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This Appendix contains proofs and notes to accompany Optimal Taxation of
Income-Generating Choice. Appendix A contains proofs of all results contained in
Sections 2, 3, 4, 5, and 6 of the paper. Some additional results, examples, and notes to
accompany the text are provided. Appendix B discusses how to decompose and extract
a family of policy problems that focus on the tax implications of a particular dimension
of choice from a larger policy problem. This Appendix provides background material
for Section 7.2 in the paper. Appendix C provides additional results and notes for the
Quantitative Section 7 of the paper.

APPENDIX A: PROOFS AND NOTES

A.1. Proofs for Section 2

LEMMA 1: IN THE MIXED LOGIT ENVIRONMENT WITH TECHNOLOGY F , government
spending G, and P defined as in (2), q ∈ R

I
+ is a competitive equilibrium after-tax income

vector if and only if it satisfies the following implementability condition: H(q) := F (P(q)) −∑
i∈I q(i)P(i|q) −G≥ 0.

PROOF: If q is an equilibrium after-tax income function, then there is a correspond-
ing competitive equilibrium (pS�pD�w�τ) with q=w− τ. Agent optimality implies that
pS = P(q) and firm optimality and market clearing then imply that w = ∂F (pD)

∂p
= ∂F (pS)

∂p
=

∂F (P(q))
∂p

. The government budget balance then implies

0 ≤
∑
I

τ(i)pS(i) −G=
∑
I

τ(i)P(i|q) −G=
∑
I

w(i)P(i|q) −
∑
I

q(i)P(i|q) −G

=
∑
I

∂F
(
P(q)

)
∂p(i)

P(i|q) −
∑
I

q(i)P(i|q) −G= F(
P(q)

) −
∑
I

q(i)P(i|q) −G� (A.1)

where the final equality uses the constant returns to scale property of F . This verifies the
condition in the lemma. Conversely, if q ∈ R

I
+ satisfies the condition in the lemma, then

set: τ = ∂F (P(q))
∂p

− q, w = ∂F (P(q))
∂p

and pD = pS = P(q). It is immediate that (pS�pD�w�τ)
are consistent with agent and firm optimality and market clearing. Policymaker budget
balance follows from the condition in the lemma and the equalities in (A.1). Q.E.D.
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PROPOSITION 1: After-tax income vector q > 0 is Pareto optimal only if for all i ∈ I :

1 ≥
∑
j∈I

τ(j)
P(i|q)

∂P(j|q)
∂q(i)

� (A.2)

where τ is the corresponding (Pareto optimal) tax vector τ(j) = ∂F (P(q))
∂p(j) − q(j). An after-tax

income vector q is a regular optimal after-tax income function at λ only if for all i ∈ I :

1 − B(i)
ϒ

=
∑
j∈I

τ(j)
P(i|q)

∂P(j|q)
∂q(i)

� (A.3)

with B(i) = 1
P(i|q)

∂S(q;λ)
∂q(i) the average marginal social welfare weight of those selecting i, τ the

optimal tax function, and ϒ the multiplier on H(q) ≥ 0 at the optimum. In the separable
mixed logit case, ϒ=

∑
I{∂u0(q�i)/∂c}−1B(i)P(i|q)∑

I{∂u0(q�i)/∂c}−1P(i|q) .

PROOF: For q > 0, the differential of H in the direction �q ∈ R
I is given by

∂H(q)(�q) =
∑
I

�q(i)
{∑

I

∂F
(
P(q)

)
∂p(j)

∂P(j|q)
∂q(i)

− P(i|q) −
∑
I

q(j)
∂P(j|q)
∂q(i)

}

=
∑
I

�q(i)P(i|q)
{∑

I

τ(j)
P(i|q)

∂P(j|q)
∂q(i)

− 1
}
� (A.4)

If (A.2) does not hold for some i, then there exists a small perturbation �q with �q(i) > 0
and all other elements zero such that ∂H(q)(�q) > 0. This perturbation raises the after-
tax income for agents selecting i, does not reduce after-tax income for any agent and
raises additional revenue. This contradicts Pareto optimality of q.

Associate the Lagrangian L : RI
+ × R+ → R with problem (6), where L (q;ϒ) =

S(q;λ) +ϒ{F (P(q)) − ∑
i∈I q(i)P(i|q) −G}. The differential of ∂L (q;ϒ) in the direc-

tion �q is ∂L (q;ϒ)(�q) = ∑
I �q(i) ∂S(q;λ)

∂q(i) + ϒ · ∂H(q)(�q). Applying the argument in
the proof of Theorem 1, page 249 in Luenberger (1969), at a regular optimum q, for all
perturbations �q ∈ R

I , ∂L (q;ϒ)(�q) = 0. Hence, for each i ∈ I ,

∂S(q;λ)
∂q(i)

+ϒ
{∑

I

∂F
(
P(q)

)
∂p(j)

∂P(j|q)
∂q(i)

− P(i|q) −
∑
I

q(j)
∂P(j|q)
∂q(i)

}
= 0�

Substituting from the firm’s first-order conditions and the agent’s budget constraint and
rearranging yields (A.3) in the proposition.

Assume a separable mixed logit model. A small perturbation �q, with �q(i) =
�

∂u0(q(i)�i)/∂c , leaves agent payoffs across choices unaffected, and hence, the choice distri-
bution P(q) unchanged. Consequently, the corresponding Lagrangian perturbation is

∂L (q;ϒ)(�q) =
∑
I

{
∂S(q;λ)
∂q(i)

−ϒP(i|q)
}

∂u0

(
q(i)� i

)
/∂c

�= 0
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and so

ϒ=
∑
I

{
∂u0

(
q(i)� i

)
∂c

}−1
∂S(q;λ)
∂q(i)

/∑
I

{
∂u0

(
q(i)� i

)
∂c

}−1

P(i|q)� Q.E.D.

LEMMA 2: Assume a separable mixed logit. Let B(i) = 1
P(i|q)

∂S(q;λ)
∂q(i) and M(i� j) = ∂u(q�i)

∂c
/

∂u(q�j)
∂c

, then at a regular optimum: 1 − B(i)
ϒ

= ∑
j∈I

τ(j)M(i�j)
P(i|q)

∂P(i|q)
∂q(j) .

PROOF: The desired symmetry of choice distribution elements with respect to utilities
can be derived directly from the formulas for mixed logit choice distributions in Section 3.
Here, we provide another route via a representative agent problem. Consider first a sim-
ple logit model. It is well known that simple logit choice probabilities may be obtained as
solutions to problems:

max
p∈�I

∑
i∈I

{
u
(
q(i)� i

) − logp(i)
}
p(i)� (A.5)

where �I is the I dimensional simplex. Letting v(i) = u(q(i)� i), we may reformulate (A.5)
as a representative agent quasilinear preference supply problem with utility prices {v(i)}:

U (v) = maxx−
∑
i∈I

logp(i)p(i) (A.6)

subject to x ∈ R, p ∈ �I , and x ≤ ∑
i∈I v(i)p(i). The optimal compensated (and un-

compensated) supply responses to v variation for this problem are given by a symmet-
ric and positive semidefinite Slutsky matrix {∂P(i)

∂v(j)}. The quasilinear representative agent
problem can be applied to each β subpopulation in the mixed logit model, and hence,
∂P(j|β)
∂v(i) = ∂P(i|β)

∂v(j) . Consequently, in the mixed logit model:

∂P(j)
∂v(i)

=
∫
B

∂P(j|β)
∂v(i)

m(β) dβ=
∫
B

∂P(i|β)
∂v(j)

m(β) dβ= ∂P(i)
∂v(j)

�

Further, for the separable mixed logit,

∂P(j)
∂q(i)

= ∂P(j)
∂v(i)

∂u
(
q(i)� i

)
∂c(i)

= ∂P(i)
∂v(j)

∂u
(
q(i)� i

)
∂c(i)

= ∂P(i)
∂q(j)

∂u
(
q(i)� i

)
∂c(i)

∂u
(
q(j)� j

)
∂c(j)

�

Substitution into (8) gives the condition in the lemma. Q.E.D.

A.2. Proofs for Section 3

PROPOSITION 2: In the separable mixed logit model, the behavioral response of P(j|q)
with respect to a util increment at i is given by

1
P(i|q)

∂P(j|q)
∂v(i)

= I(i� j) −Q(i� j|q)� (A.7)
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where

Q(i� j|q) = P(j|q) + P(j|q) Cov
(
P(j|q�β)
P(j|q)

�
P(i|q�β)
P(i|q)

)
� (A.8)

and Q is the transition of an aperiodic, irreducible, and reversible Markov chain with unique
stationary distribution PQ equal to P . The util behavioral responses are converted into after-
tax income behavioral responses via multiplication by marginal utilities:

1
P(i|q)

∂P(j|q)
∂q(i)

= (
I(i� j) −Q(i� j|q)

)∂u(q� i)
∂c

� (A.9)

PROOF: The formulas (A.7) to (A.9) follow from evaluation of the derivatives of (2).
ThatQ is an aperiodic and irreducible Markov transition matrix follows from the fact that
each Q(i� j) > 0 and∑

j∈I
Q(i� j|q) =

∑
j∈I
P(j|q)

{
1 + Cov

(
P(i|q�β)
P(i|q)

�
P(j|q�β)
P(j|q)

)}

=
∑
j∈I

{
P(j|q) + Cov

(
P(i|q�β)
P(i|q)

�P(j|q�β)
)}

= 1 + Cov
(
P(i|q�β)
P(i|q)

�
∑
j∈I
P(j|q�β)

)
= 1�

Reversibility of the Markov chain follows from (A.8) and the fact that this formula implies
P(i|q)Q(i� j|q) = P(j|q)Q(j� i|q). That P(q) is an invariant measure for Q(q) follows
from (A.8) and∑

i∈I
P(i|q)Q(i� j|q) =

∑
i∈I
P(i|q)P(j|q)

{
1 + Cov

(
P(i|q�β)
P(i|q)

�
P(j|q�β)
P(j|q)

)}

= P(j|q) + P(j|q)
∑
i∈I

Cov
(
P(i|q�β)�

P(j|q�β)
P(j|q)

)

= P(j|q) + P(j|q) Cov
(∑
i∈I
P(i|q�β)�

P(j|q�β)
P(j|q)

)
= P(j|q)� Q.E.D.

A.3. Proofs for Section 4

PROPOSITION 4: Assume that agents are distributed across preferences according to a
mixed logit model. At a regular optimum, taxes τ, redistribution vector θ, and correspond-
ing substitution matrix Q satisfy

τ =
∞∑
n=0

(
Qn − PQ

)
θ+GQe=

∞∑
n=0

CovQ

(
Qn − PQ
PQ

�θ

)
+GQe� (A.10)

where the ith element of the vector CovQ(Q
n−PQ
PQ

�θ) is the covariance between Qn(i�·)−PQ
PQ

and θ
under PQ. In the separable mixed logit case, formula (A.10) holds with PQ = P , GQ =G.
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PROOF: Let N(B) denote the null space of a matrix B. Since Q is a Markov matrix,
dim N(I−Q) = 1. Further, since (I−Q)e= 0 where e is the unit vector, any element of
N(I −Q) has the form αe for some constant α. In general, if Bx= c and dim N(B) = 1,
then x= B#c + n for some n ∈N(B); see Golub and Meyer (1986, page 275). Applying
this to the optimality equation θ= (I−Q)τ gives

τ = (I−Q)#θ+ αe� (A.11)

In addition,

GQ = P�
Qτ = P�

Q

(
(I−Q)#θ+ αe)� (A.12)

Since PQ is an invariant measure for Q,

PQ ∈N[
(I−Q)�] =N[(

(I−Q)�)#] =N[(
(I−Q)#

)�]
�

where the second two equalities follow directly from the definition of (I−Q)#. It follows
that P�

Q (I − Q)#θ = 0. Since, in addition, P�
Qe = 1, (A.12) implies α = GQ. Combining

this with (A.11) yields τ = (I −Q)#θ +GQe. From Lamond and Puterman (1989, page
123) and the aperiodicity of Q, (I −Q)# = ∑∞

n=0(Qn − PQ). The first equality in (A.10)
follows from the combination of the preceding equalities. The second equality in (A.10)
then follows from the fact that θ has expectation equal to zero under PQ so that∑
j

(
Qn(i� j) − PQ(j)

)
θ(j) =

∑
j

(
Qn(i� j) − PQ(j)

PQ(j)

)
θ(j)PQ(j) = CovQ

(
Qn(i� ·) − PQ

PQ
�θ

)
�

In the separable case PQ = P and, by the government budget constraint, G = P�τ =
P�
Qτ =GQ. Thus, in this case (A.10) holds with these substitutions. Q.E.D.

