SUPPLEMENT TO "ESTIMATION BASED ON NEAREST NEIGHBOR MATCHING: FROM DENSITY RATIO TO AVERAGE TREATMENT EFFECT"
 (Econometrica, Vol. 91, No. 6, November 2023, 2187-2217)

Zhexiao Lin
Department of Statistics, University of California, Berkeley
Peng Ding
Department of Statistics, University of California, Berkeley

Fang Han
Department of Statistics, University of Washington

S1. PROOFS OF THE RESULTS IN SECTIONS 3 AND 4

Additional Notation. WE USE \boldsymbol{X} and \boldsymbol{Z} to represent $\left(X_{1}, X_{2}, \ldots, X_{N_{0}}\right)$ and $\left(Z_{1}, Z_{2}, \ldots\right.$, $\left.Z_{N_{1}}\right)$, respectively. Let $U(0,1)$ denote the uniform distribution on $[0,1]$. Let $U \sim U(0,1)$ and $U_{(M)}$ be the M th order statistic of N_{0} independent random variables from $U(0,1)$, assumed to be mutually independent and both independent of $(\boldsymbol{X}, \boldsymbol{Z})$. It is well known that $U_{(M)} \sim \operatorname{Beta}\left(M, N_{0}+1-M\right)$. Let $\operatorname{Bin}(\cdot, \cdot)$ denote the binomial distribution. Let $L_{1}\left(\mathbb{R}^{d}\right)$ denote the space of all functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\int|f(x)| \mathrm{d} x<\infty$. For any $x \in \mathbb{R}^{d}$ and function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, we say x is a Lebesgue point (Bogachev and Ruas (2007, Theorem 5.6.2)) of f if

$$
\lim _{\delta \rightarrow 0^{+}} \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}|f(x)-f(z)| \mathrm{d} z=0 .
$$

S2. PROOFS OF THE RESULTS IN APPENDIX A

S2.1. Proof of Theorem A.1

Proof of Theorem A.1: We consider the complexities of two algorithms separately.

Algorithm 1.

The worst-case computation complexity of building a balanced k-d tree is $O\left(d N_{0} \log N_{0}\right)$ (cf. Brown (2015)) since the size of the k-d tree is N_{0}.

The average computation complexity of searching a NN is $O\left(\log N_{0}\right)$ from Friedman, Bentley, and Finkel (1977), and then the average computation complexity of search M NNs in $\left\{X_{i}\right\}_{i=1}^{N_{0}}$ for all $\left\{Z_{j}\right\}_{j=1}^{N_{1}}$ is $O\left(M N_{1} \log N_{0}\right)$.

Notice that $\left|S_{j}\right|=M$ for any $j \in \llbracket N_{1} \rrbracket$ and then $\left|\bigcup_{j=1}^{N_{1}} S_{j}\right| \leq N_{1} M$. Since the elements of each S_{j} are in $\llbracket N_{0} \rrbracket$, the largest integer in $\bigcup_{j=1}^{N_{1}} S_{j}$ is N_{0}. Then the computation complexity of counting step is $O\left(N_{1} M+N_{0}\right)$ due to the counting sort algorithm (Cormen, Leiserson, Rivest, and Stein (2009, Section 8.2)).

Combining the above three steps completes the proof for Algorithm 1.

[^0]
Algorithm 2.

The computation complexity of building a k-d tree is $O\left(d\left(N_{0}+n\right) \log \left(N_{0}+n\right)\right)$ from Algorithm 1 since the size of the k-d tree is $N_{0}+n$.

For the searching step, for each $j \in \llbracket N_{1} \rrbracket$, the number of NNs to be searched is $M+\sum_{i=1}^{n} \mathbb{1}\left(\left\|x_{i}-Z_{j}\right\| \leq\left\|\mathcal{X}_{(M)}\left(Z_{j}\right)-Z_{j}\right\|\right)$. Then from (2.2), the total number of NNs searched for all $j \in \llbracket N_{1} \rrbracket$ is $\sum_{j=1}^{N_{1}}\left(M+\sum_{i=1}^{n} \mathbb{1}\left(\left\|x_{i}-Z_{j}\right\| \leq\left\|\mathcal{X}_{(M)}\left(Z_{j}\right)-Z_{j}\right\|\right)\right)=N_{1} M+$ $\sum_{i=1}^{n} K_{M}\left(x_{i}\right)$. Let X, Z be two independent copies from ν_{0}, ν_{1}, respectively, and are independent of the data. Since $\left[Z_{j}\right]_{j=1}^{N_{1}}$ are i.i.d. and $\left[X_{i}\right]_{i=1}^{N_{0}} \cup\left[x_{i}\right]_{i=1}^{n}$ are i.i.d, we have $\mathrm{E}\left[\sum_{i=1}^{n} K_{M}\left(x_{i}\right)\right]=n \mathrm{E}\left[K_{M}(X)\right]=N_{1} n \mathrm{E}\left[\nu_{1}\left(A_{M}(X)\right)\right]=N_{1} n \frac{M}{N_{0}+1}$ since $\mathrm{E}\left[\nu_{1}\left(A_{M}(X)\right)\right]=$ $\mathrm{P}\left(\|X-Z\| \leq\left\|\mathcal{X}_{(M)}(Z)-Z\right\|\right)=\mathrm{P}\left(U \leq U_{(M)}\right)=\frac{M}{N_{0}+1}$ by using the probability integral transform. Then the average computation complexity for the searching step is $O\left(N_{0}^{-1} N_{1} M\left(N_{0}+n\right) \log \left(N_{0}+n\right)\right)$.

For the counting step, the computation complexity for counting $\bigcup_{j=1}^{N_{1}} S_{j}$ is $O\left(N_{0}+N_{1} M\right)$ since the cardinality of $\bigcup_{j=1}^{N_{1}} S_{j}$ is at most $N_{1} M$ and the largest integer is N_{0}. The average computation complexity for counting $\bigcup_{j=1}^{N_{1}} S_{j}^{\prime}$ is $O\left(N_{0}^{-1} N_{1} M n+n\right)$ since the average cardinality of $\bigcup_{j=1}^{N_{1}} S_{j}^{\prime}$ is at most $N_{0}^{-1} N_{1} M n$ and the largest integer is n.

Combining the above three steps completes the proof for Algorithm 2. Q.E.D.

S3. PROOFS OF THE RESULTS IN APPENDIX B

S3.1. Proof of Lemma B.1

Proof of Lemma B.1: From the Lebesgue differentiation theorem, for any $f \in$ $L_{1}\left(\mathbb{R}^{d}\right), x$ is a Lebesgue point of f for λ-almost all x. Then for ν_{0}-almost all x, we have $f_{0}(x)>0$ and x is a Lebesgue point of f_{0} and f_{1} from the absolute continuity of ν_{0} and ν_{1}. We then only need to consider those $x \in \mathbb{R}^{d}$ such that $f_{0}(x)>0$ and x is a Lebesgue point of f_{0} and f_{1}.

We first introduce a lemma about the Lebesgue point.
LEMMA S3.1: Let ν be a probability measure on \mathbb{R}^{d} admitting a density f with respect to the Lebesgue measure. Let $x \in \mathbb{R}^{d}$ be a Lebesgue point of f. Then for any $\epsilon \in(0,1)$, there exists $\delta=\delta_{x}>0$ such that for any $z \in \mathbb{R}^{d}$ satisfying $\|z-x\| \leq \delta$, we have

$$
\left|\frac{\nu\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f(x)\right| \leq \epsilon, \quad\left|\frac{\nu\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f(x)\right| \leq \epsilon .
$$

Part I. This part proves the first claim. We separate the proof of Part I into two cases based on the value of $f_{1}(x)$.

Case I.1. $f_{1}(x)>0$. Since x is a Lebesgue point of ν_{0} and ν_{1}, by Lemma S3.1, for any $\epsilon \in(0,1)$, there exists some $\delta=\delta_{x}>0$ such that for any $z \in \mathbb{R}^{d}$ with $\|z-x\| \leq \delta$, we have for $w \in\{0,1\}$,

$$
\left|\frac{\nu_{w}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f_{w}(x)\right| \leq \epsilon f_{w}(x), \quad\left|\frac{\nu_{w}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{w}(x)\right| \leq \epsilon f_{w}(x) .
$$

Accordingly, if $\|z-x\| \leq \delta$, by $\lambda\left(B_{z,\|x-z\|}\right)=\lambda\left(B_{x,\|x-z\|}\right)$, we have

$$
\begin{equation*}
\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \leq \frac{\nu_{0}\left(B_{z,\|x-z\|}\right)}{\lambda\left(B_{z,\|x-z\|}\right)} \frac{\lambda\left(B_{x,\|x-z\|}\right)}{\nu_{1}\left(B_{x,\|x-z\|}\right)}=\frac{\nu_{0}\left(B_{z,\|x-z\|}\right)}{\nu_{1}\left(B_{x,\|x-z\|}\right)} \leq \frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \tag{S3.1}
\end{equation*}
$$

On the other hand, for any $z \in \mathbb{R}^{d}$ such that $\|z-x\|>\delta, \nu_{0}\left(B_{z,\|z-x\|}\right) \geq \nu_{0}\left(B_{z^{*}, \delta}\right) \geq$ $(1-\epsilon) f_{0}(x) \lambda\left(B_{z^{*}, \delta}\right)=(1-\epsilon) f_{0}(x) \lambda\left(B_{0, \delta}\right)$, where z^{*} is the intersection point of the surface of $B_{x, \delta}$ and the line connecting z and x.

Let $\eta_{N}=4 \log \left(N_{0} / M\right)$. Since $M \log N_{0} / N_{0} \rightarrow 0$, we can take N_{0} large enough so that $\eta_{N} \frac{M}{N_{0}}=4 \frac{M}{N_{0}} \log \left(\frac{N_{0}}{M}\right)<(1-\epsilon) f_{0}(x) \lambda\left(B_{0, \delta}\right)$. Then for any $z \in \mathbb{R}^{d}$ such that $\nu_{0}\left(B_{z,\|z-x\|}\right) \leq$ $\eta_{N} M / N_{0}$, we have $\|z-x\| \leq \delta$ since otherwise it would contradict the selection of N_{0}.
Let Z be a copy from ν_{1} independent of the data. Then

$$
\begin{equation*}
\mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]=\mathrm{P}\left(Z \in A_{M}(x)\right)=\mathrm{P}\left(\nu_{0}\left(B_{Z,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right)\right) \tag{S3.2}
\end{equation*}
$$

For any given $z \in \mathbb{R}^{d},\left[\nu_{0}\left(B_{z,\left\|X_{i}-z\right\|}\right)\right]_{i=1}^{N_{0}}$ are i.i.d. from $U(0,1)$ since $\left[X_{i}\right]_{i=1}^{N_{0}}$ are i.i.d. from ν_{0} and we use the probability integral transform. Then $\nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)$ has the same distribution as $U_{(M)}$ and is independent of Z.

Upper bound. With a slight abuse of notation, we define $W=\nu_{0}\left(B_{Z,\|x-Z\|}\right)$. We then have, from (S3.1) and (S3.2),

$$
\begin{align*}
\mathrm{E} & {\left[\nu_{1}\left(A_{M}(x)\right)\right] } \\
& =\mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right) \\
& \leq \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}}\right)+\mathrm{P}\left(\nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)>\eta_{N} \frac{M}{N_{0}}\right) \\
& =\mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}},\|Z-x\| \leq \delta\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \\
& \leq \mathrm{P}\left(\nu_{0}\left(B_{Z,\|x-Z\|)}\right) \leq \nu_{0}\left(B_{\left.Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|\right)}\right),\|Z-x\| \leq \delta\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \\
& \leq \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{\left.Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|\right)}\right),\|Z-x\| \leq \delta\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \\
& \leq \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\| \|}\right)\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \\
& =\mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) . \tag{S3.3}
\end{align*}
$$

For the second term in (S3.3), notice that $\eta_{N} \rightarrow \infty$ as $N_{0} \rightarrow \infty$. Then from the Chernoff bound and for N_{0} sufficiently large, we have

$$
\begin{aligned}
\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) & =\frac{N_{0}}{M} \mathrm{P}\left(\operatorname{Bin}\left(N_{0}, \eta_{N} \frac{M}{N_{0}}\right)<M\right) \\
& \leq \frac{N_{0}}{M} \exp \left(\left(1+\log \eta_{N}-\eta_{N}\right) M\right) \\
& \leq \frac{N_{0}}{M} \exp \left(-\frac{1}{2} \eta_{N} M\right)=\left(\frac{N_{0}}{M}\right)^{1-2 M} .
\end{aligned}
$$

Since $M / N_{0} \rightarrow 0$ and $M \geq 1$, we then obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right)=0 \tag{S3.4}
\end{equation*}
$$

For the first term in (S3.3), we have

$$
\begin{align*}
& \frac{N_{0}}{M} \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right) \\
& \quad=\frac{N_{0}}{M} \int_{0}^{1} \mathrm{P}\left(U_{(M)} \geq \frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} t\right) \mathrm{d} t \\
& \quad=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \int_{0}^{\frac{1-\epsilon}{1+\epsilon} f_{0}(x)}{ }_{0}\left(\frac{N_{0}}{M}\right. \\
& \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t \leq \frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \int_{0}^{\infty} \mathrm{P}\left(\frac{N_{0}}{M} U_{(M)} \geq t\right) \mathrm{d} t \tag{S3.5}\\
& \quad=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{N_{0}}{M} \mathrm{E}\left[U_{(M)}\right]=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{N_{0}}{N_{0}+1}
\end{align*}
$$

We then obtain

$$
\begin{equation*}
\limsup _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right) \leq \frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \tag{S3.6}
\end{equation*}
$$

Plugging (S3.4) and (S3.6) to (S3.3) then yields

$$
\begin{equation*}
\limsup _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] \leq \frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \tag{S3.7}
\end{equation*}
$$

Lower bound. We have, from (S3.1) and (S3.2),

$$
\begin{align*}
\mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]= & \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right) \geq \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}}\right) \\
= & \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}},\|Z-x\| \leq \delta\right) \\
\geq & \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}},\|Z-x\| \leq \delta\right) \\
= & \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq \eta_{N} \frac{M}{N_{0}}\right) \\
\geq & \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right) \\
& -\mathrm{P}\left(\nu_{0}\left(B_{\left.Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|\right)}\right)>\eta_{N} \frac{M}{N_{0}}\right) \\
= & \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right)-\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) . \tag{S3.8}
\end{align*}
$$

