ensures that the least utility can approximate the least value by means of
nonstationary policies. As the characterization of the optimal policy is a major advantage
of recursive methods, these are rather disturbing features of the least value. We illustrate
these drawbacks by means of simple examples.

EXAMPLE 2—Misrepresentation of the policy: In a deterministic framework, let X =
[0,1], Z =R*, and G(x) = [0, x]. The aggregator is

1
W(x,z,v)=z+minjv(x —z),1+ Ev(x—z)}.

The bounds are given by f(x) =0 and f(x) =2+ x. Our theory applies to this simple
framework, and we argue that v(x) = x. Indeed, under this conjecture, the recursive pro-
gram becomes

maxz+(x —z)=x,
z<x

thus confirming our claim. The value is continuous and yields an optimal policy g(x) =0.

However, the least recursively generated utility function cannot achieve this value under
this given policy. Indeed, as can be straightforwardly verified, U, (x) = 0.

EXAMPLE 3—Lack of stationary policy: We construct a trivial example to show that
nonstationary policies are necessary to sustain the least value. Let X = {0}, Z ={«, B, v},
and G(x) = Z. Also, consider the bounds given by f = —1 and f = 1. The aggregator is
described by )

W(x, e, v) = Vvt — v,

W(x,B,v)=vv+1-1,

1 1
W(x, v, U) = —g + gv.
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(Tyv)

U{x = Uﬂ /

FIGURE 1.—Lack of stationary policy.

All of our assumptions are satisfied under the stated conditions. The Bellman operator
corresponds to the upper envelope of the curves plotted in Figure 1. By direct inspection,
v =0, and the two associated optimal actions are « and 3. However, U, = Ug = —1.
Hence, by Proposition 5, the least value can be achieved under the least utility only by
means of a nonstationary policy.

REMARK 1—Bertsekas (2018)’s noncontractive models: Our implementation of ex-
treme values mirrors Bertsekas (2018, Chapter 4)’s characterization of optimal policies
in noncontractive models. Bertsekas (2018) moved from a primitive planning objective
generated as

U,(x) = liminf(T,, o Ty, 0+ o Ty, ) (%),

where vy in G" is a nonstationary policy and f in V is given exogenously. The value of the
sequential program for the given planning objective is determined as

(x) = sup U, (x).

yegh

Bertsekas (2018) argued that, under certain regularity conditions, v in V is a fixed point
of the Bellman operator, v = (7). Furthermore, he remarked that this value is not in

general implementable by stationary policies, that is, v(x) > sup,, U, (x). In particular,

he proved that a restriction to stationary policies is feasible whenever (7 f) < f (see Bert-
sekas (2018, Proposition 4.3.9) and the discussion thereafter), and provided streamlined
examples of failure of implementability by stationary policies otherwise. This is consistent
with our findings in Propositions 4-5.

REMARK 2—Selection: To clarify the role of our selection criterion, consider Epstein—
Zin recursive utility. Uniqueness is established only under certain restrictions on primi-
tives and, therefore, a risk of multiplicity persists in general. As the Epstein—Zin aggre-
gator takes values in R*, f =0 is a natural lower bound (and, for empirically plausible
elasticity of intertemporal substitution, is not a trivial value of the recursive program). A
suitable upper bound f, instead, needs to be determined depending on specific features
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of the feasible set. As a consequence, it would seem more parsimonious to confine atten-
tion to v = lim,,, (7" f). Furthermore, this least value could be interpreted as the limit
of finite-time truncations of the infinite-time planning horizon. Instead, we find that at-
tention should be prudentially reserved for the greatest value v = lim,_, .. (7" f), as upper
semicontinuity might fail, and a stationary policy might not exist, for the least value.

5. UNIQUENESS

We propose a generalized discounting condition ensuring that the value of the recursive
program is unique. The method consists in verifying that the spectral radius of a supergra-
dient to the Bellman operator is less than unity. In the case of time-additive preferences,
this property can be verified immediately and operationally. In general, it requires further
elaboration in order to identify a suitable supergradient (if any) to the Bellman operator.
Some progress along these lines can be found in the recent work of Christensen (2022).
In our application to dynamic programming, however, the supergradient is only sublinear,
so bringing an additional degree of complexity in the analysis. For completeness, as this
is a non-conventional technique, we provide a short treatment of the spectral radius of
monotone sublinear operators in Appendix B.?

Consider the space

L={ve&: v <A(f - [) for some A e R*},
endowed with the conventional norm
lvll = inf{A € R : Jo] < A(f = f)}.

Given a monotone sublinear operator D : L — L, let p(D) in R* be its spectral radius,
that is,

p(D) = lim ,J

Dr||.

It is a conventional exercise to show that the spectral radius indeed exists (see Ap-
pendix B).

We establish that, when the spectral radius of the supergradient is less than unity at
some value of the recursive program, this is necessarily the greatest value. Thus, when
the spectral radius condition is satisfied at the least fixed point, the Bellman operator ad-
mits a unique (upper semicontinuous) fixed point. In other terms, multiplicity necessarily
requires the failure of some sort of discounting in a neighborhood of the least fixed point.

PROPOSITION 6—Spectral radius: Suppose that a value of the recursive program v in 'V
admits a monotone sublinear operator D : L — L satisfying, for every vin V),

(Tv) — (Tv) < D(v—1);

then, provided that p(D) < 1, Vin V is the greatest value of the recursive program.

