# CORRIGENDUM: A PREFERRED-HABITAT MODEL OF THE TERM STRUCTURE OF INTEREST RATES 

Dimitri Vayanos<br>Department of Finance, London School of Economics, CEPR, and NBER<br>JEAN-LUC VILA<br>Capula Investment Management

NOTE: This document contains a list of one typo in the main text and six typos in the online appendix of the article. Each typo is followed by an explanation of why it is only a typo and does not affect the analysis in the article. The main text and online appendix refer to the documents in the journal's website https://www.econometricsociety.org/publications/ econometrica/2021/01/01/preferred-habitat-model-term-structure-interest-rates.

## 1. MAIN TEXT

Page 83, second full paragraph, line 5 from the end: "We assume that the eigenvalues of $\Gamma$ have negative real parts." should be replaced by "We assume that the eigenvalues of $\Gamma$ have positive real parts."

This is a typo, as all the analysis in the paper assumes that the eigenvalues of $\Gamma$ have positive real parts. For example, the next sentence begins with "Hence, $q_{t}$ is stationary...", which follows if and only if the eigenvalues of $\Gamma$ have positive real parts. Likewise, in page 86 in the line just after Equation (8), where the model is specialized to the case of no demand risk and the matrix $\Gamma$ becomes a scalar, it is stated " $\ldots$. where $\kappa_{r}=\Gamma_{1,1}>0$ ".

## 2. ONLINE APPENDIX

1. Page 1, first paragraph of the proof of Proposition 1, line 2 from the end: "... and converges to $\kappa_{r}$ when $\kappa_{r}^{*}$ goes to zero." should be replaced by "... and converges to $\kappa_{r}$ when $\kappa_{r}^{*}$ goes to infinity."

This is a typo. Inspection of Equation (25) in the main text shows that its righthand side converges to $\kappa_{r}$ when $\kappa_{r}^{*}$ goes to infinity. The behavior of the right-hand side of Equation (25) when $\kappa_{r}^{*}=0$ is mentioned earlier in the same sentence. The last sentence of the first paragraph of the proof of Proposition 1 is implied by the correct statement.
2. Page 6, Equation (A.14): The integral sign $\int_{0}^{\infty}$ should be deleted.

This is a typo. There is no integration in this equation. Equation (A.14) is subsequently used in Equation (A.26), which correctly has no integral sign.
3. Page 8 , first paragraph of the proof of Theorem 1, line 2: $\Sigma=\operatorname{Diag}\left(\sigma_{r}^{2}, \sigma_{\beta}^{2}\right)$ should be replaced by $\Sigma=\operatorname{Diag}\left(\sigma_{r}, \sigma_{\beta}\right)$.

This is a typo. It is through the correct definition of $\Sigma$ (i.e., without the squares) that Equation (A.14) implies Equation (A.26). Also, the correct definition of $\Sigma$ is consistent with Equation (7) in the main text and with the statement in page 86 in the line just after Equation (8) that "... $\sigma_{r}=\Sigma_{1,1}$ ".

[^0]4. Pages 26-27: The wealth $\hat{W}_{n, t}$, the consumption $\hat{c}_{n, t}$, and the return $\hat{\beta}_{n, t}^{(T-t)}$ are defined with the subscript $n$ in page 25 , but the use of the subscript is not consistent in pages 26-27.

- $\hat{c}_{n, t}$ is sometimes referred without the subscript $n$ as $\hat{c}_{t}$, for example, in the line just after Equation (B.5). The correct notation should be $\hat{c}_{n, t}$ rather than $\hat{c}_{t}$.
- $\Delta \hat{c}_{n, 0}$ is sometimes referred without the subscript $n$ as $\Delta \hat{c}_{0}$, for example, in the fourth line after Equation (B.5), or with the subscripts 0 and $n$ inverted, for example, in Equation (B.5). The correct notation should be $\Delta \hat{c}_{n, 0}$ rather than $\Delta \hat{c}_{0}$ or $\Delta \hat{c}_{0, n}$.
- $\hat{W}_{n, 0}$ is referred without the subscript $n$ as $\hat{W}_{0}$, for example, in Equation (B.5). The correct notation should be $\hat{W}_{n, 0}$ rather than $\hat{W}_{0}$. Same for $\hat{W}_{n, T}$, for example, in the line just after Equation (B.4).
- $\hat{\beta}_{n, 0}^{(T)}$ is referred with the subscripts 0 and $n$ inverted, for example, in Equation (B.5). The correct notation should be $\hat{\beta}_{n, 0}^{(T)}$ rather than $\hat{\beta}_{0, n}^{(T)}$.

5. Pages 25-29: For consistency, a subscript $n$ should be added to $C_{T}$ (since such a subscript has been added to $\hat{c}_{n, t}$ ). That is, it should be $C_{n, T}$ rather than $C_{T}$. Same for $C_{t+T}$.
6. The phrase "an invertible function" should be replaced by "a function" in the statement of Proposition B. 1 and in the third line after Equation (B.5).

This is a typo. Since $q_{t}=\left(r_{t}, \beta_{1, t}, \ldots, \beta_{K, t}\right)^{\top}$, the statement in the third line after Equation (B.5) (... sample paths of $q_{t}$ and $\hat{\beta}_{n, t}^{(T-t)}$ exist such that $\ldots$ ) holds provided that $r_{t}$ is not perfectly correlated with $\left(\beta_{1, t}, \ldots, \beta_{K, t}\right)$, and that $\hat{\beta}_{n, t}^{(T-t)}$ is a function of $\left(\beta_{1, t}, \ldots, \beta_{K, t}\right)$.

Co-editor Giovanni L. Violante handled this manuscript.
Manuscript received 6 February, 2023; final version accepted 10 February, 2023; available online 13 February, 2023.


[^0]:    Dimitri Vayanos: d.vayanos@lse.ac.uk
    Jean-Luc Vila: JVila@capulaglobal.com

