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APPENDIX B: ADDITIONAL TREATMENTS

B.1. U100H—Changing Receiver’s Incentives

IN THIS SECTION, we test a different comparative static result: instead of varying the
degree of commitment or the communication rules, we change the alignment between
the sender’s and the receiver’s preferences. More precisely, we increase the persuasion
threshold q. As we explain below, this can be done experimentally by changing the pref-
erences of the receiver. Formally, the prediction that we test is the following.

PROPOSITION 3: Fix q′ > q > μ0 and consider any ρ ≥ q′−μ0
q′(1−μ0) . Equilibrium correlation

under q′ is strictly higher than under q, irrespective of the rules of communication.

This result shows that when ρ is sufficiently high, an increase in q increases equilibrium
correlation, irrespective of the communication rules. In particular, when ρ= 1, raising q
strictly increases the equilibrium correlation for both verifiability scenarios.

Based on this idea, we designed an additional treatment with full commitment (ρ= 1)
and unverifiable information. We label this treatment U100H and compare it directly to
U100.2 Payoffs are as follows. As in all other treatments, the receiver earns nothing if
she guesses incorrectly. In contrast to our main treatments, however, the receiver earns
$2 if she correctly guesses that θ = B, but only 67� if she correctly guesses that θ = R.
This payoff structure increases the persuasion threshold from q = 1/2 to q = 3/4. Since
the receiver is harder to persuade, the sender is automatically worse off relative to U100.
Therefore, to improve the comparability between treatments, we also modify the sender’s
payoff in U100H. In particular, she earns $3 (instead of $2) whenever a = red. In this
way, her expected equilibrium payoff is the same forU100 andU100S. In equilibrium, the
sender chooses πC (r|R) = 1 and πC (b|B) = 5/6 and the predicted Bayesian correlation is
φB(πC) = 5/

√
40 ≈ 0�79.
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2We conducted four sessions of U100H , each with 16–20 subjects (72 in total). The sessions lasted approxi-

mately 100 minutes. Subjects earned on average $32 (ranging from $13 to $48), which includes a show-up fee
of $10.
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FIGURE B9.—Strategy clusters (left) and CDFs of posterior divergence ψB (right).

The left panel of Figure B9 reports the main clusters of senders’ behavior in treatment
U100H. These are computed through a k-means algorithm, as described in Section 5.2.
A large fraction of senders, indicated by a square, choose strategies that are close to equi-
librium behavior. A smaller but significant fraction of senders, indicated by a star, choose
a strategy that would be close to equilibrium behavior in U100 but is not informative
enough to persuade a Bayesian receiver in U100H. The strategies summarized by the
circle capture commitment blindness, while those summarized by the diamond capture a
cluster of residual strategies that should be interpreted as noise. When comparing these
clusters with those computed for treatment U100 (Figure D18, right panel) or U80 (Fig-
ure 7), we observe an overall shift toward more-informative strategies, as predicted by the
theory (upper-right corner).

Quantifying this shift is complicated by the fact that receivers’ preferences between
U100 and U100H have changed. Therefore, Bayesian correlations φB have to be com-
puted using different utilities for the receiver in the two treatments. For example, a pos-
terior of 0�74 leads to a= red for the Bayesian receiver of treatment U100, but a= blue
for that of treatment U100H. To avoid this problem, we measure information sent us-
ing ψB, the divergence between the expected posterior conditional on the states that we
introduced in Section 4.2. Recall that ψB is proportional to the variance of the induced
posteriors (see Appendix D.2 of this supplement). As such, it is independent of u and,
thus, it is a more appropriate measure when comparing data from treatments that fea-
ture different q’s. The divergence ψB in U100 is 0.30 (predicted 0.25); in U100H, it is
0.42 (predicted 0.63). The increase from U100 to U100H is significant (p< 0�01), in line
with Proposition 3. Moreover, the sender-by-sender CDF of ψB increases from U100 to
U100H in a first-order stochastic sense, as reported in the right panel of Figure B9.

Finally, the comparison between U100 and U100H also speaks to the question of the
relationship between subjects’ behavior and the complexity of our design. Although the
complexity of the senders’ task changes between the commitment and the revision stages
and perhaps even with varying levels of commitment and communication rules, this com-
plexity should be the same in U100 and U100H. Therefore, this comparison, in which
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the data corroborate the theoretical prediction of Proposition 3, should be immune to a
“complexity critique.”

B.2. U100S—Simplifying the Message Space

In our main treatments, senders can choose among three messages: r, b, and n. In the-
ory, when information is unverifiable, one of these messages is redundant and its presence
does not change the equilibrium outcome. From a design perspective, message n is im-
portant as it allows a clean comparison between treatments with and without verifiable
information. In this section, we explore the effect of removing this redundant message
in a treatment with unverifiable information and full commitment. Every other aspect of
this treatment, which we label U100S, is identical to U100.3 Implicitly, this is also a test of
how the complexity of subjects’ tasks affects their behavior. It is reasonable to think that
treatment U100 is more complex than U100S for both senders and receivers. If complex-
ity was a major factor affecting subjects’ behavior, one would expect to see differences in
U100S and U100. Our main conclusion from the comparison of U100 and U100S is that
adding message n increases the noise but does not significantly alter the average behavior.

We begin by comparing the senders’ behavior in treatments U100 and U100S. The left
panel of Figure B10 reports the main clusters for these treatments computed through a
k-means algorithm, as in Section 5.2. Solid markers indicate the representative strategies
for U100S. Hollow markers indicate those for U100. This panel shows that the strategies
that senders play in these two treatments are highly comparable, despite the difference
in the message space. We note that the behavior in U100S is less noisy than in U100.
This can be deduced from the fact that the residual cluster, indicated by diamonds, has
a lower frequency in U100S (12.9%) relative to U100 (21.1%). There is a higher fre-
quency of senders who approximately best respond to receiver U100S relative to U100.

FIGURE B10.—Senders’ (left panel) and receivers’ (right panel) behavior in U100 and U100S.

3We conducted four sessions of U100S, each with 14–20 subjects (17�5 on average per session) for a total of
70 subjects. In addition to their earnings from the experiment, subjects received a $10 show-up fee. Average
earnings, including the show-up fee, were $34 (ranging from $14 to $52) per session.
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From Figures 6 and C11, we can deduce that in these treatments, the best response in-
volves a combination of squares and triangles. These represent 63.5% and 44% of the
data in U100S and U100, respectively. This last observation is also reflected in the aver-
age Bayesian correlation that is induced by senders in these two treatments. We find that
φB(πC) = 0�41 in U100S. This is significantly lower (p < 0�01) than the equilibrium pre-
diction of 0.5, but higher than in U100 (p< 0�05). We conclude that senders’ behavior in
U100S is qualitatively comparable to U100, but it is cleaner and less noisy than in U100.

We now compare receivers’ behavior in treatmentsU100 andU100S. The right panel of
Figure B10 reports the average receivers’ responsiveness to Bayesian posteriors belong-
ing to four key intervals (horizontal axis). We focus attention on the posteriors induced
by message m= r, the potentially persuasive message. The receivers’ behavior in the in-
tervals is not significantly different in the two treatments considered. We conclude that
receivers do not seem to react in unexpected ways to the presence of the redundant mes-
sage n.