“Importantly, even for linear operators, we are not aware of any Perron-Frobenius theorem suitable for
our analysis, except under certain restrictive assumptions (e.g., in the recent economic literature, Chattopad-
hyay (2018, Section 3) and Christensen (2017, Section 2.3)). Therefore, the spectral radius might not be an
eigenvalue of the operator. Due to this potential failure, we present an approximation method (Claim 6 in
Appendix B).
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(Tyv)
AL

supergradient indifference curys
Ug
W

Ua

FIGURE 2.—Unique value with multiple utilities.

The supergradient approach is in fact an extension of the Weighted Contraction Ap-
proach for traditional linear aggregators. Unfortunately, this method is not fully opera-
tional: Establishing the existence of a suitable supergradient is in general a model-specific
task. We provide an example inspired by the recent literature on state-contingent dis-
counting (Stachurski and Zhang (2021)).

REMARK 3—Linear supergradient: Christensen (2022) introduced a supergradient (or
subgradient) approach to study recursive utility. Given a policy g in G, he postulated the
existence of a monotone linear operator D, : L — L satisfying, for every vin V),

(Tyv) — (T40) < Dy(v —0).

The Koopmans operator admits a unique fixed point whenever the spectral radius of the
supergradient is less than unity. Christensen (2022, Proposition 3.1)’s characterization
can be invoked in order to prove, by our Proposition 2, that the value of the recursive
program is unique. Our sublinear approach via the Bellman operator mimics instead the
traditional condition in the established literature on the Weighted Contraction Approach.
In particular, the existence of a sublinear supergradient is implied by Christensen (2022)’s
linear restriction for all policies. In general, however, the Bellman operator might admit
a suitable sublinear supergradient even when no linear supergradient to the Koopmans
operator exists (see Figure 2).

EXAMPLE 4—State-contingent discounting: Consider the aggregator given by

W(x,z,v) = u(x, 2) +/5(X’Y)U(Y)H(x, z)(dy),

where 6 : X x X — R* is a continuous state-contingent discounting and u : I' —> R is a
continuous reward. By simple manipulations, we obtain

W(x, 2,0) — W(x, 2,0) = / 5(x, y)(w— B)(N)I1(x, 2)(dy)

< sup [ 5(x, y)lv — 51()T(x, 2)(dy)

zeG(x)

=D(v—10)(x).
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Assuming that D(L) C £, D : L — L is in fact a suitable supergradient and our theory
applies whenever p(D) < 1. By an appeal to Claim 6 in Appendix B, uniqueness obtains
whenever p in (0, 1) C R satisfies, for some f in the interior of £,

D(f) < pof,

which resembles the discounting condition in the Weighted Contraction Approach (e.g.,
Stachurski (2009, Condition 12.11)).

6. BOUNDS

Our theory heavily relies on the existence of suitable bounds for a well-defined recur-
sive program (Assumption 2). For operational purposes, we provide a general method to
identify such bounds in applications with homogeneous utility aggregators. In particular,
in order to ensure a finite value of the recursive program, we compare the expansion-
ary capacity of the feasible set with the contractionary force due to time impatience. We
present applications to well-studied recursive programs in the literature. To avoid further
complications of independent nature, we confine our analysis to the existence of simply
measurable bounds.

We adopt a conventional separation of the attitude towards intertemporal substitution
from uncertainty aversion. More precisely, we consider aggregators of the form

W(x,z,v) =V (u(x, 2),1(x, z,v)),

where V' : RT x R — R* is a continuous and strictly increasing certainty aggregator,
u:I' — R* is a continuous current return, and / : I' x M* — R is a certainty equiva-
lent operator fulfilling monotonicity on M™* as well as the monotone convergence prop-
erty (Assumption 4). Here, M is the space of measurable maps on X with values in R,
whereas R is the field of extended reals. We also assume that the map (x, z) — I(x, z, v)
is measurable whenever v lies in M*. A large variety of recursive aggregators admit this
tractable decomposition. Finally, we postulate that aggregator IV : R x R™ — R* is ho-
mogeneous, that is, for every A in R*,

AV (u, I) =V (Au, Al).
In turn, certainty equivalent 7 : T’ x M* — R* is subhomogeneous, that is, for every A in
[0, 1] CcRT,
M(x, z,v) <I(x,z, Av).
Traditional recursive aggregators are typically homogeneous, so as to generate homoth-
etic preferences. Concave (positive) certainty equivalent operators are subhomogeneous.

We estimate the expansionary tendency of values subject to the feasible set. To this end,
we directly assume the existence of some p in R* satisfying, for some map f in M,

sup 1(x,z, f) < pf (x). (U1)

zeG(x)

Intuitively, p in R* captures the rate of growth of future values, adjusted by risk aversion,
permitted by the feasible set of the recursive program. The bound needs to be sufficiently
permissive to accommodate the growth of current returns, that is,

sup u(x, z) < f(x). (U2)

zeG(x)
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We finally postulate that, for some ¢ > 1 in R¥,
V(1,pt)<t. (U3)

Along with homogeneity, this property ensures that utility does not explode when returns
grow at gross rate p in R*. Under conditions (U1)—(U3), an upper bound for the recursive
program exists.