The second last equality is from the fact that for $\|Z-x\|>\delta$,
$\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \geq \frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x, \delta}\right) \geq \frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} f_{1}(x)(1-\epsilon) \lambda\left(B_{0, \delta}\right)>\eta_{N} \frac{M}{N_{0}}$,
and then that $\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \eta_{N} \frac{M}{N_{0}}$ implies $\|Z-x\| \leq \delta$.
For the first term in (S3.8), we have

$$
\frac{N_{0}}{M} \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right)=\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \int_{0}^{\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t
$$

If $\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \geq 1$, then by $U_{(M)} \in[0,1]$, we have

$$
\frac{N_{0}}{M} \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right)=\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{N_{0}}{M} \mathrm{E}\left[U_{(M)}\right]=\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{N_{0}}{N_{0}+1}
$$

If $\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)}<1$, from the Chernoff bound,

$$
\begin{aligned}
& \int_{\frac{1+\epsilon}{1-\epsilon} \epsilon}^{\frac{f_{0}(x)}{f_{1}(x)}} \mathrm{N}, M \\
& \leq \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t \\
& \leq {\left[1-\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)}\right] \frac{N_{0}}{M} \mathrm{P}\left(U_{(M)} \geq \frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)}\right) } \\
& \leq {\left[1-\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)}\right] \frac{N_{0}}{M} \exp \left[M-\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} N_{0}\right.} \\
&\left.\quad-M \log M+M \log \left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} N_{0}\right)\right] .
\end{aligned}
$$

Since $f_{0}(x)>0$ and $M \log N_{0} / N_{0} \rightarrow 0$, we obtain

$$
\lim _{N_{0} \rightarrow \infty} \int_{\frac{1+\epsilon}{1-\epsilon} \epsilon}^{\frac{N_{0}(x)}{f_{1}(x)} \frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t=0
$$

Then we always have

$$
\lim _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} U \leq U_{(M)}\right)=\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)}
$$

Using the above identity along with (S3.4) to (S3.8) yields

$$
\begin{equation*}
\liminf _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] \geq \frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \tag{S3.9}
\end{equation*}
$$

Lastly, combining (S3.7) with (S3.9) and noticing that ϵ is arbitrary, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]=\frac{f_{1}(x)}{f_{0}(x)}=r(x) \tag{S3.10}
\end{equation*}
$$

Case I.2. $f_{1}(x)=0$. Again, for any $\epsilon \in(0,1)$, by Lemma S3.1, there exists some $\delta=$ $\delta_{x}>0$ such that for any $z \in \mathbb{R}^{d}$ with $\|z-x\| \leq \delta$, we have

$$
\left|\frac{\nu_{0}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{0}(x)\right| \leq \epsilon f_{0}(x), \quad\left|\frac{\nu_{1}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}\right| \leq \epsilon .
$$

Recall that $W=\nu_{0}\left(B_{Z,\|x-Z\|}\right)$. Then if $\|Z-x\| \leq \delta$, we have

$$
W \geq(1-\epsilon) f_{0}(x) \lambda\left(B_{Z,\|x-Z\|}\right)=(1-\epsilon) f_{0}(x) \lambda\left(B_{x,\|x-Z\|}\right) \geq \epsilon^{-1}(1-\epsilon) f_{0}(x) \nu_{1}\left(B_{x,\|x-Z\|}\right) .
$$

Proceeding in the same way as (S3.3), we obtain

$$
\begin{aligned}
\mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] & \leq \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right) \eta_{N} \frac{M}{N_{0}},\|Z-x\| \leq \delta\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \\
& \leq \mathrm{P}\left(\frac{1-\epsilon}{\epsilon} f_{0}(x) U \leq U_{(M)}\right)+\mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right)
\end{aligned}
$$

For the first term above,

$$
\begin{aligned}
\frac{N_{0}}{M} \mathrm{P}\left(\frac{1-\epsilon}{\epsilon} f_{0}(x) U \leq U_{(M)}\right) & =\frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)} \int_{0}^{\frac{1-\epsilon}{\epsilon} f_{0}(x) \frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t \\
& \leq \frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)} \int_{0}^{\infty} \mathrm{P}\left(\frac{N_{0}}{M} U_{(M)} \geq t\right) \mathrm{d} t \\
& =\frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)} \frac{N_{0}}{M} \mathrm{E}\left[U_{(M)}\right]=\frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)} \frac{N_{0}}{N_{0}+1}
\end{aligned}
$$

By (S3.4) and noticing ϵ is arbitrary, we have

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]=0=r(x) . \tag{S3.11}
\end{equation*}
$$

Combining (S3.10) and (S3.11) completes the proof of the first claim.
Part II. This part proves the second claim. We also separate the proof of Part II into two cases based on the value of $f_{1}(x)$.

Case II.1. $f_{1}(x)>0$. Again, for any $\epsilon \in(0,1)$, we take δ in the same way as in Case I.1. Let $\eta_{N}=\eta_{N, p}=4 p \log \left(N_{0} / M\right)$. We also take N_{0} sufficiently large so that $\eta_{N} \frac{M}{N_{0}}=4 p \frac{M}{N_{0}} \log \left(\frac{N_{0}}{M}\right)<(1-\epsilon) f_{0}(x) \lambda\left(B_{0, \delta}\right)$.

Let $\widetilde{Z}_{1}, \ldots, \widetilde{Z}_{p}$ be p independent copies that are drawn from ν_{1} independent of the data. Then

$$
\begin{aligned}
& \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] \\
& =\mathrm{P}\left(\widetilde{Z}_{1}, \ldots, \widetilde{Z}_{p} \in A_{M}(x)\right) \\
& =\mathrm{P}\left(\nu_{0}\left(B_{\tilde{Z}_{1}, \| x-\tilde{Z}_{1 \|}}\right) \leq \nu_{0}\left(B_{\tilde{Z}_{1},\left\|\mathcal{X}_{(M)}\left(\tilde{Z}_{1}\right)-\tilde{Z}_{1}\right\|}\right), \ldots, \nu_{0}\left(B_{\widetilde{Z}_{p},\left\|x-\tilde{Z}_{p}\right\|}\right) \leq \nu_{0}\left(B_{\tilde{Z}_{p},\left\|X_{(M)}\left(\tilde{Z}_{p}\right)-\tilde{Z}_{p}\right\|}\right)\right) .
\end{aligned}
$$

Let $W_{k}=\nu_{0}\left(B_{\tilde{Z}_{k},\left\|x-\tilde{Z}_{k}\right\|}\right)$ and $V_{k}=\nu_{0}\left(B_{\left.\tilde{Z}_{k}, \| \mathcal{X}_{(M)}\left(\tilde{Z}_{k}\right)-\tilde{Z}_{k \|}\right)}\right)$ for any $k \in \llbracket p \rrbracket$. Then $\left[W_{k}\right]_{k=1}^{p}$ are i.i.d. since $\left[\widetilde{Z}_{k}\right]_{k=1}^{p}$ are i.i.d. For any $k \in \llbracket p \rrbracket$ and $\widetilde{Z}_{k} \in \mathbb{R}^{d}$ given, $V_{k} \mid \widetilde{Z}_{k}$ has the same
distribution as $U_{(M)}$. Then for any $k \in \llbracket p \rrbracket, V_{k}$ has the same distribution as $U_{(M)}$, and V_{k} is independent of \widetilde{Z}_{k}.

Let $W_{\max }=\max _{k \in \llbracket p \rrbracket} W_{k}$ and $V_{\max }=\max _{k \in \llbracket p \rrbracket} V_{k}$. Then

$$
\begin{align*}
\mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] & \leq \mathrm{P}\left(W_{\max } \leq V_{\max }\right) \\
& \leq \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right)+\mathrm{P}\left(V_{\max }>\eta_{N} \frac{M}{N_{0}}\right) \tag{S3.12}
\end{align*}
$$

For the second term in (S3.12),

$$
\mathrm{P}\left(V_{\max }>\eta_{N} \frac{M}{N_{0}}\right) \leq \sum_{k=1}^{p} \mathrm{P}\left(V_{k}>\eta_{N} \frac{M}{N_{0}}\right)=p \mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) .
$$

Proceeding as (S3.4),

$$
\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(U_{(M)}>\eta_{N} \frac{M}{N_{0}}\right) \leq\left(\frac{N_{0}}{M}\right)^{p} \exp \left(-\frac{1}{2} \eta_{N} M\right)=\left(\frac{N_{0}}{M}\right)^{p(1-2 M)}
$$

We then obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(V_{\max }>\eta_{N} \frac{M}{N_{0}}\right)=0 . \tag{S3.13}
\end{equation*}
$$

For the first term in (S3.12), notice that $\left[\nu_{1}\left(B_{x,\left\|\tilde{Z}_{k}-x\right\|}\right)\right]_{k=1}^{p}$ are i.i.d. from $U(0,1)$ since $\left[\widetilde{Z}_{k}\right]_{k=1}^{p}$ are i.i.d. We then have

$$
\begin{aligned}
& \left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right) \\
& =\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}, \max _{k \in \llbracket p \rrbracket}\left\|\widetilde{Z}_{k}-x\right\| \leq \delta\right) \\
& \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \max _{k \in \llbracket \rrbracket \rrbracket} \nu_{1}\left(B_{x,\left\|\widetilde{Z}_{k}-x\right\|}\right) \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}, \max _{k \in \llbracket p \rrbracket}\left\|\widetilde{Z}_{k}-x\right\| \leq \delta\right) \\
& \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \max _{k \in \llbracket p} \nu_{1}\left(B_{x,\left\|\tilde{Z}_{k}-x\right\|}\right) \leq V_{\max }\right) \\
& =\left(\frac{N_{0}}{M}\right)^{p} \int_{0}^{1} p t^{p-1} \mathrm{P}\left(\left.V_{\max } \geq \frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} t \right\rvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{Z}_{k}-x\right\|}\right)=t\right) \mathrm{d} t \\
& =p\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)}\right)^{p} \\
& \quad \times \int_{0}^{\frac{1-\epsilon \epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \frac{N_{0}}{M}} t^{p-1} \mathrm{P}\left(V_{\max } \geq \frac{M}{N_{0}} t \left\lvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\| \| \tilde{Z}_{k}-x \|}\right)=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{M}{N_{0}} t\right.\right) \mathrm{d} t
\end{aligned}
$$

$$
\begin{aligned}
= & p\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)}\right)^{p}\left[\int_{0}^{1} t^{p-1} \mathrm{P}\left(V_{\max } \geq \frac{M}{N_{0}} t \left\lvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right)=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{M}{N_{0}} t\right.\right) \mathrm{d} t\right. \\
& \left.+\int_{1}^{\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \frac{N_{0}}{M}} t^{p-1} \mathrm{P}\left(V_{\max } \geq \frac{M}{N_{0}} t \left\lvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right)=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{M}{N_{0}} t\right.\right) \mathrm{d} t\right] .
\end{aligned}
$$

For the first term,

$$
\int_{0}^{1} t^{p-1} \mathrm{P}\left(V_{\max } \geq \frac{M}{N_{0}} t \left\lvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right)=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \frac{M}{N_{0}} t\right.\right) \mathrm{d} t \leq \int_{0}^{1} t^{p-1} \mathrm{~d} t=\frac{1}{p} .
$$

For the second term, using the Chernoff bound, conditional on $\widetilde{Z}=\left(\widetilde{Z}_{1}, \ldots, \widetilde{Z}_{p}\right)$,

$$
\begin{aligned}
& \int_{1}^{\frac{1-\epsilon}{1+\epsilon} \frac{f}{f_{1}(x)}(x) \frac{N_{0}}{M}} t^{p-1} \mathrm{P}\left(\left.V_{\max } \geq \frac{M}{N_{0}} t \right\rvert\, \widetilde{\boldsymbol{Z}}\right) \mathrm{d} t \\
& \quad \leq \int_{0}^{\infty}(1+t)^{p-1} \mathrm{P}\left(\left.V_{\max } \geq \frac{M}{N_{0}}(1+t) \right\rvert\, \widetilde{\boldsymbol{Z}}\right) \mathrm{d} t \\
& \quad \leq \int_{0}^{\infty}(1+t)^{p-1}\left[\sum_{k=1}^{p} \mathrm{P}\left(\left.V_{k} \geq \frac{M}{N_{0}}(1+t) \right\rvert\, \widetilde{\boldsymbol{Z}}\right)\right] \mathrm{d} t \\
& \quad=p \int_{0}^{\infty}(1+t)^{p-1} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t \\
& \quad \leq p \int_{0}^{\infty}(1+t)^{p-1}(1+t)^{M} \exp (-t M) \mathrm{d} t \leq \sqrt{2 \pi} p M^{-1 / 2}\left(1+\frac{1}{M}\right)^{p-1}(1+o(1))
\end{aligned}
$$

where the last step follows from Stirling's approximation with $M \rightarrow \infty$.
Then we obtain

$$
\begin{equation*}
\limsup _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max }, V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right) \leq\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)}\right)^{p} \tag{S3.14}
\end{equation*}
$$

Plugging (S3.13) and (S3.14) into (S3.12) yields

$$
\begin{equation*}
\limsup _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] \leq\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)}\right)^{p}=\left(\frac{1+\epsilon}{1-\epsilon} r(x)\right)^{p} . \tag{S3.15}
\end{equation*}
$$

Lastly, using Hölder's inequality,

$$
\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] \geq\left[\frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]\right]^{p}
$$

Employing the first claim, we have

$$
\begin{equation*}
\liminf _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] \geq[r(x)]^{p} \tag{S3.16}
\end{equation*}
$$

Combining (S3.15) with (S3.16) and noting that ϵ is arbitrary, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right]=[r(x)]^{p} . \tag{S3.17}
\end{equation*}
$$

Case II.2. $f_{1}(x)=0$. For any $\epsilon \in(0,1)$, we take δ in the same way as in the proof of Case I. 2 and take η_{N} as in the proof of Case II.1.
By (S3.12),

$$
\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right)+\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(V_{\max }>\eta_{N} \frac{M}{N_{0}}\right) .
$$

For the first term,

$$
\begin{aligned}
& \left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right) \\
& \quad \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(\frac{1-\epsilon}{\epsilon} f_{0}(x) \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right) \leq V_{\max }\right) \\
& \quad=\left(\frac{N_{0}}{M}\right)^{p} \int_{0}^{1} p t^{p-1} \mathrm{P}\left(\left.V_{\max } \geq \frac{1-\epsilon}{\epsilon} f_{0}(x) t \right\rvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right)=t\right) \mathrm{d} t \\
& \quad=p\left(\frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)}\right)^{p} \int_{0}^{\frac{1-\epsilon}{\epsilon} f_{0}(x) \frac{N_{0}}{M}} t^{p-1} \mathrm{P}\left(\left.V_{\max } \geq \frac{M}{N_{0}} t \right\rvert\, \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\| \| \tilde{z}_{k}-x \|}\right)=t\right) \mathrm{d} t .
\end{aligned}
$$

Then proceeding in the same way as (S3.14), we have

$$
\limsup _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max } \leq \eta_{N} \frac{M}{N_{0}}\right) \leq\left(\frac{\epsilon}{1-\epsilon} \frac{1}{f_{0}(x)}\right)^{p} .
$$

Lastly, using (S3.13) and noting again that ϵ is arbitrary, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right]=0=[r(x)]^{p} . \tag{S3.18}
\end{equation*}
$$

Combining (S3.17) and (S3.18) then completes the proof of the second claim. Q.E.D.