APPENDIX C: A CLOSER LOOK AT RECEIVERS’ BEHAVIOR

We take advantage of the relative simplicity of treatment U100S, introduced in Ap-
pendix B.2, to take a closer look at receivers’ behavior. At the end of this section, we
partially expand this analysis to our main treatments.

We begin by describing some aggregate features of the data in U100S. First, receivers’
responsiveness is monotonic in the induced posterior. That is, on average, receivers are
more persuaded to guess red by messages that carry more evidence in favor of the state
being R. As highlighted in Sections 4.1.2 and 5.1, this is a robust feature of receivers’
behavior that also holds in our main treatments, including U100S. For U100S, this is
illustrated graphically in Figure B10 when m= r. When pooling message r and b, we find
that, for posteriors above 1

2 , receivers guess red 57% of the time, whereas they guess red
only 11% of the time for posteriors below 1

2 (p≤ 0�01).
The extent of monotonicity that we observe in receivers’ behavior is sufficient to con-

firm one of the main insights from models of communication under commitment, namely,
that the best response involves some degree of strategic obfuscation: an uninformative πC
is worse than a fully informative πC , which is worse than using commitment to randomize.
In Figure C11, we replicate the same exercise performed in Figure 6 for U100S. As was
the case for U100 and V 100, we find that senders’ empirical expected payoff is nonmono-
tone in the amount of information conveyed to the receiver, in line with the theory.

Monotonicity is, of course, a mild requirement for receivers’ rationality. A Bayesian
receiver should choose a = red for any posterior μ(m�πC) ≥ 1

2 and a = blue otherwise.
The aggregate evidence presented in Figure B10 fails to satisfy this stronger requirement
of rationality. Furthermore, receivers respond to the color of the message independently
of the posterior this color conveys. When μ(m�πC) ≥ 1

2 , receivers guess a = red 62% of
the time ifm= r and 38% of the time ifm= b. In contrast, when μ(m�πC) < 1

2 , receivers
guess a = red 21% of the time if m = r and 5% of the time if m = b. These differences,
which are significant at the 1% level, are inconsistent with the behavior of a Bayesian
receiver. Even when provided with conclusive evidence that the state is R, that is, even
when μ(m�πC) ≈ 1, some receivers nonetheless guess blue at least some of the time. To
summarize, at the aggregate level, receivers are non-Bayesian, an observation that is in
line with a large body of experimental literature (e.g., Charness and Levin (2005), Holt
(2007), Chapter 30).

To understand better whether the deviations are driven by a few subjects or shared by
most, we look at individual behavior. We demonstrate that, despite not being Bayesian,
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FIGURE C11.—Probability of guessing red by posterior and message.

receivers react to information as summarized by the posterior belief in systematic ways.
In particular, we consider the possibility that subjects follow (potentially different) thresh-
old strategies. A μ̄-threshold strategy, for μ̄ ∈ [0�1], consists of guessing a = red if and
only if μ(m�πC) ≥ μ̄. When μ̄= 1

2 , the receiver is Bayesian. When μ̄ �= 1
2 , the receiver is

non-Bayesian, but behaves systematically: she requires stronger or weaker than needed
evidence to choose a= red. Given our data, we can estimate a receiver-specific threshold
that rationalizes the greatest fraction of her guesses.

The relevant data for the estimation of threshold strategies comprise pairs of induced
posteriors μ and guesses a for each receiver and message. We look for a threshold μ̄ ∈
[0�1] that minimizes #{a �= 1{μ ≥ μ̄}} where a takes a value of 1 for red and 0 for blue.
In other words, we find the threshold μ̄ that rationalizes the greatest number of choices
a receiver has made.4 We refer to the fraction of choices properly accounted for by the
threshold as the precision of μ̄. Given that the sample is finite and thresholds exist on the
unit interval, there will be an infinite number of thresholds with the same precision. For
instance, imagine a hypothetical sample comprising only two observations: a receiver that
guessed red given a posterior of 0�7 and guessed blue when the posterior was 0�4. In this

FIGURE C12.—Estimated thresholds: actual receivers versus Bayesians.

4This method is akin to perceptrons in machine learning; see, for instance, Murphy (2012).
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case, any threshold μ̄ ∈ [0�4�0�7] would have the same precision, namely, 1. We report the
midpoints of the estimated ranges.

The theory assumes receivers are Bayesian. However, notice that even a Bayesian re-
ceiver is unlikely to yield a threshold of 0�5. This is because the sample is finite. For in-
stance, in the two-observation example proposed above, the estimated threshold is 0�55,
even if the agent behaves as a Bayesian. To account for this, we compare thresholds for
the receivers in our experiment with the hypothetical thresholds that we would estimate
given the observed sample if the receivers were Bayesian.

Figure C12 plots the estimated threshold for each receiver (vertical axis) against those
that we would have estimated from the same data if receivers were Bayesian (horizontal
axis). We find that the behavior of many subjects is consistent with a threshold strategy.
Almost half the receivers (46%) display behavior that is always consistent with a threshold
strategy, and almost nine out of ten receivers (89%) behave consistently with a threshold
strategy for more than 80% of their guesses (see Figure C16). Figure C12 reveals substan-
tial heterogeneity in receivers’ behavior (relatedly, see also Ambuehl and Li (2018)). Dots
lying above the 45-degree line indicate receivers who are reluctant to guess red, even when
a Bayesian would conclude that there is enough evidence. By contrast, the points below
the 45-degree line indicate subjects who are too eager to guess red, despite insufficient ev-
idence from the perspective of a Bayesian agent. The aggregation of this heterogeneous
behavior is partly responsible for the smoothness of aggregate responses to the posterior
that is displayed in Figure B10 (right panel). Also note that Figure C12 shows a sizable
fraction of receivers who exhibit behavior consistent with the Bayesian benchmark: one-
quarter of the receivers have thresholds within 5 percentage points of being consistent
with a Bayesian receiver; the number increases to one-third if we are more permissive
and allow for a band of 10 percentage points around the Bayesian receiver.

Overall, this threshold analysis reveals three important aspects of receivers’ behavior.
First, the majority of receivers appear to behave in systematic ways, as summarized by
threshold strategies. Second, there is substantial heterogeneity in the thresholds: some
receivers are skeptical, some are approximately Bayesian, some others are gullible. Third,
virtually all receivers respond to information in monotonic ways. It is thanks to this that
the senders’ empirical best responses (Figure C11) are qualitatively in line with the theory.

C.1. Threshold Strategies in Main Treatments

Figures C13 and C14 illustrate the best-fitting thresholds and their precisions for the
main treatments. Unlike for U100S, the main treatments feature a larger message space
(three versus two). Thus, there are more choices to rationalize and achieving high pre-
cision is more difficult. Nonetheless, precision is still high: the treatment with the lowest
precision still has 81% of subjects with 80% precision; across all treatments, 90% of sub-
jects meet that criterion.

