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Summary of Notation: We denote by L2([0�1]) the space of square integrable functions
defined on [0�1] and by L2([0�1];Rn) the space of square integrable vector valued func-

tions defined on [0�1]. The norms in these spaces are denoted by ‖v‖ :=
√∑n

h=1[v]2
h,

‖f‖L2 :=
√∫ 1

0 f (x)2 dx, ‖g‖L2;Rn :=
√∫ 1

0 ‖g(x)‖2 dx, respectively. [v]h denotes the hth
component of the vector v. With the exception of N and R (which denote the sets of
natural and real numbers, respectively), we use blackboard bold symbols (such as O) to
denote operators acting on L2([0�1]) or on L2([0�1];Rn). The induced operator norms
are denoted by |||O||| := sup{f |‖f‖L2 =1} ‖Of‖L2 and |||O||| := sup{g|‖g‖L2;Rn=1} ‖Og‖L2;Rn . We de-
note by λmax(L) and by r(L) the largest eigenvalue and the spectral radius of the linear
integral operator Lf := ∫ 1

0 L(x� y)f (y) dy with symmetric kernel L(x� y) = L(y�x). We
denote sets by using calligraphic symbols (such as S) and the set of subsets of Rn by 2R

n .
The symbol 1N denotes the vector of all ones in R

N and 1[0�1](x) the function constantly
equal to one in [0�1]. I is the identity operator and I the identity matrix.

APPENDIX B: INCOMPLETE INFORMATION IN SAMPLED NETWORK GAMES

In the main text, we assumed that agents have perfect information about the network
A[N]
s .22 In this appendix, we generalize our analysis to sampled network games with in-

complete information. As in the main text, we consider sampled network games with N
agents whose types {ti}Ni=1 are drawn independently and uniformly at random from [0�1]
(recall that, e.g., in the community structure model of Example 2 an agent’s type rep-
resents his community, while in the location model of Example 3 an agent’s type is his
location in the line segment [0�1]). Differently from the main text, we here assume that
agents do not have access to the exact structure of the sampled network A[N]

s , but instead
each agent i knows the stochastic network formation process (i.e., the graphon W in our
framework) and his own type ti ∈ [0�1], which determines the probability W (ti� tj) that
he will connect to agent j of (random) type tj . We next define a symmetric Bayesian Nash
equilibrium for this incomplete information game and show that it is well approximated
by the equilibrium of a graphon game with graphon W .

Note that the strategy b(x) of each agent in an incomplete information sampled net-
work game specifies the action that the agent will take as a function of his type x. Assum-
ing that all other agents use the strategy b, the expected payoff of an agent i of type ti = x
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playing strategy s(x) ∈ S(x) is given by23

Uexp

(
s(x) | b) = EN�t−i�links

[
U

(
s(x)�

1
N − 1

∑
j �=i

[
A[N]
s

]
ij
b
(
tj

)
� θ(x)

)]
� (28)

where U is as in (1) and EN�t−i�links denotes the expectation with respect to the number
of agents, their types (each agent knows its type ti = x but has no information about
the other agents types t−i := {tj}j �=i, which are independent from ti), and the link real-
izations (which are generated according to Bernoulli random variables with probability
{W (ti� tj)}j �=i). We define a symmetric Bayesian Nash equilibrium as follows.

DEFINITION 6: An incomplete information sampled network game G in(S�U�θ�W ) is a
network game with a random number N of agents, whose types {ti}Ni=1 are sampled inde-
pendently and uniformly at random from [0�1], that interact according to a network A[N]

s

sampled from the graphon W according to Definition 3.24 Each agent i has information
about the graphon W , his own type ti, the strategy sets S, the function θ, and the payoff
function U , while is uninformed about A[N]

s and the other agents’ types t−i.

DEFINITION 7: Consider an incomplete information sampled network game G in(S�U�
θ�W ). A function b such that b(x) ∈ S(x) for all x ∈ [0�1] is a symmetric ε-Bayesian Nash
equilibrium if, for all x ∈ [0�1],

Uexp

(
b(x) | b) ≥Uexp(s̃ | b) − ε for all s̃ ∈ S(x)�

The function b is an exact symmetric Bayesian Nash equilibrium if the previous inequality
holds for ε= 0.

REMARK 7: Note that a strategy profile in both the graphon game and the incomplete
information sampled network game is a function that maps x ∈ [0�1] into a strategy s(x) ∈
S(x). In the graphon game, this function specifies the action of a continuum of agents
x ∈ [0�1] interacting according to the graphonW ; in the incomplete information sampled
network game, it specifies the action an agent with type x takes if he does not know the
type of the other sampled agents and the realized links.

We start by focusing on linear quadratic games with payoff function as in (3).

THEOREM 4: Consider a linear quadratic game with payoff as in (3) and assume that the
peer effect parameter α is the same for each agent while θ(x) is agent specific. A function s̄ is a
Nash equilibrium of the graphon game G(S�U�θ�W ) if and only if it is a symmetric Bayesian
Nash equilibrium for the incomplete information sampled network game G in(S�U�θ�W ).

23In this section, we define the local aggregate by dividing by N − 1 instead of N to account for the fact
that agent i does not consider itself in the local aggregate. This allows us to obtain exact equivalence of the
graphon game equilibrium and symmetric Bayesian Nash equilibrium in incomplete information sampled net-
work games with linear quadratic payoffs. With the normalization 1

N
instead of 1

N−1 , the equivalence would
hold asymptotically in N .

24The distribution ofN does not matter for our results, with the exception of Theorem 5 in which we assume
that the support of such distribution is bounded from below by Nmin.
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PROOF: Let z̄(x) = ∫ 1
0 W (x� y)s̄(y) dy . By definition, s̄ is a graphon equilibrium if and

only if, for all x ∈ [0�1], s̄(x) ∈ S(x) and

U
(
s̄(x)� z̄(x)� θ(x)

) ≥U(
s(x)� z̄(x)� θ(x)

)
for all s(x) ∈ S(x)� (29)

Note that for linear quadratic sampled network games with partial information, the
expected payoff of an agent with type ti = x is

Uexp

(
s(x) | s̄) = EN�t−i�links

[
−1

2
(
s(x)

)2 +
(
α

1
N − 1

∑
j

[
A[N]
s

]
ij
s̄
(
tj

) + θ(x)
)
s(x)

]

= −1
2
(
s(x)

)2 +
(
αEN�t−i�links

[
1

N − 1

∑
j

[
A[N]
s

]
ij
s̄
(
tj

)] + θ(x)
)
s(x)

=U(
s(x)� zexp(x)� θ(x)

)
�

where we defined zexp(x) := EN�t−i�links[ 1
N−1

∑
j[A

[N]
s ]ij s̄(tj)].25 Hence s̄ is a symmetric

Bayesian Nash equilibrium if and only if, for all x ∈ [0�1], s̄(x) ∈ S(x) and

U
(
s̄(x)� zexp(x)� θ(x)

) ≥U(
s(x)� zexp(x)� θ(x)

)
for all s(x) ∈ S(x)� (30)

We conclude the proof by showing that zexp(x) = z̄(x) for all x ∈ [0�1], proving that
conditions (29) and (30) are equivalent. To this end, note that

zexp(x) = EN�t−i�links

[
1

N − 1

∑
j �=i

[
A[N]
s

]
ij
s̄
(
tj

)]

