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APPENDIX A: PROOFS

A.1. Proof of Proposition 1

THE FIRST PART OF THIS PROOF ESTABLISHES THAT the surplus function is strictly increas-
ing in productivity and job security. It follows that workers move towards more productive
and secure jobs along the job ladder. The second part then establishes that it follows that
the expected probability of job loss is a strictly decreasing function of the time since the
last unemployment spell (employment tenure).

Part 1: Slope of the Surplus Function

We want to prove that S(θ� s) is strictly increasing in productivity θy when S(θ� s) is
strictly positive. To that end, whenever S(θ� s) is strictly positive, S(θ� s) = Ŝ(θ� s), where

Ŝ(θ� s) = p(θy� s) − z
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This auxiliary function is identical to the surplus function when strictly positive but does
not restrict it to be non-negative. The set M̂1(θ� s) here collects all jobs x such that
Ŝ(x� s) > Ŝ(θ� s) and Ŝ(x� s) > 0 and is hence identical to M1(θ� s).

To show that the surplus is strictly increasing in θy , it then suffices to show that

T Ŝ(θ� s) = p(θy� z)
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is a contraction and that it maps weakly increasing into strictly increasing functions. Note
that I have omitted the constants that are independent of θ which is without loss. The
operator is a contraction because it satisfies Blackwell’s sufficient conditions.

Next, denote the integrand in (1) by S̃(θ� s) ≡ max{Ŝ(θ� s)�0} + λ1α
∫
M1(θ�s) (Ŝ(x� s) −

max{0� Ŝ(θ� s)}) dF (x). We will show that when Ŝ(θ� s) is non-decreasing in θy , then
S̃(θ� s) is non-decreasing in θy . To do so, take two jobs θ1, θ2 with θ1�2 < θy�2 and
θδ�1 = θδ�2 = θδ. Assuming Ŝ(θ� s) is non-decreasing in θy , we have that

S̃(θ2� s) − S̃(θ1� s)
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Next, we show that if Ŝ(θ� s) is weakly increasing in θy , then T Ŝ(θ� s) is strictly increasing
in θy . Again consider θ1, θ2 with θ1�2 < θy�2 and θδ�1 = θδ�2 = θδ. We have that

T Ŝ(θ1� s) = p(θy�1� z) +β(1 − θδ)
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which implies the result. The weak inequality follows from (2). The strict inequality fol-
lows from the assumptions on the production function. The proof for 1 − θδ is almost
analogous and therefore omitted. It follows that Ŝ(θ� s) and hence S(θ� s) is strictly in-
creasing in θy and strictly decreasing in θδ whenever S(θ� s) > 0.

Part 2: Declining Rate of Job Loss

Consider newly employed workers with employment tenure τ = 1 which just exited un-
employment. Expected job security 1 − E[θδ|τ = 1] depends on the expected θδ in the
offer distribution conditional on S(θ) > 0. We show that E[θδ|τ = 2] < E[θδ|τ = 1]. Con-
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sider the workers who move from θ to θ̂ after the first period. If θ̂y < θy , it must be that
θ̂δ < θδ for S(θ̂) > S(θ). If θ̂y > θy , we have that E[θ̂δ|θ̂y] < θδ by Assumption 1. Thus,
conditional on a job-to-job transition, E[θδ|τ = 2] < E[θδ|τ = 1]. Because of search fric-
tions, the share of workers transitioning to a new job θ̂ is strictly positive for all τ. Since
non-movers have unaltered θ, we have that E[θδ|τ = 2] < E[θδ|τ = 1] unconditionally.1

For τ > 2, proceed by induction.

A.2. Wages

The moment the wage gets set, the current skill and (new) benchmark skill are iden-
tical and the firm receives an expected value J(θ� θ̂� s� s) that is given directly from
the bargaining rules. Thus, the wage can be obtained from equation (6), evaluated at
ŝ = s:

J(θ� θ̂� s� s)

= p(θy� s) −w(θ� θ̂� s) +β
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(
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)
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The left-hand side is known and J(θ�x� s′� s′) is known for all s′ for the same reason. The
set M1 is known and contains all jobs with joint higher surplus. The indicators are likewise
straightforward to construct. However, the values J(θ�x� s′� s) for s′ �= s are not generally
known and neither are the renegotiation sets M2 since these depend on the wage. These
objects must hence be solved for jointly with wages.