Figure C14 also shows that precision is particularly high when information is verifiable:
55% of receivers always choose in a way that is consistent with a threshold. That number
is 24% for the treatments with unverifiable messages. From Figure C13, we deduce that
receiver behavior is highly heterogeneous. A nontrivial fraction of subjects are close to the
behavior Bayesian receivers would exhibit. There is also a substantial fraction of subjects
who are skeptical, that is, they require higher-than-needed evidence to guess red, and
there is a fraction of subjects who are, instead, gullible. Finally, note that in the treatment
that comes closest to the setup of a cheap talk experiment, namely U20, all receivers that
are not compatible with the Bayesian benchmark are classified as gullible. This is in line
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FIGURE C13.—Estimated threshold: actual receivers against Bayesian.

with one of the main findings in Cai and Wang (2006). Overall, the aggregation of this
heterogeneous behavior is partly responsible for the linearity of aggregate responses to
the posterior that is displayed in Figure 3.5

FIGURE C14.—Estimated threshold and precision.

5This linearity may appear consistent with probability matching. That is, subjects guess red with a probability
equal to the posterior belief. To test for this, we compute for each subject the mean-squared error (MSE) of
the predicted guess using the estimated threshold strategies and compare it with the MSE of the probability-
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FIGURE C15.—Frequency of a= red for all messages given posterior.

Finally, in all treatments, receivers’ responsiveness is monotone increasing in informa-
tion. However, there are some expected differences between communication rules. As
Figure C15 illustrates, in treatments with verifiable information, receivers are more likely
to guess a= red conditional on any message m that leads to a posterior above 3/4. This
is in part because in these treatments, the frequency of extreme posteriors, that is, μ= 1,
is higher, since information is verifiable. Conversely, the frequency of a= red conditional
on any message m that leads to a posterior below 1/4 is lower in the verifiable treatments
(it is already very low in the unverifiable treatments). Again, this is in part because the
frequency of extreme posteriors, in this case μ= 0, is higher in treatments with verifiable
information.

FIGURE C16.—Estimated threshold and precision for treatment U100S.

matching model. Across all treatments, we find that for about 83% of the receivers, threshold strategies have
lower MSE than probability matching.
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APPENDIX D: ADDITIONAL MATERIAL

D.1. Remaining Proofs

LEMMA 1: Suppose information is unverifiable. Fix an arbitrary ρ ∈ [0�1]. Fix (πC�πR)
and define σ (m) = aH if and only if μ(m�πC�πR) ≥ q. Then

φ(πC�πR�σ) �= √
qρ ⇒

∑
θ�m

μ0(θ)
(
ρπC (m|θ) + (1 − ρ)πR(m|θ)

)
v
(
σ (m)

)
<μ0/q�

PROOF: We begin by noting that, if σ (m) = aL for allm, then V = 0 and, thus, the claim
holds. Therefore, suppose that there is ∅ �=M ′ �M such that σ (m) = aH for m ∈M ′.
Fix m′ ∈M ′ and m′′ ∈M \M ′. Let π be defined as π(m′|θ) = ∑

m∈M ′ (ρπC (m|θ) + (1 −
ρ)πR(m|θ)) and, similarly, π(m′′|θ) = ∑

m∈M\M ′ (ρπC (m|θ) + (1 − ρ)πR(m|θ)), for all θ.
By construction, π gives strictly positive probability to only two messages, m′ and m′′,
inducing actions aH and aL, respectively. Moreover, π and (πC�πR) are equivalent in
the sense that

∑
θ�m μ0(θ)π(m|θ)v(σ (m)) = V and φ(π�σ) = φ(πC�πR�σ). Therefore,

it is enough to show that φ(π�σ) �= √
qρ implies that V < μ0/q. To do so, we will argue

that V ≥ μ0/q implies φ(π�σ) = √
qρ. Let V ≥ μ0/q. Since μ0/q is the highest achiev-

able payoff under full commitment, it must be that V = μ0/q. To simplify notation, let
πC (m′|θH) = x and πC (m′′|θL) = y . With this, V = μ0x+ (1 − μ0)(1 − y) = μ0/q, which
can be rewritten as

1 − ρ
1 − q (1 − qx) = 1 − y�

Note that since σ (m′) = aH , μ(m′�π) ≥ q or equivalently (1 − ρ)x ≥ 1 − y . Together,
these two equations imply that x = 1 and thus that y = ρ. Note that these values are
indeed compatible with σ (m′′) = aL, since in this case μ(m′′�π) < q. Finally, note that
φ(π�σ) can be written as

φ(π�σ) =
√
μ0(1 −μ0)

xy − (1 − x)(1 − y)√
V (1 − V )

= √
qρ�

where the last equation is obtained by substituting the values for x and y . Q.E.D.

LEMMA 2: Suppose information is unverifiable. Fix ρ ∈ [0�1). For every πC , there exists a
continuation TWC equilibrium (πR�σ�μ).

PROOF: Fix πC and 0 ≤ ρ < 1. We consider three cases.
Case 1. Suppose that μ(m�πC) < q for allm that have strictly positive probability under

πC . Define πR(θH|θ) = 1 for all θ. Note that such πR is trivially compatible with the TWC
refinement. Moreover, define σ (m) = aL for all m. To complete the proof, we define
μ(m�πC�πR) for all m. If m has zero probability under ρπC + (1 − ρ)πR, we simply let
μ(m�πC�πR) = 0. If insteadm has strictly positive probability under ρπC + (1 −ρ)πR, we
consider two cases. First, suppose m �= θH . In this case, πR(m|θ) = 0 for all θ, and thus
μ(m�πC�πR) = μ(m�πC) < q. Second, suppose m = θH . To simplify notation, denote
πC (θH|θH) = x and πC (θH|θL) = y . Note that μ(θH�πC�πR) < q can be rewritten as

(1 − ρ)x− y < 0<
1 − ρ
ρ

ρ�
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If x= y = 0, the inequality holds as the left-hand side is equal to zero. If instead x+y > 0,
thenm= θH has strictly positive probability under πC . By assumption thenμ(θH�πC) < q,
which implies that (1 − ρ)x− y < 0. Therefore, μ(θH�πC�πR) < q.

Case 2. Suppose that there is a unique m′ with strictly positive probability under πC
such that μ(m′�πC) ≥ q.

(i) Ifm′ = θH , define πR(θH|θ) = 1 for all θ. If μ(θH�πC�πR) ≥ q, define σ (θH) = aH ;
otherwise, define σ (θH) = aL. For all m �= m′, let σ (m) = aL. If there is m �= m′

with zero probability under ρπC+(1−ρ)πR, letμ(m�πC�πR) = 0. We have defined
a triple (πR�σ�μ) that is a continuation TWC equilibrium given πC .

(ii) Conversely, let m′ �= θH . To simplify notation, let πC (θH|θH) = x, πC (m′|θH) =
x′, and πC (m′′|θH) = x′′. Similarly, let πC (θH|θL) = y , πC (m′|θL) = y ′, and
πC (m′′|θL) = y ′′. Clearly, x+ x′ + x′′ = y + y ′ + y ′′ = 1. Define 
 = (1 − ρ)x− y ,

′ = (1 − ρ)x′ − y ′, and 
′′ = (1 − ρ)x′′ − y ′′. Note that our assumption on the
interim beliefs μ(m�πC) implies that 
< 0, 
′ ≥ 0, and 
′′ < 0.