= ENEt−i |NE links|t−i�N

[
1

N − 1

∑
j �=i

[
A[N]
s

]
ij
s̄
(
tj

)]

= ENEt−i |N

[
1

N − 1

∑
j �=i
W

(
x� tj

)
s̄
(
tj

)]
� (31)

and for any fixed N ,

Et−i |N

[
1

N − 1

∑
j �=i
W

(
x� tj

)
s̄
(
tj

)]

= 1
N − 1

∑
j �=i

Et−i |N
[
W

(
x� tj

)
s̄
(
tj

)] = 1
N − 1

∑
j �=i

Etj
[
W

(
x� tj

)
s̄
(
tj

)]

= 1
N − 1

∑
j �=i

∫ 1

0
W (x� y)s̄(y) dy = 1

N − 1

∑
j �=i
z̄(x) = z̄(x)�

25Note that EN�t−i �links[ 1
N−1

∑
j[A

[N]
s ]ij s̄(tj)] is a function of the type ti = x of agent i since a link between

agent i and j forms (i.e., [A[N]
s ]ij = 1) with Bernoulli probability W (ti� tj) =W (x� tj).
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where we used the fact that the {tj}Nj=1 are independent and uniformly distributed in [0�1].
Hence,

zexp(x) = ENEt−i |N

[
1

N − 1

∑
j �=i
W

(
x� tj

)
s̄
(
tj

)] = ENz̄(x) = z̄(x)� (32)

Note that zexp(x) does not depend on the distribution of N . Q.E.D.

B.1. Generalization to Lipschitz Payoff Functions

In the previous subsection, we focused on games with linear quadratic payoff functions
and we showed that s̄ is a graphon equilibrium if and only if it is a symmetric Bayesian
Nash equilibrium for an incomplete information sampled network game with any num-
ber of agents. We next consider a more general class of payoff functions, satisfying the
following assumption.

ASSUMPTION 5: The payoff functionU (s� z�θ) is Lipschitz continuous in z uniformly over
s and θ, with constant LU .

The expected payoff for an agent of type ti = x in this case is

Uexp

(
s(x) | b) = EN�t−i�links

[
U

(
s(x)�

1
N − 1

∑
j

[
A[N]
s

]
ij
b
(
tj

)
� θ(x)

)]

= Eζb(x)

[
U

(
s(x)� ζb(x)� θ(x)

)]
�

where ζb(x) is a random variable that describes the possible realizations of local aggre-
gate perceived by an agent of type x over different network realizations when all agents
play according to b. Note that, when the strategy b equals a graphon game equilibrium s̄,
Eζs̄ (x)[ζs̄(x)] = z̄(x) = ∫ 1

0 W (x� y)s̄(y) dy as shown in (31) and (32). For the payoff func-
tions considered here, however,

Uexp

(
s(x) | s̄) = Eζs̄ (x)

[
U

(
s(x)� ζs̄(x)� θ(x)

)]
�=U(

s(x)�Eζs̄ (x)

[
ζs̄(x)

]
� θ(x)

) =U(
s(x)� z̄(x)� θ(x)

)
�

since the aggregate enters nonlinearly in the payoff function. Therefore, it is not possible
to use the argument of Theorem 4 to conclude that s̄ is a symmetric Bayesian Nash equi-
librium. Nonetheless, we show in Lemma 14 (in Appendix D.5) that ζs̄(x) concentrates
around z̄(x) for large population sizes. Hence, for large populations, U (s(x)� z̄(x)� θ(x))
is indeed a good approximation of Uexp(s(x) | s̄). By exploiting this observation, we show
in the next theorem that, under the additional assumption that each agent has access to
a lower bound (Nmin) on the population size in any realized sampled network game, the
graphon equilibrium s̄ is a symmetric ε-Bayesian Nash equilibrium with ε → 0 as the
lower bound on the population size Nmin → ∞.

THEOREM 5: Consider an incomplete information sampled network game G in(S�U�θ�W )
where S(x) = S for all x ∈ [0�1]. Suppose that all the agents know that the population size
N is sampled from a distribution whose support is strictly lower bounded by Nmin and sup-
pose that Assumptions 1, 2, 3, 4 (with 	 = 0), and 5 hold. Let s̄ be the unique equilibrium
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of the corresponding graphon game G(S�U�θ�W ). Then s̄ is a symmetric ε-Bayesian Nash
equilibrium with

ε=O
(√

log(Nmin)
Nmin

)
�

PROOF: It follows from the definition of graphon equilibrium that for all x ∈ [0�1],

U
(
s̄(x)� z̄(x)� θ(x)

) ≥U(
s(x)� z̄(x)� θ(x)

) ∀s(x) ∈ S�

where z̄(x) = ∫ 1
0 W (x� y)s̄(y) dy . Consider an agent of type ti. By the previous inequality

specialized for x= ti, it follows that for all s(ti) ∈ S ,

Uexp

(
s̄
(
ti
) | s̄) = Eζs̄ (ti)

[
U

(
s̄
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
))]

= Eζs̄ (ti)

[
U

(
s̄
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
)) −U(

s̄
(
ti
)
� z̄

(
ti
)
� θ

(
ti
))]

+U(
s̄
(
ti
)
� z̄

(
ti
)
� θ

(
ti
))

≥ −LUEζs̄ (ti)
[∥∥ζs̄(ti) − z̄(ti)∥∥] +U(

s
(
ti
)
� z̄

(
ti
)
� θ

(
ti
))

= −LUEζs̄ (ti)
[∥∥ζs̄(ti) − z̄(ti)∥∥]

+Eζs̄ (ti)

[
U

(
s
(
ti
)
� z̄

(
ti
)
� θ

(
ti
)) −U(

s
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
))]

+Eζs̄ (ti)

[
U

(
s
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
))]

≥ −2LUEζs̄ (ti)
[∥∥ζs̄(ti) − z̄(ti)∥∥] +Eζs̄ (ti)

[
U

(
s
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
))]

=: −ε+Uexp

(
s
(
ti
) | s̄)�

The proof is concluded upon showing ε := 2LUEζs̄ (ti)[‖ζs̄(ti) − z̄(ti)‖] = O(
√

log(Nmin)
Nmin

).
Since z̄(ti) = Eζs̄ (ti)[ζs̄(t

i)], we need to show that ζs̄(ti) concentrates around its mean when
Nmin → ∞. We show in Lemma 14 (given in Appendix D.5) that for any fixed population
of size N and any fixed ti with probability at least 1 − 2n+1

(N−1)2 , it holds ‖ζs̄(ti) − z̄(ti)‖ ≤ ε′,

with ε′ :=O(
√

log(N−1)
N−1 ). It follows that

Eζs̄ (ti)|N
[∥∥ζs̄(ti) − z̄(ti)∥∥] ≤

(
1 − 2n+ 1

(N − 1)2

)
ε′ + 2n+ 1

(N − 1)2 2smax

≤ ε′ + 2(2n+ 1)smax

(N − 1)2 =O
(√

log(N − 1)
N − 1

)
�

where we used that ‖ζs̄(ti) − z̄(ti)‖ ≤ 2smax for all realizations by Assumption 2. Conse-

quently, if N >Nmin, Eζs̄ (ti)[‖ζs̄(ti) − z̄(ti)‖] = ENEζs̄ (ti)|N[‖ζs̄(ti) − z̄(ti)‖] =O(
√

log(Nmin)
Nmin

).
Q.E.D.