CLAIM 1—Bounds: Under the stated conditions (U1)-(U3), f =0 and f=tfin M* are
suitable bounds satisfying

[T =(Tf)<f

Our condition (U1) accurately reflects the effects of risk aversion on value growth. For
practical purposes, however, it is often convenient to overestimate value growth by con-
sidering a risk-neutral benchmark. Indeed, assume that the certainty equivalent satisfies

umaws/Q@mquwx (CE)

where I1: I - A(X) is a Markov transition. This property requires that the expected
value of a lottery dominates its certainty equivalent, and it is shared by several typical
operators. When the certainty equivalent satisfies (CE), root p in R* can be operationally
computed as the spectral radius of a monotone sublinear operator (see Claim 6 in Ap-
pendix B).

CLAIM 2—OQOperational criterion: Under property (CE), p in R* satisfies condition (U1)
provided that, for some map f in M,

D(f)(x) = pf (x), (U1%)

where

D(f)(x) = sup [ fF(NTI(x, z)(dy).

zeG(x)

We illustrate the nature of our conditions for canonical Epstein—-Zin preferences. We
also compare these conditions with Hansen and Scheinkman (2012) and the related liter-
ature. It is worth observing that condition (U3) pertains only to the aggregator, whereas
conditions (U1)—-(U2) involve the feasible set and, thus, depend on the specific recursive
program. We shall later present an extended application to the investment in a risky asset
with time-varying returns and labor income.

EXAMPLE 5—Epstein—Zin recursive utility: Epstein—Zin preferences correspond to
1
V(u,I)=(u""7+081""")"

and

Mnaw=([ww“ﬂuﬁxwﬁﬁﬂ
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where o in R is the reciprocal of the elasticity of intertemporal substitution and vy in R*
is the measure of relative risk aversion. We show that condition (U3) is satisfied by any
sufficiently large ¢ in R* if

dp'~7 < 1.

Indeed, notice that, when o < 1,

V1, pt ] ' 1
%51 if and only if F+5p1—a§1’

which can be satisfied by some large 7 in R™ if and only if §p'~” < 1. On the other hand,
when o > 1,

V1, pt)

1
; <1 ifand only if ez +8p' 7 > 1,

which is always satisfied by a sufficiently large ¢ in R*.

REMARK 4—Comparison with the previous literature: Despite first appearance, our
conditions are consistent with Hansen and Scheinkman (2012) and Christensen (2022).
For the purpose of comparison, as the consumption process is given exogenously in that
line of literature, consider a fixed policy g in G, and further suppose that their eigenvalue
equation is satisfied, that is,

/ FONI(x, g(0))(dy) = 57 (x).

This equation corresponds to Hansen and Scheinkman (2012, Equation (4)) and Chris-
tensen (2022, Equation (22)), though it is implicitly posed in terms of consumption lev-
els rather than consumption growth rates. Setting f = f'~* and p = p'~?, the eigenvalue
equation becomes

( [ ror-ms, g(x))(dy)) T oI5 f) = pf () = 57 (),

which corresponds to our condition (U1). Therefore, as illustrated in Example 5, condi-
tion (U3) is satisfied whenever

8p'"7 <1 or, equivalently, Sﬁlﬁr <1,
which is consistent with requirement (c) in Hansen and Scheinkman (2012)’s Proposi-
tion 6 as well as with restriction (25) in Christensen (2022)’s Theorem 6.1 and Corol-
lary 6.1.

We finally present conditions implying that the recursive program admits no value. To
this end, we assume the existence of some p in R** satisfying, for some policy g in G and
some (non-zero) map f in M,

pf(x) <1(x,8(x), f). (L1)
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Furthermore, we suppose that this lower bound is dominated by the current returns to
the given policy, that is,

f(x) = u(x, g(x)). (L2)
We finally postulate the existence of some 7 in (0, 1) C R* such that, for every ¢ in R*,
t<nV (1, pt). (L3)

For homogeneous aggregators and certainty equivalent operators, restrictions (L1)—(L3)
imply that a feasible policy yields an infinite value, thus preventing the existence of a
solution to the recursive program.

CLAIM 3—Failure of existence: Under the stated conditions (L1)-(L3) for homogeneous
aggregators and certainty equivalent operators, the recursive program admits no value.

7. APPLICATION

We consider a conventional optimal saving program with a safe asset and a risky asset.
The exogenous state is governed by an irreducible Markov transition Il : § — A(S), where
S is a metric space endowed with its Borel o-algebra S. Let X C § x R*, with typical
element (s;, w,), where s, in S is the Markov state and w, in R* is the accumulated wealth.
The transition is given by

Wiy = (Rf + at(Rt,t+1(St) - Rf))(wt - Ct) + et+1(st+1)7

where R; in R** is the safe return, R, ., in R** is the uncertain return on the risky asset,
«, in [0, 1] € R* is the wealth share invested in the risky asset, ¢, in [0, w,] C R* denotes
current consumption, and e, in R* is labor income, depending on state s, in S. Thus, the
current action is z, = (¢, ;) in G(x,) = [0, w,] x [0, 1]. The state space X contains all
(s;, w,) in S x R* such that e,(s,) < w;,.