• Suppose 
′ ≥ 1−ρ
ρ
ρ. Define πR(m′|θ) = 1 for all θ and σ (m) = aH if and only

if m = m′. We have defined a triple (πR�σ�μ) that is a continuation TWC
equilibrium given πC .

• Conversely, suppose 
′ < 1−ρ
ρ
ρ. Define πR(θH|θH) = 1, πR(θH|θL) = δ, and

πR(m′|θL) = 1 − δ. By construction, μ(θH�πC�πR) is strictly decreasing in δ,
μ(m′�πC�πR) is strictly increasing in δ. Instead, μ(m′′�πC�πR) = μ(m′′�πC) <
q and it is independent of δ. Define δ∗ = max{0� ρ

1−ρ
 + 1 − ρ} and δ∗ =
1 − ρ

1−ρ

′. Since 0 ≤ 
′ < 1−ρ

ρ
ρ, δ∗ ∈ [0�1]. Similarly, since 
 < 0, δ∗ ∈ [0�1].

Suppose δ∗ < δ∗. Then, let δ ∈ (δ∗� δ∗). By construction, μ(m�πC�πR) < q for
all m. In this case, letting σ (m) = aL for all m concludes the proof, namely,
we have defined a triple (πR�σ�μ) that is a continuation TWC equilibrium
given πC . Conversely, suppose δ∗ ≥ δ∗. Then, let δ ∈ [δ∗� δ∗]. By construction,
μ(m�πC�πR) ≥ q for m ∈ {θH�m′}. In this case, letting σ (m) = aL if and only
if m=m′′ concludes the proof.

Case 3. Finally, we consider the case in which there are exactly two messages with
strictly positive probability under πC such that μ(m′�πC) ≥ q. Denote the set of such
messages M̄ �M .

(i) Suppose θH ∈ M̄ . Without loss of generality, let m′ ∈ M̄ . By the martingale prop-
erty, μ(m′′�πC) < q for m′′ ∈M \ M̄ . Define πR(θH|θH) = 1, πR(θH|θH) = δ, and
πR(θH|θL) = 1 − δ. As for Case 2, μ(θH�πC�πR) is strictly decreasing in δ, while
μ(m′�πC�πR) is strictly increasing in δ. Instead, μ(m′′�πC�πR) = μ(m′′�πC) < q
and independent of δ. Moreover, since by assumption μ(θH�πC) ≥ q, if δ =
0, μ(θH�πC�πR) ≥ q. Similarly, since by assumption μ(m′�πC) ≥ q, if δ = 1,
μ(θH�πC�πR) ≥ q. Let δ∗ be the unique δ such that μ(θH�πC�πR) = q. Similarly,
let δ∗ be the unique δ such that μ(θH�πC�πR) = q. Suppose δ∗ < δ∗. Then, let
δ ∈ (δ∗� δ∗). By construction, μ(m�πC�πR) < q for all m ∈ M̄ = {θH�m′}. In this
case, letting σ (m) = aL for allm concludes the proof. Conversely, suppose δ∗ ≥ δ∗.
Then, let δ ∈ [δ∗� δ∗]. By construction, μ(m�πC�πR) ≥ q for m ∈ M̄ = {θH�m′}. In
this case, letting σ (m) = aL if and only if m=m′′ concludes the proof.

(ii) Finally, suppose that θH /∈ M̄ = {m′�m′′}. We first consider a simpler problem, in
which m′ and m′′ are treated as a single message, labeled m̄. To this purpose, de-
fine π̄C (m̄|θ) = πC (m′|θ) + πC (m′′|θ) and π̄C (θH|θ) = πC (θH|θ) for all θ. Define
π̄R(θH|θH) = 1, π̄R(θH|θL) = δ, and π̄R(m̄|θL) = 1 − δ. Our goal is to find δ̄ such
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that μ(m�π̄C� π̄R) < q for m ∈{θH� m̄}. These two inequalities are equivalent to

ρ

1 − ρ
(
(1 − ρ)x− y) + 1 − ρ < δ and δ < 1 − ρ

1 − ρ
(
(1 − ρ)x̄− ȳ)�

respectively. Therefore, such a δ̄ exists if ρ

1−ρ ((1 − ρ)(x+ x̄) − (y − ȳ)) < ρ, which
always holds (recall that, by construction, x+ x̄= 1 = y+ ȳ). To complete the proof,
we now define πR(θH|θ) = π̄R(θH|θ), πR(m′|θL) = α(1 − δ̄), and πR(m′′|θL) =
(1 − α)(1 − δ̄). Our goal is to find a ᾱ ∈ [0�1] such that μ(m�πC�πR) < q for
m ∈{m′�m′′}. Begin by noting that

1 − δ̄ > ρ

1 − ρ
(
(1 − ρ)x̄− ȳ) = ρ

1 − ρ
(
(1 − ρ)x′ − y ′)

︸ ︷︷ ︸
A≥0

+ ρ

1 − ρ
(
(1 − ρ)x′′ − y ′′)

︸ ︷︷ ︸
B≥0

=A+B�
Also, note that μ(m′�πC�πR) < q iff A < α(1 − δ̄). Similarly, μ(m′�πC�πR) < q
iff B < (1 − α)(1 − δ̄). To find ᾱ, define g(α) = α(1 − δ̄) − A and f (α) = (1 −
α)(1 − δ̄) − B and let ᾱ be the unique solution to g(α) = f (α), namely, that is
ᾱ = (1−δ̄)+A−B

2(1−δ̄) . Since A�B ≥ 0 and A + B < 1 − δ̄, then A < 1 − δ̄ and B < 1 −
δ̄. This implies that ᾱ ∈ [0�1]. Finally, note that g(ᾱ) = f (ᾱ) > 0, implying that
μ(m�πC�πR) < q for m ∈{m′�m′′}.

Q.E.D.

PROOF OF PROPOSITION 3: Assume that information is unverifiable. Fix q′ > q > μ0.
Consider ρ ≥ ρ′ := q′−μ0

q′(1−μ0) . Since q′ > q, ρ′ > ρ := q−μ0
q(1−μ0) and, thus, ρ ≥ ρ as well. By

Theorem 1, all equilibria when the persuasion threshold is q′ are FCC, namely, they in-
duce correlation

√
q′ρ. Similarly, all equilibria when the persuasion threshold is q are

FCC, namely, they induce correlation
√
qρ. Since q′ > q, the equilibrium correlation in-

duced when the persuasion threshold is q′ is higher than that induced when the persuasion
threshold is q. Q.E.D.

D.2. Correlation and Blackwell Informativeness

D.2.1. The Informativeness of an Outcome

Fix μ0 ∈ (0�1), ρ ∈ [0�1], and . Fix strategies (πC�πR�σ). Let the outcome induced
by (πC�πR�σ) be the function η :�→ �(A), defined as η(a|θ) = ∑

m(ρπC (m|θ) + (1 −
ρ)πR(m|θ))σ (a|m), for all a and θ. We can think of an outcome η as an information
structure on its own, which could be informative about θ. It is as if an external observer
were to learn about θ only by observing the action a taken by the receiver. Say that an
outcome η′ is Blackwell more-informative than η if there is a garbling g : A → �(A)
such that η(a|θ) = ∑

a′ g(a|a′)η′(a′|θ) for all a and θ. The next result shows that the
correlation φ is a completion of the Blackwell order on the space of outcomes.

