SUPPLEMENT TO "FISCAL RULES AND DISCRETION UNDER LIMITED ENFORCEMENT"

(Econometrica, Vol. 90, No. 5, September 2022, 2093-2127)
Marina Halac
Department of Economics, Yale University and CEPR

Pierre Yared
Columbia Business School and NBER

APPENDIX B: Omitted Proofs

B.1. Proof of Lemma 1

We proceed in three steps.

STEP 1: Suppose $\theta^{*} \geq \underline{\theta}$. We show that (3) and (4) are satisfied for types $\theta \in\left[\underline{\theta}, \theta^{*}\right]$.
The claim follows immediately from the fact that all types $\theta \in\left[\underline{\theta}, \theta^{*}\right]$ are assigned their flexible debt levels with no penalty. Thus, given $\theta \in\left[\underline{\theta}, \theta^{*}\right]$, type θ 's welfare cannot be increased, and (3) and (4) are trivially satisfied.

Step 2: We show that (3) and (4) are satisfied for types $\theta \in\left(\theta^{*}, \theta^{* *}\right]$.
Take first the enforcement constraint (4). We can rewrite it for $\theta \in\left(\theta^{*}, \theta^{* *}\right]$ as

$$
\begin{equation*}
\theta U\left(\omega+b^{r}\left(\theta^{*}\right)\right)+\beta \delta V\left(b^{r}\left(\theta^{*}\right)-\theta U\left(\omega+b^{p}(\theta)\right)-\beta \delta\left(V\left(b^{p}(\theta)\right)-\bar{P}\left(b^{p}(\theta)\right)\right) \geq 0 .\right. \tag{B.1}
\end{equation*}
$$

Differentiating the left-hand side with respect to θ, given θ^{*} and the definition of $b^{p}(\theta)$, yields

$$
U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{p}(\theta)\right)
$$

which is weakly decreasing in θ, since $b^{p}(\theta)$ is nondecreasing. This means that the lefthand side of (B.1) is weakly concave. Since (B.1) holds as a strict inequality for $\theta=\theta^{*}$ and as an equality for $\theta=\theta^{* *}$ (by (8)), this weak concavity implies that (B.1) holds as a strict inequality for all $\theta \in\left(\theta^{*}, \theta^{* *}\right)$. Thus, constraint (4) is satisfied for all $\theta \in\left(\theta^{*}, \theta^{* *}\right]$.

Take next the truthtelling constraint (3). This constraint is trivially satisfied for all $\theta \in$ ($\left.\theta^{*}, \theta^{* *}\right]$ given $\theta^{\prime} \in\left[\theta^{*}, \theta^{* *}\right]$, since all types $\theta \in\left[\theta^{*}, \theta^{* *}\right]$ are assigned the same allocation. We next show that the constraint is also satisfied given $\theta^{\prime}>\theta^{* *}$ and $\theta^{\prime}<\theta^{*}$:

Step $2 a$: We show that (3) is satisfied for all $\theta \in\left(\theta^{*}, \theta^{* *}\right.$] given $\theta^{\prime}>\theta^{* *}$. Note that $\left(b\left(\theta^{\prime}\right), P\left(\theta^{\prime}\right)\right)=\left(b^{p}\left(\theta^{\prime}\right), \bar{P}\left(b^{p}\left(\theta^{\prime}\right)\right)\right)$ for all $\theta^{\prime}>\theta^{* *}$, and by the definition of $b^{p}(\theta)$,

$$
\begin{aligned}
& \theta U\left(\omega+b^{p}(\theta)\right)+\beta \delta\left(V\left(b^{p}(\theta)\right)-\bar{P}\left(b^{p}(\theta)\right)\right) \\
& \quad \geq \theta U\left(\omega+b^{p}\left(\theta^{\prime}\right)\right)+\beta \delta\left(V\left(b^{p}\left(\theta^{\prime}\right)\right)-\bar{P}\left(b^{p}\left(\theta^{\prime}\right)\right)\right)
\end{aligned}
$$