We study Epstein—Zin utility with possibly preference shocks. In particular, the utility
aggregator is given by

1

Ve, 1) = ((1 —8)c/ "+ 81}"’) =

with certainty equivalent

I, =(Ep) ™,

t+1
where o in R* is the elasticity of intertemporal substitution, y in R* is the coefficient

of relative risk aversion, and 6 in (0, 1) C R" is a discount factor. In Example 7, we also
consider risk-sensitive preferences of the form

Vie,1,)=(1—08)c, + 81,

with certainty equivalent

1
I, = ~3 logE, exp(—0v,.1),
where 0 in R** is the risk sensitivity coefficient. In alternative specifications of this op-
timal saving program, we verify conditions for existence, non-existence, and uniqueness
of a value as implied by our previous analysis. The calculations for all these examples are
collected in Appendix A.
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EXAMPLE 6—Campbell and Viceira (1999): With no labor income, we verify whether
our conditions are satisfied whenever the expected risky return is determined by an au-
toregressive process, as in Campbell and Viceira (1999). In particular, the state variable
is governed by

Str1 = (1 - ‘1’):“« + s, + €41,

where ¢ liesin (0, 1) C R* and w in R*. This state variable affects the risky return, which
is given by

logRt,H—l = IOng + 5+ Ne+1s

where innovations are normally distributed with means Ee = En = 0 and standard devi-
ations o, and o, in R*. To simplify our analysis, we further assume that the innovations
are independently distributed. A major difficulty in this specification is that the expected
risky return might grow unboundedly. For Epstein—Zin utility without preference shocks,
we find that our conditions (U1)—(U3) are satisfied whenever

- 0-721 o; Oe e
oR; e""(‘”_+<1—qf>)z ((1—¢)>> =h

where @ : R — [0, 1] is the standard normal distribution. It is worth noticing that esti-
mated standard deviations in Campbell and Viceira (1999, Table 1) are rather small, so
that a calibrated condition for existence is approximated by §(Rexp(u))' 7 < 1.

EXAMPLE 7—Campbell and Viceira (1999) with risk-sensitive preferences: In the en-
vironment of Example 6 with risk-sensitive preferences, we establish that a unigue value
exists whenever

styon(nt 5 + 70 2)) <1

To this end, building on an intuition in Béurle and Jaskiewicz (2018, Proposition 1), we
exploit the fact that increasing transformations of independent random variables are pos-
itively correlated. Thanks to this comonotonicity property, the Bellman operator is con-
tractive on the relevant space, as it would be for discounted expected utility.

EXAMPLE 8—Weil (1993): We next consider an economy with a constant safe return,
no risky asset, and a labor income growing according to

€1 = e, + €4,

where ¢ lies in R* and the innovation is identically and independently distributed with
values in an interval in the interior of R* and mean u in R*. As in Weil (1993, Assump-
tions 1 and 3), we assume that Ry > ¢ and R; > 1. In this framework, we prove that
conditions (U1)-(U3) are satisfied and, hence, a value exists whenever BR}*" < 1. Fur-
thermore, conditions (L1)—-(L3) are verified and, hence, no value exists in the opposite
case when 6R;™ > 1.
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EXAMPLE 9—Albuquerque, Eichenbaum, Luo, and Rebelo (2016): We finally consider
an economy with a constant safe return, no risky asset, no labor income, and preference
shocks. As in Albuquerque et al. (2016), the certainty equivalent is replaced by

—-

-y 1

jer =y

I, = (E,(g”l) v}H’) .
&

The preference shock &, in R* evolves according to &,,; = exp(s,.1)§,, with the state ful-
filling

—

Sip1 =S+ €41,

where ¢ lies in [0, 1) C R* and the innovation is normally distributed with mean Ee =0
and standard deviation o, in R**. In this framework, assuming that o lies in (0, 1) C R*,
we verify existence whenever

(1-y)a? ) -1
2(1—o0)(1—¢)

It is worth noticing that, dissipating previous doubts in the literature (e.g., Stachurski
and Zhang (2021, Section 6.2.4)), our condition for existence is satisfied by a calibrated
experiment based on Albuquerque et al. (2016, Table IV: Benchmark Model) given the
historical safe interest rate.

SR, exp(

8. CONCLUSION

We have studied dynamic programming with recursive utility under conventional re-
strictions. Our theory suggests that it is an ill-posed effort to search for the application of
a suitable fixed point theorem ensuring a unique value of the recursive program. Indeed,
uniqueness only fails because of an ambiguous specification of the planning objectives,
and when this occurs, no fixed point theorem will be able to restore uniqueness, unless
it acts as an implicit selection criterion. We have also argued that, when multiplicity can-
not be avoided, the upper value exhibits relevant properties of regularity and should be
preferred to any other value.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 1: We enlarge V to its complete lattice closure F. We also
extend the Bellman operator 7' : F — F as

(Tf)(x) = sup W*(x, z, f).

zeG(x)

The extended operator is monotone and, by Tarski’s fixed point theorem, the least and
greatest fixed point in F exist. We show that the least fixed point is indeed in V and that
v=I1im, . (T"f).