A.3. Planning Problem

Because of the partial equilibrium nature of the model, the utilitarian planner’s prob-
lem is simple. The planner decides which jobs are acceptable for the unemployed
and which jobs are preferable for the employed. Her objective is to maximize the ex-
pected present value of flow output (which includes z when unemployed) produced by a
worker.

Denote by YP (θ� s) the expected present value of output produced by a type s worker
currently matched with firm θ. The worker moves to another job θ′ only if it falls into
the set MP

1 (θ� s) chosen by the planner. Denote by UP (θ� s) the expected present value
of output produced by an unemployed worker who accepts a job offer θ′ only if it falls
into the set MP

1 (u� s) chosen by the planner. As in the equilibrium cases, I will sup-
press the dependence of these sets on employment status and skill. Define SP (θ� s) ≡
max{0�YP (θ� s) − UP (s)}, the social net value of an employed worker and her job. Pro-

1This argument contrasts E[θδ|τ = 2] with E[θδ|τ = 1] conditional on not losing a job at the end of the
period. The unconditional comparison includes an additional composition effect. Workers with high θδ are
more likely to lose their job. That is, the distribution of θδ among job losers first-order stochastically dominates
the one among stayers. This effect just reinforces the argument, which is why the proof is restricted to job-
stayers.
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ceeding like in the decentralized case gives

YP (θ� s) = p(θy� s) +β
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The solution to SP (θ� s) implies the sets MP
1 for all firms θ and u, that is, it implies the

solution to the planner problem. Therefore, comparing equations (5) and (4) with the
expressions for bilateral surplus in (7) and the value of unemployment in (4), we have
that

SP (θ� s) = S(θ� s) if α= 1� (6)

It follows immediately that the socially efficient ranking of jobs and reservation strategies
can be derived from solving the equilibrium value functions under α = 1. I notice that
these expressions can also be derived from a constrained maximization problem where
the planner maximizes aggregate output subject to frictions.

APPENDIX B: DATA AND ESTIMATION

The SIAB comes in spell format. I convert the main data set into a monthly panel
which I use to compute the moments used in the estimation. Section B.1 describes the
construction of the main monthly panel data set and how I construct the moments that
are used in the estimation. I collapse the monthly panel into an annual panel which is
used in the regressions in Section D.1.

B.1. Monthly Panel and Construction of Variables and Moments

I use the publicly available code by Eberle, Schmucker, and Seth (2013) to convert the
spells into monthly cross-sections which we then merge into a monthly panel covering
1993–2010.2 This assigns the spell information pertaining to a particular reference date

2I also use this code to assign a main employer. Download link accessed under http://doku.iab.de/fdz/
reporte/2013/MR_04-13_EN.pdf.

http://doku.iab.de/fdz/reporte/2013/MR_04-13_EN.pdf
http://doku.iab.de/fdz/reporte/2013/MR_04-13_EN.pdf
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during a month as the monthly observation. I record a worker as employed for a given
month if the worker is full-time employed subject to Social Security (at the reference
date) and otherwise as non-employed.3

During non-employment, I assign a value of 0 for earnings. During employment, I as-
sign the average daily wage during the spell as reported by the employer as the wage
observation. To deflate, I use the OECD’s CPI for Germany.4 During months of employ-
ment, I assign the average daily wage as the average daily earnings. This is consistent with
restricting employment to full-time employment. I note that the data are censored at the
Social Security contribution ceiling which I do not make any adjustments for. Finally, I
censor the bottom percent and top per-mille of all wage observations in any given year.