for all $\theta^{\prime} \in \Theta$. Thus, the fact that the enforcement constraint (4) is satisfied for all $\theta \in$ $\left(\theta^{*}, \theta^{* *}\right]$ implies that (3) is satisfied for all such types given $\theta^{\prime}>\theta^{* *}$.
Step $2 b$: We show that (3) is satisfied for all $\theta \in\left(\theta^{*}, \theta^{* *}\right]$ given $\theta^{\prime}<\theta^{*}$. Suppose by contradiction that this is not the case, that is,

$$
\begin{equation*}
\theta\left(U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)\right)<\beta \delta\left(V\left(b^{r}\left(\theta^{\prime}\right)\right)-V\left(b^{r}\left(\theta^{*}\right)\right)\right) \tag{B.2}
\end{equation*}
$$

for some $\theta \in\left(\theta^{*}, \theta^{* *}\right]$ and $\theta^{\prime}<\theta^{*}$. By Step 1, (3) holds for type θ^{*} given $\theta^{\prime}<\theta^{*}$:

$$
\begin{equation*}
\theta^{*}\left(U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)\right) \geq \beta \delta\left(V\left(b^{r}\left(\theta^{\prime}\right)\right)-V\left(b^{r}\left(\theta^{*}\right)\right)\right) \tag{B.3}
\end{equation*}
$$

Combining (B.2) and (B.3) yields

$$
\left(\theta^{*}-\theta\right)\left(U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)\right)>0
$$

which is a contradiction since $\theta>\theta^{*}$ and $b^{r}\left(\theta^{\prime}\right) \leq b^{r}\left(\theta^{*}\right)$. The claim follows.
STEP 3: Suppose $\theta^{* *}<\bar{\theta}$. We show that (3) and (4) are satisfied for types $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$.
Constraint (4) is satisfied as an equality for all $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$. It is immediate that constraint (3) is satisfied for all $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$ given $\theta^{\prime} \in\left(\theta^{* *}, \bar{\theta}\right]$, since all such types are assigned their flexible debt level with maximum penalty. Consider next constraint (3) for $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$ given $\theta^{\prime} \in\left[\theta^{*}, \theta^{* *}\right]$. Note that $\left(b\left(\theta^{\prime}\right), P\left(\theta^{\prime}\right)\right)=\left(b^{r}\left(\theta^{*}\right), 0\right)$ for all $\theta^{\prime} \in\left[\theta^{*}, \theta^{* *}\right]$. Thus, satisfaction of this constraint is ensured if (B.1) is violated for $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$. The latter is true since, as shown above, the left-hand side of (B.1) is weakly concave and (B.1) holds as an equality for $\theta=\theta^{* *}$ and a strict inequality for $\theta \in\left(\theta^{*}, \theta^{* *}\right)$.

Finally, consider constraint (3) for $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$ given $\theta^{\prime}<\theta^{*}$. Since (3) is satisfied given $\theta^{\prime} \in\left[\theta^{*}, \theta^{* *}\right]$, satisfaction of this constraint given $\theta^{\prime}<\theta^{*}$ is ensured if

$$
\theta\left(U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)\right) \geq \beta \delta\left(V\left(b^{r}\left(\theta^{\prime}\right)\right)-V\left(b^{r}\left(\theta^{*}\right)\right)\right)
$$

for $\theta \in\left(\theta^{* *}, \bar{\theta}\right]$. The latter follows from the same logic as in Step 2 b above.

B.2. Proof of Corollary 1

Consider optimal rules with $b(\theta) \in(\underline{b}, \bar{b})$ for all $\theta \in \Theta$. We proceed in four steps.
STEP 1: We show that an optimal maximally enforced deficit limit solves

$$
\begin{align*}
& \max _{\theta^{*}, \theta^{* *}}\left\{\int_{0}^{\theta^{*}} U\left(\omega+b^{r}(\theta)\right) Q(\theta) d \theta+\int_{\theta^{*}}^{\theta^{* *}} U\left(\omega+b^{r}\left(\theta^{*}\right)\right) Q(\theta) d \theta\right. \\
& \left.\quad+\int_{\theta^{* *}}^{\bar{\theta}} U\left(\omega+b^{p}(\theta)\right) Q(\theta) d \theta\right\} \tag{B.4}
\end{align*}
$$

subject to (8),
where $Q(\theta)=1$ for $\theta<\underline{\theta}$ and, by convention, the last integral equals zero if $\theta^{* *} \geq \bar{\theta}$.