APPENDIX C: IDENTIFICATION OF UNKNOWN PARAMETERS

Consider a setting in which agents have payoffs as given in (2) which additionally de-
pend on a common parameter η̄ (for simplicity, assume n = 1 so that agents’ strategies
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are scalars). This could be the case, for example, in a linear quadratic game with payoff

Uη̄

(
si� zi(s)� θi

) = −1
2
(
si

)2 + (
θi + η̄zi(s))si� (33)

where the common parameter η̄ > 0 represents the strength of peer effects. In this sec-
tion, we consider the problem of identifying the parameter η̄ from the observation of a
sampled equilibrium s̄[N] ∈ R

N . We here assume that the realized networkA[N] is unknown
(so that results such as Bramoullé, Djebbari, and Fortin (2009) cannot be applied). In-
stead, we assume that the networkA[N] is a realization from an underlying known graphon
W (e.g., A[N] may be a realization from a stochastic block model).

Let us denote by � the set of parameters η for which the corresponding graphon game
G(S�Uη�θ�W ) satisfies Assumptions 1 and 3. Moreover, denote by s̄η ∈ L2([0�1]) the
unique equilibrium of G(S�Uη�θ�W ). To identify the parameter η̄ from an observation
of s̄[N], one could solve the following optimization problem:

η̂ := arg min
η∈�

∥∥s̄[N] − s̄η
∥∥
L2� (34)

where s̄[N] denotes the step function equilibrium. Intuitively, one can select as estimate
the parameter η that minimizes the distance between the observed sampled equilibrium
(s̄[N]) and the equilibrium (s̄η) of a graphon game with parameter η. We next show that if
the parameter η̄ is identifiable, as defined next, then ‖η̂− η̄‖ → 0 as N → ∞.

DEFINITION 8: A parameter η̄ ∈ � is identifiable if there exists Lη̄ > 0 such that, for
any η ∈�, it holds

‖η̄−η‖ ≤Lη̄‖s̄η̄ − s̄η‖L2 �

Intuitively, a parameter η̄ is identifiable if equilibria that are close to s̄η̄ are generated
by parameters that are close to η̄. Under this condition, we can prove the following corol-
lary of our main convergence theorem.

COROLLARY 1: Suppose that G(S�Uη̄� θ�W ) satisfies Assumptions 1, 2, 3, and 4 and that
the parameter η̄ is identifiable. Then, for any 0< δ ≤ e−1, with probability at least 1 − 2δ

N
, it

holds

‖η̄− η̂‖ =O
((

log(N/δ)
N

) 1
4
)
�

PROOF: Set ρs(N) := ‖s̄[N] − s̄η̄‖L2 . Since η̄ is a feasible point of the optimization prob-
lem in (34) and η̂ is the optimizer, it must be that∥∥s̄[N] − s̄η̂

∥∥
L2 ≤ ρs(N)�

Combining these two inequalities yields

‖s̄η̂ − s̄η̄‖L2 ≤ ∥∥s̄[N] − s̄η̂
∥∥
L2 + ∥∥s̄[N] − s̄η̄

∥∥
L2 ≤ 2ρs(N)�

The identifiability condition yields

‖η̄− η̂‖ ≤Lη̄‖s̄η̄ − s̄η̂‖L2 ≤ 2Lη̄ρs(N)�

The conclusion follows by Theorem 2. Q.E.D.
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Assessing for which parameters and games the identifiability condition in Definition 8
holds is an interesting open problem. We here briefly comment on linear quadratic games
with payoff as in (33). In this case, we recall from Example 1, that for any η ∈�, η> 0,

s̄η = (I−ηW)−1θ ⇔ s̄η − θ= ηz̄η� (35)

where z̄η := Ws̄η. It follows from (η̄−η)z̄η̄ = (η̄z̄η̄ −ηz̄η) −η(z̄η̄ − z̄η) that

|η̄−η|‖z̄η̄‖L2 ≤ ‖η̄z̄η̄ −ηz̄η‖L2 +η‖z̄η̄ − z̄η‖L2 = ‖s̄η̄ − s̄η‖L2 +η∥∥W(s̄η̄ − s̄η)
∥∥
L2

≤ ‖s̄η̄ − s̄η‖L2 +ηλmax(W)‖s̄η̄ − s̄η‖L2 ≤ 2‖s̄η̄ − s̄η‖L2�

where we used that η ∈� implies η< 1
λmax(W) . Hence,

|η̄−η| ≤ 2
‖z̄η̄‖L2

‖s̄η̄ − s̄η‖L2 =:Lη̄‖s̄η̄ − s̄η‖L2�

proving that any η̄ ∈� is identifiable in linear quadratic network games.

APPENDIX D: AUXILIARY RESULTS

D.1. Properties of the Game Operator

LEMMA 5—Properties of Wn: Wn is a linear, continuous, bounded, and compact
operator. The eigenvalues of Wn coincide (besides multiplicity) with those of W and are real.
Finally, |||Wn||| = λmax(W).

PROOF: This result is well known for n = 1 since W is a self-adjoint Hilbert–Schmidt
integral operator. The extension to n > 1 is immediate since Wn acts independently on
each component. Q.E.D.

LEMMA 6—Properties of Bθ: Under Assumption 1, the following hold:
1. Bθ is a Lipschitz continuous operator. That is, for any f1� f2 ∈L2([0�1];Rn) and θ1� θ2 ∈
L2([0�1];Rm),

‖Bθ1f1 −Bθ2f2‖L2;Rn ≤ 1
αU

(
�U‖f1 − f2‖L2;Rn + �θ‖θ1 − θ2‖L2;Rm

)
�

2. The codomain of Bθ is L2([0�1];Rn).
3. If Assumption 2 also holds, then the codomain of Bθ is contained in

LS := {
f ∈L2

(
[0�1];Rn

) | ‖f‖L2;Rn ≤ smax

}
� (36)

PROOF: 1. Take any f1� f2 ∈L2([0�1];Rn) and θ1� θ2 ∈L2([0�1];Rm). For any x ∈ [0�1],∥∥(Bθ1f1)(x) − (Bθ2f2)(x)
∥∥

=
∥∥∥arg max

s̃∈S(x)
U

(
s̃� f1(x)� θ1(x)

) − arg max
s̃∈S(x)

U
(
s̃� f2(x)� θ2(x)

)∥∥∥
≤ 1
αU

∥∥−∇sU
(
(Bθ2f2)(x)� f1(x)� θ1(x)

) + ∇sU
(
(Bθ2f2)(x)� f2(x)� θ2(x)

)∥∥
≤ 1
αU

(
�U

∥∥f1(x) − f2(x)
∥∥ + �θ

∥∥θ1(x) − θ2(x)
∥∥)
� (37)
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The first inequality in (37) can be proven by reformulating the optimization problem in
(18) as the variational inequality VI(S(x)�−∇sU (·� z(x)� θ(x))). By Assumption 1, the
operator −∇sU (·� z�θ) is strongly monotone with constant αU for all z ∈ R

n, θ ∈ R
m,

see Scutari, Palomar, Facchinei, and Pang (2010, Equation (12)). The result then follows
from a known bound on the distance of the solution of strongly monotone variational
inequalities, see Nagurney (1993, Theorem 1.14). The second inequality in (37) comes
from the assumption that ∇sU (s� z�θ) is uniformly Lipschitz in [z�θ] with constants �U ,
�θ for all s ∈ R

n. Let us now compute ‖Bθ1f1 − Bθ2f2‖L2;Rn . For simplicity, define h(x) :=
‖(Bθ1f1)(x) − (Bθ2f2)(x)‖, hf (x) := �U

αU
‖f1(x) − f2(x)‖ and hθ(x) := �θ

αU
‖θ1(x) − θ2(x)‖

for all x ∈ [0�1]. By (37), 0 ≤ h(x) ≤ hf (x) + hθ(x) for all x ∈ [0�1]. Hence, ‖h(x)‖L2 ≤
‖hf (x) + hθ(x)‖L2 ≤ ‖hf (x)‖L2 + ‖hθ(x)‖L2 .