REMARK 1: Let (πC�πR�σ) and (π ′
C�π

′
R�σ

′) be two strategy profiles and η and η′

their respective outcomes. Suppose that η′ is Blackwell more-informative than η. Then,
φ(π ′

C�π
′
R�σ

′) ≥φ(πC�πR�σ).
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PROOF: Let η be the outcome induced by (πC�πR�σ). To simplify notation, define
α= η(aH|θH) and β= η(aH|θL). The correlation is equal to

φ(πC�πR�σ) =
√
μ0(1 −μ0)√(

μ0α+ (1 −μ0)β
)(

1 −μ0α− (1 −μ0)β
) (α−β)�

Consider an external observer with prior belief μ0 that the state is θH . She observes the
realized action a from η. The distribution of the observer’s posterior belief is

μ(θH|a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ0α

μ0α+ (1 −μ0)β
with prob. Pr(aH) = μ0α+ (1 −μ0)β�

μ0(1 − α)
μ0(1 − α) + (1 −μ0)(1 −β)

with prob. Pr(aL) = μ0(1 − α) + (1 −μ0)(1 −β)�

The variance of such distribution is

Va∼η
(
μ(θH|a)

) = Ea∼η
(
μ(θH|a)2

) −Ea∼η
(
μ(θH|a)

)2

= Ea∼η
(
μ(θH|a)2

) −μ(θH)2

= μ(θH)2

(
α2

μ(θH)α+μ(θL)β
+ (1 − α)2

1 −μ(θH)α−μ(θL)β
− 1

)

= μ(θH)2μ(θL)2(
μ0α+ (1 −μ0)β

)(
1 −μ0α− (1 −μ0)β

) (α−β)2�

where we used the fact that Ea∼η(μ(θH|a)) = μ0, by the martingale property. Therefore,
we have established that

φ(πC�πR�σ) =
√
Va∼η

(
μ(θH|a)

)
μ0(1 −μ0)

�

That is, for any μ0 and (πC�πR�σ), the state-action correlation φ is proportional to the
standard deviation of the distribution of the implied posterior beliefs.

We can now prove the claim. Fix outcomes η′ and η. By Blackwell and Girshick (1979,
Theorem 12.2.2), η′ is Blackwell more-informative than η if and only if, for all convex
functions f : �(�) → R,

Ea∼η′
(
f
(
μ(θH|a)

)) ≥ Ea∼η
(
f
(
μ(θH|a)

))
�

Note that, in particular, f (μ(θH|a)) = (μ(θH|a) −μ(θH))2 is convex and that

Ea∼η
(
f
(
μ(θH|a)

)) =Va∼η
(
μ(θH|a)

)
�

Therefore, if η′ is Blackwell more-informative than η, then

Va∼η′
(
μ(θH|a)

) ≥ Va∼η
(
μ(θH|a)

) ⇒
√
Va∼η′

(
μ(θH|a)

)
μ0(1 −μ0)

≥
√
Va∼η

(
μ(θH|a)

)
μ0(1 −μ0)

�

which implies that φ(π ′
C�π

′
R�σ

′) ≥φ(πC�πR�σ). Q.E.D.
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D.2.2. The Informativeness of a Sender’s Strategy

In the paper, we distinguish between the information “sent” by the sender and the
information “received” by the receiver. The latter is measured by φ and must inevitably
rely on the entire outcome η, which combines the observed strategies of both sender and
receiver. To measure information “sent,” instead, there are at least two natural directions,
both of which we explored in the paper and which give results that are qualitatively similar.

The first approach is to use φB, the informativeness of the hypothetical outcome in-
duced by the sender’s strategy and that of a Bayesian receiver who best responds to it. It
is immediate to see that Remark 1 extends to the Bayesian correlation φB. More specifi-
cally, we can show that the correlation measure φB is a completion of the Blackwell order
on the space of outcomes that are induced by a strategy profile (π�σB).

The second approach consists of using the variance of the distribution of Bayesian pos-
teriors that are induced by the sender’s strategy. In the next remark, we show that this
alternative measure of information “sent” is proportional to the posterior divergence ψB,
which we used in Section 4.2. Fix μ0 and a sender’s strategy π : � → �(M). Strategy
π ∈  can indicate a commitment-stage strategy, a revision-stage strategy, or a mixture
of the two. To simplify notation, denote by μ(m) the posterior belief that θ = θH condi-
tional on observing message m under π.6 Recall that the posterior divergence is defined
as ψB(π) = Em∼π(μ(m)|θH) −Em∼π(μ(m)|θL). The next result shows that ψB is a comple-
tion of the Blackwell order on the space of strategies π. To do so, the proof illustrates that
ψB(π) is proportional to the variance of the distribution of the posterior beliefs induced
by π.

REMARK 2: Let π�π ′ : � → �(M). Suppose that π ′ is Blackwell more-informative
than π. That is, suppose there exists a garbling g : M → �(M) such that π(m|θ) =∑

m′ g(m|m′)π ′(m′|θ) for all m and θ. Then ψB(π ′) ≥ψB(π).

PROOF: Let μ0 ∈ (0�1). We rewrite ψB(π) as a convex function of posteriors μ(m):

ψB(π) = Em
(
μ(m)|θH

) −Em
(
μ(m)|θL

)
=

∑
m

μ(m)π(m|θH) −
∑
m

μ(m)π(m|θL)

=
∑
m

μ(m)
(
π(m|θH) −π(m|θL)

)

=
∑
m

μ(m)
(
π(m|θH)
Prπ (m)

− π(m|θL)
Prπ(m)

)
Prπ (m)

=
∑
m

μ(m)
(
μ(m)
μ0

− 1 −μ(m)
(1 −μ0)

)
Prπ (m)

=
∑
m

μ(m)2 −μ(m)μ0

μ0(1 −μ0)
Prπ(m)

= Vm∼π
(
μ(m)

)
μ0(1 −μ0)

�

6Without loss of generality, let μ(m) = 0 if m has zero probability under π.
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The variance Vm∼π(μ(m)) is a convex function μ(m). By Blackwell and Girshick (1979,
Theorem 12.2.2), if π ′ is Blackwell more-informative than π, ψB(π ′) ≥ψB(π). Q.E.D.