PROPOSITION 5: Assume that agents are distributed across preferences according to a
mixed logit model. At a regular optimum, taxes τ, redistribution vector θ, and correspond-
ing substitution matrix Q satisfy

τ = θ− ÊQ
[
CovQ(mQ�θ)

] +GQe� (A.13)

where ÊQ[·] is the deviation-from-mean operator, with ÊQ[x] = (I−PQ)x, and CovQ(mQ�θ)
is the (cross-)covariance vector with ith element the covariance betweenmQ(i� ·) and θ under
PQ.

PROOF: From (23) in the main text, τ = (I−Q)#θ+GQe. Let a(i� j) denote the (i� j)-
th element of (I − Q)#. From Cho and Meyer (2000), for i �= j, this element satisfies
a(i� j) = a(j� j)−PQ(j)mQ(i� j). Hence, τ(i) = ∑

j∈I a(i� j)θ(j)+GQ = ∑
j∈I a(j� j)θ(j)−∑

j �=i PQ(j)mQ(i� j)θ(j) + GQ. But (see Cho and Meyer (2000)), PQ(j) = 1
mQ(j�j) and so

PQ(i)mQ(i� i)θ(i) = θ(i). Thus, defining AQ := ∑
j∈I a(j� j)θ(j) +GQ, we obtain τ(i) =

AQ−∑
j �=i

mQ(i�j)
mQ(j�j)θ(j) =AQ+θ(i)−∑

j∈I PQ(j)mQ(i� j)θ(j). Using the fact thatEQ[θ] = 0,
we may replace the expectation in the final term of the last equation with the covariance of
mQ(i� ·) and θ under PQ: τ(i) =AQ +θ(i) − Cov(mQ(i� ·)� θ(·)). Finally, taking the expec-
tation in the previous equation with respect to PQ, subtracting it from that equation and
rearranging gives τ(i) = θ(i) − CovQ(mQ(i� ·)� θ(·)) − EQ[θ(j) − CovQ(mQ(j� ·)� θ(·))] +
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GQ. Equivalently, in matrix form: τ = θ− (I − PQ) CovQ(mQ�θ) +GQ. Equation (A.13)
then follows from the definition of ÊQ[·]. Q.E.D.

A.4. Proofs and Notes for Section 5

PROPOSITION 6: Assume a simple logit model with u(c� i) = u0(c) +u1(i) and u0 increas-
ing, concave, and twice differentiable. Given a utilitarian social objective, optimal taxes are
an increasing function of pre-tax income:

τ =T
(
∂F (P)
∂p

)
� where: T (w) =w− C

(
1
ϒ

+w−Ge
)
� (A.14)

T is convex and optimal income taxes are progressive if and only if 1/∂u0
∂c

is convex. Specif-
ically, if u0(c) = ac

1−σ
1−σ and σ > 1, then optimal income taxes are progressive. If u0 = a log,

then they are affine with marginal income tax rate 1
1+a .

PROOF: Equation (A.14) follows from (25) and the fact that Q= P in the simple logit
case. From (26), each ∂C

∂r(i) < 1, and hence, T and taxes are increasing in w. The definition
of C and routine calculus imply that C is concave if and only if 1

∂u0/∂c
is convex. Under

these conditions, T is convex and marginal income taxes are nondecreasing in income.
That taxes are convex (resp., affine with marginal tax rate 1

1+a ) when u0(c) = ac
1−σ

1−σ , with
σ ≥ 1 (resp., when u0(c) = a log c) follows directly from (A.14) and the definition of C in
this case. Q.E.D.

PROPOSITION A.1: If �w is not equal to zero and is proportional to a (nonunit) right
eigenvector of Q, then optimal taxes are affine in w with marginal income tax rate 1

1+a(1−ψ) ,

where ψ < 1 is the corresponding eigenvalue. In particular, if Q = ψI + (1 −ψ)P , with 0<
ψ< 1, then taxes are affine in incomes with marginal tax rate 1

1+a(1−ψ) .

PROOF: Since Q is the transition of a reversible and ergodic Markov chain, all eigen-
values ψ = {ψm} are real with unique largest eigenvalue ψ1 equal to one and corre-
sponding right eigenvector v1 equal to the unit vector e. Additionally, all right eigen-
vectors v = {vm} may be chosen to be orthonormal with respect to the inner product
〈x� y〉P = ∑

i∈I x(j)y(i)P(i). If vm is an eigenvector of Q, then it is also an eigenvec-
tor of �. In addition, if ψm is an eigenvalue of Q, then φm = 1

1+a(1−ψm) is an eigenvalue
of �. In particular, 1 is the largest eigenvalue of �. The spectral decomposition of � im-
plies that��w= ∑I

m=1φ
m〈�w�vm〉Pvm = ∑I

m=2φ
m〈�w�vm〉Pvm, where the second equal-

ity uses fact that 〈�w�v1〉P = 0 and �w lies in the subspace spanned by the remaining
(nonunit) eigenvectors. If (and only if) �w = bvm for some eigenvector vm, m= 2� � � � � I
of Q, then optimal taxes are linear in �w. Further, τ = ��w = 1

1+a(1−ψm)�w, and hence,
1

1+a(1−ψm) is the marginal income tax rate. In particular, if Q=ψI+ (1 −ψ)P , then �w is
(proportional to) an eigenvector ofQ with eigenvalue ψ. Thus, optimal taxes are affine in
income with marginal income tax rate 1

1+a(1−ψ) . Q.E.D.

Flexible-Locally Locked in Example. In the main text, we provide an “flexible-locked
in type” example in which �w is an eigenvector of Q. As another (limiting) example,
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consider a case in which for 1 < i < I − 1, Q(i� j) = (1 − ψ)P(j) + ψ{ωI(i − 1� j) +
νI(i� j) + ωI(i + 1� j)}, with ω + ν + ω = 1. For i = 1, let Q(1� j) = (1 − ψ1)P(j) +
ψ1{(1 − ν1)I(1� j) + ν1I(2� j)}, with ψ1 = ψ �w(1)

(1−ν1)�w(1)+ν1�w(2) , and for i = I, let Q(I� j) =
(1 −ψI)P(j) +ψI{(1 − νI)I(I− 1� j) + νII(I� j)}, with ψI =ψ �w(I)

(1−νI )�w(I−1)+νI�w(I) . We inter-
pret this as a setting in which some types are flexible and others are locally locked-in to
a choice and its immediate neighbors. Further assume that w(i) = wi. It then follows by
direct substitution that Q�w=ψ�w.

PROPOSITION 7: Let ρ be the coefficient on pre-tax income from a population regression of
optimal taxes onto a constant and pre-tax income. Then 0< 1

1+2a(1−mini∈I Q(i�i)) ≤ 1
1+a(1−ψmin) ≤

ρ≤ 1
1+a(1−ψsmax) , where ψmin and ψsmax are, respectively, the smallest and second largest eigen-

value of Q.

PROOF: Using (28), the regression coefficient ρ equals �w�D��w
�w�D�w where D is the diag-

onal matrix with P on its leading diagonal. Define �∗ = D
1
2�D− 1

2 and �w∗ = D
1
2�w.

Then ρ= �w∗��∗�w∗
�w∗��w∗ . Since Q is the Markov matrix of a reversible chain, DQ is symmetric,

and hence, D
1
2�D− 1

2 =D− 1
2D�D− 1

2 is symmetric. It then follows that �∗ =D
1
2�D− 1

2 =
1

1+a
∑∞

n=0( a
1+a)n(D

1
2QD− 1

2 )n is symmetric. Since �∗ is real-valued and symmetric, it is Her-
mitian. By the Rayleigh quotient theorem (see Horn and Johnson (2013, pp. 234–235)),

φmin ≤ min
x �=0

x��∗x

x�x
≤ max

{x �=0�〈x�v∗max〉=0}

x��∗x

x�x
≤φsmax�

where φmin and φsmax are, respectively, the smallest and second largest eigenvalues of
�∗, 〈x� y〉 = ∑

i∈I x(i)y(i), and the maximization restricts x to the subspace spanned
by the eigenvectors associated with the I − 1 smallest eigenvalues (i.e., excluding the
eigenvector v∗

max associated with the largest eigenvalue) of �∗. By the definition of ρ,
�w �= 0, and 〈�w∗� v∗

max〉 = 〈�w�e〉P = 0, where 〈�x�y〉 = ∑
i∈I �x(i)y(i)P(i), it follows

that: φmin ≤ ρ ≤ φsmax. The eigenvalues of �∗ coincide with those of �, and hence,
1

1+a(1−ψmin) ≤ ρ ≤ 1
1+a(1−ψsmax) , where ψmin and ψsmax are, respectively, the smallest and sec-

ond largest eigenvalues of Q. Finally, via Geršgorin’s inequality, the smallest eigenvalue
of a Markov matrix is bounded by ψmin ≥ −1 + 2 mini∈IQ(i� i); see Brémaud (2013, page
427). Substitution implies that 1

1+2a(1−minQ(k�k)) ≤ 1
1+a(1−ψmin) . Q.E.D.

LEMMA 3: Assume a separable mixed logit model with u(c� i�β) = u0(c) + u1(i�β) and
u0 increasing, strictly concave, twice differentiable, and with the slope of: 1

∂u0/∂c
bounded below

by 1
a
> 0. Let τ be an optimal tax function at Pareto weights λ with corresponding equilibrium

pre-tax incomes ∂F (P)
∂p

, substitution matrixQ, and social marginal value of funds ϒ. Define the
operator A :RI →R

I by

A(t) =∂F (P)
∂p

− C̃
(
λ

ϒ
+ ∂F (P)

∂p
−Qt

)
� (A.15)

where C̃(x) := C(max(0�x)) + C ′(max(0�x)) min(0�x). Then A is a contraction on R
I with

modulus a
1+a and τ is the unique solution to t =A(t).
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PROOF: Under the assumption in the lemma,

C ′(r)(i) = 1

1 − ∂2u0

(
C(r)(i)

)
∂c2

/(
∂u0

(
C(r)(i)

)
∂c

)2 ∈
[

0�
a

1 + a
]
�

a ∈ R+. In combination with the fact that Q is a Markov matrix, it follows that A satisfies
Blackwell’s discounting condition with discount a

1+a . It is also nondecreasing, and hence,
by Blackwell’s theorem, is a contraction with modulus a

1+a . Since R
I is a complete metric

space (when equipped with the sup-norm), by the contraction mapping theorem, A has a
unique fixed point. That τ is a solution to the equation t =A(t) follows from the fact that
it is a regular optimum and the derivation of the first-order condition (25) in the main
text. Hence, τ is the unique solution to t =A(t). Q.E.D.