S3.2. Proof of Theorem B. 1

Proof of Theorem B.1(i): By (2.4) and that $\left[Z_{j}\right]_{j=1}^{N_{1}}$ are i.i.d,

$$
\mathrm{E}\left[\widehat{r}_{M}(x)\right]=\mathrm{E}\left[\frac{N_{0}}{N_{1}} \frac{K_{M}(x)}{M}\right]=\frac{N_{0}}{N_{1} M} \mathrm{E}\left[\sum_{j=1}^{N_{1}} \mathbb{1}\left(Z_{j} \in A_{M}(x)\right)\right]=\frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] .
$$

Employing Lemma B. 1 then completes the proof.

Proof of Theorem B.1(ii): By Hölder's inequality, it suffices to consider the case when p is even. Because x^{p} is convex for $p>1$ and $x>0$, we have

$$
\begin{align*}
& \mathrm{E}\left[\left|\widehat{r}_{M}(x)-r(x)\right|^{p}\right] \\
& \quad \leq 2^{p-1}\left(\mathrm{E}\left[\left|\widehat{r}_{M}(x)-\mathrm{E}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right|^{p}\right]+\mathrm{E}\left[\left|\mathrm{E}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]-r(x)\right|^{p}\right]\right) \tag{S3.19}
\end{align*}
$$

For the second term in (S3.19), Lemma B. 1 implies

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\left|\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]-r(x)\right|^{p}\right]=\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\left|\frac{N_{0}}{M} \nu_{1}\left(A_{M}(x)\right)-r(x)\right|^{p}\right]=0 \tag{S3.20}
\end{equation*}
$$

by expanding the product term.
For the first term in (S3.19), noticing that $\left[Z_{j}\right]_{j=1}^{N_{1}}$ are i.i.d, we have $K_{M}(x) \mid X \sim$ $\operatorname{Bin}\left(N_{1}, \nu_{1}\left(A_{M}(x)\right)\right)$. Using Lemma B. 1 and $M N_{1} / N_{0} \rightarrow \infty$, for any positive integers p and q, we have

$$
\begin{aligned}
\lim _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{N_{1} M}\right)^{p} \mathrm{E}\left[N_{1}^{p} \nu_{1}^{p}\left(A_{M}(x)\right)\right] & =[r(x)]^{p} \\
\lim _{N_{0} \rightarrow \infty}\left(\frac{N_{0}}{N_{1} M}\right)^{p}\left(\frac{N_{0}}{M}\right)^{q} \mathrm{E}\left[N_{1}^{p} \nu_{1}^{p+q}\left(A_{M}(x)\right)\right] & =[r(x)]^{p+q}
\end{aligned}
$$

and then $\mathrm{E}\left[N_{1}^{p} \nu_{1}^{p}\left(A_{M}(x)\right)\right]$ is the dominated term among $\left[\mathrm{E}\left[N_{1}^{k} \nu_{1}^{k+q}\left(A_{M}(x)\right)\right]\right]_{k \leq p, q \geq 0}$.
To complete the proof, for any positive integer c and $Z \sim \operatorname{Bin}\left(n, p^{\prime}\right)$, let $\mu_{c}=\mathrm{E}[(Z-$ $\left.\mathrm{E}[Z])^{c}\right]$ be the c th central moment. By Romanovsky (1923), we have

$$
\mu_{c+1}=p^{\prime}\left(1-p^{\prime}\right)\left(n c \mu_{c-1}+\frac{\mathrm{d} \mu_{c}}{\mathrm{~d} p^{\prime}}\right)
$$

Then for even p, we obtain

$$
\mathrm{E}\left[\left(K_{M}(x)-N_{1} \nu_{1}\left(A_{M}(x)\right)\right)^{p}\right] \lesssim \mathrm{E}\left[N_{1} \nu_{1}\left(A_{M}(x)\right)\right]^{p / 2} \lesssim\left(\frac{N_{1} M}{N_{0}}\right)^{p / 2}
$$

The first term in (S3.19) then satisfies

$$
\mathrm{E}\left[\left|\widehat{r}_{M}(x)-\mathrm{E}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right|^{p}\right]=\left(\frac{N_{0}}{N_{1} M}\right)^{p} \mathrm{E}\left[\left(K_{M}(x)-N_{1} \nu_{1}\left(A_{M}(x)\right)\right)^{p}\right] \lesssim\left(\frac{N_{0}}{N_{1} M}\right)^{p / 2}
$$

Since $M N_{1} / N_{0} \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\left|\widehat{r}_{M}(x)-\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]\right|^{p}\right]=0 \tag{S3.21}
\end{equation*}
$$

Plugging (S3.20) and (S3.21) into (S3.19) then completes the proof.

S3.3. Proof of Theorem B. 2

Proof of Theorem B.2: We first cite the Hardy-Littlewood maximal inequality.

Lemma S3.2—Hardy-Littlewood Maximal Inequality (Stein (2016)): For any locally integrable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, define

$$
\mathrm{M} f(x)=\sup _{\delta>0} \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}|f(z)| \mathrm{d} z .
$$

Then for $d \geq 1$, there exists a constant $C_{d}>0$ only depending on d such that for all $t>0$ and $f \in L_{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\lambda(\{x: \mathrm{M} f(x)>t\})<\frac{C_{d}}{t}\|f\|_{L_{1}},
$$

where $\|\cdot\|_{L_{1}}$ stands for the function L_{1} norm.
Let $\epsilon>0$ be given. We assume $\epsilon \leq f_{L}$. From Assumption B.1, S_{0} and S_{1} are bounded, then ν_{0} and ν_{1} are compactly supported. Since $f_{0}, f_{1} \in L_{1}$, and the class of continuous functions are dense in the class of compactly supported L_{1} functions from simple use of Lusin's theorem, we can find g_{0}, g_{1} such that g_{0}, g_{1} are continuous and $\left\|f_{0}-g_{0}\right\|_{L_{1}} \leq \epsilon^{3}$ and $\left\|f_{1}-g_{1}\right\|_{L_{1}} \leq \epsilon^{3}$.

Since g_{0}, g_{1} are continuous with compact supports, they are uniformly continuous, that is, there exists $\delta>0$ such that for any $x, z \in \mathbb{R}^{d}$ and $\|z-x\| \leq \delta$, we have $\left|g_{0}(x)-g_{0}(z)\right| \leq$ $\frac{\epsilon^{2}}{3}$ and $\left|g_{1}(x)-g_{1}(z)\right| \leq \frac{\epsilon^{2}}{3}$.

For any $x \in \mathbb{R}^{d}$, we have

$$
\begin{align*}
& \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(x)-f_{0}(z)\right| \mathrm{d} z \\
& \quad \leq \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left[\left|f_{0}(x)-g_{0}(x)\right|+\left|g_{0}(x)-g_{0}(z)\right|+\left|f_{0}(z)-g_{0}(z)\right|\right] \mathrm{d} z \\
& \quad=\left|f_{0}(x)-g_{0}(x)\right|+\frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|g_{0}(x)-g_{0}(z)\right| \mathrm{d} z \\
& \quad+\frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(z)-g_{0}(z)\right| \mathrm{d} z \tag{S3.22}
\end{align*}
$$

For the first term in (S3.22), using Markov's inequality, we have

$$
\begin{equation*}
\lambda\left(\left\{x:\left|f_{0}(x)-g_{0}(x)\right|>\epsilon^{2} / 3\right\}\right) \leq 3 \epsilon^{-2}\left\|f_{0}-g_{0}\right\|_{L_{1}} \leq 3 \epsilon \tag{S3.23}
\end{equation*}
$$

For the second term in (S3.22), by the selection of δ,

$$
\begin{equation*}
\frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|g_{0}(x)-g_{0}(z)\right| \mathrm{d} z \leq \max _{z \in B_{x, \delta}}\left|g_{0}(x)-g_{0}(z)\right| \leq \frac{\epsilon^{2}}{3} . \tag{S3.24}
\end{equation*}
$$

For the third term,

$$
\frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(z)-g_{0}(z)\right| \mathrm{d} z \leq \sup _{\delta>0} \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(z)-g_{0}(z)\right| \mathrm{d} z=\mathrm{M}\left(f_{0}-g_{0}\right)(x) .
$$

Lemma S3.2 then yields

$$
\begin{equation*}
\lambda\left(\left\{x: \mathrm{M}\left(f_{0}-g_{0}\right)(x)>\epsilon^{2} / 3\right\}\right)<3 C_{d} \epsilon^{-2}\left\|f_{0}-g_{0}\right\|_{L_{1}} \leq 3 C_{d} \epsilon . \tag{S3.25}
\end{equation*}
$$

We can establish similar results for f_{1}, g_{1}.
Let

$$
\begin{aligned}
A_{1}= & \left\{x:\left|f_{0}(x)-g_{0}(x)\right|>\epsilon^{2} / 3\right\} \cup\left\{x:\left|f_{1}(x)-g_{1}(x)\right|>\epsilon^{2} / 3\right\} \\
& \cup\left\{x: \mathrm{M}\left(f_{0}-g_{0}\right)(x)>\epsilon^{2} / 3\right\} \cup\left\{x: \mathrm{M}\left(f_{1}-g_{1}\right)(x)>\epsilon^{2} / 3\right\} .
\end{aligned}
$$

Plugging (S3.23), (S3.24), (S3.25) into (S3.22), for any $x \notin A_{1}$ and $\|z-x\| \leq \delta$, we have

$$
\frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(x)-f_{0}(z)\right| \mathrm{d} z \leq \epsilon^{2}, \quad \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{1}(x)-f_{1}(z)\right| \mathrm{d} z \leq \epsilon^{2}
$$

and $\lambda\left(A_{1}\right) \leq 6\left(C_{d}+1\right) \epsilon$.
Let $A_{2}=\left\{x: f_{1}(x) \leq \epsilon\right\}$. We then separate the proof into three cases. In the following, it suffices to consider $f_{0}(x)>0$ due to the definition of L_{p} risk.

Case I. $x \notin A_{1} \cup A_{2}$. By $\epsilon \leq f_{L}$ and the definition of A_{2}, for any $x \notin A_{1} \cup A_{2}$ and $\| z-$ $x \| \leq \delta$,

$$
\begin{aligned}
& \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{0}(x)-f_{0}(z)\right| \mathrm{d} z \leq \epsilon^{2} \leq \epsilon f_{L} \leq \epsilon f_{0}(x) \\
& \frac{1}{\lambda\left(B_{x, \delta}\right)} \int_{B_{x, \delta}}\left|f_{1}(x)-f_{1}(z)\right| \mathrm{d} z \leq \epsilon^{2} \leq \epsilon f_{1}(x)
\end{aligned}
$$

We then obtain for $w \in\{0,1\}$,

$$
\left|\frac{\nu_{w}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f_{w}(x)\right| \leq \epsilon f_{w}(x), \quad\left|\frac{\nu_{w}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{w}(x)\right| \leq \epsilon f_{w}(x) .
$$

Let $\eta_{N}=\eta_{N, p}=4 p \log \left(N_{0} / M\right)$. We also take N_{0} large enough so that $\eta_{N} \frac{M}{N_{0}}=$ $4 p \frac{M}{N_{0}} \log \left(\frac{N_{0}}{M}\right)<(1-\epsilon) f_{L} \lambda\left(B_{0, \delta}\right)$. Then for any $x \in \mathbb{R}^{d}$ such that $f_{0}(x)>0$, we have $\eta_{N} \frac{M}{N_{0}}<(1-\epsilon) f_{0}(x) \lambda\left(B_{0, \delta}\right)$.

Proceeding as in the proof of Case II. 1 of Lemma B. 1 and also Theorem B. 1 by using Fubini's theorem, since ϵ is arbitrary, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right|^{p} f_{0}(x) \mathbb{1}\left(x \notin A_{1} \cup A_{2}\right) \mathrm{d} x\right]=0 . \tag{S3.26}
\end{equation*}
$$

Case II. $x \in A_{2} \backslash A_{1}$. In this case, we have

$$
\begin{aligned}
& \left|\frac{\nu_{0}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f_{0}(x)\right| \leq \epsilon f_{0}(x), \quad\left|\frac{\nu_{0}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{0}(x)\right| \leq \epsilon f_{0}(x), \\
& \left|\frac{\nu_{1}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f_{1}(x)\right| \leq \epsilon^{2}, \quad\left|\frac{\nu_{1}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{1}(x)\right| \leq \epsilon^{2} .
\end{aligned}
$$

Take η_{N} and take N_{0} sufficiently large as in Case I above. Proceeding as the proof of Case II. 2 of Lemma B. 1 and also Theorem B. 1 by using Fubini's theorem, since ϵ is arbitrary, we obtain

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right|^{p} f_{0}(x) \mathbb{1}\left(x \in A_{2} \backslash A_{1}\right) \mathrm{d} x\right]=0 . \tag{S3.27}
\end{equation*}
$$

Case III. $x \in A_{1}$. In this case, for any $x \in A_{1}$ and $z \in S_{1}, \nu_{0}\left(B_{z,\|z-x\|}\right) \geq f_{L} \lambda\left(B_{z,\|z-x\|} \cap\right.$ $\left.S_{0}\right) \geq a f_{L} \lambda\left(B_{z,\|z-x\|}\right) \geq \frac{a f_{L}}{f_{U}} \nu_{1}\left(B_{x,\|z-x\|}\right)$. Then for any $x \in A_{1}$, from (S3.12) and in the same way as (S3.14),

$$
\begin{aligned}
\left(\frac{N_{0}}{M}\right)^{p} \mathrm{E}\left[\nu_{1}^{p}\left(A_{M}(x)\right)\right] & \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(W_{\max } \leq V_{\max }\right) \\
& \leq\left(\frac{N_{0}}{M}\right)^{p} \mathrm{P}\left(\frac{a f_{L}}{f_{U}} \max _{k \in \llbracket p \rrbracket} \nu_{1}\left(B_{x,\left\|\tilde{z}_{k}-x\right\|}\right) \leq V_{\max }\right) \\
& \leq\left(\frac{f_{U}}{a f_{L}}\right)^{p}(1+o(1))=O(1) .
\end{aligned}
$$

Proceeding as in the proof of Theorem B.1, and due to the boundedness assumptions on f_{0} and f_{1}, for any $x \in A_{1}$ and p even,

$$
\mathrm{E}\left[\left|\widehat{r}_{M}(x)-r(x)\right|^{p}\right] \lesssim \mathrm{E}\left[\left|\widehat{r}_{M}(x)-\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]\right|^{p}\right]+\mathrm{E}\left[\left(\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]\right)^{p}\right]+|r(x)|^{p} \lesssim 1
$$

Then

$$
\mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right|^{p} f_{0}(x) \mathbb{1}\left(x \in A_{1}\right) \mathrm{d} x\right] \lesssim f_{U} \lambda\left(A_{1}\right) \lesssim \epsilon .
$$

Since ϵ is arbitrary, we have

$$
\begin{equation*}
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right|^{p} f_{0}(x) \mathbb{1}\left(x \in A_{1}\right) \mathrm{d} x\right]=0 . \tag{S3.28}
\end{equation*}
$$

Combining (S3.26), (S3.27), and (S3.28) completes the proof.