These results indicate that both φB and ψB are valid ways to quantify the amount of
information sent by senders. In Section 4.2, we discuss both measures and argue that
they lead to qualitatively similar conclusions. It is useful to discuss their similarities and
differences. First, φB can be directly compared to φ, while ψB cannot. In the data, we
find that the average φ − φB is negative, suggesting that receivers further garble the
information they have received. Second, φB exploits the fact that we know u, whereas
ψB is “utility-free.” This is important because not all information is useful to our re-
ceivers. Let us consider an example. Fix μ0 = 1

3 and q = 1
2 . Let π be uninformative, in

the sense that μ(m) = μ0 for all m. Let π ′ induce posterior μ(m) = 2
5 with probabil-

ity 5
6 and posterior μ(m) = 0 with remaining probability. None of these strategies can

change the receiver’s behavior, since q > μ(m) for all m. Clearly, π ′ is Blackwell more-
informative than π. Both ψB and φB agree with this order. However, ψB(π ′) > ψB(π)
whereas φB(π ′) =φB(π). The reason for this is that π ′ does not contain information that
is more useful to our receivers than π.

D.3. Examples That Fail the Refinement

We present two examples—for unverifiable and verifiable information, respectively—
that indicate why Theorem 1 can fail without the tie-breaking rule imposed by our refine-
ment. These examples illustrate that, in the absence of a refinement, there are equilibria
that feature behavior that is somewhat unreasonable.

EXAMPLE 1—Unverifiable Information: Let information be unverifiable. Assume ρ=
3
5 , q= 1

2 , and μ0 = 1
3 . Note that, in this case, ρ > ρ. Consider the pair of sender’s strategies

(πC�πR) in Table D5. Given these strategies, note that beliefs satisfy μ(θH�πC�πR) < q
and μ(θL�πC�πR) < q. That is, despite πC being fully revealing, the sender’s behavior in
the revision stage entirely garbles the information transmitted in the commitment stage.

When ρ = 3
5 , it can be shown that for all commitment strategies π ′

C , there exists a re-
taliatory strategy π ′

R, similar to the one from Table D5, that garbles the information con-
tained in π ′

C . That is, the pair (π ′
C�π

′
R) induces the receiver to choose aL conditional on all

messages. This means that a PBE with correlation zero exists, even if, in this case, ρ > ρ.
Similarly, we can show that a PBE with correlation higher than FCC exists. The particu-
larly strange behavior that characterizes these PBE is ruled out by the TWC refinement.
For example, consider the history in which the pair of strategies in Table D5 is played by
sender. As argued, the θH-type sender in the revision stage is indifferent between sending
message θH and θL, given that both lead to action aL. In this case, the refinement requires
that the sender breaks ties in favor of message θH , that is, sets πR(θH|θH) = 1.

TABLE D5

A SENDER’S STRATEGY FOR EXAMPLE 1, UNVERIFIABLE INFORMATION

πC m= θH m= θL m= n
θH 1 0 0
θL 0 1 0

πR m= θH m= θL m= n
θH 0 1 0
θL 1 0 0
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TABLE D6

A SENDER’S STRATEGY FOR EXAMPLE 2, VERIFIABLE INFORMATION

πC m= θH m= θL m= n
θH 0 0 1
θL 0 5

6
1
6

πR m= θH m= θL m= n
θH 0 0 1
θL 0 0 1

EXAMPLE 2—Verifiable Information: Now assume that information is verifiable. As
above, let ρ = 3

5 , q = 1
2 , and μ0 = 1

3 . Consider the pair of strategies (πC�πR) that is de-
scribed in Table D6. Conditional on πC , there exists a continuation PBE in which πR is
played, and σ (m) = aH if m ∈ {θH�n} and aL otherwise. In such a continuation equilib-
rium, the sender of type θH is indifferent between the two feasible messages θH and n,
as they both lead to aH (see footnote 40). Note that the profile of strategies (πC�πR�σ)
achieves FCC. This PBE, however, fails the TWC refinement. Indeed, the θH-type sender
is indifferent in the revision stage between sending message n and the verifiable message
θH . In this case, the refinement requires that the sender breaks ties in favor of message
θH , that is, sets πR(θH|θH) = 1 �= 0.

D.4. Statistical Tests

The p-values reported in the main text are obtained by regressing the variable of inter-
est on the relevant regressor (sometimes an indicator variable) with subject-level random
effects and clustering of the variance-covariance matrix at the session level. This specifi-
cation has the advantage of being uniform (the same throughout the paper), it directly ac-
counts for heterogeneity across subjects via the random effects (as the paper documents,
there is clear evidence of heterogeneity between subjects), and it permits unmodeled de-
pendencies between observations from the same session (see Fréchette (2012), where
such possibilities are discussed). However, it does not directly account for the fact that we
are often dealing with a limited dependent variable. Also, clustering with a small num-
ber of clusters can lead to insufficient corrections (see Cameron and Miller (2015), for a
survey). But this observation relies mostly on simulations that do not necessarily mirror
the situation of most laboratory experiments. In particular, the extent of the problem is

FIGURE D17.—Receiver’s response to persuasive messages: ρ= 0�2 versus ρ= 0�80.
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FIGURE D18.—k-Means—representative strategies in treatments with full commitment.

found to depend on the size of the within-session correlation (see, e.g., Carter, Schne-
pel, and Steigerwald (2017)). For many experiments, such correlation can be expected to
be low (once the appropriate factors are controlled for). Hence, we are more concerned
with controlling for the source of dependencies across the observations of a given subject
than for the within-session correlations (see also Appendix A.4 of Embrey, Fréchette, and
Yuksel (2017) for a discussion of these issues).

In Table D7, we document the robustness of the tests reported in the text by exploring
alternative specifications. These include directly accounting for the limited nature of the
dependent variable by using a probit or tobit when appropriate. When possible, we also
report bootstrapped estimates that have been shown to perform better when the number
of clusters is small (cluster-adjusted t-statistics or CAT) and that allow for subject-specific
fixed effects (Ibragimov and Müller (2010)). When we report those, we also include results
from a standard subject-specific fixed-effects estimation with session clustering to provide
a benchmark. As can be seen, p-values are not systematically larger for CATs than with
the “standard” clustering, nor are they very different when estimating a probit or tobit.7
As a whole, results are fairly robust: out of the 28 hypotheses tested, for only five of
them are results not the same for all tests reported (in the sense of being consistently
significant—or not—at the 10% level). The few cases in which there are differences are
for the most part not difficult to make sense of. Two of them involve comparing V 80 and
V 100, where the difference is small in magnitude. Hence, whether or not the difference
is statistically significant is not clear, but either way it is not large. In most other cases, the
p-values are either under the 0�1 cutoff or just slightly above.

D.5. V 0 and U0

In Table D8, we report the average revision-stage strategies πR, for treatments U20
and V 20. This stage of these treatments represents the closest point in our data to the
hypothetical treatments U0 and V 0. For U20, the table shows that the average revision

7Note that if a tobit could have been estimated but is not reported, it means that the dependant variable
was not actually censored.
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TABLE D7

p-VALUES OF STATISTICAL TESTS.