PROPOSITION 8—Monotonicity: Let the conditions of Lemma 3 hold. Let τ be an opti-
mal tax function with corresponding equilibrium pre-tax incomes w = ∂F (P)

∂p
and substitution

matrix Q. If the choice set is partially ordered, w is increasing and λ nonincreasing in choice,
and Q is increasing, then the optimum is attained by a tax function increasing in choice. If
I ⊂R, then the optimum is attained by an increasing income tax function.

PROOF: From Lemma 3, τ is the unique fixed point of the map A : RI → R
I . Restrict

the domain of A to M , where M denotes the set of vectors in R
I that are nondecreasing

(with respect to the partial order on I). This set defines a complete metric space when
equipped with the sup norm. Define C to be the component function associated with C̃,
that is, C̃(r) = {C(r(i))}i∈I . By the monotonicity and discounting properties of C̃� and
hence, of the component functions C, ω− C( λ

ϒ
+ ω− ψ) is increasing in ω and ψ and

decreasing in λ. By the increasingness ofQ, for any nondecreasing function τ′,Qτ′ is non-
decreasing. Hence, for τ′ ∈ M and given the increasingness of w and nonincreasingness
of λ, w(i) −C( λ(i)

ϒ
+w(i) − ∑

j∈IQ(i� j)τ′(j)) is increasing in i. It follows that if τ′ ∈ M ,
then so is A(τ′). Hence, A(M ) ⊂ M . Applying the contraction mapping theorem again,
A has a unique fixed point in M ⊂ R

I . Since A maps nondecreasing functions to increas-
ing ones, it further follows that τ is increasing in i. Finally, if the choice set is a subset of
R and is totally ordered and equilibrium pre-tax incomes are increasing in choice i, then
taxes are increasing in both choice and income. Q.E.D.

LEMMA 4: Assume that I ⊂ R is totally ordered, B = [β�β) and that u1 is supermodular
in (i�β), then in any equilibrium and, in particular, at the optimumQ is increasing. Further, in
combination with the assumptions of Proposition 8, the optimum is attained by an increasing
income tax function.

PROOF: Recall P(i|β) = expu(i�β)∑
k∈I expu(k�β) , where we omit q from the notation for brevity.

Define the cumulative distribution F (i|β) = ∑
i≤j≤i P(j|β) and for given β and β′ define

μ(i) :=

∑
k∈I

expu(k�β)

∑
k∈I

expu(k�β′)
expu(i�β′)−u(i�β) �
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Observe that P(i|β′) = μ(i)P(i|β). If u is supermodular in (i�β), then for β′ >β, μ(i) is
nondecreasing in i. Suppose that μ(i) ≥ 1 and i < i. Then

F (i|β) +
∑
i<j≤i

P(j|β) = 1 = F(
i|β′) +

∑
i<j≤i

P
(
j|β′) = F(

i|β′) +
∑
i<j≤i

μ(j)P(j|β)

≥ F(
i|β′) +

∑
i<j≤i

P(j|β)�

Hence, F (i|β) ≥ F (i|β′). Next, suppose that μ(i) < 1 and i < i, then:

F (i|β) =
∑
i≤j≤i

P(j|β) ≥
∑
i≤j≤i

μ(j)P(j|β) = F(
i|β′)�

We conclude that for β < β′ and all i < i′, F (i|β) ≥ F (i|β′). Hence, F (·|β′) is non-
increasing in β. Next, consider: P(β|i) = P(i|β)

P(i) m(β). Define the conditional cumula-

tive distribution over β, F (β|i) = ∫ β

β
P(β|i) dβ and, for given i and i′, the variable

φ(β′) := P(i)
P(i′) expu(i′�β′)−u(i�β′) . Note that if u is supermodular in (i�β), then for i′ > i, φ(β′)

is nondecreasing in β′. Hence, for β<β,

F (β|i) +
∫ β

β

P
(
β′|i

)
dβ′ = 1 = F(

β|i′
) +

∫ β

β

P
(
β′|i′

)
dβ′

= F(
β|i′

) +
∫ β

β

P
(
i′|β′)
P

(
i′
) m

(
β′)dβ′

= F(
β|i′

) +
∫ β

β

P
(
i′|β′)
P

(
i′
) P(i)
P

(
i|β′)P(

β′|i
)
dβ′

= F(
β|i′

) +
∫ β

β

P(i)
P

(
i′
) P(

i′|β′)
P

(
i|β′) P(

β′|i
)
dβ′

= F(
β|i′

) +
∫ β

β

P(i)
P

(
i′
) expu(i′�β′)−u(i�β′) P

(
β′|i

)
dβ′

= F(
β|i′

) +
∫ β

β

φ
(
β′)P(

β′|i
)
dβ′�

It follows that if φ(β) ≥ 1, then F (β|i) > F (β|i′). Alternatively, if φ(β) < 1, then for
β<β:

F (β|i) =
∫ β

β

P
(
β′|i

)
dβ′ ≥

∫ β

β

φ
(
β′)P(

β′|i
)
dβ′ =

∫ β

β

P
(
β′|i′

)
dβ′ = F(

β|i′
)
�

Observe that
∑

i≤j′≤j Q(i� j′) = ∫ β

β
F (j|β)P(β|i) dβ. Hence, since F (j|·) is decreasing in β

and for i′ > i, P(·|i′) first order stochastically dominates P(·|i),
∑

i≤j′≤j Q(i� j′) is decreas-
ing in i (strictly so if j < i and u is strictly supermodular in (i�β)). Hence, Q is increasing
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in any equilibrium and, in particular, at the optimum. The remaining results then follow
from Proposition 8. Q.E.D.

The assumptions of Lemma 4 can be relaxed to establish monotonicity results in some
settings in which I is only partially ordered. The following lemma describes one such case.

LEMMA A.1: Assume that I is partially ordered and that utilities have the form u(q� i�β) =
u0(q(i)) + ũ1(h(i)� g(β)), where ũ1 is supermodular, h : I →R is increasing and g : B →R.
Then Q has the form Q(i� j) = Q̃(h(i)�h(j))P(j|h(j)), with Q̃ describing an increasing
Markov matrix on h(I) and where P(j|η) gives the choice distribution conditional on
η ∈ h(I) being chosen. Then if w(η) = ∑

{i:h(i)=η}w(i)P(i|η) is increasing in η and the
policymaker is utilitarian, optimal taxes are such that τ(η) = ∑

{i:h(i)=η}τ(i)P(i|η) is increas-
ing in η ∈ h(I).

PROOF: We may redefine β to equal g(β) and m to be the density of g(β), and hence,
without loss of generality assume that β is real-valued. Note that

P(i|β) = expu0(q(i))∑
{j:h(j)=h(i)}

expu0(q(j))

∑
{j:h(j)=h(i)}

expu0(q(j))

∑
k∈I

expu0(q(k))+ũ1(h(k)�β)
expũ1(h(i)�β) �

Defining

P
(
i|h(i)

) = expu0(q(i))∑
{j:h(j)=h(i)}

expu0(q(j))
and P

(
h(i)|β

) =

∑
{j:h(j)=h(i)}

expu0(q(i))

∑
k∈I

expu0(q(k))+ũ1(h(k)�β)
expũ1(h(i)�β)�

gives P(i|β) = P(i|h(i))P(h(i)|β). Further,

P(i) =
∫
B
P(i|β)m(β) dβ= P(

i|h(i)
)∫

B
P

(
h(i)|β

)
m(β) dβ= P(

i|h(i)
)
P

(
h(i)

)
�

Hence, P(i|β)
P(i) m(β) = P(h(i)|β)

P(h(i)) m(β) and

Q(i� j) =
∫
B
P(j|β)

P(i|β)
P(i)

m(β) dβ= P(
j|h(j)

)∫
B
P

(
h(j)|β

)P(
h(i)|β

)
P

(
h(i)

) m(β) dβ�

Defining Q̃(η�η′) = ∫
B P(η′|β) P(η|β)

P(η) m(β) dβ gives Q(i� j) = Q̃(h(i)�h(j))P(j|h(j)) with

Q̃ a Markov matrix as desired. Increasingness of Q̃ follows from a similar argument to
Lemma 4. The remainder of the argument is then similar to Proposition 8. Q.E.D.

PROPOSITION 9—Convexity: Let the conditions of Proposition 8 hold. Let τ be an opti-
mal tax function of a utilitarian policymaker with corresponding equilibrium pre-tax incomes
w = ∂F (P)

∂p
and substitution matrix Q. If I ⊂ R and is totally ordered, w is linearly increasing

in i, 1/∂u0
∂c

is convex, and Q is increasing and convex, then the optimum is attained by an
income tax function that is increasing and convex in income.
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PROOF: From Lemma 3, τ is the unique fixed point of the map A : RI → R
I . Choices

are ordered and pre-tax incomesw= ∂F (P)
∂p

(at the optimal equilibrium) are increasing and
linear in choice. For i= 2� � � � � I, define �τ(i+1) = τ(i+1) −τ(i) and �w(i+1) =w(i+
1) − w(i). Let �wτ(i + 1) = �τ(i+1)

�w(i+1) . Restrict the domain of A to M = {τ′ ∈ R
I : τ′(1) ≤

τ′(2) ≤ · · · ≤ τ′(I)��wτ′(2) ≤ �wτ′(3) ≤ · · · ≤ �wτ′(I)}. This set defines a complete metric
space when equipped with the sup norm. Define r = 1

ϒ
+w−Qτ′. Then

�r(i+ 1) = �w(i+ 1) −
∑
j∈I

{
Q(i+ 1� j) −Q(i� j)

}
τ′(j)

= �w(i+ 1) −
∑
j∈I

∑
k≥j

{
Q(i+ 1�k) −Q(i�k)

}
�τ′(j)� (A.16)

where the second equality uses a discrete integration by parts. Convexity ofQ and τ′ ∈ M
implies that

∑
j∈I

∑
k≥j{Q(i+1�k) −Q(i�k)}�τ′(j) is increasing in i. In combination with

(A.16) and linearity of w in i, this implies that �r(i+ 1) is decreasing in i. Let r̃ denote
the linear interpolation of r onto [1� I]. This function is concave. Define C to be the
component function associated with C̃, that is, C̃(r) = {C(r(i))}i∈I . Under the condition
that 1/∂u0

∂c
is convex, C(r(i)) is concave in r(i). Since composition of concave functions is

concave, C(r̃) is concave and, again using the linearity ofw, C(r(i+1))−C(r(i))
w(i+1)−w(i) is nonincreasing

in i. Thus,

�wA
(
τ′)(i+ 1) = A

(
τ′)(i+ 1) −A

(
τ′)(i)

w(i+ 1) −w(i)
= 1 − C

(
r(i+ 1)

) −C(
r(i)

)
w(i+ 1) −w(i)

is nondecreasing in i. Combining this with the argument in the proof of Proposition 8,
A(M ) ⊂ M . Applying the contraction mapping theorem again, A has a unique fixed
point in M ⊂ R

I . Hence, if equilibrium pre-tax incomes are increasing and linear in
choice i, then taxes are increasing and convex in both choice and income. Q.E.D.

LEMMA 5: If, in addition to the conditions on u1 in Lemma 4, ∂u1(i�β)
∂i

< 0 and ∂2u1(i�β)
∂i2

+
( ∂u1(i�β)

∂i
)2 is increasing in β, then Q is convex. In combination with the other assumptions of

Proposition 8, then the optimum is attained by a convex and increasing income tax function.