The conclusion follows from ‖h(x)‖L2 = ‖Bθ1f1 − Bθ2f2‖L2;Rn , ‖hf (x)‖L2 = �U
αU

‖f1 −
f2‖L2;Rn and ‖hθ(x)‖L2 = �θ

αU
‖θ1 − θ2‖L2;Rm .

2. We need to show that for any z ∈ L2([0�1];Rn), ‖Bθz‖L2;Rn <∞. Consider the func-
tion ẑ(x) := ẑ for all x ∈ [0�1], where ẑ is as in Assumption 1. Note that ẑ ∈L2([0�1];Rn)
and

‖Bθẑ‖2
L2;Rn =

∫ 1

0

∥∥(Bθẑ)(x)
∥∥2
dx=

∫ 1

0

∥∥∥arg max
s̃∈S(x)

U
(
s̃� ẑ� θ(x)

)∥∥∥2
dx≤M2�

Consider now any z ∈L2([0�1];Rn). We have

‖Bθz‖L2;Rn = ‖Bθz−Bθẑ+Bθẑ‖L2;Rn ≤ ‖Bθz−Bθẑ‖L2;Rn + ‖Bθẑ‖L2;Rn

≤
(
�U

αU

)
‖ẑ− z‖L2;Rn +M ≤

(
�U

αU

)(‖ẑ‖L2;Rn + ‖z‖L2;Rn
) +M <∞�

where the second inequality follows from statement 1.
3. Under Assumption 2 for any x ∈ [0�1], (Bθz)(x) ∈ S(x) ⊆ S ; hence,

‖Bθz‖2
L2;Rn =

∫ 1

0

∥∥(Bθz)(x)
∥∥2
dx≤

∫ 1

0
s2

max dx= s2
max�

Consequently, for any z ∈L2([0�1];Rn), Bθz ∈LS . Q.E.D.

D.2. Statements in Support of Section 5.2: Average Instead of Aggregate

LEMMA 7: If
∫ 1

0 W (x� y) dy ≥ dmin > 0 a.e., then Wd is a linear Hilbert–Schmidt integral
operator and |||Wd||| ≤ λmax(W)

dmin
.

PROOF: Note that Wd is a linear integral operator with kernel Wd(x� y) := W (x�y)∫ 1
0 W (x�y) dy

.
Since ∫ 1

0

∫ 1

0

(
W (x� y)∫ 1

0 W (x� y) dy

)2

dy dx=
∫ 1

0

∫ 1
0 W (x� y)2 dy(∫ 1
0 W (x� y) dy

)2 dx≤
∫ 1

0

∫ 1
0 1dy

(dmin)2 dx

=
(

1
dmin

)2

<∞�
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Wd is a Hilbert–Schmidt integral operator. Moreover, by definition,

|||Wd|||2 = sup
f∈L2([0�1])|‖f‖

L2 ≤1

‖Wdf‖2
L2 = sup

f∈L2([0�1])|‖f‖
L2 ≤1

∫ 1

0
(Wdf )2(x) dx

= sup
f∈L2([0�1])|‖f‖

L2 ≤1

∫ 1

0

(∫ 1
0 W (x� y)f (y) dy∫ 1

0 W (x� y) dy

)2

dx

≤ sup
f∈L2([0�1])|‖f‖

L2 ≤1

∫ 1

0

(∫ 1
0 W (x� y)f (y) dy

dmin

)2

dx

= 1
(dmin)2 sup

f∈L2([0�1])|‖f‖
L2 ≤1

‖Wf‖2
L2 =

( |||W|||
dmin

)2

=
(
λmax(W)
dmin

)2

�
Q.E.D.

LEMMA 8: Consider a Lipschitz continuous graphonW and suppose that
∫ 1

0 W (x� y) dy ≥
dmin > 0 a.e. Let Wd be the normalized graphon operator as introduced in Section 5.2. Mor-
ever, let W[N]

d be the normalized graphon operator corresponding to the normalized version of
the matrices A[N]

w/s, as defined in Section 3.1. Fix any sequence {δN}∞
N=1 such that δN ≤ e−1

and log(N/δN )
N

→ 0. Then, for N large enough, with probability at least 1 − 4δN ,

∣∣∣∣∣∣W[N]
d −Wd

∣∣∣∣∣∣ =O
(√

log(N/δN)
N

)
�

PROOF: Note that for N large enough, the condition δN ∈ (Ne−N/5� e−1) is satisfied
under the assumptions of this lemma. Hence, Lemma 11 in Appendix D.5 applies. We
distinguish the proof for simple and weighted sampled networks. To this end, let W [N]

wd/sd

be the normalized graphon corresponding to the matrices A[N]
w/s and W

[N]
wd/sd be the corre-

sponding normalized graphon operator.
1. For weighted networks, define

d[N]
w (x) :=

∫ 1

0
W [N]
w (x� y) dy and d(x) :=

∫ 1

0
W (x� y) dy�

Then with probability 1 − δN if x ∈ U [N]
i ,

∣∣d[N]
w (x) − d(x)

∣∣ ≤
∫ 1

0

∣∣W [N]
w (x� y) −W (x� y)

∣∣dy
=

∑
j

∫
U [N]
j

∣∣W (
ti� tj

) −W (x� y)
∣∣dy ≤

∑
j

∫
U [N]
j

2LdN dy = 2LdN =: εN�

where we used the Lipschitz property and (40) from Lemma 11 in the last inequality.
Hence, d[N]

w (x) ≥ d(x) − εN ≥ dmin − εN . Similarly, for x ∈ U [N]
i and y ∈ U [N]

j , we obtain
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|W [N]
w (x� y) −W (x� y)|≤ εN . Let D(x� y) := W

[N]
w (x�y)

d
[N]
w (x)

− W (x�y)
d(x) . Then,

∣∣D(x� y)
∣∣ =

∣∣∣∣W [N]
w (x� y)
d[N]
w (x)

− W (x� y)
d(x)

∣∣∣∣ =
∣∣W [N]

w (x� y)d(x) −W (x� y)d[N]
w (x)

∣∣
d[N]
w (x)d(x)

≤
∣∣W [N]

w (x� y)d(x) −W (x� y)d(x)
∣∣ + ∣∣W (x� y)d(x) −W (x� y)d[N]

w (x)
∣∣

dmin(dmin − εN)