Model Linear Linear Pr(T)obit Pr(T)obit Linear Linear
Subject RE RE RE RE FE FE
Session Cluster RE Cluster RE Cluster Cluster
Bootstrap CATs

Test

Left panel Figure 2, all bars = 0 when ball is R 0.000 0.000
Left panel Figure 2, all bars = 0 when ball is B 0.000 0.000
Right panel Figure 2, r message bar = 0 when ball is R 0.000 0.000
φBC =φBR in U80 0.000 0.000 0.000 0.996
φBC =φBR in V80 0.000 0.000 0.006 0.000
Pr(red|m= r�μ < 1

2 ) = Pr(red|m= r�μ≥ 1
2 ) in U20 0.053 0.002 0.083 0.004 0.150 0.126

Pr(red|m= r�μ < 1
2 ) = Pr(red|m= r�μ≥ 1

2 ) in U100 0.000 0.000 0.024 0.000 0.040 0.021
Pr(red|m= r�μ < 1

2 �U20) = Pr(red|m= r�μ < 1
2 �U100) 0.627 0.535 0.718 0.610

Pr(red|m= r�μ≥ 1
2 �U20) = Pr(red|m= r�μ≥ 1

2 �U100) 0.000 0.001 0.002 0.003
Pr(red|m= n�μ < 1

2 ) = Pr(red|m= n�μ≥ 1
2 ) in V20 0.038 0.002 0.133 0.006 0.257 0.163

Pr(red|m= n�μ < 1
2 ) = Pr(red|m= n�μ≥ 1

2 ) in V100 0.000 0.000 0.000 0.000 0.022 0.014
Pr(red|m= r�μ < 1

2 �V20) = Pr(red|m= r�μ < 1
2 �V100) 0.566 0.674 0.536 0.452

Pr(red|m= r�μ≥ 1
2 �V20) = Pr(red|m= r�μ≥ 1

2 �V100) 0.000 0.000 0.000 0.000
φ(V20) =φ(V80) 0.217 0.215
φ(V80) =φ(V100) 0.001 0.020 0.258 0.451
φ(U20) =φ(U80) 0.002 0.001
φ(U80) =φ(U100) 0.696 0.676 0.486 0.441
φ(V20) =φ(U20) 0.000 0.000
φ(V80) =φ(U80) 0.000 0.000
φ(V100) =φ(U100) 0.000 0.000 0.000 0.000
φB(V20) =φB(V80) 0.156 0.130
φB(V80) =φB(V100) 0.032 0.052 0.608 0.648
φB(U20) =φB(U80) 0.000 0.000
φB(U80) =φB(U100) 0.957 0.925 0.711 0.661
φB(V20) =φB(U20) 0.000 0.000
φB(V80) =φB(U80) 0.000 0.000
φB(V100) =φB(U100) 0.000 0.000 0.000 0.000

strategy is akin to babbling. In particular, all messages lead to a posterior belief that is
well below the persuasion threshold q = 1/2 (recall that in the experiment, the prior is
μ0 = 1/3). Therefore, following each message, a Bayesian receiver would always guess
blue. For V 20, the same table shows that theR-type sender almost always sends message r,
while the B-type sender mostly sends message n. Given this, a Bayesian receiver would
almost fully learn the state. In other words, unraveling would happen most of the time.

TABLE D8

AVERAGE REVISION-STAGE STRATEGIES IN U20 AND V 20.

U20

πR m= θH m= θL m= n
θH 0.89 0.06 0.05
θL 0.64 0.24 0.12

V 20

πR m= θH m= θL m= n
θH 0.92 0 0.08
θL 0 0.28 0.72
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D.6. Receivers’ Behavior and Revealed Information

In this section, we apply methods from Caplin and Martin (2021) to study whether the
receivers’ behavior reveals that they are indeed better informed in U100 versus U20. We
observe the behavior of receivers who take guesses upon receiving information from two
different experiments, labeled E20 and E100. Is the receiver more informed under one or
the other experiment? The answer to this question is trivial if we know the utility of the
receiver and which experiments she observed. In our setting, these are all details of the
problem that we know. However, in this appendix, we will assume that we do not know
what the “true” utility function of the receiver is. Instead, let us assume that the receiver
earns an unknown payoff u(xr) ∈ R, when correctly guessing that the state is R, that she
earns u(xb) ∈ R when correctly guessing that the state is B, and that she earns u(x0) ∈ R
when guessing incorrectly. Note that we allow u(xr), u(xb), and u(x0) to be positive or
negative. Similarly, we may not know how the receivers truly understand the experiments
E20 and E100. Thus, we assume that we do not observe them.

Because the space of strategies is extremely large, we will focus attention on the sub-
set of commitment strategies that satisfies πC (r|R) ≥ 0�95 and πC (b|B) ≥ 0�95. We do
not know what the receiver understands from these strategies, whether she misinterprets
them entirely, or how this depends on the treatment. This is what we seek to study.8

For each treatment, we observe a state-dependent stochastic choice (SDSC) data
set, which consists of a large number of guesses, a ∈ {red�blue}, taken by the receiver
conditional on the state, θ ∈ {R�B}. Such a data set can be summarized in a matrix
Pi = (Pi(a�θ))a∈A�θ∈� where i ∈{20�100}. Based on the comparison between P20 and P100,
we would like to conclude that the receiver is “revealed to be more informed” under E100

rather than E20, consistent with our conclusion from Section 4. In Table D9, we report P20

and P100 computed from our treatments U20 and U100.
Without loss of generality, we can normalize one of the unknowns, so let u(x0) = 0.

Following Caplin and Martin (2021), we can use NIAS (No Improving Action Switches)
inequalities to find the set of utilities u for which there are experiments consistent with
P20 and P100. This amounts to finding the set of utilities (u(xr)�u(xr)) ∈ R2 such that, for
all i ∈{20�100}, and for all a�a′ ∈{Red�Blue}, the following inequality is satisfied:

Pi(a�R)u
(
x(a�R)

) + Pi(a�B)u
(
x(a�B)

) ≥ Pi(a�R)u
(
x
(
a′�R

)) + Pi(a�B)u
(
x
(
a′�B

))
�

In the formula above, we defined x(Red�R) = xr , x(Blue�B) = xb, and x0 otherwise.
These four NIAS inequalities lead to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(xr) ≥ 4
25
u(xb)�

u(xr) ≤ 63
8
u(xb)�

u(xr) ≥ u(xb)�

u(xr) ≤ 54
20
u(xb)�

whose set of solutions is {u(xr)�u(xb) ∈ R2
+ : u(xb) ≤ u(xr) ≤ 54

20u(xb)}. Note that all util-
ities consistent with NIAS satisfy u(xr) ≥ 0 and u(xb) ≥ 0. Therefore, we can conclude
that ∑

θ�a

P100(a�θ)u
(
x(a�θ)

) ≥
∑
θ�a

P20(a�θ)u
(
x(a�θ)

)
�

8Our conclusion in this exercise is unchanged if we study the receiver’s behavior unconditional on πC .
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TABLE D9

P20 (LEFT) AND P100 (RIGHT)

U20

P20 a= Red a= Blue

θ=R 0.13 0.20
θ= B 0.13 0.54

U100

P100 a= Red a= Blue

θ=R 0.25 0.08
θ= B 0.04 0.63

In other words, the value of information in U100 is higher than that in U20. This shows
that receivers are revealed to be on average more informed under E100 rather than E20,
corroborating our evidence from Section 4.1.2.