PROOF: First, note from the definition of Q and SQ,

SQ(i� j) =
∫ β

β

I∑
k=j
P

(
k|β′)P(

β′|i
)
dβ�

Integrating the latter by parts,

SQ(i� j) =
I∑
k=j
P(j|β) +

∫ β

β

[∫ β

β

P
(
β′|i

)
dβ′ ∂

∂β

(
I∑
k=j
P(k|β)

)]
dβ�

Hence,

�SQ(i� j) =
∫ β

β

[∫ β

β

{
P

(
β′|i

) − P(
β′|i− 1

)}
dβ′ ∂

∂β

(
I∑
k=j
P(k|β)

)]
dβ�
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We seek to show that this is non-decreasing in i for each j. From the first part of the
lemma, ∂

∂β
(
∑I

k=j P(k|β)) > 0. Thus, for �SQ(i� j) to be nondecreasing in i, it is sufficient

that for each i and β,
∫ β

β {P(β′|i) − P(β′|i− 1)}dβ′ is nondecreasing. Recall that

P(β|i) = expu0(q(i))+u1(i�β)m(β)∑
j∈I

expu0(q(j))+u1(j�β)

/∫
B

expu0(q(i))+u1(i�β′)m
(
β′)∑

j∈I
expu0(q(j))+u1(j�β′)

dβ′

= expu1(i�β)m(β)
D(β)

/∫
B

expu1(i�β′)m
(
β′)

D
(
β′) dβ′�

with D(β) = ∑
j∈I expu0(q(j))+u1(j�β) . Since u1(·�β) is assumed defined on [i� i], the last ex-

pression for P(β|·) may be extended onto all of [i� i] for each β and keeping D(β) fixed.
This extended function is twice differentiable in i given the corresponding property for u1,
and hence, to show that

∫ β

β {P(β′|i) −P(β′|i− 1)}dβ′ is nondecreasing in i, it is sufficient

to show that
∫ β

β

∂2P(β′|i)
∂i2

dβ′ is nonnegative for all i ∈ (i� i). We have

∂2P(β|i)
∂i2

= −
{
∂2u1(i�β)
∂i2

−
∫ β

β

∂2u1

(
i�β′)
∂i2

P
(
β′|i

)
dβ′

}
P(β|i)

−
{∫ β

β

(
∂u1

(
i�β′)
∂i

)2

P
(
β′|i

)
dβ′ −

(∫ β

β

∂u1

(
i�β′)
∂i

P
(
β′|i

)
dβ′

)2}
P(β|i)

+
{
∂u1(i�β)
∂i

−
∫ β

β

∂u1

(
i�β′)
∂i

P
(
β′|i

)
dβ′

}2

P(β|i)�

Integrating over [β�β] and rearranging then gives∫ β

β

∂2P
(
β′|i

)
∂i2

dβ′

∝
∫ β

β

∂2u1

(
i�β′)
∂i2

P
(
β′|i

)∫ β

β

P
(
β′′|i

)
dβ′′

dβ′ −
∫ β

β

∂2u1

(
i�β′)
∂i2

P
(
β′|i

)
dβ′

+
∫ β

β

(
∂u1

(
i�β′)
∂i

)2 P
(
β′|i

)∫ β

β

P
(
β′′|i

)
dβ′′

dβ′ −
∫ β

β

(
∂u1

(
i�β′)
∂i

)2

P
(
β′|i

)
dβ′

− 2
{∫ β

β

∂u1

(
i�β′)
∂i

P
(
β′|i

)∫ β

β

P
(
β′′|i

)
dβ′′

dβ′ −
∫ β

β

∂u1

(
i�β′)
∂i

P
(
β′|i

)
dβ′

}

×
∫ β

β

∂u1

(
i�β′)
∂i

P
(
β′|i

)
dβ′� (A.17)
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Combining the terms on the first line of (A.17) implies that∫ β

β

{
∂2u1

(
i�β′)
∂i2

+
(
∂u1

(
i�β′)
∂i

)2} P
(
β′|i

)∫ β

β

P
(
β′′|i

)
dβ′′

dβ′

−
∫ β

β

{
∂2u1

(
i�β′)
∂i2

+
(
∂u1

(
i�β′)
∂i

)2}
P

(
β′|i

)
dβ′�

By assumption, ∂2u1(i�β′)
∂i2

+ ( ∂u1(i�β′)
∂i

)2 is increasing in β′, and consequently, the expression
above is nonnegative. Now turn to the final line of (A.17). By assumption, ∂u1(i�β′)

∂i
is in-

creasing in β′, and consequently, the term in curly brackets in this line is nonnegative.
Further, ∂u1(i�β′)

∂i
is negative, implying that −2

∫ β

β

∂u1(i�β′)
∂i

P(β′|i) dβ′ is positive. Putting the

pieces together implies that
∫ β

β

∂2P(β′|i)
∂i2

dβ′ is nonnegative as required. Q.E.D.

A.5. Fuzzy Mirrlees

Consider the following “fuzzy Mirrlees” example. Choices are ordered I = {1� � � � � I}
with pre-tax incomes w(i) linearly increasing in i and i interpreted as the effort associated
with generating income w(i). Utilities have the form u0(q(i)) + (1/(1 + β)) log(I − i) +
ε(i), with I > I and u0 a perturbed CRRA utility function: u0(c) = max(c�ε)1−σ

1−σ + ε−σ{c −
max(c� ε)} for σ > 1 and ε= 0�01. Modulo the Gumbel shock ε, these preferences align
with those in Mirrleesian models. In particular, utility is supermodular in (i�β) and satis-
fies a single crossing property in i and β. The Gumbel shock introduces additional noise.
The β type controls the disutility of income generation and is assumed to be distributed
on a finite set of values within [1�10] with a decaying density m(β) =K/β. Government
spending G is set to zero. The assumptions satisfy the conditions of Lemma 5 imply-
ing monotonicity and convexity of Q and an optimal convex, increasing income tax func-
tion. For this numerical example, Table A.I shows increments in the survival function
�SQ(i� j) = SQ(i + 1� j) − SQ(i� j) = ∑

k≥j Q(i + 1� j) − ∑
k≥j Q(i� j). Monotonicity of Q

implies that these increments are nonnegative; convexity that they are non-decreasing in
the conditioning income. The table confirms these properties. Underlying this pattern is
the increasing concentration of low effort cost agents on high ranked choices shown in
Table A.II. Table A.III reports optimal taxes for this example and the corresponding el-
ements of the tax formula (24). Increases in optimal taxes across choices (and equally
spaced pre-tax incomes) are given in the final column. Optimal income taxes are increas-
ing and convex.

A.6. Proofs and Notes for Section 6

PROPOSITION 10: Let Q̂ denote the transition matrix of agents across choices, with Q̂(i� j)
the fraction of agents that move from i to j in a period. In a repeated separable mixed logit
choice, environment Q̂ equals the substitution matrix Q.

PROOF: Let Q̂(i� j) denote the fraction of agents at i in a period who choose migrate
to j in the next period. Let m(·|i) denote the conditional density over types in i. Then in
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TABLE A.I

INCREMENTS IN THE SURVIVAL FUNCTION �S(i� j) = ∑
k≥j Q(i+ 1� j) − ∑

k≥j Q(i� j).

Fuzzy Mirrlees

j

i 0.0018 0.0046 0.0078 0.0102 0.0111 0.0100 0.0072 0 .0033 0.0000
0.0021 0.0550 0.0093 0.0122 0.0133 0.0123 0.0087 0.0041 0.0000
0.0025 0.0066 0.0111 0.0147 0.0161 0.0147 0.0106 0.0050 0.0000
0.0031 0.0080 0.0135 0.0180 0.0198 0.0181 0.0132 0.0063 0.0000
0.0037 0.0098 0.0166 0.0221 0.0244 0.0225 0.0165 0.0080 0.0000
0.0045 0.0119 0.0203 0.0272 0.0303 0.0282 0.0209 0.0103 0.0000
0.0054 0.0144 0.0246 0.0333 0.0375 0.0354 0.0267 0.0134 0.0000
0.0063 0.0168 0.0292 0.0401 0.0460 0.0443 0.0344 0.0179 0.0000
0.0099 0.0278 0.0512 0.0749 0.0926 0.0975 0.0841 0.0500 0.0002

TABLE A.II

DISTRIBUTION OF TYPES ACROSS CHOICES: P(β|i).

Fuzzy Mirrlees

β

i 0.56 0.17 0.09 0.05 0.04 0.03 0.02 0.02 0.01 0.01
0.53 0.18 0.09 0.06 0.04 0.03 0.02 0.02 0.02 0.02
0.48 0.18 0.10 0.07 0.05 0.04 0.03 0.02 0.02 0.02
0.43 0.19 0.11 0.07 0.05 0.04 0.03 0.03 0.03 0.02
0.37 0.19 0.12 0.08 0.06 0.05 0.04 0.04 0.03 0.03
0.30 0.18 0.13 0.09 0.07 0.06 0.05 0.04 0.03 0.03
0.22 0.17 0.13 0.11 0.09 0.07 0.06 0.06 0.05 0.05
0.13 0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.07 0.06
0.05 0.09 0.11 0.12 0.12 0.11 0.11 0.10 0.10 0.09
0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.14 0.28 0.50

TABLE A.III

TABLE GIVES ELEMENTS OF THE FORMULA τ = θ− ÊQ{CovQ(mQ�θ)}. INCREMENTS IN TAXES ACROSS
INCOMES ARE GIVEN IN THE FINAL COLUMN. THESE ARE POSITIVE AND INCREASING IN EFFORT AND INCOME.

Fuzzy Mirrlees

τ PQ θ −CovQ(mQ�θ) �τ

1 −1�62 0.05 −1�46 1.53
2 −1�25 0.09 −1�12 1.51 0.37
3 −0�87 0.12 −0�76 1.48 0.38
4 −0�47 0.15 −0�40 1.45 0.39
5 −0�07 0.16 −0�04 1.41 0.40
6 0�34 0.15 0�32 1.36 0.41
7 0�76 0.13 0�68 1.29 0.42
8 1�12 0.10 1�03 1.22 0.43
9 1�65 0.06 1�39 1.12 0.45

10 2�17 0.00 1�70 0.92 0.52
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the separable mixed logit model:

Q̂(i� j) =
∫
B
P(j|β)m(β|i) dβ=

∫
B
P(j|β)

P(i|β)
P(i)

m(β) dβ=Q(i� j)� (A.18)

where the first equality uses the fact that the fraction of each β type selecting j in the
next period is given by P(j|β) in the repeated mixed logit (and is independent of current
choice i), the second Bayes’ rule, and the third (14), the definition of Q in the separable
mixed logit model. Q.E.D.

Approximate Identification of Marginal Utility of Income

If utilities have the semiparametric form a logq(i) + u1(i�β), then from (14) and (15),
elasticities with respect to after-tax income are given by

q(j)
P(i|q)

∂P(i|q)
∂q(j)

= a{I(i� j) −Q(i� j|q)
}
�

and a is the single parameter needed to convert Q into a matrix of behavioral responses
to after tax income. Note that this formulation leaves u1 and the density m unrestricted,
and hence, allows for general aggregate substitution responses Q to utility variation.