≤
∣∣W [N]

w (x� y) −W (x� y)
∣∣ + ∣∣d(x) − d[N]

w (x)
∣∣

dmin(dmin − εN)
= 2εN
dmin(dmin − εN)

=: γN → 0�

Consider any f ∈L2([0�1]) such that ‖f‖L2 = 1. Using the inequalities above,

∥∥W[N]
wd f −Wdf

∥∥2

L2 =
∫ 1

0

(
W

[N]
wd f −Wdf

)
(x)2 dx=

∫ 1

0

(∫ 1

0
D(x� y)f (y) dy

)2

dx

≤
∫ 1

0

(∫ 1

0
D(x� y)2 dy

)(∫ 1

0
f (y)2 dy

)
dx

=
∫ 1

0

∫ 1

0
D(x� y)2 dy dx≤ γ2

N�

Hence, with probability 1 − δN , (40) holds and∣∣∣∣∣∣W[N]
wd −Wd

∣∣∣∣∣∣ = sup
f∈L2([0�1])s�t�‖f‖L2

=1

∥∥W[N]
wd f −Wdf

∥∥
L2 ≤ γN =O(dN)�

2. For simple networks, note that |||W[N]
sd −W

[N]
wd ||| ≤ ‖A[N]

sd − A
[N]
wd ‖, where A[N]

sd/wd are
the degree normalized versions of A[N]

s/w. Recall that A[N]
w = E[A[N]

s ], hence we can bound
the term on the right-hand side by employing matrix concentration inequalities. Define
dis/w = ∑N

j=1[A[N]
s/w]ij .

• By definition and by the previous point,

diw =Nd[N]
w

(
ti
) ≥N(dmin − εN)�∥∥A[N]

w

∥∥ = ∣∣∣∣∣∣W[N]
w

∣∣∣∣∣∣N ≤N�

• By the Hoeffding inequality, for any fixed i and t > 0, Pr[|dis − diw|> t]< 2exp(− 2t2

N
).

Setting t =
√

N
2 log( 2N

δN
) yields Pr[|dis − diw|>

√
N
2 log( 2N

δN
)] < 2 δN2N = δN

N
and by the

union bound with probability at least 1 − δN ,

∣∣dis − diw∣∣ ≤
√
N

2
log

(
2N
δN

)
= t for all i ∈{1� � � � �N}�

Let Ds/w := diag([dis/w]Ni=1). With the same probability,

∥∥D−1
s

∥∥ = max
i

1
dis

≤ max
i

1
diw − t ≤ 1

(dmin − εN)N − t
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and

∥∥D−1
s −D−1

w

∥∥ = max
i

∣∣∣∣ 1
dis

− 1
diw

∣∣∣∣
= max

i

∣∣dis − diw∣∣
diwd

i
s

≤ t

(dmin − εN)N
1

(dmin − εN)N − t �

• The maximum expected degree Cd
N := maxi(

∑N

j=1[A[N]
w ]ij) grows as order N . Hence,

for N large enough, it is greater than 4
9 log( 2N

δN
) since log(N/δN )

N
→ 0 by assumption.

Consequently, all the conditions of Chung and Radcliffe (2011, Theorem 1) are met
and with probability 1 − δN ,

∥∥A[N]
s −A[N]

w

∥∥ ≤
√

4Cd
N log(2N/δN) ≤

√
4N log(2N/δN)�

where we used that Cd
N ≤N since each element in A[N]

w belongs to [0�1].
• Combining the previous results yields that with probability 1 − 3δN ,∥∥A[N]

sd −A[N]
wd

∥∥ = ∥∥D−1
s A

[N]
s −D−1

w A
[N]
w

∥∥
≤ ∥∥D−1

s A
[N]
s −D−1

s A
[N]
w

∥∥ + ∥∥D−1
s A

[N]
w −D−1

w A
[N]
w

∥∥
≤ ∥∥D−1

s

∥∥∥∥A[N]
s −A[N]

w

∥∥ + ∥∥D−1
s −D−1

w

∥∥∥∥A[N]
w

∥∥
≤

√
4N log(2N/δN)

(dmin − εN)N − t + t

(dmin − εN)N
· N

(dmin − εN)N − t

=
√

8t/N
(dmin − εN) − t/N + t/N

(dmin − εN)
· 1

(dmin − εN) − t/N �

Since t/N =
√

log(2N/δN )
2N → 0, we obtain

∣∣∣∣∣∣W[N]
sd −W

[N]
wd

∣∣∣∣∣∣ ≤ ‖A[N]
sd −A[N]

wd ‖ =O(t/N) =
O(

√
log(N/δN )

N
).

Using the fact that |||W[N]
s −W||| ≤ |||W[N]

s −W
[N]
w ||| + |||W[N]

w −W||| and the first state-
ment concludes the proof. Q.E.D.

D.3. Statements in Support of Section 5.3: Directed Networks

LEMMA 9: Consider a matrix A[N]
w ∈ [0�1]N×N with ‖A[N]

w ‖∞ of order N and a random
matrix A[N]

s ∈{0�1}N×N such that [
A[N]
s

]
ij
= Ber

([
A[N]
w

]
ij

)
�

With probability 1 − δN for N large enough,

1
N

∥∥A[N]
s −A[N]

w

∥∥ ≤
√

4
log(4N/δN)

N
�
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PROOF: Construct the symmetric matrix

A
[2N]
s/w =

[
0 A

[N]
s/w(

A
[N]
s/w

)T
0

]
∈ R

2N×2N

and note that
1. ‖A[N]

s −A[N]
w ‖ = ‖A[2N]

s −A[2N]
w ‖;

2. E[A[N]
s ] =A[N]

w implies E[A[2N]
s ] =A[2N]

w ;
3. the maximum degree �A of A[2N]

w is of order N and is therefore greater than
4
9 log(4N/δN) for N large enough.

Then by Chung and Radcliffe (2011, Theorem 1) with probability 1 − δN for N large
enough,

1
N

∥∥A[N]
s −A[N]

w

∥∥ = 1
N

∥∥A[2N]
s −A[2N]

w

∥∥ ≤ 1
N

√
4�A log(4N/δN) ≤

√
4

log(4N/δN)
N

�

Q.E.D.

D.4. Section 7: Omitted Details and Proofs

To recover the stochastic network formation model and the network effect parameter
from aggregated relation data, the central planner can estimate:

1. The exact proportion of agents in each community (from the census data) as

πh := Nh

N
:= number of agents in community h

total number of agents in the census
�

Let � be a diagonal matrix with πh in position (h�h).
2. The maximum likelihood estimator of the interaction probability of agents of com-

munity h and h′ (from the subset of agents interviewed in the aggregated survey)
as

q̂ARD
h�h′ := Sh�h′ + Sh′�h

ShNh′ + Sh′Nh

�

where Sh is the total number of agents surveyed from community h and Sh�h′ is the
total number of neighbors that they reported having in community h′. The super-
script ARD denotes the use of aggregated data. Let Q̂ARD

κ := [q̂ARD
h�h′ ] be the estimated

interaction matrix (see Example 4 in Section 6.2) and ÊARD
κ := Q̂ARD

κ �.26

3. The average strategy of agents in community h before the intervention as

ŝARD
h := sum of effort of agents surveyed from community h

Nh

�

For N → ∞, ŝARD
h converges almost surely to the strategy s̄com

h played by agents of
community h in the graphon game as shown in the following Corollary 2.