By the arguments in the text, social welfare can be written as

$$
\frac{1}{\beta} \underline{\theta} U(\omega+b(\underline{\theta}))+\delta(V(b(\underline{\theta}))-P(\underline{\theta}))+\frac{1}{\beta} \int_{\underline{\theta}}^{\bar{\theta}} U(\omega+b(\theta)) Q(\theta) d \theta
$$

which in turn can be rewritten as

$$
\lim _{\underline{\theta}^{\prime} \downarrow 0} \frac{1}{\beta} \underline{\theta^{\prime}} U\left(\omega+b\left(\underline{\theta}^{\prime}\right)\right)+\delta\left(V\left(b\left(\underline{\theta^{\prime}}\right)\right)-P\left(\underline{\theta}^{\prime}\right)\right)+\frac{1}{\beta} \int_{0}^{\bar{\theta}} U(\omega+b(\theta)) Q(\theta) d \theta,
$$

where $Q(\theta)=1$ for $\theta<\underline{\theta}$. Hence, social welfare under a maximally enforced deficit limit can be represented as

$$
\begin{align*}
& \lim _{\underline{\theta}^{\prime} \downarrow 0} \frac{1}{\beta} \underline{\theta^{\prime}} U\left(\omega+b^{r}\left(\underline{\theta^{\prime}}\right)\right)+\delta\left(V\left(b^{r}\left(\underline{\theta^{\prime}}\right)\right)-P\left(\underline{\theta}^{\prime}\right)\right) \\
& \quad+\frac{1}{\beta} \int_{0}^{\theta^{*}} U\left(\omega+b^{r}(\theta)\right) Q(\theta) d \theta+\frac{1}{\beta} \int_{\theta^{*}}^{\theta^{* *}} U\left(\omega+b^{r}\left(\theta^{*}\right)\right) Q(\theta) d \theta \\
& \quad+\frac{1}{\beta} \int_{\theta^{* *}}^{\bar{\theta}} U\left(\omega+b^{p}(\theta)\right) Q(\theta) d \theta . \tag{B.5}
\end{align*}
$$

Since the first term in (B.5) is independent of the choice of $\theta^{*}>0$ and $\theta^{* *}>\theta^{*}$, and since the constant $\frac{1}{\beta}$ multiplies all other terms, the objective in (B.4) is equivalent to (B.5).

STEP 2: Consider the following relaxed program:

$$
\max _{\theta^{*}}\left\{\int_{0}^{\theta^{*}} U\left(\omega+b^{r}(\theta)\right) Q(\theta) d \theta+\int_{\theta^{*}}^{\bar{\theta}} U\left(\omega+b^{r}\left(\theta^{*}\right)\right) Q(\theta) d \theta\right\} .
$$

We show that any solution to this program yields strictly higher social welfare than any solution to program (B.4) with $\theta^{* *}<\bar{\theta}$.