Let v in F be the least fixed point. By monotonicity, we have v, = (T"f) < v for every

n in N. As each v, is upper semicontinuous (and, hence, measurable) by the maximum
theorem, and the sequence is increasing in V), its limit v remains in V' (see Aliprantis
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and Border (2006, Theorem 4.27)). Furthermore, v,.1 = (Tv,) < (Tv) implies v < (Tv).
Assume that, for some x in X,

v(x) < (Tv)(x) = sup W(x, z,v).

2eG(x)
We can find z in G(x) such that

v(x) < W(x,z,v).
By Monotone Convergence (Assumption 4), for every sufficiently large 7 in N,

sup W(x,z,v,) = V1 (x) <v(x) < W(x, z,v,),
zeG(x)

a contradiction. Hence, v in V is a fixed point and, as v < v, it is the least fixed point, so
proving the claim.

We now show that v in F is upper semicontinuous and, hence, measurable, thus an
element of V. Let v in V denote the upper semicontinuous envelope of v in F, that is,
the least upper semicontinuous v in F such that v < v. By monotonicity, v = (Tv) < (Tv)
and, by the maximum theorem, (7v) in F is upper semicontinuous and, therefore, in V.
Hence, v < (Tv). Invoking again Tarski’s fixed point theorem, applied to the complete
sublattice {f € F : v < f}, we conclude that v < v, which proves that v =v. So, v in F is
upper semicontinuous and, hence, an element of V.

Let v, = (T"f) in F. By monotonicity, we have v < v, and, by the maximum theorem,
each v, in V is upper semicontinuous. Let v in V be the limit of this decreasing orbit, which
is upper semicontinuous as it is the limit of a decreasing sequence of upper semicontinu-
ous maps. By monotonicity, we have (Tv) < (Tv,) = 0,1, so that (Tv) < v. Suppose that,
for some x in X,

v(x) > max W(x, z, v).
zeG(x)
Notice that, for every » in N, there exists z, in G(x) such that
Vo1 (x) =W(x, z,, ,).

By compactness, we can assume that a subsequence (z,(;)) v converges to z in G(x). By
monotone convergence (Assumption 4), we obtain

W(x,z,v)=lim W(x, z, v,).
By upper semicontinuity,

W(x,z,v) > lim <lim sup W (x, z,), 1'1,,)).

J—> o0

By the fact that the orbit is decreasing, along with monotonicity,

W(x,z,v) > }Lrgo<llm sup W(x, z,), 1_),,(]-))).

Jj—oo
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By our choice of the sequence,

W(x,z,v) > }LIEO(lim sup ﬁn(j)+1(x)> =v(x).

]J—=>00

This shows that v in V is also a fixed point of 7 : V — F and, as v < v, it is the greatest
fixed point. Q.E.D.

PROOF OF PROPOSITION 2: Consider again the Bellman operator T : V — F. Suppose
that v is the greatest fixed point in V and let v be the least fixed point in V. Let g in
G be the policy corresponding to the greatest fixed point, which exists by the maximum
theorem as the greatest fixed point is upper semicontinuous (Proposition 1). In particular,
measurability of the policy is implied by Brown and Purves (1973, Corollary 1). Notice that

(T,0) (x) = W (x. (1), ) < sup W (x, 2,0) = (Ty)(x) = v(x).

zeG(x)

By Assumption 4 (Monotone convergence), operator T, : V — )V admits a fixed point v,
in {veV:v <y} given by

v, = lim (T}v).
In fact, sequence (7;v),cv in V is decreasing, so that measurability is preserved in the
limit. Furthermore, for every n in N,

(T 'v)(x) =W (x, g(x), (T;v)),

revealing that the limit is a fixed point. We then conclude that v, <v < v and, as v = (7,v),
we must have that ¥ = v by Assumption 5 (Unambiguous identification). Q.E.D.

PROOF OF PROPOSITION 3: Using the notation in the proof of Proposition 1, by the

maximum theorem, v, = (7" f) and v, = (T" f) are both continuous maps in V. The only
fixed point v* of operator 7" : V — F is continuous because it is, at the same time, the limit
of an increasing sequence of continuous maps and the limit of a decreasing sequence of

continuous maps. Thus, by Dini’s theorem, convergence is uniform. Observing that
|(T"vo) (x) — v* (x)| < max{|v,(x) — v*(x)|, [v.(x) —v* ()|},

the claim is proved. Q.E.D.

b

PROOF OF PROPOSITION 4: Let v* in F be given by

*(x) = sup U, (x).

geg

Consider again the extended Bellman operator T : F — F. We first argue that (7v*) > v*.
Indeed, by monotonicity, notice that

¥ (x) = sup U, (x) = sup W (x, g(x), U,) <supW(x, g(x), ") = (Tv*)(x).

8eg 8€g g€g

By Tarski’s fixed point theorem, the Bellman operator admits a fixed point on the sublat-
tice {v € F : v > v*}. This shows that v > v*, where v in V is the greatest fixed point of the
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Bellman operator. By upper semicontinuity of v in V (Proposition 1), there exists a policy
g in G such that

v=(Tv) = (T,v).
This in turn shows that v < U, ¢ < V%, so establishing coincidence. O.E.D.
PROOF OF PROPOSITION 5: Let v*(x) in F be given as

V" (x) = sup Uy (x).

yegN

Notice that the least fixed point of the Bellman operator is v = lim,...(7"f) (Proposi-
tion 1). For any nonstationary policy y in GV, we have

(Toy 0Ty 00Ty, f) < (T"f),
which implies that U, < v and, thus, v* < v. For any n in N, observe that
(T"f)=(ToT" ' f)=(T,0 T"'f).