26Technically, since we assume sublinear network growth, these are the matrices Q and E as described in
Example 4 multiplied by κN ; this is not a problem because we can only estimate α divided by κN , hence the
(unknown) κN factor cancels out, that is, ακEκ = αE.
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4. The parameter ακ by

α̂ARD
κ = (

X̂�X̂
)−1
X̂�Ŷ �

with X̂ := ÊARD
κ ŝARD and Ŷ := ŝARD −θcom, where θcom is the vector of marginal return

per community (which can be recovered exactly from the census data). Corollary 3
below shows that α̂ARD

κ → ακ almost surely for N → ∞.

COROLLARY 2: For all k= 1� � � �K, ŝARD
k → s̄com

k almost surely as N → ∞.

PROOF: Consider for simplicity the case with just one community and suppose that
aggregated relational data are collected from all agents. In this case, in the graphon game
each agent has the same equilibrium strategy, that is, s̄(x) = s̄com for all x ∈ [0�1]; hence,

∥∥s̄[N] − s̄∥∥2

L2 =
∫ 1

0

(
s̄[N](x) − s̄(x)

)2
dx=

N∑
i=1

∫
U [N]
i

(
s̄

[N]
i − s̄com

)2
dx

= 1
N

N∑
i=1

(
s̄

[N]
i − s̄com

)2 = 1
N

∥∥s̄[N] − s̄com1N
∥∥2

2
�

This yields

∣∣ŝARD − s̄com
∣∣ =

∣∣∣∣∣
(

1
N

N∑
i=1

s̄
[N]
i

)
− s̄com

∣∣∣∣∣ =
∣∣∣∣∣ 1
N

N∑
i=1

(
s̄

[N]
i − s̄com

)∣∣∣∣∣
≤ 1
N

N∑
i=1

∣∣s̄[N]
i − s̄com

∣∣ = 1
N

∥∥s̄[N] − s̄com1N
∥∥

1

≤
√
N

N

∥∥s̄[N] − s̄com1N
∥∥

2
=

√
N

N

√
N

∥∥s̄[N] − s̄∥∥
L2 = ∥∥s̄[N] − s̄∥∥

L2 �

Since by Theorem 2 ‖s̄[N] − s̄‖L2 → 0 almost surely,27 we finally obtain that|ŝARD − s̄com|→
0 almost surely. A similar proof shows that in the case ofK communities,|ŝARD

k − s̄com
k |→ 0

almost surely for all k= 1� � � �K. Q.E.D.

COROLLARY 3: α̂ARD
κ → ακ almost surely as N → ∞.

PROOF: Recall from Corollary 2 that ŝARD → s̄com and that ÊARD
κ → Eκ. Hence X̂ →

X̄ := Eκs̄com, Ŷ → Ȳ := s̄com − θcom, and

α̂ARD
κ → (

X̄�X̄
)−1
X̄�Ȳ � (38)

Moreover, by (15), s̄com = (I − αE)−1θcom = (I − ακEκ)−1θcom or equivalently s̄com −
θcom = ακEκs̄

com implying Ȳ = ακX̄ . Substituting in (38) yields α̂ARD
κ → (X̄�X̄)−1X̄�Ȳ =

ακ(X̄�X̄)−1X̄�X̄ = ακ, as desired. Q.E.D.

27Theorem 2 requires Assumption 2 which is not met when S = R≥0. Assumption 2 is only used within
Theorem 2 to bound ‖s̄[N]

s ‖. We proved in Lemma 3 that for linear quadratic games, ‖s̄[N]
s ‖ can be bounded,

with high probability, even without Assumption 2. Hence the conclusion of Theorem 2 holds.
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D.5. Auxiliary Results

We report here some auxiliary lemmas. Specifically,
– Lemmas 10, 11, and 12 are immediate extensions of results in Avella-Medina, Parise,

Schaub, and Segarra (2018);
– Lemma 13 derives sufficient conditions for the equilibrium of a graphon game to be

Lipschitz continuous;
– Lemma 14 provides a concentration result for the local aggregate in incomplete in-

formation sampled network games;
– Lemma 15 proves that the graphon equilibrium is an ε-Nash equilibrium under ad-

ditional regularity assumptions.

LEMMA 10—Avella-Medina et al. (2018): Consider a stochastic block model graphon
WSBM which is piecewise constant over the partition {Ck}Kk=1. If (λ�ψ) is an eigenpair of WSBM,
then there exists v ∈ R

K such that (λ�v) is an eigenpair of the matrix E ∈ RK×K defined in
(11) and

ψ(x) = γvk� for all x ∈ Ck� (39)

where γ > 0 is a normalization parameter. Conversely, if (λ�v) is an eigenpair of the matrix
E ∈ R

K×K , then (λ�ψ) is an eigenpair of WSBM with ψ constructed from v as in (39).

LEMMA 11—Avella-Medina et al. (2018): Let {ti}Ni=1 be the ordered statistics of N ran-
dom samples from U [0�1]. For any δN ∈ (Ne−N/5� e−1) and N large, with probability at least
1 − δN , it holds

∣∣ti − x∣∣ ≤ dN for any i ∈{1� � � � �N} and any x ∈ U [N]
i =

[
i− 1
N

�
i

N

)
� (40)

where dN := 1
N

+
√

8 log(N/δN )
N

→ 0.

LEMMA 12—Avella-Medina et al. (2018): Consider a graphon W satisfying Assump-

tion 4. LetW [N]
w/s be the step function graphons corresponding to the matricesA[N]

w and A
[N]
s

κN
, as

defined in Sections 3.1 and 5.1. Let θ[N] be the step function corresponding to [θ(ti)]Ni=1. Fix
any sequence {δN�κN}∞

N=1 such that δN ≤ e−1 and log(N/δN )
NκN

→ 0. Then, for N large enough,
with probability at least 1 − 2δN , (40) holds and

1. ‖θ[N] − θ‖L2;Rm ≤ ρθ(N) := √
(LdN)2 + 8	dNθ2

max =O(( log(N/δN )
N

)1/4),
2. |λmax(W[N]

w ) − λmax(W)|≤ |||W[N]
w −W||| ≤ ρ̃(N) =O(( log(N/δN )

N
)1/4),

3. |λmax(W[N]
s ) − λmax(W)|≤ |||W[N]

s −W||| ≤ ρW (N) =O(( log(N/δN )
N

)1/4 + ( log(N/δN )
NκN

)
1
2 ),

with ρ̃(N) := 2
√

(L2 −	2)d2
N +	dN and ρW (N) := ρ̃(N) +

√
4 log(2N/δN )

NκN
.