A convenient feature of the simple logit is that the log difference of two choice proba-
bilities equals the utility difference across the choices. Thus, the simple logit with utilities
a logq(i) + u1(i�β) implies

log
(
P(i|q)
P(i0|q)

)
= a log

(
q(i)
q(i0)

)
+ ξ(i)� (A.19)

where ξ(i) := u1(i) − u1(i0) and i0 is a reference choice. Expression (A.19) provides an
estimating equation for a.1 Mixed logit models disrupt the simple relationship (A.19).
However, an approximate relationship is available. This relationship combines an expec-
tation of a Taylor’s series expansion of logP(i|q�β) around logP(i|q) with information
contained in Q about the second moment of the choice probabilities P(i|q) to build the
approximation.

PROPOSITION A.2: Assume that for all i and almost all β, |P(i|q�β)−P(i|q)
P(i|q) | ≤ z < 1. Define

the adjusted log choice probability relative to the reference as

Y (i) := log
(
P(i|q)
P(i0|q)

)
+ Q(i� i|q)

P(i|q)
− Q(i0� i0|q)

P(i0|q)
�

Then

Y (i) = a log
(
q(i)
q(i0)

)
+ ξ(i)� with: ξ(i) =E[

u1(i�β) − u1(i0�β)
] +R(i)� (A.20)

and R(i) an approximation error satisfying |R(i)|< 2
3z

3 ln( 1
1−z ).

1If after-tax incomes are endogenous, ξ(i) will in general be correlated with log( q(i)
q(i0) ) and estimation will

require an IV strategy; see, for example, Berry (1994).
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PROOF: Define z(i|β) = P(i|q�β)−P(i|q)
P(i|q) . By assumption |z(i�β)| ≤ z < 1 and within the

radius of convergence of the Taylor’s series of log(1 + z) evaluated around z0 = 0. Hence,

logP(i|q�β) = logP(i|q) + log
(
1 + z(i|β)

) = logP(i|q) +
∞∑
n=1

(−1)n−1 z(i|β)n

n

= logP(i|q) +
∞∑
n=1

(−1)n−1 1
n

(
P(i|q�β) − P(i|q)

P(i|q)

)n

�

Applying the dominated convergence theorem and then Fubini’s theorem, we obtain

E
[
logP(i|q�β)

] = logP(i|q) +
∞∑
n=2

(−1)n−1 1
n
E

(
P(i|q�β) − P(i|q)

P(i|q)

)n

�

where the term n= 1 term in the series is zero. Using
∑∞

n=1
zn

n
= ln( 1

1−z ),∣∣∣∣∣E[
logP(i|q�β)

] − logP(i|q) −
m∑
n=2

(−1)n−1 1
n
E

(
P(i|q�β) − P(i|q)

P(i|q)

)n
∣∣∣∣∣

≤
∞∑

n=m+1

zn

n
= zm+1

m+ 1
ln

(
1

1 − z
)
�

In particular, ∣∣∣∣E[
logP(i|q�β)

] − logP(i|q) + 1
2
E

(
P(i|q�β) − P(i|q)

P(i|q)

)n∣∣∣∣
≤

∞∑
n=2

1
n
E

∣∣∣∣P(i|q�β) − P(i|q)
P(i|q)

∣∣∣∣n ≤ z3

3
ln

(
1

1 − z
)
�

Thus, letting 0 denote a reference location:

E log
(
P(i|q�β)
P(0|q�β)

)
= log

(
P(i|q)
P(0|q)

)
+ Var

[
P(i|q�β)

]
P(i|q)2 − Var

[
P(0|q�β)

]
P(0|q)2 +R(i)� (A.21)

where the remainder R(i) has absolute value less than or equal to 2
3z

3 ln( 1
1−z ). In the sep-

arable mixed logit model, we have from (14) that 1 + Var[P(i|q�β)]
(P(i|q))2 = Q(i�i|q)

P(i|q) . Substituting this
and logP(i|q�β) = a logq(i) + u1(i�β) − log

∑
j∈I expa logq(j)+u1(j�β) into (A.21), rearrang-

ing and defining Y (i) := log( P(i|q)
P(0|q) ) + Q(i�i|q)

P(i|q) − Q(0�0|q)
P(0|q) to be the adjusted log choice prob-

ability relative to the reference then gives Y (i) = a log( q(i)
q(0) ) + E[u1(i�β) − u1(0�β)] +

R(i). Q.E.D.

Equation (A.20) supplies an estimating equation that relates relative adjusted log
choice probabilities to income variation. The errors combine a structural component and
an approximation residual. Assumptions about the former may be used to motivate an
IV estimation strategy. The latter are small if the support of choice probabilities is tight
around their mean.
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LEMMA 6: For a triple of choices (i� j�k), let Q̂(i� j�k) denote the probability that an
agent in i transitions to j and then to k. We have that for each pair of choices (i� j): 1 − d =
Q̂(i�i�j)−Q̂(i�j�i)

Q̂(i�j)
.

PROOF: Let Q̂(i� j�k) denote the probability that an agent in i moves to j and then
to k. The probability that an agent in i remains in i and then moves to j is Q̂(i� i� j) =∫
B
m(β) P(i|β)

P(i) [(1 − d) + dP(i|β)]dP(j|β) dβ. The probability that an agent in i moves

to j and then returns to i: Q̂(i� j� i) = ∫
B
m(β) P(i|β)

P(i) dP(j|β) dP(i|β) dβ. Recall that the

probability that an agent in i moves to j is Q̂(i� j) = ∫
B
m(β) P(i|β)

P(i) dP(j|β) dβ. Thus, we

observe that Q̂(i� i� j) = Q̂(i� j� i) + (1 − d)Q̂(i� j), and hence, d is identified and satisfies
the condition in the lemma. Q.E.D.

APPENDIX B: DECOMPOSING POLICY PROBLEMS

Agents make multiple choices that impact earnings. For reasons of tractability, it is of-
ten useful to focus on the implications of choice on one behavioral margin for tax design.
In this Appendix, we describe a mixed logit policy environment in which agents make two
choices, which, to align with the extension in Section 7.2, we call education and location.
Under the environment’s separability and timing conventions, we show that the associated
policy problem can be decomposed into an outer problem in which the policymaker se-
lects transfers of resources between populations of agents choosing different educational
levels and a family of inner problems in which education-specific spatial tax functions are
chosen subject to funding tax liabilities inherited from the outer problem. Our analysis
in the main text of optimal spatial taxes for different educational groups subject to ex-
ogenous education-specific funding requirements can then be interpreted as analysis of
a component of the larger joint program in which redistributive concerns tempered by
a desire not to distort the educational choice margin shape transfers across educational
groups.

Environment and Agent Choice Problems. Agents select an education s ∈ S and loca-
tion i ∈ I and the policymaker selects an after-tax income schedule q ∈ R

I×S
+ . Assume

agents obtain payoffs:

u
(
q(i� s)� i�β

) + ε(i) −φ(s� θ) +ψ(s)�

where β ∈ B and θ ∈� are mixing shocks distributed with densitiesm and h, respectively,
and ε(i) and ψ(s) are independent Gumbel shocks. An agent’s preference shocks are
revealed in stages. First, the agent observes (θ�ψ) and knowing q selects s. Then the
agent observes (β�ε) and selects a location i. The latter selection implies a family of
conditional inner choice problems over locations, for each s ∈ S and given q:

v
(
q(·� s)� s�β�ε) = max

I
u
(
q(i� s)� i�β

) + ε(i)�

The expected payoff from this selection conditional on a prior choice of s is

v
(
q(·� s)� s) =

∫
B

log
∑
I

expu(q(i�s)�β�i)m(β) dβ� (B.1)
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with corresponding conditional choice probabilities:

P
(
i|q(·� s)� s) =

∫
B

expu(q(i�s)�β�i)∑
i′∈I

expu(q(i′�s)�β�i′)
m(β) dβ�

The agent chooses its education level to solve the outer problem:

v(q�θ�ψ) = max
S
v
(
q(·� s)� s) −φ(s� θ) +ψ(s)�

where v(q(·� s)� s) is the value from the inner problem (B.1). The expected payoff from
this selection is

v(q) =
∫
�

log
∑
S

expv(q(·�s)�s)−φ(s�θ) h(θ) dθ�

with corresponding choice probabilities:

P(s|q) =
∫
�

expv(q(·�s)�s)−φ(s�θ)∑
s′∈S

expv(q(·�s′)�s′)−φ(s′�θ)
h(θ) dθ�

It will be useful to rewrite these last choice probabilities in terms of utilities as

P̃(s|v) =
∫
�

expv(s)−φ(s�θ)∑
s′∈S

expv(s′)−φ(s′�θ)
h(θ) dθ�

Undecomposed Policy Problem. Assuming a linear production function with pre-tax
incomes w(i� s), the policymaker’s utilitarian problem is

max
q∈RI+×R

S+
v(q)

subject to
∑

I×S{w(i� s) −q(i� s)}P(i� s|q) −G≥ 0, where P(i� s|q) = P(i|s� q(·� s))P(s|q)
is the joint choice distribution over locations and education levels.

Decomposed Policy Problem. Toward the policy problem decomposition, we first intro-
duce the auxiliary variables {G(s)} describing transfers of resources amongst educational
groups and rewrite the policy problem as

max
{G(s)}∈RS�q∈RI+×R

S+

∫
�

log
∑
S

expv(q(·�s)�s)−φ(s�θ) h(θ) dθ (B.2)

subject to

∀s�
∑
I

{
w(i� s) − q(i� s)

}
P

(
i|s� q(·� s)) −G(s) ≥ 0

and
∑
S

G(s)P̃
(
s|

{
v
(
q
(·� s′)� s′)}) −G≥ 0�
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Define the subproblem

V
(
s�G′) = max

q′∈RI+
v
(
q′� s

)
(B.3)

subject to
∑

I{w(i� s) − q′(i)}P(i|s� q′) ≥ G′. This delivers the maximal payoff to a unit
population selecting s subject to at least G′ units of resources being extracted from the
population. The solution to this problem has the resource constraint binding and has
V (s� ·) strictly decreasing in G′. Suppose that the solution to the policy problem (B.2) is
such that q(·� s) does not solve (B.3) at G(s). This implies that v(s� q(·� s)) < V (s�G(s)).
Then we can raise G(s) to G′(s), where v(s� q(·� s)) = V (s�G′(s)), and replace q(·� s)
with the solution to (B.3) at G′(s). This leaves agent payoffs conditional on selecting
an education level unchanged at {v(s′� q(·� s′)}s′∈S , and hence, leaves the distribution of
agents across education levels unaltered. However, the policymaker obtains an extra
G′(s) − G(s) resources. It can distribute these across agents so as to give an identical
utility increment at each (i� s) choice. This does not modify choices, but raises social pay-
offs. We conclude that the policymaker solving (B.2) will always select G and q to ensure
that solutions to (B.3) are attained at each s. Hence, the policymaker’s problem may be
decomposed into an outer problem:

max
{G(s)}∈RS

∫
�

log
∑
S

expV (s�G(s))−φ(s�θ) h(θ) dθ

subject to
∑

SG(s)P̃(s|{V (s′�G(s′)}) −G≥ 0 and a family of inner problems in which for
each s a spatial after-tax income schedule q′ ∈ R

I
+ is chosen subject to funding tax liability

G(s):

V
(
s�G(s)

) = max
q′∈RI+

v
(
q′� s

)
subject to

∑
I{w(i� s) − q′(i)}P(i|s� q′) ≥G(s).