The existence of such a policy g in G is ensured, through the maximum theorem, by the
upper semicontinuity of (7"~ f) in V. By induction, this shows the existence of a nonsta-

tionary policy vy, in G" such that
(T"f) =(Ty 0Ty 0---0T,,f) < U, <1,
as required to establish the claim. Q.E.D.

PROOF OF PROPOSITION 6: To prove the first statement, let v in V' be the greatest fixed
point and notice that

v—v=(Tv) — (Tv) <D(v—").
By the sublinearity of the monotone operator D : £ — L, this implies
0-0<D"(@0-9)<D"(f~ )= |D"|(f =) =p"(f = ),

where p(D) < p <1 and » in N is sufficiently large. As lim,, ., p" = 0, we conclude v = v,
as claimed. QE.D.

PROOF OF CLAIM 1: We show that (Tf) < f. Choose any x in X, and assume that
f(x) > 0. Notice that

(Tf)(x) = sup V(u(x,z),I(x,z, f))

zeG(x)

< V( sup u(x, z), sup I(x, z, f))

zeG(x) zeG(x)
<V(f(x), pf(x))
_ /()
= (1e7s)
< f(x).



DO NOT BLAME BELLMAN 131

Monotonicity delivers the first inequality; the second inequality is an implication of con-
dition (U1) and the bound on the current reward (U2); the third equality is due to ho-
mogeneity; and the last inequality follows from the boundary condition on the utility ag-
gregator (U3). When f(x) = 0, the claim follows from the fact that, by homogeneity,
1(0,0)=0. Q.E.D.

PROOF OF CLAIM 3: Notice that, by condition (L3) evaluated at t =0, (7,0) > Af for
some A in R** and, at no loss of generality, we can suppose that A = 1. Assuming that
(T3 f) = n~"f for nin Z7, it follows that

(T 1)) =V (u(x, 8()). 1 (x, 8(0). (T1)))
= V(). 1(x 800, n7"))
>V (f(x), pn"f(x))
> 7 £(x).

Homogeneity and monotonicity are used throughout these inequalities; property (L2)
justifies the first inequality; the second inequality is implied by (L1), whereas the last
follows from (L3). Supposing the existence of a value v in V of the recursive program, we
obtain v = (Tv) > (T,v) > (7,0) > f, so implying

v= (Tiv) = (TP f) =7 7"f.

As m liesin (0, 1) C R*, and f(x) > 0 for some x in X, this delivers a contradiction, thus
proving our claim. Q.E.D.

CALCULATIONS FOR EXAMPLE 6: To verify conditions (U1)-(U3), consider the mono-
tone sublinear operator given by

(Df)(si, w;) = sup E, f($41, Wig1)

ar€[0,1]
subject to
W1 = (Rf + at(Rt,H—l - 1)Rf)wt~
Also, let map f in M™* be given by
F (i we) = €T w, > wy,

so that condition (U2) is trivially satisfied. By direct computation, we obtain

(DF)(sisw) = sup E/(Ry +a(e™ st — 1)Ry)elma (- amduranty,
ae[0,1]

4, o5 1 Ne1— Fyot
< sup (Rf 4 a(eA;”rTT’ _ 1)Rf)Ete(1_¢)((1 D) ut+ds + Hl)wt
ae[0,1]

o2
= Rpe 7B, ema) - dutosl iy,

o3 1y .+ 1\
— Rfe,uHrT"]Ete(]f,,,)EH] e(f(/,)ft w,

= pf(st’ wt)’
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where

2

Je

i Ly ot (e
p=Rpe" TR 8 = Ry P e 00

Hence, condition (U1*) is verified and, as clarified in Example 5, condition (U3) is ful-
filled provided that 5p'~“ < 1. Q.E.D.

CALCULATIONS FOR EXAMPLE 7: Given the map f in M* described in the calculations
for Example 6, it is immediate to verify that f = ¢f in M is a suitable upper bound for
a sufficiently large ¢ in R*. The extreme values of the recursive program are increasing
in both state variables (s,, w;) in § x R*, because the return on the risky asset increases
with s, in S. Furthermore, conditional on the state (s,, w;) in § x R*, and given any policy
(¢, ) in [0, w,] x [0, 1], (8,11, w,y1) in S x R are independently distributed random vari-
ables. We establish uniqueness by means of a simplified version of Proposition 6 (Spectral
radius). To this end, consider the minimum A in R** such that v < v+ Af. For any given
policy, we obtain that

_ S E,e %1
V(Ct, I(vt+1)) - V(Ct7 I(Ptﬂ)) =—= log(tei)

0 Ete*@tﬂ

S Ete*@tﬂ e M
=5 * )
< —% log(E,e™"ee1)
< SAE, fi
< 8pAf;.

We use monotonicity for the first inequality and comonotonicity for the second inequal-
ity;> hence, we apply Jensen’s inequality and our characterization of the bound. By a
canonical argument, this shows that v < v 4 épAf and, as 8p < 1, this delivers a con-
tradiction. Q.E.D.