S3.4. Proof of Corollary B. 1

Proof of Corollary B.1: Corollary B. 1 can be established following the same way as that of Theorem B. 2 but with less effort since we only have to show

$$
\lim _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]-r(x)\right|^{p} f_{0}(x) \mathrm{d} x\right]=0
$$

In detail, denote the Radon-Nikodym derivative of the probability measure of W with respect to ν_{0} by r_{W}. We then have

$$
\begin{aligned}
& \limsup _{N_{0} \rightarrow \infty} \mathrm{E}\left[\left|\frac{N_{0}}{M} \nu_{1}\left(A_{M}(W)\right)-r(W)\right|^{p}\right] \\
& \quad=\underset{N_{0} \rightarrow \infty}{\limsup } \mathrm{E}\left[\int_{\mathbb{R}^{d}} \frac{N_{0}}{M} \nu_{1}\left(A_{M}(x)\right)-\left.r(x)\right|^{p} r_{W}(x) f_{0}(x) \mathrm{d} x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim \limsup _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\frac{N_{0}}{M} \nu_{1}\left(A_{M}(x)\right)-r(x)\right|^{p} f_{0}(x) \mathrm{d} x\right] \\
& =\limsup _{N_{0} \rightarrow \infty} \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\mathrm{E}\left[\widehat{r}_{M}(x) \mid X\right]-r(x)\right|^{p} f_{0}(x) \mathrm{d} x\right]=0,
\end{aligned}
$$

where the last line has been established in the proof of Theorem B.2. Noticing that $\mathrm{E}[r(W)]^{p}$ is bounded under Assumption B.1, the proof is thus complete.
Q.E.D.

S3.5. Proof of Theorem B. 3

We only have to prove the first two claims as the rest are trivial.

Proof of Theorem B.3(i): For any $z \in \mathbb{R}^{d}$ such that $\|z-x\| \leq \delta / 2$, since $B_{z,\|z-x\|} \subset$ $B_{x, 2\|z-x\|} \subset B_{x, \delta}$, we have

$$
\begin{aligned}
& \left|\frac{\nu_{0}\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f_{0}(x)\right| \leq \frac{1}{\lambda\left(B_{z,\|z-x\|}\right)} \int_{B_{z,\|z-x\|}}\left|f_{0}(y)-f_{0}(x)\right| \mathrm{d} y \leq 2 L\|z-x\|, \\
& \left|\frac{\nu_{1}\left(B_{x,\|z-x\|}\right)}{\lambda\left(B_{x,\|z-x\|}\right)}-f_{1}(x)\right| \leq \frac{1}{\lambda\left(B_{x,\|z-x\|}\right)} \int_{B_{x,\|z-x\|}}\left|f_{1}(y)-f_{1}(x)\right| \mathrm{d} y \leq L\|z-x\| .
\end{aligned}
$$

Consider any $\delta_{N}>0$ such that $\delta_{N} \leq \delta / 2$. If $\|z-x\| \leq \delta_{N}$ and $f_{0}(x)>2 L \delta_{N}$, then

$$
\frac{f_{0}(x)-2 L \delta_{N}}{f_{1}(x)+L \delta_{N}} \leq \frac{\nu_{0}\left(B_{z,\|x-z\|}\right)}{\lambda\left(B_{z,\|x-z\|}\right)} \frac{\lambda\left(B_{x,\|x-z\|}\right)}{\nu_{1}\left(B_{x,\|x-z\|}\right)} .
$$

If further $f_{1}(x)>L \delta_{N}$, then

$$
\frac{\nu_{0}\left(B_{z,\|x-z\|}\right)}{\lambda\left(B_{z,\|x-z\|}\right)} \frac{\lambda\left(B_{x,\|x-z\|}\right)}{\nu_{1}\left(B_{x,\|x-z\|}\right)} \leq \frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} .
$$

On the other hand, if $\|z-x\| \geq \delta_{N}$ and $f_{0}(x)>2 L \delta_{N}, \nu_{0}\left(B_{z,\|z-x\|}\right) \geq\left(f_{0}(x)-2 L \delta_{N}\right) \times$ $\lambda\left(B_{0, \delta_{N}}\right)=\left(f_{0}(x)-2 L \delta_{N}\right) V_{d} \delta_{N}^{d}$, where V_{d} is the Lebesgue measure of the unit ball on \mathbb{R}^{d}.

Let $\delta_{N}=\left(\frac{4}{f_{L} V_{d}}\right)^{1 / d}\left(\frac{M}{N_{0}}\right)^{1 / d}$. Since $M / N_{0} \rightarrow 0$, we have $\delta_{N} \rightarrow 0$ as $N_{0} \rightarrow \infty$. Taking N_{0} large enough so that $\delta_{N}<f_{L} /(4 L)$ and $\delta_{N} \leq \delta / 2$, then $2 L V_{d} \delta_{N}^{d+1}=\frac{M}{N_{0}} \frac{8 L}{f_{L}} \delta_{N}<2 \frac{M}{N_{0}}$. Then for any $\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, \mathrm{p}}\left(f_{L}, f_{U}, L, d, \delta\right)$,

$$
\left(f_{0}(x)-2 L \delta_{N}\right) V_{d} \delta_{N}^{d}>4 \frac{f_{0}(x)}{f_{L}} \frac{M}{N_{0}}-2 \frac{M}{N_{0}} \geq 2 \frac{M}{N_{0}}
$$

With a slight abuse of notation, let $W=\nu_{0}\left(B_{Z,\|x-Z\|}\right)$. Then $W \leq 2 \frac{M}{N_{0}}$ implies that $\| Z-$ $x \| \leq \delta_{N}$.

Depending on the value of $f_{1}(x)$, the proof is separated into two cases.
Case I. $f_{1}(x)>L \delta_{N}$.

Upper bound. Proceeding similar to (S3.3), we have

$$
\begin{align*}
\mathrm{E}\left[\widehat{r}_{M}(x)\right]= & \frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]=\frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right)\right) \\
\leq & \frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right) \leq 2 \frac{M}{N_{0}}\right)+\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \\
\leq & \frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right),\|Z-x\| \leq \delta_{N}\right)+\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \\
\leq & \frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)-2 L \delta_{N}}{f_{1}(x)+L \delta_{N}} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{\left.Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|\right)}\right),\|Z-x\| \leq \delta_{N}\right) \\
& +\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \\
\leq & \frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)-2 L \delta_{N}}{f_{1}(x)+L \delta_{N}} U \leq U_{(M)}\right)+\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) . \tag{S3.29}
\end{align*}
$$

For the second term in (S3.29), since $M / \log N_{0} \rightarrow \infty$, for any $\gamma>0$,

$$
\begin{align*}
\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) & =\frac{N_{0}}{M} \mathrm{P}\left(\operatorname{Bin}\left(N_{0}, 2 \frac{M}{N_{0}}\right) \leq M\right) \\
& \leq \frac{N_{0}}{M} N_{0}^{-(1-\log 2) M / \log N_{0}} \prec N_{0}^{-\gamma} \tag{S3.30}
\end{align*}
$$

For the first term in (S3.29), proceeding as (S3.5), we obtain

$$
\frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)-2 L \delta_{N}}{f_{1}(x)+L \delta_{N}} U \leq U_{(M)}\right) \leq \frac{f_{1}(x)+L \delta_{N}}{f_{0}(x)-2 L \delta_{N}} \frac{N_{0}}{N_{0}+1} .
$$

Then we obtain

$$
\begin{equation*}
\mathrm{E}\left[\widehat{r}_{M}(x)\right] \leq \frac{f_{1}(x)+L \delta_{N}}{f_{0}(x)-2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}+o\left(N_{0}^{-\gamma}\right) \tag{S3.31}
\end{equation*}
$$

Lower bound. Proceeding similar to (S3.8), we have

$$
\begin{aligned}
\mathrm{E}\left[\widehat{r}_{M}(x)\right] & =\frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]=\frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{\left.Z,\left\|X_{(M)}(Z)-Z\right\|\right)}\right)\right) \\
& \geq \frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|X_{(M)}(Z)-Z\right\|}\right) \leq 2 \frac{M}{N_{0}}\right) \\
& =\frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq 2 \frac{M}{N_{0}},\|Z-x\| \leq \delta_{N}\right) \\
& \geq \frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq 2 \frac{M}{N_{0}},\|Z-x\| \leq \delta_{N}\right) \\
& =\frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right) \leq 2 \frac{M}{N_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{N_{0}}{M} \mathrm{P}\left(\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} U \leq U_{(M)}\right)-\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \\
& =\frac{f_{1}(x)-L \delta_{N}}{f_{0}(x)+2 L \delta_{N}} \int_{0}^{\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} \frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t-\frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) .
\end{aligned}
$$

Consider the first term. If $\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} \geq 1$, then

$$
\frac{f_{1}(x)-L \delta_{N}}{f_{0}(x)+2 L \delta_{N}} \int_{0}^{\frac{f_{0}(x)+2 L \delta_{\delta_{N}}}{f_{1}(x)-L \delta_{N}} \frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t=\frac{f_{1}(x)-L \delta_{N}}{f_{0}(x)+2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}
$$

If $\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}}<1$, using the Chernoff bound, for any $\gamma>0$,

$$
\begin{aligned}
& \int_{\frac{f_{0}(x)+2 L \delta_{N}}{f_{1}(x)-L \delta_{N}} \frac{N_{0}}{M}}^{\frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t \\
& \quad \leq \int_{\frac{f_{L}}{f_{U}} \frac{N_{0}}{M}}^{\frac{N_{0}}{M}} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}} t\right) \mathrm{d} t \leq\left[1-\frac{f_{L}}{f_{U}}\right] \frac{N_{0}}{M} \mathrm{P}\left(U_{(M)} \geq \frac{f_{L}}{f_{U}}\right) \\
& \quad \leq\left[1-\frac{f_{L}}{f_{U}}\right] \frac{N_{0}}{M} \exp \left[M-\frac{f_{L}}{f_{U}} N_{0}-M \log M+M \log \left(\frac{f_{L}}{f_{U}} N_{0}\right)\right] \prec N_{0}^{-\gamma} .
\end{aligned}
$$

The last step is due to $M \log N_{0} / N_{0} \rightarrow 0$. Recalling (S3.30), we then obtain

$$
\begin{equation*}
\mathrm{E}\left[\widehat{r}_{M}(x)\right] \geq \frac{f_{1}(x)-L \delta_{N}}{f_{0}(x)+2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}-o\left(N_{0}^{-\gamma}\right) \tag{S3.32}
\end{equation*}
$$

Combining (S3.31) and (S3.32), and taking N_{0} large enough so that $L \delta_{N} \leq f_{U} \wedge\left(f_{L} / 4\right)$, we obtain

$$
\begin{aligned}
\mid \mathrm{E} & {\left[\widehat{r}_{M}(x)\right]-r(x) \mid } \\
\leq & \left|\frac{f_{1}(x)+L \delta_{N}}{f_{0}(x)-2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}-\frac{f_{1}(x)}{f_{0}(x)}\right| \vee\left|\frac{f_{1}(x)-L \delta_{N}}{f_{0}(x)+2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}-\frac{f_{1}(x)}{f_{0}(x)}\right| \\
& +o\left(N_{0}^{-\gamma}\right) \leq \frac{f_{0}(x) L \delta_{N}+2 f_{1}(x) L \delta_{N}}{f_{0}(x)\left(f_{0}(x)-2 L \delta_{N}\right)}+\frac{1}{N_{0}+1} \frac{f_{1}(x)+L \delta_{N}}{f_{0}(x)-2 L \delta_{N}}+o\left(N_{0}^{-\gamma}\right) \\
\quad \leq & \left(\frac{2}{f_{L}}+\frac{4 f_{U}}{f_{L}^{2}}\right) L \delta_{N}+\frac{4 f_{U}}{f_{L}} \frac{1}{N_{0}+1}+o\left(N_{0}^{-\gamma}\right) .
\end{aligned}
$$

By the selection of δ_{N} and that the right-hand side does not depend on x, we complete the proof for this case.