APPENDIX C: QUANTITATIVE ANALYSIS

C.1. Spatial Choice: Additional Details

Data. We use SIPP data to estimate the arrival rate of Gumbel shocks. This panel
is well suited to analyze migration data. Individuals are interviewed up to four times at
yearly intervals. In each interview, respondents are asked questions on each of the pre-
ceding 12 months. We use the 14th wave of the survey covering the years 2013 to 2016
to construct the panel. The IRS is our main source of data for estimating Q and other
preference parameters. We use the SOI county-level tax data set for 2018. For pre-tax
income, we use total income (form 1040, line 22). To generate average after-tax income,
we subtract total federal tax liabilities (form 1040 line 63) and total state and local in-
come taxes (schedule A, line 52). We then divide by the total number of returns reported
in the relevant state/rural-urban region. This calculation omits in-kind transfers between
states, for example, postal, road construction, or airline subsidies and are hence based
on a partial set of taxes/transfers across states. Figure C.1 displays average pre-tax urban
premia by state. Income-rural income heterogeneity within a state is significant, but also
heterogeneous across the United States.
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FIGURE C.1.—Pre-tax Urban Premium by Location.

Specification. We assume a sticky choice mixed logit specification. A parameter d con-
trols the arrival rate of Gumbel shock draws. Workers have mixed logit preferences of the
form:

u(q� i�β) = a log
(
q(i)

) + ξ(i) +
S∑
s=1

βsxs(i)� (C.1)

We identify choice characteristics x with dummies for different locations or classes of
location. We suppose three populations of agent. The first (flexible) population draws a
β type that places mass on nine census division dummies. They draw these types from
a multivariate normal distribution N(0��). The second (anchored) population draws a
single-peaked preference shock that favors a particular rural or urban location within a
state (i.e., they draw β shocks that place arbitrary negative weight on all but one location
dummy). The third (local) population draws a single-peaked preference shock that favors
a particular state (i.e., they draw β shocks that place arbitrary negative weight on all but
one state dummy). The presence of flexible, local, and anchored agents in the estimation
procedure, allows us to simultaneously generate the large main diagonal and the upper
and lower diagonals of the substitution matrix, as well as the observed varied substitutabil-
ity across (the mostly urban) regions. In total, φ has 247 elements: 45 to parametrize the
covariance matrix across characteristics and 202 to determine the total and the distribu-
tion of anchored and local agents per location.

Estimation. Our goal is to recover estimates of the structural preference parameters
a and �ξ, where �ξ gives deviations in ξ relative to a reference choice (which we take to
be CA), and of the parameter φ of the β density. The first step is to obtain estimates of
P and Q. We identify P with the empirical cross-sectional distribution P̃ of agents across
locations in 2018 IRS data. Given the sticky choice specification, we recover an estimate
Q̃ of Q via the procedure described in Section 7.1.

Define the matrix �P with elements: �P (i� j) := Cov(P(i|q�β)
P(i|q) �

P(j|q�β)
P(j|q) ) = Q(i�j)

P(i) − 1. Hence,

construct a data counterpart �̃P of �P using the estimates P̃ and Q̃. Select a reference
choice i0 and let I0 = I\{i0}. Define �u = {�u(i)}i∈I , with �u(i) := a log(q(i)/q(i0)) +
�ξ(i), to be the vector of common payoff deviations relative to the reference choice,
where �ξ(i) := ξ(i) − ξ(i0) is the deviation in unobserved attribute values at i. Estimates
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for φ and �u are constructed by searching for values that equate model implied �P and
P with their data counterparts. Specifically, given a value φ̂ for φ, draw a sample {βn}Nn=1

from a distribution with density m(·|φ̂), where m is defined in more detail below. For
i ∈ I , define for each βn,

Pn(i|�u) :=
exp

(
�u(i) +

S∑
s=1

βns�xs(i)

)

1 +
∑
j∈I0

exp

(
�u(j) +

S∑
s=1

βns�xs(j)

)

and let P(i|�u� φ̂) := 1
N

∑N

n=1 Pn(i|�u). Next, obtain an estimate �̂u for �u conditional on
the sample {βn}Nn=1 drawn fromm(·|φ̂) by iterating on �u′ = �u+ ln(P̃) − ln(P(i|�u� φ̂))
until convergence tolerances are achieved. Finally, construct a model-implied estimate
�P (φ̂) of �P according to, ∀i� j ∈ I :

�P (φ̂)(i� j) = 1
N

N∑
n=1

P
(
i|�̂u�βn

)
P(i|�̂u� φ̂)

P
(
j|�̂u�βn

)
P(j|�̂u� φ̂)

− 1
N

N∑
n=1

P
(
i|�̂u�βn

)
P(i|�̂u� φ̂)

1
N

N∑
n=1

P
(
j|�̂u�βn

)
P(j|�̂u� φ̂)

�

The estimate of φ is obtained by solving

φ= arg min
φ̂

∣∣�̃P −�P (φ̂)
∣∣�

The next step is to recover estimates of a and �ξ from those of �u. We assume that
changes in �ξ(i) over time have zero expected values and are uncorrelated with changes
in log(q(i)/q(i0)). For two dates t ′ > t, an estimate of a is selected to minimize the sample
covariance:

1
I − 1

∑
i∈I0

{
�ξt′ (i) −�ξt (i)

}
log

(
qt′ (i)/qt (i)
qt′ (i0)/qt (i0)

)
�

where �ξt′ (i) − �ξt (i) = �ut′ (i) − �ut (i) − a{log( qt′ (i)
qt′ (i0) ) − log( qt (i)

qt (i0) )} are the sample
changes in structural errors. We select t = 1998 and t ′ = 2018 (1998 being the earliest
year available in the IRS data set).

Estimation Results. Figure C.2 reports the estimated correlation matrix of β shocks for
flexible agents. Table C.I reports the fit of the estimated model for average cross-region
migration flows.

Robustness. In the body of the paper, we estimated a= 4�29 (2�75). Given the impor-
tance of this parameter, we perform sensitivity analysis by recomputing the optimal tax
code for alternative values of a. Broad features of the optimal tax code are preserved
across values of a: taxes tend to increase in average state income, the code deviates from
affine, variations in tax amounts are shaped by the particular spatial preferences of agents
across regions. However, magnitudes are impacted by a. Figure C.3 shows versions of
Figure 5 for two extreme values of a. The figure plots deviations in the mixed logit opti-
mal tax code from an affine structure (as is obtained under the simple logit). Magnitudes
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FIGURE C.2.—Estimated Location Characteristics Correlation Matrix. N.E. = New England; M. Atl. =
Middle Atlantic; E-N Cent. = East-North Central; W-N Cent. = West-North Central; S. Atl. = South Atlantic;
E-S Cent. = East-South Central; W-S Cent = West-South Central; Mount. = Mountain; Pac. = Pacific.

of adjustments relative to the affine code are affected. However, the overall pattern of
deviations from the affine tax code is quite stable across the two figures. For example,
the relative positioning of NH and MN is unchanged in the two figures relative to that
discussed in the text.

C.2. Household Labor Supply: Additional Details

Data and Estimation. Our main data source is the March Current Population Survey
(CPS) from 2000 to 2019. We look at respondents that appear both in the regular and
the ASEC supplement. With the information provided, we reconstruct a family unit and
focus on families that report the presence of a primary earner and a spouse. We restrict
the sample to couples that feature both a male and female primary adult between the ages

TABLE C.I

URBAN-RURAL MODEL: ESTIMATION FIT (AVERAGE MIGRATION PROBABILITIES).

Flow Data Model

Rural Stayers 0�89 0�90
Urban Stayers 0�87 0�89

Rural to Urban (Same State) 0�067 0�079
Urban to Rural (Same State) 0�033 0�031

Rural to Rural (Other State) 0�00013 0�00022
Urban to Urban (Other State) 0�0017 0�0015
Rural to Urban (Other State) 0�00068 0�00031
Urban to Rural (Other State) 0�00026 0�00011
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FIGURE C.3.—Deviation From Affine Tax Code For U.S. Urban Regions: Changes in a.

of 20 and 60. We also remove couples that report having a child of less than 1 year of age.
This is to limit the impact of what are large and predictable shocks to hours.

CPS data contains data on work behavior for the current and previous year. We use
information on the total number of hours usually worked per week at all jobs and com-
pare it with the reported usual number of hours per week at all jobs in the previous year.
We partition the hour information in three bins. A worker is coded as working full time
if usual hours are greater or equal to 35, part time if hours are between 10 and 35, and
no time if hours are less than 10 per week. Having each spouse in one of these three bins
allows for 9 possible combinations for the households. In the case of income variation
within and across hours choices, we allow the labor supply combinations displayed in Ta-
ble C.II. In the table, we label each of the 9 income-generating household choices with
the usual monthly hours worked. This also allows for a direct comparison of our approach
with Hoynes (1996). We also extract information on labor earnings and hourly wages from
our CPS data. Prices over time are deflated using the CPI for all urban consumers. All
dollar values are reported as 2010 dollars. Total income is determined as total pre-tax
wage and salary income for both spouses. It is then averaged within the 9 bins described
above to generate pre-tax incomes for each bin. From CPS, we use the available imputed

TABLE C.II

SET OF INCOME GENERATING ACTIVITIES: MONTHLY
HOURS WORKED. ih (iw) DENOTES HOURS WORKED BY

THE HUSBAND (WIFE).

Choice # ih iw

1 0 0
2 80 0
3 160 0
4 0 80
5 80 80
6 160 80
7 0 160
8 80 160
9 160 160
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taxes and credits. Specifically, for taxes we use: Federal, State, and FICA taxes; for tax
credits, we use the Earned Income Tax Credit. From CPS, we also use individual-level
information on: welfare transfers, unemployment compensation, workers compensation,
and disability compensation. After tax income is imputed for each household as pre-tax
income plus transfers minus all taxes net of credit for each partner. The estimation proce-
dure is similar to that for the spatial model, except that we do not impose a sticky choice
structure in this case. The set of choice attributes x is directly identified with the different
hours combinations. The distribution over β types is assumed to be a multivariate normal
N(0��). Thus, we omit anchored types in this case.

Results. In the main text, we describe the transition matrix observed in the data. This
object is not structural. Figure C.4(b) displays the substitution matrix Q computed at the
optimum. Although the broad patterns remain unchanged, there are significant adjust-
ments to some values. In particular, the optimal policy discourages part time work, raises
transition probabilities out of this work and increases its substitutability with, especially,
no work.

Adding Wage Dispersion. Here, we sketch an extension of our baseline model that
can accommodate wage dispersion among couples. Assume that a couple draws a pair
of wage shocks, one for each spouse s ∈ {h�w}, from a finite set of cardinality N . Let
ωn = {ωn

s} denote the nth wage shock pair and let hi = {his} denote the ith hours pair
for the two spouses. As before, there are I hours choice combinations. Together this im-
plies a finite number (N× I) of possible income pairs y ∈ Y ={(ωn

hh
i
h�ω

n
wh

i
w)}n∈N �i∈I . Let

Y (ωn) = {(ωn
hh

i
h�ω

n
wh

i
w)}i∈I , denote the income choice set of a couple that draws wages

ωn = (ωn
h�ω

n
w). Then set

P
(
y|q�ωn�β

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 y /∈ Y

(
ωn

)
�

expv(q�y�ωn�β)∑
y′∈Y(ωn)

expv(q�y′�ωn�β)
y ∈ Y

(
ωn

)
�

FIGURE C.4.—QMatrices. Labels H, M, L Denote Full-, Part-, and No Time Labor Supply for the Husband
and Wife, Respectively. Choices ordered by pre-tax family income.



OPTIMAL TAXATION OF INCOME-GENERATING CHOICE 25

with v defined as

v
(
q� y�ωn�β

) =
{
a logq(y) +β′x(i) + ξ(i) ∃i ∈ I� y = (

ωn
hh

i
h�ω

n
wh

i
w

)
�

−∞ otherwise.