CALCULATIONS FOR EXAMPLE 8: To verify conditions (U1)-(U3) for p = Ry, we con-
sider the monotone linear operator given by

(Df) (St’ wt) = ]Etf(stﬂ, wt+1),
where wealth evolves according to

Wiy = wat + €.

3More precisely, for the second inequality, we exploit the following version of Harris—-FKG Inequality (For-
tuin, Kasteleyn, and Ginibre (1971)): Let X and Y be independently distributed real-valued random variables,
and let /2, : R x R — R be a weakly decreasing map. We have

Ehi (X, Y)hy(X,Y) > Ehy (X, Y)Ehy(X, Y).

In our application, h; = (e~ |F,) and h, = (e~ |F)).
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Setting

_ ¢ 1 Ry
S (5o =+ (Rf - d’)et - <Rf - 1>(Rf - ¢>>M =

direct computations reveal that
Ry 1 Ry
D =R E
O =R+ (g e+ (7))

_ o) 1 Rf
‘Rf“’f+Rf(Rf - ¢)et+Rf(Rf - 1>(Rf - ¢)“

= pf(st’ wl)>

so that condition (U1%*) is satisfied.

Turning to conditions (L1)—(L3), let n in (0, 1) C R* and consider the policy ¢, = nw,,
together with the map f(s,, w,) = nw,. Condition (L2) obtains immediately. To verify
condition (L1), setting p = (1 — n)R/, notice that

(1009 = (i)™
= (E(R;(1 — m)mw, + ne,ﬂ)l‘y)ﬁ

> (B,(Rp(1 = n)mw,)' )™
=(1- U)Rff(sz’ w;)

= pf (St’ wl)'
Observing that SR} > 1 implies §p'~ > 1 for all sufficiently small n in (0, 1) C R*, this
establishes our claim of non-existence. QE.D.

CALCULATIONS OF EXAMPLE 9: The condition for existence is of the form dp'~ < 1,
where

R R L= )

To verify conditions (U1)—(U3), we consider an arbitrarily small y in R~ such that the
condition for existence is still satisfied by the truncation

T (———

where we use short notation € v (1 — ¢) x = max{e, (1 — ¢) x}. To our end, we introduce
the map f in M* given by

() 0™
f(s, w,) =e T w, > w;.

Notice that (e — )t =€V xy — xy and

(bs+e—x) " <d(s—x) +(e—(1—d)x)
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=d(s—x)"+ev(l—-d)x—(1-)x.

Direct computations reveal

1

ane.m=(=((%2) " s ww) )"

%)*Hwa (T =) 10" )1 “/)ﬁ

IA

- (=
(B (P00 R T o))
- (&

1
‘ wa e((] (r)(l /)))((Sr+1 —0)t+a- d;))())l 'y)]77

(wa[e(m)((b(ﬂ_){)++q+lV(l—(b)X))17'}/) =

IA

Ry (B, (e(Tam=a) e 1=0n) 177y 5 el s 60"y
Px ft(st’wt)

so that condition (U1) is satisfied. This establishes our claim. Q.E.D.

APPENDIX B: SPECTRAL RADIUS

We present a spectral radius theory for monotone sublinear operators. Consider the
space L = L(f) for some f in £,

L(f)={ve&:|v| <Af forsome A e R*},
endowed with the conventional supremum norm,
[vll = inf{A € R* : [v] < Af}.
The norm of a sublinear operator D : £ — L is given by

| D] = sup HD(v)H

Ivll=1

This norm is finite if the operator is bounded.
CLAIM 4—Boundedness: Any monotone sublinear operator D : L — L is bounded.

PROOF: Indeed, for some A in R*, D(f) < Af and sublinearity implies
—D(=f) =D(f) = Af.
Notice that ||v]| <1 if and only if —f <v < f, which by monotonicity implies
—Af = D(=f) = D(v) = D(f) = Af,
thus proving that || D] < A. O.E.D.
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The spectral radius of a monotone sublinear operator is defined as

p(D) = lim )

D

Reproducing conventional arguments, we show that the spectral radius exists. We comple-
ment the mere existence with an operational criterion under a sort of property of mono-
tone convergence. This criterion replaces the potential absence of an eigenprocess associ-
ated with the spectral radius. In fact, more than the spectral radius itself, the application

of our theory requires the supplemental existence of an element f in the interior of £
such that, for some p in R*,

D(f) < pf.

Claim 6 ensures that such a condition is verified for an approximated spectral radius.

CLAIM 5—Spectral radius: A monotone sublinear operator D : L — L admits a spectral
radius p(D) in R*.

PROOF: We first show that | D"|| < || DJ|". Indeed, by homogeneity, we have that
D@ < 1DV
Therefore, by a reiterated application of this principle,
[D"@)] < 121"l
which implies
|D"| < 1D]".

Endowed with this property, and reproducing the arguments in the proof of Aliprantis
and Border (2006, Lemma 20.15), it is simple to establish that

I

thus confirming existence. Q.E.D.

p(D) = inf /[ D"

ASSUMPTION 8—Monotone convergence: For every monotonically increasing sequence
(Vn)nen in L converging pointwise to v in L,

lim D(v,)(x) = D(0)(x).