Case II. $f_{1}(x) \leq L \delta_{N}$. The upper bound (S3.31) in Case I still holds for this case. Accordingly, taking N_{0} large enough so that $L \delta_{N} \leq f_{L} / 4$, we have

$$
\begin{aligned}
\left|\mathrm{E}\left[\widehat{r}_{M}(x)\right]-r(x)\right| & \leq \mathrm{E}\left[\widehat{r}_{M}(x)\right]+r(x) \\
& \leq \frac{f_{1}(x)+L \delta_{N}}{f_{0}(x)-2 L \delta_{N}} \frac{N_{0}}{N_{0}+1}+\frac{f_{1}(x)}{f_{0}(x)}+o\left(N_{0}^{-\gamma}\right)
\end{aligned}
$$

$$
\leq \frac{4}{f_{L}} L \delta_{N}+\frac{1}{f_{L}} L \delta_{N}+o\left(N_{0}^{-\gamma}\right)
$$

We thus complete the whole proof.
Proof of Theorem B.3(ii): By the law of total variance,

$$
\begin{equation*}
\operatorname{Var}\left[\widehat{r}_{M}(x)\right]=\mathrm{E}\left[\operatorname{Var}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right]+\operatorname{Var}\left[\mathrm{E}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right] . \tag{S3.33}
\end{equation*}
$$

For the first term in (S3.33), let Z be a copy drawn from ν_{1} independently of the data. Then, since $\left[Z_{j}\right]_{j=1}^{N_{1}}$ are i.i.d,

$$
\begin{align*}
\mathrm{E}\left[\operatorname{Var}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right] & =\mathrm{E}\left[\operatorname{Var}\left[\left.\frac{N_{0}}{N_{1} M} K_{M}(x) \right\rvert\, \boldsymbol{X}\right]\right] \\
& =\left(\frac{N_{0}}{N_{1} M}\right)^{2} \mathrm{E}\left[\operatorname{Var}\left[\sum_{j=1}^{N_{1}} \mathbb{1}\left(Z_{j} \in A_{M}(x)\right) \mid \boldsymbol{X}\right]\right] \\
& =\frac{N_{0}^{2}}{N_{1} M^{2}} \mathrm{E}\left[\operatorname{Var}\left[\mathbb{1}\left(Z \in A_{M}(x)\right) \mid \boldsymbol{X}\right]\right] \\
& =\frac{N_{0}^{2}}{N_{1} M^{2}} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)-\nu_{1}^{2}\left(A_{M}(x)\right)\right] \leq \frac{N_{0}^{2}}{N_{1} M^{2}} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] \\
& =\frac{N_{0}}{N_{1} M} \mathrm{E}\left[\widehat{r}_{M}(x)\right] \lesssim C \frac{N_{0}}{N_{1} M}, \tag{S3.34}
\end{align*}
$$

where $C>0$ is a constant only depending on f_{L}, f_{U}. The last step is due to (S3.31).
For the second term in (S3.33), notice that

$$
\operatorname{Var}\left[\mathrm{E}\left[\widehat{r}_{M}(x) \mid \boldsymbol{X}\right]\right]=\operatorname{Var}\left[\mathrm{E}\left[\left.\frac{N_{0}}{N_{1} M} K_{M}(x) \right\rvert\, \boldsymbol{X}\right]\right]=\left(\frac{N_{0}}{M}\right)^{2} \operatorname{Var}\left[\nu_{1}\left(A_{M}(x)\right)\right]
$$

Recalling that $W=\nu_{0}\left(B_{Z,\|x-Z\|}\right)$, we have the following lemma about the density of W near 0 .

Lemma S3.3: Denote the density of W by f_{W}. Then for any $\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, \mathrm{p}}\left(f_{L}, f_{U}, L, d, \delta\right)$,

$$
f_{W}(0)=r(x)
$$

Furthermore, for any $\epsilon>0$ and N_{0} sufficiently large, we have for all $0 \leq w \leq 2 M / N_{0}$,

$$
\sup _{\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, p}\left(f_{L}, f_{U}, \delta, L, d\right)} f_{W}(w) \leq(1+\epsilon) \frac{f_{U}}{f_{L}} .
$$

Due to Lemma S3.3, we can take N_{0} sufficiently large so that for any $0 \leq w \leq 2 M / N_{0}$,

$$
\sup _{\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, p}\left(f_{L}, f_{U}, \delta, L, d\right)} f_{W}(w) \leq 2 \frac{f_{U}}{f_{L}}
$$

Let Z, \widetilde{Z} be two independent copies from ν_{1} that are further independent of the data. Let $W=\nu_{0}\left(B_{Z,\|x-Z\|}\right)$ and $\widetilde{W}=\nu_{0}\left(B_{\tilde{Z},\|x-\tilde{Z}\|}\right)$. Let $V=\nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)$ and $\widetilde{V}=$ $\nu_{0}\left(B_{\tilde{Z},\left\|\mathcal{X}_{(M)}(\tilde{Z})-\tilde{Z}\right\|}\right)$. We then have

$$
\begin{aligned}
\operatorname{Var}\left[\nu_{1}\left(A_{M}(x)\right)\right] & =\mathrm{E}\left[\nu_{1}^{2}\left(A_{M}(x)\right)\right]-\left(\mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right]\right)^{2} \\
& =\mathrm{P}\left(Z \in A_{M}(x), \widetilde{Z} \in A_{M}(x)\right)-\mathrm{P}\left(Z \in A_{M}(x)\right) \mathrm{P}\left(\widetilde{Z} \in A_{M}(x)\right) \\
& =\mathrm{P}(W \leq V, \tilde{W} \leq \tilde{V})-\mathrm{P}(W \leq V) \mathrm{P}(\tilde{W} \leq \tilde{V})
\end{aligned}
$$

Due to the independence between Z and \widetilde{Z}, W and \widetilde{W} are independent. Notice that $V \mid Z$ have the same distribution as $U_{(M)}$ for any $Z \in \mathbb{R}^{d}$, then V and Z are independent, so are \widetilde{V} and \widetilde{Z}.

Let us expand the variance further as

$$
\begin{align*}
\operatorname{Var} & {\left[\nu_{1}\left(A_{M}(x)\right)\right] } \\
= & {\left[\mathrm{P}\left(W \leq V, \tilde{W} \leq \widetilde{V}, W \leq 2 \frac{M}{N_{0}}, \widetilde{W} \leq 2 \frac{M}{N_{0}}\right)\right.} \\
& \left.-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\widetilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \\
& +\left[\mathrm{P}(W \leq V, \tilde{W} \leq \tilde{V})-\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \\
& -[\mathrm{P}(W \leq V) \mathrm{P}(\tilde{W} \leq \tilde{V}) \\
& \left.-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\tilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \tag{S3.35}
\end{align*}
$$

For the first term in (S3.35), we have the following lemma.
LEMMA S3.4: We have

$$
\begin{aligned}
& \left(\frac{N_{0}}{M}\right)^{2}\left[\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right. \\
& \left.\quad-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\tilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \leq C \frac{1}{M}
\end{aligned}
$$

where $C>0$ is a constant only depending on f_{L}, f_{U}.
For the second term in (S3.35),

$$
\begin{aligned}
& \mathrm{P}(W \leq V, \tilde{W} \leq \tilde{V})-\mathrm{P}\left(W \leq V, \widetilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right) \\
& \quad \leq \mathrm{P}\left(W \leq V, \widetilde{W} \leq \tilde{V}, W>2 \frac{M}{N_{0}}\right)+\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, \widetilde{W}>2 \frac{M}{N_{0}}\right)
\end{aligned}
$$

$$
\leq \mathrm{P}\left(V>2 \frac{M}{N_{0}}\right)+\mathrm{P}\left(\tilde{V}>2 \frac{M}{N_{0}}\right)=2 \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right)
$$

Using the Chernoff bound and $M / \log N_{0} \rightarrow \infty$, for any $\gamma>0$,

$$
\left(\frac{N_{0}}{M}\right)^{2} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \leq\left(\frac{N_{0}}{M}\right)^{2} \exp [-(1-\log 2) M] \prec N_{0}^{-\gamma}
$$

We then have

$$
\begin{align*}
& \left(\frac{N_{0}}{M}\right)^{2}\left[\mathrm{P}(W \leq V, \tilde{W} \leq \tilde{V})-\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \\
& \quad \leq 2\left(\frac{N_{0}}{M}\right)^{2} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \prec N_{0}^{-\gamma} . \tag{S3.36}
\end{align*}
$$

For the third term in (S3.35), we can check

$$
\left[\mathrm{P}(W \leq V) \mathrm{P}(\tilde{W} \leq \tilde{V})-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\widetilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \geq 0 .
$$

Plugging Lemma S3.4 and (S3.36) into (S3.35) by taking $\gamma>1$, we obtain

$$
\begin{equation*}
\left(\frac{N_{0}}{M}\right)^{2} \operatorname{Var}\left[\nu_{1}\left(A_{M}(x)\right)\right] \lesssim C \frac{1}{M} \tag{S3.37}
\end{equation*}
$$

where $C>0$ is a constant only depending on f_{L}, f_{U}.
Plugging (S3.34) and (S3.37) into (S3.33) completes the proof.

S3.6. Proof of Proposition B. 1

Proof of Proposition B.1: We take ν_{0} and ν_{1} to share the same support, and assume x to be the origin of \mathbb{R}^{d} without loss of generality.
When $N_{1} \lesssim N_{0}$, we take ν_{0} to be the uniform distribution with density f_{L} on $\left[-f_{L}^{-1 / d} / 2, f_{L}^{-1 / d} / 2\right]^{d}$. Then the MSE is lower bounded by the density estimation over Lipchitz class with N_{1} samples.

When $N_{0} \lesssim N_{1}$, we take ν_{1} to be the uniform distribution with density f_{U} on $\left[-f_{U}^{-1 / d} / 2, f_{U}^{-1 / d} / 2\right]^{d}$. Notice that $1 / f_{0}$ is also local Lipchitz from the lower boundness condition and local Lipchitz condition on f_{0}. Then the MSE is lower bounded by the density estimation over Lipchitz class with N_{0} samples.

We then complete the proof by combining the above two lower bounds and then using the famous minimax lower bound in Lipschitz density estimation (Tsybakov (2009, Exercise 2.8)),
Q.E.D.

S3.7. Proof of Theorem B. 4

Proof of Theorem B.4: We only have to prove the first claim as the second is trivial.
Take $\delta_{N}=\left(\frac{4}{f_{L} V_{d}}\right)^{1 / d}\left(\frac{M}{N_{0}}\right)^{1 / d}$ as in the proof of Theorem B.3(i). Take $\delta_{N}^{\prime}=\left(\frac{2}{a f_{L} V_{d}}\right)^{1 / d} \times$ $\left(\frac{M}{N_{0}}\right)^{1 / d}$. For any $x \in \mathbb{R}^{d}$, denote the distance of x to the boundary of S_{1} by $\Delta(x)$, that is, $\Delta(x)=\inf _{z \in \partial S_{1}}\|z-x\|$.

Depending on the position of x and the value of $\Delta(x)$, we separate the proof into three cases.

Case I. $x \in S_{1}$ and $\Delta(x)>2 \delta_{N}$. In this case, since $\Delta(x)>2 \delta_{N}$, for any $\|z-x\| \leq \delta_{N}$, we have $B_{z,\|z-x\|} \subset S_{1}$. From the smoothness conditions on f_{0} and f_{1}, similar to the proof of Theorem B.3, we have

$$
\begin{align*}
& \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right| f_{0}(x) \mathbb{1}\left(x \in S_{1}, \Delta(x)>2 \delta_{N}\right) \mathrm{d} x\right] \\
& \quad \leq \int_{\mathbb{R}^{d}}\left(\mathrm{E}\left[\widehat{r}_{M}(x)-r(x)\right]^{2}\right)^{1 / 2} f_{0}(x) \mathbb{1}\left(x \in S_{1}, \Delta(x)>2 \delta_{N}\right) \mathrm{d} x \\
& \quad \leq C\left[\left(\frac{M}{N_{0}}\right)^{1 / d}+\left(\frac{1}{M}\right)^{1 / 2}+\left(\frac{N_{0}}{M N_{1}}\right)^{1 / 2}\right] \int_{\mathbb{R}^{d}} f_{0}(x) \mathbb{1}\left(x \in S_{1}, \Delta(x)>2 \delta_{N}\right) \mathrm{d} x \\
& \quad \leq C\left[\left(\frac{M}{N_{0}}\right)^{1 / d}+\left(\frac{1}{M}\right)^{1 / 2}+\left(\frac{N_{0}}{M N_{1}}\right)^{1 / 2}\right] \tag{S3.38}
\end{align*}
$$

where the constant $C>0$ only depends on f_{L}, f_{U}, L, d.
Case II. $x \in S_{0} \backslash S_{1}$ and $\Delta(x)>\delta_{N}^{\prime}$. In this case, $r(x)=0$ and for any $z \in S_{1}$,

$$
\nu_{0}\left(B_{z,\|z-x\|}\right) \geq f_{L} \lambda\left(B_{z,\|z-x\|} \cap S_{0}\right) \geq a f_{L} \lambda\left(B_{z,\|z-x\|}\right)>a f_{L} V_{d} \delta_{N}^{\prime d} \geq 2 \frac{M}{N_{0}}
$$

Then for any $\gamma>0$,

$$
\begin{aligned}
\mathrm{E}\left[\left|\widehat{r}_{M}(x)-r(x)\right|\right] & =\mathrm{E}\left[\widehat{r}_{M}(x)\right]=\frac{N_{0}}{M} \mathrm{E}\left[\nu_{1}\left(A_{M}(x)\right)\right] \\
& =\frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right) \leq \frac{N_{0}}{M} \mathrm{P}\left(U_{(M)}>2 \frac{M}{N_{0}}\right) \prec N_{0}^{-\gamma} .
\end{aligned}
$$

We then obtain

$$
\begin{align*}
& \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right| f_{0}(x) \mathbb{1}\left(x \notin S_{1}, \Delta(x)>\delta_{N}^{\prime}\right) \mathrm{d} x\right] \\
& \quad \prec N_{0}^{-\gamma} \int_{\mathbb{R}^{d}} f_{0}(x) \mathbb{1}\left(x \in S_{0} \backslash S_{1}, \Delta(x)>\delta_{N}^{\prime}\right) \mathrm{d} x \leq N_{0}^{-\gamma} . \tag{S3.39}
\end{align*}
$$

Case III. $x \in S_{0}$ and $\Delta(x) \leq\left(2 \delta_{N}\right) \vee \delta_{N}^{\prime}$. In this case, for any $z \in S_{1}$,

$$
\nu_{0}\left(B_{z,\|z-x\|}\right) \geq f_{L} \lambda\left(B_{z,\|z-x\|} \cap S_{0}\right) \geq a f_{L} \lambda\left(B_{z,\|z-x\|}\right) \geq \frac{a f_{L}}{f_{U}} \nu_{1}\left(B_{x,\|z-x\|}\right)
$$

Accordingly,

$$
\begin{aligned}
\mathrm{E}\left[\left|\widehat{r}_{M}(x)-r(x)\right|\right] & \leq \mathrm{E}\left[\widehat{r}_{M}(x)\right]+r(x)=\frac{N_{0}}{M} \mathrm{P}\left(W \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right)+r(x) \\
& \leq \frac{N_{0}}{M} \mathrm{P}\left(\frac{a f_{L}}{f_{U}} \nu_{1}\left(B_{x,\|x-Z\|)}\right) \leq \nu_{0}\left(B_{Z,\left\|\mathcal{X}_{(M)}(Z)-Z\right\|}\right)\right)+r(x) \\
& \leq \frac{N_{0}}{M} \mathrm{P}\left(\frac{a f_{L}}{f_{U}} U \leq U_{(M)}\right)+r(x)=\frac{f_{U}}{a f_{L}}(1+o(1))+\frac{f_{U}}{f_{L}} .
\end{aligned}
$$