PROOF: Note that for N large enough, the condition δN ∈ (Ne−N/5� e−1) is satisfied
under the assumptions of this lemma. In fact, if δN ≤ Ne−N/5 infinitely often, then
log(N/δN )
NκN

≥ log(N/N·eN/5)
N

= 1
5 infinitely often and the assumption log(N/δN )

NκN
→ 0 would be vi-

olated. Hence Lemma 11 applies and the result for piecewise Lipschitz graphons follows
from Avella-Medina et al. (2018, Theorem 1). We here report a simplified proof for Lip-
schitz continuous graphons (i.e., for the case 	= 0 in Footnote 11):



GRAPHON GAMES 15

1. By Assumption 4 and Lemma 11, with probability 1 − δN ,

∥∥θ[N] − θ∥∥2

L2;Rm =
∫ 1

0

∥∥θ[N](x) − θ(x)
∥∥2
dx=

∑
i

∫
U [N]
i

∥∥θ(ti) − θ(x)
∥∥2
dx

≤
∑
i

∫
U [N]
i

L2
∣∣ti − x∣∣2

dx≤
∑
i

∫
U [N]
i

(LdN)2 dx= (LdN)2�

2. Consider any f ∈L2([0�1]) such that ‖f‖L2 = 1. LetD(x� y) :=W [N]
w (x� y)−W (x� y).

Then with probability 1 − δN (independent of f ),

∥∥W[N]
w f −Wf

∥∥2

L2 =
∫ 1

0

(
W

[N]
w f −Wf

)
(x)2 dx=

∫ 1

0

(∫ 1

0
D(x� y)f (y) dy

)2

dx

≤
∫ 1

0

(∫ 1

0
D(x� y)2 dy

)(∫ 1

0
f (y)2 dy

)
dx

=
∫ 1

0

(∫ 1

0
D(x� y)2 dy

)
‖f‖2

L2 dx=
∫ 1

0

∫ 1

0
D(x� y)2 dy dx

=
∑
i

∑
j

∫
U [N]
i

∫
U [N]
j

(
W [N]
w (x� y) −W (x� y)

)2
dy dx

=
∑
i

∑
j

∫
U [N]
i

∫
U [N]
j

(
W

(
ti� tj

) −W (x� y)
)2
dy dx

≤L2
∑
i

∑
j

∫
U [N]
i

∫
U [N]
j

(∣∣ti − x∣∣ + ∣∣tj − y∣∣)2
dy dx

≤L2
∑
i

∑
j

∫
U [N]
i

∫
U [N]
j

(2dN)2 dy dx= (2LdN)2�

where we used (40) from Lemma 11 in the last inequality. Hence with probability 1 − δN ,
(40) holds and ∣∣∣∣∣∣W[N]

w −W
∣∣∣∣∣∣ = sup

f∈L2([0�1])s�t�‖f‖L2 =1

∥∥W[N]
w f −Wf

∥∥
L2 ≤ 2LdN�

The fact that |λmax(W[N]
w ) − λmax(W)|≤ |||W[N]

w −W||| can be proven by inverse triangular
inequality upon noting that λmax(W[N]

w ) = |||W[N]
w ||| and λmax(W) = |||W|||.

3. The operator W[N]
s −W

[N]
w can be seen as the graphon operator of a stochastic block

model graphon with matrix A
[N]
s

κN
−A[N]

w over the uniform partion {U [N]
i }Ni=1. Note that for

any graphon operator A over such partition (i.e., A(x� y) =Aij for x ∈ U [N]
i , y ∈ U [N]

i ), it
holds |||A||| ≤ 1

N
‖A‖. Consequently,

∣∣∣∣∣∣W[N]
s −W

[N]
w

∣∣∣∣∣∣ ≤ 1
N

∥∥∥∥A[N]
s

κN
−A[N]

w

∥∥∥∥ = 1
NκN

∥∥A[N]
s − κNA[N]

w

∥∥�
Recall that κNA[N]

w = E[A[N]
s ]; hence we can bound the term on the right-hand side by

employing matrix concentration inequalities.
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The maximum expected degree Cd
N := maxi(

∑N

j=1 κN[A[N]
w ]ij) grows as order κNN .

Hence for N large enough, it is greater than 4
9 log( 2N

δN
) since log(N/δN )

NκN
→ 0 by assump-

tion. Consequently, all the conditions of Chung and Radcliffe (2011, Theorem 1) are met
and with probability 1 − δN ,

1
NκN

∥∥A[N]
s − κNA[N]

w

∥∥ ≤ 1
NκN

√
4Cd

N log(2N/δN) ≤
√

4 log(2N/δN)
NκN

�

where we used that Cd
N ≤ κNN since each element inA[N]

w belongs to [0�1]. Using the fact
that ∣∣∣∣∣∣W[N]

s −W
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣W[N]

s −W
[N]
w

∣∣∣∣∣∣ + ∣∣∣∣∣∣W[N]
w −W

∣∣∣∣∣∣
and the previous statement concludes the proof. The fact that |λmax(W[N]

s ) − λmax(W)|≤
|||W[N]

s −W||| can be proven as in the previous point. Q.E.D.

LEMMA 13: Consider a graphon game satisfying Assumptions 1, 2, 3, and 4 with	= 0 and
suppose that S(x) = S for all x. Then the unique graphon equilibrium is Lipschitz continuous
with constant Ls = max{�U ��θ}L(smax+1)

αU
.

PROOF: Let s̄ be the unique graphon equilibrium and z̄ = ∫ 1
0 W (x� y)s̄(y) dy . For any

x1�x2 ∈ [0�1], it holds∥∥s̄(x1) − s̄(x2)
∥∥ =

∥∥∥arg max
s∈S

U
(
s� z̄(x1)� θ(x1)

) − arg max
s∈S

U
(
s� z̄(x2)� θ(x2)

)∥∥∥
≤ 1
αU

∥∥∇sU
(
s̄(x1)� z̄(x1)� θ(x1)

) − ∇sU
(
s̄(x1)� z̄(x2)� θ(x2)

)∥∥
≤ max{�U� �θ}

αU

(∥∥z̄(x1) − z̄(x2)
∥∥ + ∥∥θ(x1) − θ(x2)

∥∥)
� (41)

Moreover,

∥∥z̄(x1) − z̄(x2)
∥∥ =

∥∥∥∥
∫ 1

0
W (x1� y)s̄(y) dy −

∫ 1

0
W (x2� y)s̄(y) dy

∥∥∥∥
≤

∫ 1

0

∣∣W (x1� y) −W (x2� y)
∣∣∥∥s̄(y)

∥∥dy
≤

∫ 1

0
L|x1 − x2|smax dy =L|x1 − x2|smax�∥∥θ(x1) − θ(x2)

∥∥ ≤L|x1 − x2|�

(42)

Combining (41) and (42) yields

∥∥s̄(x1) − s̄(x2)
∥∥ ≤ max{�U� �θ}L(smax + 1)

αU
|x1 − x2|� Q.E.D.

LEMMA 14: Suppose that the assumptions of Theorem 5 hold. Consider a fixed population
size N , a fixed ti ∈ [0�1], and let ζs̄(ti) be a realization of 1

N−1

∑
j[A

[N]
s ]ij s̄(tj), where [A[N]

s ]
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is sampled from the graphon W according to Definition 3. Then with probability at least

1 − 2n+1
(N−1)2 , it holds ‖ζs̄(ti) − z̄(ti)‖ ≤ ε′, with ε′ := O(

√
log(N−1)
N−1 ). By the union bound with

probability at least 1 − (2n+1)N
(N−1)2 , it holds ‖ζs̄(ti) − z̄(ti)‖ ≤ ε′ for all i ∈{1� � � � �N}.