This definition simply zeros out probabilities at income choices unattainable to a given
wage type. Further, ω functions as a mixing type (albeit one with an observed distribu-
tion). At the aggregate level, for each y ∈Y ,

P(y|q) =
∑
N

∫
B
P

(
y|q�β�ωn

)
m

(
β|ωn

)
g
(
ωn

)
dβ� (C.2)

It is straightforward to verify that our earlier expressions for choice distribution sensitivi-
ties continue to hold in this case and, in particular,

1
P(y|q)

∂P
(
y ′|q

)
∂q(y)

= {
I
(
y� y ′) −Q(

y� y ′|q
)}
E

[
∂v(q)
∂c

∣∣∣y]�
withQ(y� y ′) = P(y ′|q)+P(y ′|q) Cov(P(y′|q�ω�β)

P(y′|q) � P(y|q�ω�β)
P(y|q) ) (and where ∂v(q� y�ω�β)/∂c :=

0 if v(q� y�ω�β) = −∞). This framework restricts mobility across incomes associated
with different wage combinations. All of our earlier tax theory can be applied to this
modified environment provided that Q remains aperiodic.2

Our quantitative implementation of this case simplifies by treating β draws as indepen-
dent ofω. Estimates of a, the parameters of them distribution and of ξ are retained from
our baseline case. Construction of P and Q also requires estimation of the wage distri-
bution g. We utilize CPS data. We restrict to individuals that do not report a change in
usual hours worked in the previous year. We then compute an estimate of the hourly wage
using information on income and total hours worked in the previous year. We trim the re-
sulting distribution of wages dropping individuals above the 99th percentile of wages and
below the first percentile of wages. As a final step, we fit a joint log normal distribution
to the distribution of wages across spouses. The parameters of the joint-log normal are in
Table C.III.

TABLE C.III

JOINT DISTRIBUTION FOR HUSBAND AND WIFE
HOURLY WAGES.

Husband Wife

E(log(w)) 3�15 2�89
Var(log(w)) 0�33 0�34
Cov(log(wh)� log(wl)) 0.1

2Aperiodicity is not required for results from Proposition 5. However, the formula (I −Q)# = ∑∞
n=0(Qn −

PQ) and the expressions in Proposition 4 do utilize aperiodicity. In its absence, the more general expression
(I−Q)# = limN→∞ 1

N

∑N−1
M=0

∑M−1
n=0 (Qn − PQ), where the left side is the Cesáro average, must be utilized.
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APPENDIX D: MIXED LOGIT APPROXIMATIONS FOR FRICTIONAL ECONOMIES

Persistent choice may also be induced by deterministic costs of choice adjustment. Such
costs convert individual choice problems into explicitly dynamic ones significantly com-
plicating both them and optimal tax analysis. Moreover, as Chetty (2012) notes, costs of
adjustment may have various sources and be difficult to estimate. We build on an ap-
proach of Chetty (2012) and construct bounds that relate frictional economy transition
data to the frictionless and frictional choice distribution elasticities needed for tax anal-
ysis. The results imply that if costs of adjustment are small then (i) choice distributions
in the underlying frictionless economy and at the stationary distribution of the friction-
less economy will be close and (ii) choice distribution responses to large enough income
changes will be close. Further, the steady-state transition matrix of the frictional economy
will be close to the frictionless economy substitution matrix. The latter transition matrix
can be used to construct approximations to underlying frictionless and (unmeasured) fric-
tional elasticities.

We assume throughout this Appendix that current utility has the form a logq(j) +
u1(j�β). The frictional environment augments the frictionless one with costs of choice
adjustment a log(1 − κ(i� j)) ≤ 0, where the cost of choice adjustment is expressed as a
share of (destination) consumption and throughout we assume 0 ≤ κ(i� j) ≤ κ< 1. Agents
solve dynamic choice problems:

V (i|β) =E
[
max
j

{
a log

(
q(j)

) + u1(j�β) + a log
(
1 − κ(i� j)

) + ε(j) + δV (j|β)
}]
� (D.1)

with q denoting a stationary equilibrium after-tax income allocation, δ a discount factor,
β a permanent type, and ε ∈ R

I a shock with i.i.d. Gumbel marginals. It follows from
(D.1) that the probability that a β-type agent transitions from i to j is

Q̂(i� j|β)

= exp
{
a log

(
1 − κ(i� j)

) + a log
(
q(j)

) + u1(j�β) + δV (j|β)
}∑

k∈I
exp

{
a log

(
1 − κ(i�k)

) + a log
(
q(k)

) + u1(j�β) + u1(k�β) + δV (k|β)
} � (D.2)

where here and throughout the remainder of this section a hat is used to denote a fric-
tional economy probability or elasticity (and to distinguish it from its frictionless coun-
terpart). We consider a policymaker concerned with steady-state outcomes in a frictional
environment with fixed pre-tax incomes. Her first-order conditions may be formulated
identically to (8) with ∂S(q;λ)/∂q(i)

ϒ
reinterpreted as a frictional steady-state marginal social

welfare weight, P̂(q) replacing P(q) and indicating the frictional steady-state distribution
of agents over choices given q, and

∑
j∈I τ(j) ∂P̂(j|q)

∂q(i) replacing
∑

j∈I τ(j) ∂P(j|q)
∂q(i) and denot-

ing the steady-state marginal excess burden. To evaluate these first-order conditions at an
equilibrium and evaluate a prevailing tax system’s optimality, the policymaker requires
information on the entire sensitivity matrix ∂P̂(j|q)

∂q(i) or, equivalently, the corresponding ma-

trix of stationary distribution elasticities η̂(i� j) = q(i)
P̂(j|q)

∂P̂(j|q)
∂q(i) . We show how to construct

bounds on all frictional elasticities η̂ using the transition Q̂, a small number of measured
elasticities in the frictional economy, and a (hypothesized) upper bound on costs of choice
adjustment.
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We proceed in several steps. We first relate the frictional steady-state transition to the
frictionless choice distribution. We begin with the simple logit case.

LEMMA D.1: Assume a simple logit environment (with degenerate mixing) augmented with
costs of choice adjustment κ. Let κ/(1 + δ) denote an upper bound on these costs. For small
values of κ, the transition matrix in this frictional model, Q̂, satisfies the following bounds
relative to the frictionless choice distribution P :

P(j) − aP(j)
(
1 − P(j)

)
κ≤ Q̂(i� j) ≤ P(j) + aP(j)

(
1 − P(j)

)
κ�

PROOF: In the frictional simple logit, transition probabilities are

Q̂(i� j) = expa log(q(j)(1−κ(i�j)))+u1(j)+δV (j)∑
k

expa log(q(k)(1−κ(i�k)))+u1(k)+δV (k)−κ(i�k)
�

where V is defined as in (D.1). Define V ′(j) = u0(q(j)) +u1(j) +δV (j). Let Q(j) denote
the probability of transition from i to j that occurs if (i) transitions from i to j and future
transitions from j to k′ are costless and (ii) all other transitions incur maximum cost
κ/(1 + δ). Then, Q(j) is given by

Q(j) = expu0(q(j))+u1(j)+δ log
∑
k′ expV

′ (k′)

expu0(q(j))+u1(j)+δ log
∑
k′ expV (k′) +

∑
k �=j

expu0(q(k))+u1(k)+a log(1−κ/1+δ)+δ log
∑
k′ expV

′ (k′)+a log(1−κ/1+δ)

= expu0(q(j))+u1(j)+δ log
∑
k′ expV

′ (k′)

expu0(q(j))+u1(j)+δ log
∑
k′ expV

′ (k′) +
∑
k �=j

expu0(q(k))+u1(k)+δ log
∑
k′ expV

′ (k′) +a(1+δ) log(1−κ/1+δ)

= expu0(q(j))+u1(j)

expu0(q(j))+u1(j) +
∑
k �=j

expu0(q(k))+u1(k)+a(1+δ) log(1−κ/1+δ)
�

Let Q(j) denote the probability of transition from i to j that occurs if (i) transitions from
i to j and future transitions from j to k′ have maximal cost and (ii) all other transitions
are costless. By a similar set of equalities to that above,

Q(j) = expu0(q(j))+u1(j)

expu0(q(j))+u1(j) +
∑
k �=j

expu0(q(k))+u1(k)−a(1+δ) log(1−κ/1+δ)
�

Evidently, the cost combination assumed in constructing Q(j) maximizes the probability
of a transition from i to j and that for Q minimizes the probability of a transition from i

to j. Thus, Q(j) ≤Q(i� j) ≤Q(i� j). Let

P(j) = expu0(q(j))+u1(j)∑
k

expu0(q(k))+u1(k)
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denote the frictionless choice probabilities. Taking Taylor’s series approximations to
Q(j) and Q(j) around κ = 0 gives Q(j) ≈ P(j) + aP(j)(1 − P(j))κ and Q(j) ≈ P(j) −
aP(j)(1 − P(j))κ. Hence, we have the following (approximate) bounds on the fric-
tional transition matrix elements: P(j) − aP(j)(1 − P(j))κ≤ Q̂(i� j) ≤ P(j) + aP(j)(1 −
P(j))κ. Q.E.D.

We now return to the mixed logit setting. Lemma D.1 has immediate application to
mixed logit conditional transitions (which have a simple logit form). These in turn permit
construction of bounds on the steady-state choice distribution in the frictional economy.

LEMMA D.2: In a frictional mixed logit setting, the conditional transition Q̂ and condi-
tional stationary choice distribution P̂s satisfy the bounds, respectively,

P(j|β) − aP(j|β)
(
1 − P(j|β)

)
κ≤ Q̂(i� j|β) ≤ P(j|β) + aP(j|β)

(
1 − P(j|β)

)
κ (D.3)

and

P(j|β) − aP(j|β)
(
1 − P(j|β)

)
κ≤ P̂(j|β) ≤ P(j|β) + aP(j|β)

(
1 − P(j|β)

)
κ� (D.4)

Further, the unconditional stationary choice distribution satisfies

logP(j) − aκ≤ logP(j) −η(j� j)κ≤ log P̂(j)

≤ logP(j) +η(j� j)κ≤ logP(j) + aκ� (D.5)

with η(j� j) the frictionless own-elasticity: η(j� j) = a{1 −Q(j� j)}.

PROOF: Equation (D.3) follows from Lemma D.1. Multiplying (D.3) by P̂(i|β) and
summing over i gives (D.4). Integrating this equation over β (with respect to m(β)),
using the definition of η(j� j), taking logs and approximating delivers (D.5). Q.E.D.

Lemma D.2 admits the following generalization, which states that the bounds obtained
in that lemma apply to any choice distribution seen along a transition in a frictional econ-
omy perhaps due to a policy reform (except possibly the initial distribution along the
transition).