Take any solution $\left\{\theta^{*}, \theta^{* *}\right\}$ to program (B.4) with $\theta^{* *}<\bar{\theta}$. To prove the claim, it suffices to show that social welfare strictly increases if we change the allocation of types $\theta \in\left[\theta^{* *}, \bar{\theta}\right]$ from $(b(\theta), P(\theta))=\left(b^{p}(\theta), \bar{P}\left(b^{p}(\theta)\right)\right)$ to $(b(\theta), P(\theta))=\left(b^{r}\left(\theta^{*}\right), 0\right)$. To prove this, note first that by Step 1 in the proof of Proposition 2, the solution $\left\{\theta^{*}, \theta^{* *}\right\}$ to program (B.4) has $\theta^{* *} \geq \widehat{\theta}$. Hence, by Assumption $1, Q(\theta)<0$ for all $\theta \in\left[\theta^{* *}, \bar{\theta}\right]$. Given the representation in (B.4), the claim then follows if $b^{r}\left(\theta^{*}\right)<b^{p}(\theta)$ for all $\theta \in\left[\theta^{* *}, \bar{\theta}\right]$. We show next that this inequality holds. Given the solution $\left\{\theta^{*}, \theta^{* *}\right\}$, the following conditions hold for all $\theta \in\left[\theta^{* *}, \bar{\theta}\right]:$

$$
\theta U\left(\omega+b^{r}\left(\theta^{*}\right)\right)+\beta \delta V\left(b^{r}\left(\theta^{*}\right)\right) \leq \theta U\left(\omega+b^{p}(\theta)\right)+\beta \delta\left(V\left(b^{p}(\theta)\right)-\bar{P}\left(b^{p}(\theta)\right)\right)
$$

and

$$
\theta^{*} U\left(\omega+b^{r}\left(\theta^{*}\right)\right)+\beta \delta V\left(b^{r}\left(\theta^{*}\right)\right)>\theta^{*} U\left(\omega+b^{p}(\theta)\right)+\beta \delta\left(V\left(b^{p}(\theta)\right)-\bar{P}\left(b^{p}(\theta)\right)\right)
$$

Combining these two inequalities yields

$$
\left(\theta-\theta^{*}\right) U\left(\omega+b^{p}(\theta)\right)>\left(\theta-\theta^{*}\right) U\left(\omega+b^{r}\left(\theta^{*}\right)\right)
$$

which implies $b^{p}(\theta)>b^{r}\left(\theta^{*}\right)$ for all $\theta \in\left[\theta^{* *}, \bar{\theta}\right]$.

STEP 3: We show that the solution to the relaxed program in Step 2 is $\theta^{*}=\theta_{e}$, where $\theta_{e} \in[0, \bar{\theta})$ is uniquely defined by (11). Moreover, if $\theta^{*}=\theta_{e}$ satisfies constraint (8) for some $\theta^{* *} \geq \bar{\theta}$, then these values correspond to the unique solution to program (B.4).

To prove the first claim, consider the first-order condition of the relaxed program in Step 2:

$$
\frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}} U^{\prime}\left(\omega+b^{r}\left(\theta^{*}\right)\right) \int_{\theta^{*}}^{\bar{\theta}} Q(\theta) d \theta=0 .
$$

Since $\frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}}>0$ and $U^{\prime}\left(\omega+b^{r}\left(\theta^{*}\right)\right)>0$, this condition requires that the integral be equal to 0 . Hence, by the definition in (11), we obtain $\theta^{*}=\theta_{e}$. Note that this value is uniquely defined since, by Assumption $1, \int_{\theta^{*}}^{\bar{\theta}} Q(\theta) d \theta=0$ requires $\theta^{*}<\widehat{\theta}$ and $Q\left(\theta^{*}\right)>0$, and hence $\int_{\theta^{*}}^{\bar{\theta}} Q(\theta) d \theta$ is strictly decreasing in θ^{*}. Since $\int_{\theta^{*}}^{\bar{\theta}} Q(\theta) d \theta$ is strictly positive for $\theta^{*}=\varepsilon$ and strictly negative for $\theta^{*}=\bar{\theta}-\varepsilon$ for sufficiently small $\varepsilon>0,{ }^{30}$ it follows that a unique interior $\theta_{e} \in(0, \bar{\theta})$ exists and is the unique optimum.

To prove the second claim, note that if constraint (8) holds under $\theta^{*}=\theta_{e}$ and some $\theta^{* *} \geq \bar{\theta}$, then such a deficit limit $\left\{\theta_{e}, \theta^{* *}\right\}$ is feasible in program (B.4). Moreover, since this deficit limit yields the same social welfare as the relaxed program, it follows from Step 2 and the above claim that it yields strictly higher social welfare than any other feasible deficit limit and is thus the unique solution to program (B.4).