From the definition of $\delta_{N}, \delta_{N}^{\prime}$, and $M / N_{0} \rightarrow 0$, we have $\delta_{N}, \delta_{N}^{\prime} \rightarrow 0$ as $N_{0} \rightarrow \infty$. Since the surface area of S_{1} is bounded by H, we have $\lambda\left(\left\{x: \Delta(x) \leq\left(2 \delta_{N}\right) \vee \delta_{N}^{\prime}\right\}\right) \lesssim H\left\{\left(2 \delta_{N}\right) \vee\right.$ $\left.\delta_{N}^{\prime}\right\}$. Then we obtain

$$
\begin{align*}
& \mathrm{E}\left[\int_{\mathbb{R}^{d}}\left|\widehat{r}_{M}(x)-r(x)\right| f_{0}(x) \mathbb{1}\left(\Delta(x) \leq\left(2 \delta_{N}\right) \vee \delta_{N}^{\prime}\right) \mathrm{d} x\right] \\
& \quad \leq\left(\frac{f_{U}}{a f_{L}}(1+o(1))+\frac{f_{U}}{f_{L}}\right) \int_{\mathbb{R}^{d}} f_{0}(x) \mathbb{1}\left(\Delta(x) \leq\left(2 \delta_{N}\right) \vee \delta_{N}^{\prime}\right) \mathrm{d} x \\
& \quad \leq\left(\frac{f_{U}}{a f_{L}}(1+o(1))+\frac{f_{U}}{f_{L}}\right) f_{U} \lambda\left(\left\{x: \Delta(x) \leq\left(2 \delta_{N}\right) \vee \delta_{N}^{\prime}\right\}\right) \\
& \quad \lesssim\left(\frac{f_{U}}{a f_{L}}+\frac{f_{U}}{f_{L}}\right) f_{U} H\left(\delta_{N}+\delta_{N}^{\prime}\right) \leq C\left(\frac{M}{N_{0}}\right)^{1 / d}, \tag{S3.40}
\end{align*}
$$

where the constant $C>0$ only depends on f_{L}, f_{U}, a, H, d.
Combining (S3.38), (S3.39), (S3.40) completes the proof.

S3.8. Proof of Proposition B. 2

Proof of Proposition B.2: We take ν_{0} and ν_{1} to be of the same support.
When $N_{1} \lesssim N_{0}$, we take ν_{0} to be the uniform distribution with density f_{L} on $\left[-f_{L}^{-1 / d} / 2, f_{L}^{-1 / d} / 2\right]^{d}$. Then the L_{1} risk is lower bounded by the L_{1} risk over support of density estimation over Lipchitz class with N_{1} samples.

When $N_{0} \lesssim N_{1}$, we take ν_{1} to be the uniform distribution with density f_{U} on $\left[-f_{U}^{-1 / d} / 2, f_{U}^{-1 / d} / 2\right]^{d}$. Notice $1 / f_{0}$ is also Lipchitz from the lower boundness condition and Lipchitz condition on f_{0}. From the lower boundness condition on f_{0}, the L_{1} risk is lower bounded by the L_{1} risk over support of density estimation over Lipchitz class with N_{0} samples.

We then complete the proof by combining the above two lower bounds and then using then the minimax lower bound of L_{1} risk for density estimation over Lipchitz class (Zhao and Lai (2022, Theorem 1)).
Q.E.D.

S4. PROOFS OF THE RESULTS IN APPENDIX C

S4.1. Proof of Lemma C. 1

Proof of Lemma C.1: For any $x \in \mathbb{X}$, define $\sigma_{\omega}^{2}(x)=\mathrm{E}\left[U_{\omega}^{2} \mid X=x\right]=\mathrm{E}[[Y(\omega)-$ $\left.\left.\mu_{\omega}(X)\right]^{2} \mid X=x\right]$ for $\omega \in\{0,1\}$. Let

$$
V^{\tau}=\mathrm{E}\left[\mu_{1}(X)-\mu_{0}(X)-\tau\right]^{2} \quad \text { and } \quad V^{E}=\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{K_{M}(i)}{M}\right)^{2} \sigma_{D_{i}}^{2}\left(X_{i}\right)
$$

From the central limit theorem (Billingsley (2008, Theorem 27.1)), we have

$$
\begin{equation*}
\sqrt{n}(\bar{\tau}(X)-\tau) \xrightarrow{d} N\left(0, V^{\tau}\right) . \tag{S4.1}
\end{equation*}
$$

Let $E_{M, i}=\left(2 D_{i}-1\right)\left(1+K_{M}(i) / M\right) \epsilon_{i}$ for any $i \in \llbracket n \rrbracket$. Conditional on $\boldsymbol{X}, \boldsymbol{D},\left[E_{M, i}\right]_{i=1}^{n}$ are independent. Notice that $\mathrm{E}\left[E_{M, i} \mid \boldsymbol{X}, \boldsymbol{D}\right]=0$ and $\sum_{i=1}^{n} \operatorname{Var}\left[E_{M, i} \mid \boldsymbol{X}, \boldsymbol{D}\right]=n V^{E}$. To apply the

Lindeberg-Feller central limit theorem (Billingsley (2008, Theorem 27.2)), it suffices to verify that: for a given $(\boldsymbol{X}, \boldsymbol{D})$,

$$
\frac{1}{n V^{E}} \sum_{i=1}^{n} \mathrm{E}\left[\left(E_{M, i}\right)^{2} \mathbb{1}\left(\left|E_{M, i}\right|>\delta \sqrt{n V^{E}}\right) \mid \boldsymbol{X}, \boldsymbol{D}\right] \rightarrow 0
$$

for all $\delta>0$.
Let $C_{\sigma}=\sup _{x \in \mathbb{X}, \omega \in\{0,1\}}\left\{\mathrm{E}\left[\left|U_{\omega}\right|^{2+\kappa} \mid X=x\right] \vee \mathrm{E}\left[U_{\omega}^{2} \mid X=x\right]\right\}<\infty$. Let $p_{1}=1+\kappa / 2$ and p_{2} be the constant such that $p_{1}^{-1}+p_{2}^{-1}=1$. By Hölder's inequality and Markov's inequality,

$$
\begin{aligned}
& \frac{1}{n V^{E}} \sum_{i=1}^{n} \mathrm{E}\left[\left(E_{M, i}\right)^{2} \mathbb{1}\left(\left|E_{M, i}\right|>\delta \sqrt{n V^{E}}\right) \mid \boldsymbol{X}, \boldsymbol{D}\right] \\
& \quad \leq \frac{1}{n V^{E}} \sum_{i=1}^{n}\left(\mathrm{E}\left[\left|E_{M, i}\right|^{2+\kappa} \mid \boldsymbol{X}, \boldsymbol{D}\right]\right)^{1 / p_{1}}\left(\mathrm{P}\left(\left|E_{M, i}\right|>\delta \sqrt{n V^{E}} \mid \boldsymbol{X}, \boldsymbol{D}\right)\right)^{1 / p_{2}} \\
& \quad \leq \frac{1}{n V^{E}} \sum_{i=1}^{n}\left(\mathrm{E}\left[\left|E_{M, i}\right|^{2+\kappa} \mid \boldsymbol{X}, \boldsymbol{D}\right]\right)^{1 / p_{1}}\left(\frac{1}{\delta^{2} n V^{E}} \mathrm{E}\left[\left(E_{M, i}\right)^{2} \mid \boldsymbol{X}, \boldsymbol{D}\right]\right)^{1 / p_{2}} \\
& \quad \leq \frac{C_{\sigma}}{n V^{E}}\left(\frac{1}{\delta^{2} n V^{E}}\right)^{1 / p_{2}} \sum_{i=1}^{n}\left(1+\frac{K_{M}(i)}{M}\right)^{2\left(1+1 / p_{2}\right)}
\end{aligned}
$$

Notice that $\mathrm{E}\left[1+K_{M}(i) / M\right]^{2\left(1+1 / p_{2}\right)}<\infty$ from Theorem B.2. Let $c_{\sigma}=\inf _{x \in \mathbb{X}, \omega \in\{0,1\}} \mathrm{E}\left[U_{\omega}^{2} \mid\right.$ $X=x]>0$. From the definition of V^{E}, we have $V^{E} \geq c_{\sigma}$ for almost all $\boldsymbol{X}, \boldsymbol{D}$. Then

$$
\mathrm{E}\left[\frac{1}{n V^{E}} \sum_{i=1}^{n} \mathrm{E}\left[\left(E_{M, i}\right)^{2} \mathbb{1}\left(\left|E_{M, i}\right|>\delta \sqrt{n V^{E}}\right) \mid X, D\right]\right]=O\left(n^{-1 / p_{2}}\right)=o(1)
$$

We thus obtain

$$
\frac{1}{n V^{E}} \sum_{i=1}^{n} \mathrm{E}\left[\left(E_{M, i}\right)^{2} \mathbb{1}\left(\left|E_{M, i}\right|>\delta \sqrt{n V^{E}}\right) \mid \boldsymbol{X}, \boldsymbol{D}\right]=o_{\mathrm{P}}(1)
$$

Applying the Lindeberg-Feller central limit theorem then yields

$$
\begin{equation*}
\sqrt{n}\left(V^{E}\right)^{-1 / 2} E_{M}=\left(n V^{E}\right)^{-1 / 2} \sum_{i=1}^{n} E_{M, i} \xrightarrow{\mathrm{~d}} N(0,1) \tag{S4.2}
\end{equation*}
$$

Noticing that $\sqrt{n}(\bar{\tau}(\boldsymbol{X})-\tau)$ and $\sqrt{n}\left(V^{E}\right)^{-1 / 2} E_{M}$ are asymptotically independent, leveraging the same argument as made in Abadie and Imbens (2006, Proof of Theorem 4, p. 267) and then combining (S 4.1) and (S 4.2) reaches

$$
\begin{equation*}
\sqrt{n}\left(V^{\tau}+V^{E}\right)^{-1 / 2}\left(\bar{\tau}(\boldsymbol{X})+E_{M}-\tau\right) \xrightarrow{d} N(0,1) . \tag{S4.3}
\end{equation*}
$$

We decompose V^{E} as

$$
\begin{align*}
V^{E}= & \frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left(1+\frac{K_{M}(i)}{M}\right)^{2} \sigma_{1}^{2}\left(X_{i}\right)+\frac{1}{n} \sum_{i=1, D_{i}=0}^{n}\left(1+\frac{K_{M}(i)}{M}\right)^{2} \sigma_{0}^{2}\left(X_{i}\right) \\
= & {\left[\frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left(\frac{1}{e\left(X_{i}\right)}\right)^{2} \sigma_{1}^{2}\left(X_{i}\right)+\frac{1}{n} \sum_{i=1, D_{i}=0}^{n}\left(\frac{1}{1-e\left(X_{i}\right)}\right)^{2} \sigma_{0}^{2}\left(X_{i}\right)\right] } \\
& +\frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left[\left(1+\frac{K_{M}(i)}{M}\right)^{2}-\left(\frac{1}{e\left(X_{i}\right)}\right)^{2}\right] \sigma_{1}^{2}\left(X_{i}\right) \\
& +\frac{1}{n} \sum_{i=1, D_{i}=0}^{n}\left[\left(\frac{1}{1-e\left(X_{i}\right)}\right)^{2}-\left(1+\frac{K_{M}(i)}{M}\right)^{2}\right] \sigma_{0}^{2}\left(X_{i}\right) . \tag{S4.4}
\end{align*}
$$

For the first term in (S4.4), notice that $\left[\left(X_{i}, D_{i}, Y_{i}\right)\right]_{i=1}^{n}$ are i.i.d. and $\mathrm{E}\left[D_{i}\left(e\left(X_{i}\right)\right)^{-2} \times\right.$ $\left.\sigma_{1}^{2}\left(X_{i}\right)\right], \mathrm{E}\left[\left(1-D_{i}\right)\left(1-e\left(X_{i}\right)\right)^{-2} \sigma_{0}^{2}\left(X_{i}\right)\right]<\infty$. Using the weak law of large numbers, we have

$$
\frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left(\frac{1}{e\left(X_{i}\right)}\right)^{2} \sigma_{1}^{2}\left(X_{i}\right)+\frac{1}{n} \sum_{i=1, D_{i}=0}^{n}\left(\frac{1}{1-e\left(X_{i}\right)}\right)^{2} \sigma_{0}^{2}\left(X_{i}\right) \xrightarrow{\mathrm{p}} \mathrm{E}\left[\frac{\sigma_{1}^{2}(X)}{e(X)}+\frac{\sigma_{0}^{2}(X)}{1-e(X)}\right]
$$

For the second term in (S4.4), using the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \mathrm{E}\left|\frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left[\left(1+\frac{K_{M}(i)}{M}\right)^{2}-\left(\frac{1}{e\left(X_{i}\right)}\right)^{2}\right] \sigma_{1}^{2}\left(X_{i}\right)\right| \\
& \leq C_{\sigma} \mathrm{E}\left[D_{i}\left|\left(1+\frac{K_{M}(i)}{M}\right)^{2}-\left(\frac{1}{e\left(X_{i}\right)}\right)^{2}\right|\right] \\
&=C_{\sigma} \mathrm{E}\left[D_{i} \mathrm{E}\left[\left.\left|\left(1+\frac{K_{M}(i)}{M}\right)^{2}-\left(\frac{1}{e\left(X_{i}\right)}\right)^{2}\right| \right\rvert\, D\right]\right] \\
& \leq C_{\sigma} \mathrm{E}\left[D_{i}\left(\mathrm{E}\left[\left.\left(\frac{K_{M}(i)}{M}-\frac{1-e\left(X_{i}\right)}{e\left(X_{i}\right)}\right)^{2} \right\rvert\, \boldsymbol{D}\right] \mathrm{E}\left[\left.\left(2+\frac{K_{M}(i)}{M}+\frac{1-e\left(X_{i}\right)}{e\left(X_{i}\right)}\right)^{2} \right\rvert\, D\right]\right)^{1 / 2}\right] \\
&=o(1)
\end{aligned}
$$

where the last step is due to Theorem B.2. Then we obtain

$$
\frac{1}{n} \sum_{i=1, D_{i}=1}^{n}\left[\left(1+\frac{K_{M}(i)}{M}\right)^{2}-\left(\frac{1}{e\left(X_{i}\right)}\right)^{2}\right] \sigma_{1}^{2}\left(X_{i}\right) \xrightarrow{\mathrm{p}} 0 .
$$

For the third term in (S4.4), we can establish in the same way that

$$
\frac{1}{n} \sum_{i=1, D_{i}=0}^{n}\left[\left(\frac{1}{1-e\left(X_{i}\right)}\right)^{2}-\left(1+\frac{K_{M}(i)}{M}\right)^{2}\right] \sigma_{0}^{2}\left(X_{i}\right) \xrightarrow{\mathrm{p}} 0 .
$$

Then from (S4.4),

$$
V^{E} \xrightarrow{\mathrm{p}} \mathrm{E}\left[\frac{\sigma_{1}^{2}(X)}{e(X)}+\frac{\sigma_{0}^{2}(X)}{1-e(X)}\right] .
$$

By (S4.3), Slutsky's lemma (van der Vaart (1998, Theorem 2.8)), and the definition of σ^{2}, we complete the proof.
Q.E.D.