PROOF: Let t−i be the types of all the agents except for agent i. For each realization of
t−i, we have

∥∥ζs̄(ti) − z̄(ti)∥∥ =
∥∥∥∥ 1
N − 1

∑
j �=i

[
A[N]
s

]
ij
s̄
(
tj

) − z̄(ti)∥∥∥∥
=

∥∥∥∥ 1
N − 1

∑
j �=i

([
A[N]
s

]
ij
s̄
(
tj

) −W (
ti� tj

)
s̄
(
tj

) +W (
ti� tj

)
s̄
(
tj

)) − z̄(ti)∥∥∥∥
≤

∥∥∥∥ 1
N − 1

∑
j �=i

([
A[N]
s

]
ij
−W (

ti� tj
))
s̄
(
tj

)∥∥∥∥︸ ︷︷ ︸
Term 1

+
∥∥∥∥ 1
N − 1

∑
j �=i
W

(
ti� tj

)
s̄
(
tj

) − z̄(ti)∥∥∥∥︸ ︷︷ ︸
Term 2

�

We can bound the two terms separately.
• Term 1: Note that

∑
j �=i([A[N]

s ]ij − W (ti� tj))s̄(tj) ∈ Rn. For each h ∈ {1� � � � � n}, we
denote by Sh := ∑

j �=i([A[N]
s ]ij − W (ti� tj))s̄h(tj) the hth component of the previous

vector and analyze each component separately.
Let Xh

j = ([A[N]
s ]ij −W (ti� tj))s̄h(tj) and note that for a fixed h, the random vari-

ables {Xh
j }j �=i are independent, zero mean, and −smax ≤Xh

j ≤ smax for all j �= i. More-
over, by definition, Sh = ∑

j �=i X
h
j . Note that E[Sh] = 0. Hoeffding’s inequality then

yields

Pr
[ |Sh|
N − 1

> smax

√
4 log(N − 1)
N − 1

]
= Pr

[|Sh|> smax

√
4 log(N − 1)(N − 1)

]

< 2 exp
(

−2s2
max4 log(N − 1)(N − 1)

(N − 1)(2smax)2

)

= 2 exp
(−2 log(N − 1)

) = 2
(N − 1)2 �

Hence for any h ∈ {1� � � � � n}, with probability at least 1 − 2
(N−1)2 , it holds |Sh|

N−1 =
O(

√
log(N−1)
N−1 ). By the union bound, with probability at least 1 − 2n

(N−1)2 , it holds
|Sh|
N−1 =O(

√
log(N−1)
N−1 ) for all h ∈{1� � � � � n}. With the same probability,

[term 1] =
√√√√ n∑

h=1

(
Sh

N − 1

)2

=O
(√

log(N − 1)
N − 1

)
�
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• Term 2: Let {t−i(k)}
N−1
k=1 be the ordered statistics of {tj}j �=i so that t−i(1) ≤ · · · ≤ t−i(N−1). By

Avella-Medina et al. (2018, Proposition 3) (see also Lemma 11), the set of realiza-
tions of {tj}j �=i such that |t−i(k) − y|≤ dN−1 for all y ∈ U [N−1]

k := [ k−1
N−1 �

k
N−1 ) and for all

k ∈{1� � � � �N − 1} has measure at least 1 −δN−1. Consequently, with this probability,
it holds

[term 2] =
∥∥∥∥ 1
N − 1

∑
j �=i
W

(
ti� tj

)
s̄
(
tj

) − z̄(ti)∥∥∥∥ =
∥∥∥∥∥ 1
N − 1

N−1∑
k=1

W
(
ti� t−i(k)

)
s̄
(
t−i(k)

) − z̄(ti)
∥∥∥∥∥

=
∥∥∥∥∥ 1
N − 1

N−1∑
k=1

W
(
ti� t−i(k)

)
s̄
(
t−i(k)

) −
N−1∑
k=1

∫
U [N−1]
k

W
(
ti� y

)
s̄(y) dy

∥∥∥∥∥
=

∥∥∥∥∥
N−1∑
k=1

∫
U [N−1]
k

[
W

(
ti� t−i(k)

)
s̄
(
t−i(k)

) −W (
ti� y

)
s̄(y)

]
dy

∥∥∥∥∥
≤

N−1∑
k=1

∫
U [N−1]
k

∥∥W (
ti� t−i(k)

)
s̄
(
t−i(k)

) −W (
ti� t−i(k)

)
s̄(y)

∥∥
+ ∥∥W (

ti� t−i(k)

)
s̄(y) −W (

ti� y
)
s̄(y)

∥∥dy
≤

N−1∑
k=1

∫
U [N−1]
k

(Ls +Lsmax)
∣∣t−i(k) − y∣∣dy ≤ (Ls +Lsmax)dN−1�

where the second to last inequality follows from the fact that, under the given as-
sumptions, s̄ is Lipschitz continuous with constant Ls (see Lemma 13), ‖s̄‖ ≤ smax,
and W is Lipschitz continuous with constant L. By selecting δN−1 = 1

(N−1)2 with prob-

ability at least 1 − 1
(N−1)2 , [term 2] =O(dN−1) =O(

√
log(N−1)
N−1 ).

By the union bound with probability at least 1 − 2n+1
(N−1)2 , it holds ‖ζs̄(ti) − z̄(ti)‖ =

O(
√

log(N−1)
N−1 ). Q.E.D.

LEMMA 15: Consider a graphon game G(S�U�θ�W ) in which S(x) = S for all x ∈ [0�1].
Suppose that Assumptions 1, 2, 3, 4 (with	= 0), and 5 hold. Let s̄ be the unique equilibrium
of the graphon game. Then with probability 1 − (2n+1)

N
, the set {s̃i := s̄(ti)}Ni=1 is an ε-Nash

equilibrium of the sampled network game G [N]({S}Ni=1�U�{θ(ti)}Ni=1�A
[N]
s ) with

ε=O
(√

log(N)
N

)
�

PROOF: For any agent i, let z̃i = 1
N

∑
j[A

[N]
s ]ij s̃j = 1

N

∑
j[A

[N]
s ]ij s̄(tj) = ζs̄(ti); then, for

any si ∈ S ,

U
(
s̃i� z̃i� θi

) =U(
s̄
(
ti
)
� ζs̄

(
ti
)
� θ

(
ti
)) ≥U(

s̄
(
ti
)
� z̄

(
ti
)
� θ

(
ti
)) −LU

∥∥ζs̄(ti) − z̄(ti)∥∥
≥U(

si� z̄
(
ti
)
� θ

(
ti
)) −LU

∥∥ζs̄(ti) − z̄(ti)∥∥
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≥U(
si� ζs̄

(
ti
)
� θ

(
ti
)) − 2LU

∥∥ζs̄(ti) − z̄(ti)∥∥
=U(

si� z̃i� θi
) − 2LU

∥∥ζs̄(ti) − z̄(ti)∥∥�
The proof is concluded by noting that by Lemma 14, with probability 1 − (2n+1)

N
, ‖ζs̄(ti) −

z̄(ti)‖ =O(
√

log(N)
N

) for all agents i= 1� � � � �N (note that Lemma 14 is proven for normal-
ization 1

N−1 but similar arguments apply to 1
N

). Q.E.D.
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