I restrict the sample to workers of age 18–65. I next describe how I construct the em-
pirical moments discussed in Section 3.3. For transitions into unemployment, I compute
the rate at which currently employed workers exit employment. Specifically, I record an
EU transition whenever a worker is full-time employed subject to Social Security in one
month but not in the month thereafter and, in addition, shows up as receiving unemploy-
ment insurance (UI) the month thereafter (or is still non-employed in the month 2 or 3
after separation and then starts receiving UI).5

For transitions into employment, I compute the rate at which currently non-employed
workers who are receiving UI transition into employment. In order to compute the rate
of EE transitions, I compute the rate at which currently employed workers are employed
at another establishment the following month.

The set of controls in regression (8) are listed in Figure 2. In regressions (9) and (10),
I restrict to unemployment spells up to 2 years and job spells up to 8 years. In order
to compute the ratio of the wages of the newly employed to the wages of the average
worker, I project wages on fixed effects for age, gender, education, and calendar year and
residualize. I then take the ratio of average residualized wages of those with 25 months
of employment tenure and the average of all residualized wages. To construct the 50–10
and 90–50 wage ratios, I project log wages on an individual fixed effect and year fixed
effects. I residualize and take the difference. Finally, to compute average wage growth, I
compute individual 12 month ahead wage growth and normalize by the aggregate wage
growth (in the same calendar year) to normalize for aggregate growth which the model
does not have. I eliminate the top and bottom percentile of wage growth observations and
take the pooled mean. For remaining details, see the main text.

B.2. Annual Panel for Section 4

I construct annual earnings in year y as the mean earnings across all months within
the year. I construct annual wages as mean wages during months of employment. When

3The main reason for only including full-time employment is that the data do not contain detailed informa-
tion on hours but rather just a part-time indicator. Thus, constructing wages, which are key for the estimation,
is problematic for part-time workers. I thus follow Card, Heining, and Kline (2013) in restricting attention to
the full-time employed. However, in Appendix C, I check whether the displacement regressions are sensitive
to the classification of part-time workers.

4https://data.oecd.org/price/inflation-cpi.htm, downloaded on 9/11/2018.
5Thus, some very brief (within-month) E-U-E transitions go undetected. Germany has two different tiers of

unemployment insurance. I lump both unemployment benefits (ALG) and unemployment assistance (ALHI)
as UI. In contrast to the United States, the German social code classifies someone as unemployed only if they
register as unemployed with the employment agency. As such, it is natural to condition on being registered in
either of the two UI tiers when detecting an unemployment spell.

https://data.oecd.org/price/inflation-cpi.htm
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collapsing the monthly panel into the annual panel, I record job loss in year y if I record
at least one job loss in the monthly panel during that year. Further, I merge information
on the number of full-time employees at an establishment to register a mass layoff as de-
scribed in the robustness Section 4.1.3. I record as employer the establishment the worker
works at in January.

B.3. Details of the Estimation

I estimate the parameter vector φ via Simulated Method of Moments,

φ̂ = arg min
φ

L(φ) ≡ g(φ)′Wg(φ)�

where W is a weighting matrix and g(φ) is a K × 1 vector of differences between several
statistics in the data and their model counterparts in simulated data. K is the number of
targets, 14 in total, listed in Section 3.3 and Table 2. I target the log difference between all
the moments listed in these sections.
W is a diagonal matrix. Because λ0 exactly equals the job-finding-rate, I fix it at that

value and set its weight to zero. The rest of W is an identity matrix, except I triple the
weight on three targets: the rate of job loss, the job-to-job rate, and the ratio of the wage
of newly hired workers to the average wage.

To find φ̂, I proceed as follows. Starting from a set of externally calibrated parame-
ters, I follow Lise (2013) and Lise, Meghir, and Robin (2016) in using a Metropolis–
Hastings algorithm to further reduce L(φ): I create chains (φ0� � � � �φN) starting at φ0.
To update the parameter vector from φj to φj+1, I draw a new vector of parameters
φj′ from N (φj��), where the diagonal matrix � is scaled proportionally to φ0. I then
compute L(φj′) − L(φj). If positive, φj+1 = φj′ . If negative, φj+1 = φj′ with probability
exp(A(L(φj) −L(φj′))), where A is a tuning parameter that is chosen—jointly with the
scaling factor of �—so as to obtain an average rejection rate of 0�77, as suggested by Gel-
man, Carlin, Stern, and Rubin (2003), over the first 10 iterations. I choose the length of
the chains N to be 350 and simulate 4000 chains. I pick the global minimum from all 1.4
million model simulations as φ̂.