S4.2. Proof of Lemma C. 2

Proof of Lemma C.2: From Assumption B. 1 and Assumption 4.1, let $R=\operatorname{diam}(\mathbb{X})<$ ∞ and $f_{L}=\inf _{x \in \mathbb{X}, \omega \in\{0,1\}} f_{\omega}(x)>0$. For any $x \in \mathbb{X}, \omega \in\{0,1\}$, and $u \leq R$, from Assumption B.1, $\nu_{\omega}\left(B_{x, u} \cap \mathbb{X}\right) \geq f_{L} \lambda\left(B_{x, u} \cap \mathbb{X}\right) \geq f_{L} a \lambda\left(B_{x, u}\right)=f_{L} a V_{d} u^{d}$, where V_{d} is the Lebesgue measure of the unit ball on \mathbb{R}^{d}.

Let $c_{0}=f_{L} a V_{d}$. For any $i \in \llbracket n \rrbracket, x \in \mathbb{X}, M \leq n_{1-D_{i}}$, if $0 \leq u \leq R n_{1-D_{i}}^{1 / d}$, we have

$$
\begin{aligned}
& \mathrm{P}\left(\left\|X_{j}-X_{i}\right\| \geq u n_{1-D_{i}}^{-1 / d} \mid \boldsymbol{D}, X_{i}=x, j=j_{M}(i)\right) \\
& \quad \leq \mathrm{P}\left(\operatorname { B i n } \left(n_{1-D_{i}}, \nu_{1-D_{i}}\left(B_{\left.\left.\left.x, u n_{1-D_{i}}^{-1 / d} \cap \mathbb{X}\right)\right) \leq M \mid \boldsymbol{D}\right)} \quad \leq \mathrm{P}\left(\operatorname{Bin}\left(n_{1-D_{i}}, c_{0} u^{d} n_{1-D_{i}}^{-1}\right) \leq M \mid \boldsymbol{D}\right)\right.\right.\right.
\end{aligned}
$$

Using the Chernoff bound, if $M<c_{0} u^{d}$, then

$$
\mathrm{P}\left(\operatorname{Bin}\left(n_{1-D_{i}}, c_{0} u^{d} n_{1-D_{i}}^{-1}\right) \leq M \mid D\right) \leq \exp \left(M-c_{0} u^{d}+M \log \left(\frac{c_{0} u^{d}}{M}\right)\right)
$$

Notice that the above upper bound does not depend on x. We then obtain

$$
\begin{aligned}
& \mathrm{P}\left(\left\|X_{j}-X_{i}\right\| \geq u n_{1-D_{i}}^{-1 / d} \mid \boldsymbol{D}, j=j_{M}(i)\right) \\
& \quad \leq \mathbb{1}\left(M<c_{0} u^{d}\right) \exp \left(M-c_{0} u^{d}+M \log \left(\frac{c_{0} u^{d}}{M}\right)\right)+\mathbb{1}\left(M \geq c_{0} u^{d}\right)
\end{aligned}
$$

On the other hand, if $u>R n_{1-D_{i}}^{1 / d}$, then the probability is zero from the definition of R. Accordingly, the above bound holds for any $u \geq 0$.

For any $i \in \llbracket n \rrbracket$, we thus have

$$
\begin{align*}
& n_{1-D_{i}}^{p / d} \mathrm{E}\left[\left\|U_{M, i}\right\|^{p} \mid \boldsymbol{D}\right] \\
& \quad=p \int_{0}^{\infty} \mathrm{P}\left(\left\|X_{j}-X_{i}\right\| \geq u n_{1-D_{i}}^{-1 / d} \mid \boldsymbol{D}, j=j_{M}(i)\right) u^{p-1} \mathrm{~d} u \\
& \quad \leq p \int_{0}^{\infty}\left[\mathbb{1}\left(M<c_{0} u^{d}\right) \exp \left(M-c_{0} u^{d}+M \log \left(\frac{c_{0} u^{d}}{M}\right)\right)+\mathbb{1}\left(M \geq c_{0} u^{d}\right)\right] u^{p-1} \mathrm{~d} u \\
& \quad=p c_{0}^{-p / d} d^{-1}\left[\int_{M}^{\infty}\left(\frac{e}{M}\right)^{M} t^{M+\frac{p}{d}-1} e^{-t} \mathrm{~d} t+\int_{0}^{M} t^{\frac{p}{d}-1} \mathrm{~d} t\right] \tag{S4.5}
\end{align*}
$$

where the last step is through taking $t=c_{0} u^{d}$.

For the first term in (S4.5), from Stirling's formula and $M \rightarrow \infty$,

$$
\int_{M}^{\infty}\left(\frac{e}{M}\right)^{M} t^{M+\frac{p}{d}-1} e^{-t} \mathrm{~d} t \leq \int_{0}^{\infty}\left(\frac{e}{M}\right)^{M} t^{M+\frac{p}{d}-1} e^{-t} \mathrm{~d} t \sim \sqrt{2 \pi} M^{\frac{p}{d}-\frac{1}{2}}
$$

where \sim means asymptotic convergence.
For the second term in (S4.5), $\int_{0}^{M} t^{\frac{p}{d}-1} \mathrm{~d} t=\frac{d}{p} M^{\frac{p}{d}}$. Combining the above two terms then completes the proof.
Q.E.D.

S4.3. Proof of Lemma C. 3

Proof of Lemma C.3: We bound $B_{M}-\widehat{B}_{M}$ by

$$
\begin{align*}
& \mid B_{M}-\widehat{B}_{M} \mid \\
&=\left|\frac{1}{n} \sum_{i=1}^{n}\left(2 D_{i}-1\right)\left[\frac{1}{M} \sum_{m=1}^{M}\left(\mu_{1-D_{i}}\left(X_{i}\right)-\mu_{1-D_{i}}\left(X_{j_{m}(i)}\right)-\widehat{\mu}_{1-D_{i}}\left(X_{i}\right)+\widehat{\mu}_{1-D_{i}}\left(X_{j_{m}(i)}\right)\right)\right]\right| \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \max _{m \in \llbracket M \rrbracket}\left|\mu_{1-D_{i}}\left(X_{i}\right)-\mu_{1-D_{i}}\left(X_{j_{m}(i)}\right)-\widehat{\mu}_{1-D_{i}}\left(X_{i}\right)+\widehat{\mu}_{1-D_{i}}\left(X_{j_{m}(i)}\right)\right| \\
& \quad \leq \frac{1}{n} \sum_{i=1}^{n} \max _{m \in \llbracket \rrbracket \rrbracket, \omega \in\{0,1\}}\left|\mu_{\omega}\left(X_{i}\right)-\mu_{\omega}\left(X_{j_{m}(i)}\right)-\widehat{\mu}_{\omega}\left(X_{i}\right)+\widehat{\mu}_{\omega}\left(X_{j_{m}(i)}\right)\right| . \tag{S4.6}
\end{align*}
$$

Let $k=\lfloor d / 2\rfloor+1$. For any $\omega \in\{0,1\}$, by Taylor expansion to k th order,

$$
\begin{equation*}
\left|\mu_{\omega}\left(X_{j_{m}(i)}\right)-\mu_{\omega}\left(X_{i}\right)-\sum_{\ell=1}^{k-1} \frac{1}{\ell!} \sum_{t \in \Lambda_{\ell}} \partial^{t} \mu_{\omega}\left(X_{i}\right) U_{m, i}^{t}\right| \leq \max _{t \in \Lambda_{k}}\left\|\partial^{t} \mu_{\omega}\right\|_{\infty} \frac{1}{k!} \sum_{t \in \Lambda_{k}}\left\|U_{m, i}\right\|^{k} . \tag{S4.7}
\end{equation*}
$$

In the same way,

$$
\begin{equation*}
\left|\widehat{\mu}_{\omega}\left(X_{j_{m}(i)}\right)-\widehat{\mu}_{\omega}\left(X_{i}\right)-\sum_{\ell=1}^{k-1} \frac{1}{\ell!} \sum_{t \in \Lambda_{\ell}} \partial^{t} \widehat{\mu}_{\omega}\left(X_{i}\right) U_{m, i}^{t}\right| \leq \max _{t \in \Lambda_{k}}\left\|\partial^{t} \widehat{\mu}_{\omega}\right\|_{\infty} \frac{1}{k!} \sum_{t \in \Lambda_{k}}\left\|U_{m, i}\right\|^{k} \tag{S4.8}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left|\sum_{\ell=1}^{k-1} \frac{1}{\ell!} \sum_{t \in \Lambda_{\ell}}\left(\partial^{t} \widehat{\mu}_{\omega}\left(X_{i}\right)-\partial^{t} \mu_{\omega}\left(X_{i}\right)\right) U_{m, i}^{t}\right| \leq \sum_{\ell=1}^{k-1} \max _{t \in \Lambda_{\ell}}\left\|\partial^{t} \widehat{\mu}_{\omega}-\partial^{t} \mu_{\omega}\right\|_{\infty} \frac{1}{\ell!} \sum_{t \in \Lambda_{\ell}}\left\|U_{m, i}\right\|^{\ell} \tag{S4.9}
\end{equation*}
$$

Notice that $\left\|U_{M, i}\right\|=\max _{m \in \llbracket M \rrbracket}\left\|U_{m, i}\right\|$ for any $i \in \llbracket n \rrbracket, \omega \in\{0,1\}$. Then for any $\omega \in\{0,1\}$, plugging (S4.7), (S4.8), (S4.9) into (S4.6), we obtain

$$
\begin{aligned}
\left|B_{M}-\widehat{B}_{M}\right| \lesssim & \left(\max _{\omega \in\{0,1\}} \max _{t \in \Lambda_{k}}\left\|\partial^{t} \mu_{\omega}\right\|_{\infty}+\max _{\omega \in\{0,1\}} \max _{t \in \Lambda_{k}}\left\|\partial^{t} \widehat{\mu}_{\omega}\right\|_{\infty}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\|U_{M, i}\right\|^{k}\right) \\
& +\sum_{\ell=1}^{k-1}\left(\max _{\omega \in\{0,1\}} \max _{t \in \Lambda_{\ell}}\left\|\partial^{t} \widehat{\mu}_{\omega}-\partial^{t} \mu_{\omega}\right\|_{\infty}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\|U_{M, i}\right\|^{\ell}\right)
\end{aligned}
$$

From Lemma C.2, all moments of $(n / M)^{p / d}\left\|U_{M, i}\right\|^{p}$ are bounded. Then for any positive integer p, using Markov's inequality, we have

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|U_{M, i}\right\|^{p}=O_{\mathrm{P}}\left(\left(\frac{M}{n}\right)^{p / d}\right)
$$

By Assumption 4.4 and Assumption 4.5, we then obtain

$$
\begin{aligned}
B_{M}-\widehat{B}_{M} & =O_{\mathrm{P}}(1) O_{\mathrm{P}}\left(\left(\frac{M}{n}\right)^{k / d}\right)+\max _{\ell \in \llbracket k-1 \rrbracket} O_{\mathrm{P}}\left(n^{-\gamma_{\ell}}\right) O_{\mathrm{P}}\left(\left(\frac{M}{n}\right)^{\ell / d}\right) \\
& =O_{\mathrm{P}}\left(\left(\frac{M}{n}\right)^{k / d}\right)+\max _{\ell \in \llbracket k-1 \rrbracket} O_{\mathrm{P}}\left(n^{-\gamma_{\ell}}\left(\frac{M}{n}\right)^{\ell / d}\right)
\end{aligned}
$$

The proof is thus complete by noticing the definition of γ and $M \prec n^{\gamma}$.
Q.E.D.

S5. PROOFS OF RESULTS IN SUPPLEMENT

S5.1. Proof of Lemma S3.1

Proof of Lemma S3.1: The first inequality is directly from the definition of Lebesgue points. The second inequality follows by

$$
\begin{aligned}
\left|\frac{\nu\left(B_{z,\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)}-f(x)\right| & \leq \frac{1}{\lambda\left(B_{z,\|z-x\|}\right)} \int_{B_{z,\|z-x\|}}|f(y)-f(x)| \mathrm{d} y \\
& \leq \frac{1}{\lambda\left(B_{z,\|z-x\|}\right)} \int_{B_{x, 2\|z-x\|}}|f(y)-f(x)| \mathrm{d} y \\
& =\frac{\lambda\left(B_{x, 2\|z-x\|}\right)}{\lambda\left(B_{z,\|z-x\|}\right)} \frac{1}{\lambda\left(B_{x, 2\|z-x\|}\right)} \int_{B_{x, 2\|z-x\|}}|f(y)-f(x)| \mathrm{d} y \\
& =2^{d} \frac{1}{\lambda\left(B_{x, 2\|z-x\|}\right)} \int_{B_{x, 2\|z-x\|}}|f(y)-f(x)| \mathrm{d} y
\end{aligned}
$$

and then the definition of Lebesgue points. Q.E.D.