LEMMA D.3: Consider a mixed logit model with frictions. Let P ′(i|β) be a conditional
choice distribution (not necessarily the steady-state distribution in the frictional economy).
Then

logP(j) − aκ≤ logP(j) −η(j� j)κ≤ log
∫
B
P ′(i|β)Q̂(i� j|β)m(β) dβ

≤ logP(j) +η(j� j)κ≤ logP(j) + aκ� (D.6)

PROOF: Multiplying (D.3) by P ′(i|β) and summing over i:

P(j|β) − aP(j|β)
(
1 − P(j|β)

)
κ≤ P ′(i|β)Q̂(i� j|β) ≤ P(j|β) + aP(j|β)

(
1 − P(j|β)

)
κ�

Integrating this equation over β (with respect tom(β)) and using the definitions of η and
κ, taking logs and approximating delivers (D.6). Q.E.D.
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It follows from Lemmas D.1 and D.2 that the frictional economy stationary log choice
distribution probabilities log P̂(j) and the log choice probabilities along a frictional econ-
omy transition path (with time invariant after-tax incomes q and time invariant transitions
Q̂(i� j|β)) remain within an envelope of the frictionless log choice probabilities. The en-
velope is determined by a bound on the size of the adjustment costs and by frictionless
choice elasticities, with a further outer bound given by this cost bound and the common
utility parameter a. It follows that if these variables are small, then aggregate behavior in
the frictional model is well approximated by that in the frictionless one. In this case, anal-
ysis of the frictionless model will provide reasonable qualitative insights into frictional tax
design.

Our empirical strategy for the frictionless model emphasized the equivalence of the
agent transition matrix and the frictionless and possibly high-dimensional substitution
matrix Q (which describes behavioral responses to utility variation in frictionless envi-
ronments). It utilized the readily observed transition matrix to learn about the sensitivity
of choice to utility variation (and then linked this to potentially limited evidence on the
sensitivity of choice to income variation to relate income to utility variation, and hence,
estimate a). We next relate the steady-state frictional transition matrix Q̂ to the substitu-
tion matrixQ and show that Q̂ is within an envelope ofQ provided that κ is small enough.
It follows that when κ is small enough, the frictional transition is close to and informative
about the frictionless substitution matrix.

LEMMA D.4: Assume: 1 − aκ > 0, then

1 − 2aκ
1 + aκ Q(i� j) ≤ Q̂(i� j) ≤ (1 + aκ)2

1 − aκ Q(i� j)�

PROOF: Integrating the terms in the first inequality in (D.3) with respect to P̂(i|β)
P̂(i)

m(β)
implies

Q̂(i� j) =
∫
B
Q̂(i� j|β)

P̂(i|β)

P̂(i)
m(β) dβ

≥
∫
B

{
1 − a(1 − P(j|β)

)
κ
}
P(j|β)

P̂(i|β)

P̂(i)
m(β) dβ�

Replacing P̂(i|β) and P̂(i) and using (D.4):

Q̂(i� j) ≥ 1

P̂(i)

∫
B

{
1 − a(1 − P(j|β)

)
κ
}
P(j|β)P(i|β)

{
1 − a(1 − P(i|β)

)
κ
}
m(β) dβ

≥ (1 − 2aκ)
P(i)

P̂(i)
Q(i� j) ≥ 1 − 2aκ

1 + aκ Q(i� j)�

Next, integrate the second inequality in (D.3) over β w.r.t. P̂(i|β)
P̂(i)

m(β). This gives

Q̂(i� j) =
∫
B
Q̂(i� j|β)

P̂(i|β)

P̂(i)
m(β) dβ≤

∫
B

{
1 + a(1 − P(j|β)

)
κ
}
P(j|β)

P̂(i|β)

P̂(i)
m(β) dβ�
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Assume 1 − aκ > 0, replace P̂(i|β) and P̂(i) using (D.4):

Q̂(i� j) ≤ 1

P̂(i)

∫
B

{
1 + a(1 − P(j|β)

)
κ
}
P(j|β)P(i|β)

{
1 + a(1 − P(i|β)

)
κ
}
m(β) dβ

≤ (1 + aκ)2P(i)

P̂(i)
Q(i� j) = (1 + aκ)2

1 − aκ Q(i� j)�
Q.E.D.

From (D.6), if a change in the frictional steady-state �P̂ to a new (not necessarily sta-
tionary) distribution in response to a proportional after-tax income change � logq(j)
is observed, then � logP(j) − 2aκ ≤ � logP(j) − 2η(j� j)κ ≤ � log P̂(j) ≤ � logP(j) +
2η(j� j)κ ≤ � logP(j) + 2aκ, where � indicates a change in the variables and η(j� j)
is used to approximate the elasticity of P(j) after the income change. Approximating
� logP(j) by η(j� j)� logq(j) and rearranging, then gives

η(j� j)
{

1 − 2κ
� logq(j)

}
≤ η̂(j� j) ≤ η(j� j)

{
1 + 2κ

� logq(j)

}
� (D.7)

where η̂(j� j) = � log P̂(j)
� logq(j) . Similarly, the response of P̂(j) to an adjustment � logq(k) satis-

fies

η(j�k) − 2η(j� j)κ
� logq(j)

≤ η̂(j�k) ≤ η(j�k) + 2η(j� j)κ
� logq(j)

� (D.8)

Equation (D.7) implies that if frictionless elasticities are known, then bounds can be con-
structed for any frictional elasticity (to a proportional change in a kth after-tax income
� logq(k) and as a function of the cost bound κ). In the reverse direction, if an own (not
necessarily steady- state) frictional elasticity η̂(j� j) is observed and 1 − 2 κ

� logq(j) > 0, then
the bounds in (D.7) can be inverted to give bounds for frictionless elasticities. From (D.7),
frictional elasticities contain information on frictionless ones, which in turn depend upon
a: η(j� j) = a(1 −Q(j� j)). Consequently, combining this last definition with Lemma D.4
and (D.7) permits the construction of bounds for a.

LEMMA D.5: Let Ĩ ⊂ I denote a nonempty set of choices whose own frictional choice
distribution responses η̂(i� i) to perturbations � logq(i) are observed with 1 − 2κ

� logq(i) > 0.

Let η(i) := η̂(i�i)
1− 2κ

� logq(i)
and η(i) = η̂(i�i)

1+ 2κ
� logq(i)

and assume that 1+η(i)κ
1−2η(i)κQ̂(i� i) < 1. Then

max
i∈Ĩ

η(i)

1 − 1 − aκ
(1 + aκ)2 Q̂(i� j)

=: a≤ a≤ a := min
Ĩ

η(i)

1 − 1 +η(i)κ
1 − 2η(i)κ

Q̂(i� i)
�

PROOF: By a similar argument to that in Lemma D.4 using the definition of η(i� i), we
obtain

Q̂(i� i) ≥Q(i� i)
1 − 2η(i� i)κ
1 +η(i� i)κ

� (D.9)
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From (D.7), given 1− 2κ
� logq(i) > 0, η(i� i) ≤ η(i) := η̂(i�i)

1− 2κ
� logq(i)

. Combining this last inequality

with (D.9) implies Q(i� i) ≤ Q̂(i� i) 1+η(i)κ
1−2η(i)κ . Combining these bounds with η(i� i) = a{1 −

Q(i� i)} gives

a= η(i� i)
1 −Q(i� i)

≤ a := η

1 − Q̂(i� i)
1 +η(i)κ
1 − 2η(i)κ

�

Using the definition of η(i� i), (D.7), and Lemma D.4 gives

a= η(i� i)
1 −Q(i� i)

≥ a(i) := η(i)

1 − 1 − aκ
(1 + aκ)2 Q̂(i� i)

�

Q.E.D.

Using the bounds from Lemma D.4 and the definitions in Lemma D.5, we can now
restate the bounds on the substitution matrix in terms of bounds on costs of adjustments
alone.

LEMMA D.6: Let the conditions of Lemma D.5 hold. Assume that 1 − 2aκ > 0, then

1 − aκ
(1 + aκ)2 Q̂(i� j) :=Q(i� j) ≤Q(i� j) ≤Q(i� j) := 1 + aκ

1 − 2aκ
Q̂(i� j)� (D.10)

We now bring all of these results together.

PROPOSITION D.1: Assume that the conditions of Lemmas D.5 and D.6 hold and define
a, a, Q, and Q as in those lemmas. Then for each i, j, Q(i� j) ≤Q(i� j) ≤Q(i� j),

a
(
I(i� j) −Q(i� j)

) := η(i� j) ≤ η(i� j) ≤ η(i� j) := a(I(i� j) −Q(i� j)
)

Further, the response in the frictional economy to a perturbation �q(k) is bounded by

η(j�k) − 2η(j� j)κ
� logq(k)

≤ η̂(j�k) ≤ η(j�k) + 2η(j� j)κ
� logq(k)

�

Proposition D.1 provides conditions under which if at least one own frictional elastic-
ity η̂(i� i) is identified and measured through a large enough proportional change in q(i)
relative to the costs of choice adjustment, then the measured frictional choice elasticities
and the frictional transition matrix may be used to construct an approximate frictional
elasticity matrix describing behavioral responses on all margins. This in turn may be used
to build approximations to the marginal excess burden of taxation in the frictional econ-
omy, and hence, provide a basis for tax evaluation in this economy. These approximations
are tight if the costs of choice adjustment κ are small.

ONLINE APPENDIX REFERENCES

BERRY, STEPHEN (1994): “Estimating Discrete Choice Models of Product Differentiation,” Rand Journal of
Economics, 25 (2), 242–262. [15]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Be94&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/Be94&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B


32 L. ALES AND C. SLEET

BRÉMAUD, PIERRE (2013): Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Vol. 31.
Springer. [7]

CHETTY, RAJ (2012): “Bounds on Elasticities With Optimization Frictions: A Synthesis of Micro and Macro
Evidence on Labor Supply,” Econometrica, 80 (3), 969–1018. [26]

CHO, GRACE, AND CARL MEYER (2000): “Markov Chain Sensitivity Measured by Mean First Passage Times,”
Linear Algebra and its Applications, 316 (1–3), 21–28. [5]

GOLUB, GENE, AND CARL MEYER (1986): “Using the QR Factorization and Group Inversion to Compute,
Differentiate, and Estimate the Sensitivity of Stationary Probabilities for Markov Chains,” SIAM Journal on
Algebraic Discrete Methods, 7 (2), 273–281. [5]

HORN, ROGER, AND CHARLES JOHNSON (2013): Matrix Analysis (Second Ed.). Cambridge University Press.
[7]

HOYNES, HILARY (1996): “Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation
in AFDC-UP,” Econometrica, 64 (2), 295–332. [23]

LAMOND, BERNARD, AND MARTIN PUTERMAN (1989): “Generalized Inverses in Discrete Time Markov Deci-
sion Processes,” SIAM Journal on Matrix Analysis, 10, 118–134. [5]

LUENBERGER, DAVID (1969): Optimization by Vector Space Methods. John Wiley & Sons. [2]

Co-editor Alessandro Lizzeri handled this manuscript.

Manuscript received 1 June, 2020; final version accepted 26 April, 2022; available online 19 May, 2022.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Chetty12&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/CM00&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/GM86&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/H96&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/LP89&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/Chetty12&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/CM00&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/GM86&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/GM86&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/H96&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/LP89&rfe_id=urn:sici%2F0012-9682%282022%2990%3A5%2B%3C1%3ASTOTOI%3E2.0.CO%3B2-B

	Appendix A: Proofs and Notes
	Proofs for Section 2
	Proofs for Section 3
	Proofs for Section 4
	Proofs and Notes for Section 5
	Fuzzy Mirrlees
	Proofs and Notes for Section 6
	Approximate Identiﬁcation of Marginal Utility of Income

	Appendix B: Decomposing Policy Problems
	Environment and Agent Choice Problems
	Undecomposed Policy Problem
	Decomposed Policy Problem

	Appendix C: Quantitative Analysis
	Spatial Choice: Additional Details
	Data
	Speciﬁcation
	Estimation
	Estimation Results
	Robustness

	Household Labor Supply: Additional Details
	Data and Estimation
	Results
	Adding Wage Dispersion


	Appendix D: Mixed Logit Approximations for Frictional Economies
	References