To construct standard errors for these parameter estimates, we can cast this indirect
inference approach in terms of GMM under standard regularity conditions (see, for in-
stance, Honore, Jorgensen, and de Paula (2020)). Then we have that

φ̂
d→ N(φ�Σ)�

where

Σ= (
G′WG

)−1
G′W SWG

(
G′WG

)−1
�

S contains the standard errors of the empirically measured moments. As is common prac-
tice, I set the off-diagonal elements of S to zero (Altonji and Segal (1996)). G is a M ×K
matrix that contains the gradient of each model-generated statistic with respect to the
model parameters evaluated at φ̂ which I compute based on numerical simulations.

APPENDIX C: ADDITIONAL ROBUSTNESS FOR REDUCED-FORM RESULTS

This subsection computes the empirical wage and earnings response to displacement
as measured by specification (15) in a few additional ways. I contrast the results with the
baseline specification in Figure C.1.
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FIGURE C.1.—Earnings and wage response—additional robustness. Notes: (a) baseline, (b) the treatment
group in year y includes all separators in years y , y + 1, y + 2, (c) only men in the sample, (d) and (e) see
description in text. Two-way clustered standard errors used to construct 95% confidence intervals.
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First, a common practice is to define the treatment group somewhat differently. For
instance, Davis and von Wachter (2011) included in the treatment group in year y all
separators in years y , y + 1, y + 2. This mechanically smooths earnings and wages losses
around the layoff year as can be seen in Figure C.1(b).

Second, I restrict the sample to men only. Earnings and wages recover more strongly
over time compared with the baseline. Third, I include results for log earnings and log
wages where, instead of including the average pre-separation earnings/wage decile, I in-
clude a worker fixed effect. The results are similar but there is even less recovery in wages
and earnings in the long run.

Finally, I treat part-time wages and earnings differently. Recall that I do not observe
hours, so for the main analysis I treat workers as employed only when full-time em-
ployed. That is, whenever a worker is not full-time employed, I assign earnings of zero
and a missing wage. Here, I also treat workers that are part-time employed (“gering-
fuegig beschaeftigt”) as employed and assign their daily wage as the relevant value for
both wages and earnings (I merely see that status but still no hours). I report the corre-
sponding results in Figure C.1(e). The long-run recovery in earnings and wages is more
pronounced but the overall picture remains the same.

APPENDIX D: ADDITIONAL MATERIAL

D.1. Derivation of Surplus

The exposition used that the joint surplus does not depend on the internal division of
rents, something we have yet to show. Therefore, write the joint surplus in general form,
S(θ� θ̂� s� ŝ) ≡ max{W (θ� θ̂� s� ŝ) − U (s) + J(θ� θ̂� s� ŝ)�0} and plug in equations (5) and
(6). This gives
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∫
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+
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)(
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(
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(
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))
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(
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(
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(
θ�u� s′� s′))

× I3U
(
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(
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}
�

Plug in (4) for U (s), add and subtract β
∫
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∫
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Using the bargaining rules and the definition of surplus:

S(θ� θ̂� s� ŝ) = max
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Conjecture that the surplus function does not depend on the negotiation benchmark
S(θ� θ̂� s� ŝ) = S(θ� s). Hence,
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where I use that I1 + I2 + I3 = 1 and S(θ� s′) = 0 if I3 = 1. Canceling terms, we arrive at

S(θ̂� s) = max
{

0�p(θy� s) − z

+β

(∫
S
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(
S
(
θ�′ s
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∫
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(
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−
∫
S

∫
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(
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(
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∫
S
U

(
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(
s′|s

)

−
∫
S
U

(
s′)dGu

(
s′|s

))}
�

This is the expression offered in the main text which also verifies that the joint surplus
does not depend on the negotiation benchmark.
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