S5.2. Proof of Lemma S3.3

Proof of Lemma S3.3: Fix any $\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, \mathrm{p}}\left(f_{L}, f_{U}, L, d, \delta\right)$.
We first prove the first claim. First, consider $f_{1}(x)>0$. For any $\epsilon>0$, there exists $\delta^{\prime}>0$ such that for any $z \in \mathbb{R}^{d}$ satisfying $\|z-x\| \leq 2 \delta^{\prime}$, we have $\left|f_{0}(z)-f_{0}(x)\right| \leq \epsilon f_{0}(x)$ and $\left|f_{1}(z)-f_{1}(x)\right| \leq \epsilon f_{1}(x)$ from the local Lipschitz assumption. We take $w>0$ sufficiently small such that $w<(1-\epsilon) f_{0}(x) \lambda\left(B_{0, \delta^{\prime}}\right)$. Then $W \leq w$ implies $\|x-Z\| \leq \delta^{\prime}$. Then for $w>0$ sufficiently small,
$\mathrm{P}(W \leq w)=\mathrm{P}\left(W \leq w,\|x-Z\| \leq \delta^{\prime}\right) \leq \mathrm{P}\left(\frac{1-\epsilon}{1+\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq w\right)=\frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)} w$,
and

$$
\begin{aligned}
\mathrm{P}(W \leq w) & =\mathrm{P}\left(W \leq w,\|x-Z\| \leq \delta^{\prime}\right) \geq \mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq w,\|x-Z\| \leq \delta^{\prime}\right) \\
& =\mathrm{P}\left(\frac{1+\epsilon}{1-\epsilon} \frac{f_{0}(x)}{f_{1}(x)} \nu_{1}\left(B_{x,\|x-Z\|}\right) \leq w\right)=\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} w .
\end{aligned}
$$

Then we have

$$
\frac{1-\epsilon}{1+\epsilon} \frac{f_{1}(x)}{f_{0}(x)} \leq \liminf _{w \rightarrow 0} w^{-1} \mathrm{P}(W \leq w) \leq \limsup _{w \rightarrow 0} w^{-1} \mathrm{P}(W \leq w) \leq \frac{1+\epsilon}{1-\epsilon} \frac{f_{1}(x)}{f_{0}(x)}
$$

Since ϵ is arbitrary, we obtain

$$
f_{W}(0)=\lim _{w \rightarrow 0} w^{-1} \mathrm{P}(W \leq w)=\frac{f_{1}(x)}{f_{0}(x)}=r(x)
$$

The case for $f_{1}(x)=0$ can be established in the same way. This completes the proof of the first claim.

For the second claim, for any $0<\epsilon<f_{L}$, there exists $\delta^{\prime}>0$ such that for any $z \in \mathbb{R}^{d}$ satisfying $\|z-x\| \leq 2 \delta^{\prime}$, we have $\left|f_{0}(z)-f_{0}(x)\right| \leq \epsilon$ and $\left|f_{1}(z)-f_{1}(x)\right| \leq \epsilon$ from the local Lipschitz assumption. We take N_{0} sufficiently large such that $2 \frac{M}{N_{0}}<\left(f_{L}-\epsilon\right) \lambda\left(B_{0, \delta^{\prime}}\right)$. Then for any $0<w \leq 2 \frac{M}{N_{0}}$, we have $w<\left(f_{L}-\epsilon\right) \lambda\left(B_{0, \delta^{\prime}}\right)$. We take $t>0$ such that $w+t<$ $\left(f_{L}-\epsilon\right) \lambda\left(B_{0, \delta^{\prime}}\right)$. Then for any $\left(\nu_{0}, \nu_{1}\right) \in \mathcal{P}_{x, \mathrm{p}}\left(f_{L}, f_{U}, L, d, \delta\right)$,

$$
\begin{aligned}
\mathrm{P}(w \leq W \leq w+t) & =\nu_{1}\left(\left\{z \in \mathbb{R}^{d}: \nu_{0}\left(B_{z,\|x-z\|}\right) \in[w, w+t]\right\}\right) \\
& \leq \frac{f_{1}(x)+\epsilon}{f_{0}(x)-\epsilon} \nu_{0}\left(\left\{z \in \mathbb{R}^{d}: \nu_{0}\left(B_{z,\|x-z\|}\right) \in[w, w+t]\right\}\right) .
\end{aligned}
$$

Notice that f_{0} is lower bounded by f_{L}. Then for N_{0} sufficiently large,

$$
\limsup _{t \rightarrow 0} t^{-1} \mathrm{P}(w \leq W \leq w+t) \leq \frac{f_{1}(x)+\epsilon}{f_{0}(x)-\epsilon}(1+\epsilon) .
$$

This then completes the proof.
Q.E.D.

S5.3. Proof of Lemma S3.4

Proof of Lemma S3.4: Due to the i.i.d.-ness of Z and \widetilde{Z},

$$
\begin{aligned}
& \left(\frac{N_{0}}{M}\right)^{2}\left[\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right. \\
& \left.\quad-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\tilde{W} \leq \tilde{V}, \widetilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \\
& =\left(\frac{N_{0}}{M}\right)^{2} \int_{0}^{2 \frac{M}{N_{0}}} \int_{0}^{2 \frac{M}{N_{0}}}\left[\mathrm{P}\left(V \geq w_{1}, \tilde{V} \geq w_{2}\right)-\mathrm{P}\left(V \geq w_{1}\right) \mathrm{P}\left(\tilde{V} \geq w_{2}\right)\right] \\
& \quad \times f_{W}\left(w_{1}\right) f_{W}\left(w_{2}\right) \mathrm{d} w_{1} \mathrm{~d} w_{2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & 4\left(\frac{f_{U}}{f_{L}}\right)^{2}\left(\frac{N_{0}}{M}\right)^{2} \int_{0}^{2 \frac{M}{N_{0}}} \int_{0}^{2 \frac{M}{N_{0}}}\left|\mathrm{P}\left(V \geq w_{1}, \tilde{V} \geq w_{2}\right)-\mathrm{P}\left(V \geq w_{1}\right) \mathrm{P}\left(\tilde{V} \geq w_{2}\right)\right| \mathrm{d} w_{1} \mathrm{~d} w_{2} \\
= & 4\left(\frac{f_{U}}{f_{L}}\right)^{2} \int_{-1}^{1} \int_{-1}^{1} \left\lvert\, \mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)\right. \\
& \left.-\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \right\rvert\, \mathrm{d} t_{1} \mathrm{~d} t_{2}
\end{aligned}
$$

where the last step is from taking $w_{1}=\frac{M}{N_{0}}\left(1+t_{1}\right)$ and $w_{2}=\frac{M}{N_{0}}\left(1+t_{2}\right)$.
Let

$$
\begin{aligned}
S\left(t_{1}, t_{2}\right)= & \left\lvert\, \mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)\right. \\
& \left.-\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \right\rvert\, .
\end{aligned}
$$

If $t_{1} \geq t_{2} \geq 0, S\left(t_{1}, t_{2}\right) \leq \mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right)=\mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right)$. If $t_{2} \geq t_{1} \geq 0, S\left(t_{1}, t_{2}\right) \leq$ $\mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)=\mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)$. Then for $t_{1}, t_{2} \geq 0$,

$$
S\left(t_{1}, t_{2}\right) \leq \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{1} \vee t_{2}\right)\right)
$$

If $t_{1} \leq t_{2} \leq 0$ and $\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \geq \mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)$,

$$
\begin{aligned}
S\left(t_{1}, t_{2}\right) & \leq \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)-\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \\
& =\mathrm{P}\left(V \leq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \leq \mathrm{P}\left(V \leq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \\
& =\mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) .
\end{aligned}
$$

If $t_{1} \leq t_{2} \leq 0$ and $\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \leq \mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)$,

$$
\begin{aligned}
S\left(t_{1}, t_{2}\right) & \leq \mathrm{P}\left(\tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)-\mathrm{P}\left(V \geq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \\
& =\mathrm{P}\left(V \leq \frac{M}{N_{0}}\left(1+t_{1}\right), \tilde{V} \geq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \leq \mathrm{P}\left(V \leq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \\
& =\mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) .
\end{aligned}
$$

If $t_{2} \leq t_{1} \leq 0$, we can establish in the same way that

$$
S\left(t_{1}, t_{2}\right) \leq \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)
$$

Then for $t_{1}, t_{2} \leq 0$,

$$
S\left(t_{1}, t_{2}\right) \leq \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{1} \wedge t_{2}\right)\right)
$$

For $t_{1} \geq 0 \geq t_{2}$, if $t_{1}+t_{2} \geq 0, S\left(t_{1}, t_{2}\right) \leq \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right)$, and if $t_{1}+t_{2} \leq 0, S\left(t_{1}, t_{2}\right) \leq$ $\mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{2}\right)\right)$. Then

$$
\begin{align*}
& \left(\frac{N_{0}}{M}\right)^{2}\left[\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right. \\
& \left.\quad-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\tilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \\
& \leq 4\left(\frac{f_{U}}{f_{L}}\right)^{2} \int_{-1}^{1} \int_{-1}^{1} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& =4\left(\frac{f_{U}}{f_{L}}\right)^{2}\left[\int_{0}^{1} \int_{0}^{1} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}+\int_{-1}^{0} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}\right. \\
& \left.\quad+2 \int_{0}^{1} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}\right] \tag{S5.1}
\end{align*}
$$

where the last step is from the symmetry of $S\left(t_{1}, t_{2}\right)$.
For the first term in (S5.1), by the symmetry of $S\left(t_{1}, t_{2}\right)$ and the Chernoff bound,

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \quad \leq \int_{0}^{\infty} \int_{0}^{\infty} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}=2 \int_{0}^{\infty} \int_{0}^{\infty} S\left(t_{1}, t_{2}\right) \mathbb{1}\left(t_{1} \geq t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \quad \leq 2 \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{1} \vee t_{2}\right)\right) \mathbb{1}\left(t_{1} \geq t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \quad=2 \int_{0}^{\infty} t \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t \leq 2 \int_{0}^{\infty} t(1+t)^{M} e^{-M t} \mathrm{~d} t
\end{aligned}
$$

Notice that since $M \rightarrow \infty$, by Stirling's approximation,

$$
\begin{equation*}
\int_{0}^{\infty} t(1+t)^{M} e^{-M t} \mathrm{~d} t=\frac{1}{M}+\frac{e^{M}}{M} \int_{1}^{\infty} t^{M} e^{-M t} \mathrm{~d} t \leq \frac{1}{M}(1+o(1)) \tag{S5.2}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \leq \frac{2}{M}(1+o(1)) \tag{S5.3}
\end{equation*}
$$

For the second term in (S5.1),

$$
\begin{aligned}
\int_{-1}^{0} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} & =2 \int_{-1}^{0} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathbb{1}\left(t_{1} \leq t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \leq 2 \int_{-1}^{0} \int_{-1}^{0} \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{1} \wedge t_{2}\right)\right) \mathbb{1}\left(t_{1} \leq t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& =2 \int_{0}^{1} t \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}(1-t)\right) \mathrm{d} t \leq 2 \int_{0}^{1} t(1-t)^{M} e^{M t} \mathrm{~d} t
\end{aligned}
$$

Notice that

$$
\begin{equation*}
\int_{0}^{1} t(1-t)^{M} e^{M t} \mathrm{~d} t \leq \frac{1}{M} \tag{S5.4}
\end{equation*}
$$

We then obtain

$$
\begin{equation*}
\int_{-1}^{0} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \leq \frac{2}{M} \tag{S5.5}
\end{equation*}
$$

For the third term in (S5.1),

$$
\begin{aligned}
& \int_{0}^{1} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \quad=\int_{0}^{1} \int_{-t_{1}}^{0} \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}\left(1+t_{1}\right)\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}+\int_{0}^{1} \int_{-1}^{-t_{1}} \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}\left(1+t_{2}\right)\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \\
& \quad=\int_{0}^{1} t \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t+\int_{-1}^{0}(-t) \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t \\
& \quad \leq \int_{0}^{\infty} t \mathrm{P}\left(U_{(M)} \geq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t+\int_{-1}^{0}(-t) \mathrm{P}\left(U_{(M)} \leq \frac{M}{N_{0}}(1+t)\right) \mathrm{d} t \\
& \quad \leq \frac{1}{M}(1+o(1))+\frac{1}{M}=\frac{2}{M}(1+o(1))
\end{aligned}
$$

where the last step is from (S5.2) and (S5.4).
We then obtain

$$
\begin{equation*}
\int_{0}^{1} \int_{-1}^{0} S\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \leq \frac{2}{M}(1+o(1)) \tag{S5.6}
\end{equation*}
$$

Plugging (S5.3), (S5.5), (S5.6) into (S5.1) yields

$$
\begin{aligned}
& \left(\frac{N_{0}}{M}\right)^{2}\left[\mathrm{P}\left(W \leq V, \tilde{W} \leq \tilde{V}, W \leq 2 \frac{M}{N_{0}}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right. \\
& \left.\quad-\mathrm{P}\left(W \leq V, W \leq 2 \frac{M}{N_{0}}\right) \mathrm{P}\left(\tilde{W} \leq \tilde{V}, \tilde{W} \leq 2 \frac{M}{N_{0}}\right)\right] \leq 32\left(\frac{f_{U}}{f_{L}}\right)^{2} \frac{1}{M}(1+o(1)),
\end{aligned}
$$

and thus completes the proof.
Q.E.D.

REFERENCES

Abadie, Alberto, and Guido W. Imbens (2006): "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, 74, 235-267. [22]
Billingsley, Patrick (2008): Probability and Measure. John Wiley and Sons. [21,22]
Bogachev, Vladimir I., and Maria A. S. Ruas (2007): Measure Theory, Vol. 1. Springer. [1]
Brown, Russell A. (2015): "Building k-d Tree in O(knlogn) Time,"Journal of Computer Graphics Techniques, 4 (1), 50-68. [1]
Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2009): Introduction to Algorithms. MIT press. [1]
Friedman, Jerome H., Jon L. Bentley, and Raphael A. Finkel (1977): "An Algorithm for Finding Best Matches in Logarithmic Expected Time," ACM Transactions on Mathematical Software, 3 (3), 209-226. [1]
Romanovsky, Vladimir (1923): "Note on the Moments of a Binomial $(p+q)^{n}$ About Its Mean," Biometrika, 15 (3/4), 410-412. [10]
Stein, Elias M. (2016): Singular Integrals and Differentiability Properties of Functions. Princeton University Press. [11]
Tsybakov, Alexandre B. (2009): Introduction to Nonparametric Estimation. Springer. [19]
VAN DER VAART, AAD W. (1998): Asymptotic Statistics. Cambridge University Press. [24]
Zhao, Puning, And Lifeng Lai (2022): "Analysis of KNN Density Estimation," IEEE Transactions on Information Theory, 68 (12), 7971-7995. [21]

Co-editor Guido Imbens handled this manuscript.

Manuscript received 22 February, 2022; final version accepted 7 September, 2023; available online 7 September, 2023.

[^0]: Zhexiao Lin: zhexiaolin@berkeley.edu
 Peng Ding: pengdingpku@berkeley.edu
 Fang Han: fanghan@uw.edu