D.7. Gaussian Mixture Model

The k-means algorithm does not allow for confidence intervals. One may wonder how
confidently each observation is assigned to its cluster. To answer this question, we esti-
mated a Gaussian mixture model (GMM) in which the centroid of each cluster is given
and computed with k-means (i.e., they are those in Figures 7 and 8) while the variance
of each cluster is estimated from the data. That is, we estimate a GMM with a single pa-
rameter for the variance of the errors. With this model, we can compute the posterior
probabilities of each assignment, which capture how confidently we can assign an obser-
vation to its cluster.

Figure D19 plots the posterior assignments of the clusters computed in that fashion
for treatments U80 (left panel) and V 80 (right panel) As can be seen, the posterior for
the vast majority of observed strategies is extremely high. Note that, in each of the eight
clusters, at least three-quarters of the strategies are classified with a posterior that is above
90%; and for six of the eight clusters, that is true for more than 90% of the strategies. In
fact, for half of the clusters, less than 5% of the strategies are classified with a probability
below 90%. This exercise shows that the cluster assignment from Section 5.2 is quite
robust.

APPENDIX E: DESIGN

E.1. Graphical Interface

Figures E20 and E21 show the software interface of our experiment. More specifically,
Figure E20 shows the commitment, revision, and guessing stages. To avoid any possible

FIGURE D19.—Posteriors probabilities of k-means assignments for U80 (left panel) and V 80 (right panel).
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FIGURE E20.—Sample screenshots, U80: commitment, revision, and guessing stages.



RULES AND COMMITMENT IN COMMUNICATION 21

FIGURE E21.—Sample screenshots, U80. Feedback.

framing, the experiment referred to the first two with more neutral labels, “Communica-
tion” and “Update.” Figure E21 shows the feedback screen, where all relevant informa-
tion is reported to both players.

E.2. Sample Instructions

In this section, we reproduce instructions for one of our treatments, V80. These in-
structions were read out aloud so that everybody could hear. A copy of these instructions
was handed out to the subject and available at any point during the experiment. Finally,
while reading these instructions, screenshots similar to those in Figures E20 and E21 were
shown with a projector to ease the exposition and the understanding of the tasks.

Welcome:
You are about to participate in a session on decision-making, and you will be paid for your participation with

cash vouchers (privately) at the end of the session. What you earn depends partly on your decisions, partly on
the decisions of others, and partly on chance. On top of what you will earn during the session, you will receive
an additional $10 as show-up fee.

Please turn off phones and tablets now. The entire session will take place through computers. All interaction
among you will take place through computers. Please do not talk or in any way try to communicate with other
participants during the session. We will start with a brief instruction period. During the instruction period you
will be given a description of the main features of the session. If you have any questions during this period,
raise your hand and your question will be answered privately.

Instructions
You will play for 25 matches in either of two roles: sender or receiver. At the beginning of every Match one

ball is drawn at random from an urn with three balls. Two balls are BLUE and one is RED. The receiver earns
$2 if she guesses the right color of the ball. The sender’s payoff only depends on the receiver’s guess. She earns
$2 only if the receiver guesses RED. Specifically, payoffs are determined illustrated in Table E10.

The sender learns the color of the ball. The receiver does not. The sender can send a message to the receiver.
The messages that the sender can choose among are reported in Table E11.

Each Match is divided in three stages: Communication, Update and Guessing.
1. Communication Stage: before knowing the true color of the ball, the sender chooses a COMMUNICATION

PLAN to send a message to the receiver.
2. Update Stage: A ball is drawn from the urn. The computer reveals its color to the sender. The sender

can now UPDATE the plan she previously chose.
3. Guessing Stage: The actual message received by the receiver may come from the Communication stage

or the Update stage. Specifically, with probability 80% the message comes from the Communication
Stage and with probability 20% it comes from the Update Stage. The receiver will not be informed what
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TABLE E10

PAYOFFS.

If Ball is Red If Ball is Blue

If Receiver guesses Red Receiver Sender Receiver Sender
$2 $2 $0 $2

If Receiver guesses Blue Receiver Sender Receiver Sender
$0 $0 $2 $0

TABLE E11

MESSAGES.

If Ball is Red:
– Message: “The Ball is Red.”
– No Message.

If Ball is Blue:
– Message: “The Ball is Blue.”
– No Message.

stage the message comes from. The receiver can see the COMMUNICATION PLAN, but she cannot see the
UPDATE. Given this information, the receiver has to guess the color of the ball.

At the end of a Match, subjects are randomly matched into new pairs. We now describe what happens in
each one of these stages and what each screen looks like.

Communication Stage: (Only the sender plays)
In this stage, the sender doesn’t yet know the true color of the ball. However, she instructs the computer

on what message to send once the ball is drawn. In the left panel, the sender decides what message to send
if the Ball is Red. In the right panel, she decides what message to send if the Ball is Blue. We call this a
COMMUNICATION PLAN.

Every time you see this screen, pointers in each slider will appear in a different random initial position.
The position you see now is completely random. If I had to reproduce the screen once again I would get a
different initial position. By sliding these pointers, the sender can color the bar in different ways and change
the probabilities with which each message will be sent. The implied probabilities of your current choice can be
read in the table above the sliders.

When clicking Confirm, the COMMUNICATION PLAN is submitted and immediately reported to the receiver.

Update Stage: (Only the sender plays)
In this stage, the sender learns the true color of the ball. She can now update the COMMUNICATION PLAN

she selected at the previous stage. We call this decision UPDATE. The receiver will not be informed whether at
this stage the sender updated her COMMUNICATION PLAN.

Guessing Stage: (Only the receiver plays)
While the sender is in Update Stage, the receiver will have to guess the color of the ball. On the left, she can

see the COMMUNICATION PLAN that the sender selected in the Communication Stage. By hovering on the bars,
she can read the probabilities the sender chose in the Communication Stage. Notice that the receiver cannot
see whether and how the sender updated her COMMUNICATION PLAN in the Update Stage. On the right, the
receiver needs to express her best guess for each possible message she could receive. We call this A GUESSING
PLAN. Notice that once you click on these buttons, you won’t be able to change your choice. Every click is
final.

How is a message generated?
See attached table.
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With 80% probability With 20% probability

The message is sent according to The message is sent according to
COMMUNICATION PLAN UPDATE

(Remember: COMMUNICATION PLAN is (Remember: UPDATE is never seen
always seen by the Receiver) by the Receiver)

Practice Rounds:
Before the beginning of the experiment, you will play 2 Practice rounds. These rounds are meant for you to

familiarize yourselves with the screens and tasks of both roles. You will be both the sender and the receiver at
the same time. All the choices that you make in the Practice Rounds are unpaid. They do not affect the actual
experiment.

Final Summary:
Before we start, let me remind you that:
– The receiver wins $2 if she guesses the right color of the ball.
– The sender wins $2 if the receiver says the ball is Red, regardless of its true color.
– There are three balls in the urn: two are Blue (66.6% probability), one is Red (33.3% probability). After

the Practice rounds, you will play in a given role for the rest of the experiment.
– The message the receiver sees is sent with probability 80% using COMMUNICATION PLAN and with prob-

ability 20% using UPDATE.
– The choice in the Communication Stage is communicated to the receiver. The choice in the Update stage

is not.
– At the end of each Match you are randomly paired with a new player.
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