CLAIM 6—Operational criterion: Under Assumption 8, given any p in R*", a monotone
sublinear operator D : L — L admits a spectral radius p(D) in [0, p) C R* if and only if
there exists f in the interior of LT such that, for some p in (0, p) C R*,

D(f) < pf-

PROOF: To verify sufficiency, notice there exist A; and A, in R** such that A, f < f <
A.f. Monotonicity delivers, for all # in N,

AD"(f) < D"(f) < p"f < p"Auf.
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This in turn implies

so proving that p(D) < p. We now verify necessity.
Fix any p in (p(D), p) C R* and notice that, for every sufficiently large n in N, D"(f) <
|D"||f < p"f. Consider

fo=r+(5)p+ o+ (5) .

The sequence (f,)nex in L* is increasing and, as D"(f) < p" f eventually, it monotonically
converges pointwise to f in £*. Furthermore, by sublinearity,

1 _ 1 1 n+l _ _
re(G)pd s+ (5)pt 4+ (5) DO = =T
p p p
Invoking the monotone convergence hypothesis (Assumption 8), we obtain
1 - -
f+ F D(f)<f.

Noticing that (5 — p)f < pf for some sufficiently large p in (0, 5) C R*, this proves our
claim. O.E.D.

In many applications, the monotone sublinear operator involves an expectation and,
hence, it is defined as D* : £* — L, where L* is the space of measurable maps in £. To
deal with this inconsistency, assuming that f in £ is measurable, we implicitly extend the
operator as

D(v)(x) = Ullg{D*(v*)(x) v <vh

This extension does not affect the action of the operator on measurable maps and pre-
serves monotone sublinearity. Indeed, letting v > v, and v} > v,, with v} in £* and v; in
L, by the sublinearity of the original operator, we obtain

D*(v}) + D*(v3) = D*(v; + v}) = D(vi + v),

where the right inequality is implied by the nature of the extension. Taking the infimum
over each v} > v;, we conclude that

D(vy) + D(v2) = D(v; + vy),

as claimed.

APPENDIX C: EXTENDED FELLER PROPERTY

The purpose of this appendix is to provide primitive assumptions enforcing the sort of
Feller property with possibly unbounded values appearing in Assumption 3(b). To simplify
notation, we consider a Markov transition I1: X — A(X), where X is endowed with its
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Borel algebra. We let C(X) be the space of continuous functions f : X — R, and let
C,(X) be its restriction to uniformly bounded functions. We assume that the Markov
transition satisfies the canonical Feller property.

ASSUMPTION 9—Canonical Feller property: Forany f in C,(X), (IIf) is also in C,(X),
where

(1) (x) = / fU(x)(dy).

We preliminarily present a well-known fact: the Feller property preserves upper semi-
continuity. We let U (X) be the space of upper semicontinuous functions f : X — R, and
let U,(X) be its restriction to uniformly bounded functions. We so obtain this simple

property.

CLAIM 7—Upper semicontinuity: Under the Feller property (Assumption 9), for any f in
Uy (X)), (IIf) is also in U,(X).

PROOF: By Aliprantis and Border (2006, Theorem 3.13), f in U,(X) is the pointwise
limit of a decreasing sequence (f;),en Of continuous functions in C,(X). By the Feller
property (Assumption 9), along with the monotonicity of the integral, (I1f,),y is a de-
creasing sequence of functions in C,(X). By Aliprantis and Border (2006, Lemma 2.41),
its pointwise limit is upper semicontinuous. By the monotone convergence lemma (see
Aliprantis and Border (2006, Lemma 13.36)), the sequence pointwise converges to (IIf)
in U,(X), thus proving our claim. Q.E.D.

We extend the Feller property to unbounded values. To this purpose, we exploit a the-
orem presented in Feinberg, Kasyanov, and Zadoianchuk (2014, Theorem 1.1) that we
restate for a more convenient and direct application to our analysis.

CLAIM 8—Theorem 1.1 in Feinberg, Kasyanov, and Zadoianchuk (2014): Under the
Feller property (Assumption 9), given an upper semicontinuous negative function f : X —
R=,

limsup(Ilf)(x,) < (IIf) (x).

Xp—>X

We consider a positive continuous map f in C (X) and construct the restricted space of
upper semicontinuous functions limited by this upper bound, that is,

U(X)={f eU(X):|f] < Af for some A > 0}.

We then add a primitive assumption on the Markov transition, complementing the Feller
property, and show that the Markov transition preserves class U (X). Notice that, by this
same assumption, (IIf)(x) exists for any f in U (X).

ASSUMPTION 10—Upper bound: Positive continuous map f in C(X) is such that (I1f)
is also a positive continuous map in C(X).

CLAaM 9—Extended Feller property: Under the Feller property (Assumption 9), com-
plemented by a suitable upper bound (Assumption 10), for any f in U(X), (1If) is also in
U(X).
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PROOF: We have to show that, for every f in U(X),

limsup(11f)(x,) < (IIf)(x).

Xp—>X

Notice that, at no loss of generality, & = f — f is a negative upper semicontinuous function
and, by Claim 8,

limsup(I14)(x,) < (ITA)(x).

Xp—>X

Furthermore, for any n in N, (ITh)(x,) = (IIf)(x,,)) — (I1f)(x,) and, by Assumption 10,
lim (117)(x,) = (/) (x),

which suffices to confirm our claim. Q.E.D.
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