Step 4: We show that if (12) holds, then the solution to (B.4) has $\theta^{*}=\theta_{e}$ and $\theta^{* *} \geq \bar{\theta}$.
The claim follows from Step 3 and the fact that if (12) holds, then constraint (8) is satisfied under $\theta^{*}=\theta_{e}$ and some $\theta^{* *} \geq \bar{\theta}$.

B.3. Proof of Proposition 4

For any given threshold θ^{\prime}, denote by $\rho\left(\theta^{\prime}\right)$ the type exceeding θ^{\prime} at which (8) holds:

$$
\begin{align*}
& \rho\left(\theta^{\prime}\right) U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)+\beta \delta V\left(b^{r}\left(\theta^{\prime}\right)\right) \\
& \quad=\rho\left(\theta^{\prime}\right) U\left(\omega+b^{p}\left(\rho\left(\theta^{\prime}\right)\right)\right)+\beta \delta\left(V\left(b^{p}\left(\rho\left(\theta^{\prime}\right)\right)\right)-\bar{P}\left(b^{p}\left(\rho\left(\theta^{\prime}\right)\right)\right)\right) \tag{B.6}
\end{align*}
$$

Note that given $\theta^{\prime}, \rho\left(\theta^{\prime}\right)>\theta^{\prime}$ is uniquely defined. This follows from the same logic as in Step 2 in the proof of Lemma 1. We prove this proposition in five steps.

STEP 1: We show that $\frac{d \rho\left(\theta^{\prime}\right)}{d \theta^{\prime}}>0$.
Implicit differentiation of (B.6), taking into account the definition of $b^{r}\left(\theta^{\prime}\right)$, yields

$$
\begin{equation*}
\frac{d \rho\left(\theta^{\prime}\right)}{d \theta^{\prime}}=\frac{\left(\rho\left(\theta^{\prime}\right)-\theta^{\prime}\right) U^{\prime}\left(\omega+b^{r}\left(\theta^{\prime}\right)\right) \frac{d b^{r}\left(\theta^{\prime}\right)}{d \theta^{\prime}}}{U\left(\omega+b^{p}\left(\rho\left(\theta^{\prime}\right)\right)\right)-U\left(\omega+b^{r}\left(\theta^{\prime}\right)\right)} \tag{B.7}
\end{equation*}
$$

[^0]which approaches $\beta \mathbb{E}[\theta]>0$ as ε goes to 0 .

Note that since $\frac{d b^{r}\left(\theta^{\prime}\right)}{d \theta^{\prime}}>0$ and $\rho\left(\theta^{\prime}\right)>\theta^{\prime}$, the numerator in (B.7) is strictly positive. Moreover, by the arguments in Step 2 of the proof of Corollary 1, we have $b^{p}\left(\rho\left(\theta^{\prime}\right)\right)>b^{r}\left(\theta^{\prime}\right)$, which implies that the denominator is also strictly positive. Thus, we obtain $\frac{d \rho\left(\theta^{\prime}\right)}{d \theta^{\prime}}>0$.

STEP 2: We show that if $\theta_{c} \leq \theta_{e}$, then condition (14) holds and the optimal maximally enforced deficit limit is unique and has $\theta^{*}=\theta_{e}$ and $\theta^{* *} \geq \bar{\theta}$.

As noted in the text, if $\theta_{c} \leq \theta_{e}$, Assumption 1 guarantees that $\int_{\theta_{c}}^{\bar{\theta}} Q(\theta) d \theta \geq$ $\int_{\theta_{e}}^{\bar{\theta}} Q(\theta) d \theta=0$, so condition (14) is satisfied. The claim then follows from Corollary 1.

Step 3: We show that if $\theta_{c}>\theta_{e}$, then $\theta^{*} \leq \theta_{c}$.
Assume $\theta_{c}>\theta_{e}$. Suppose by contradiction that an optimal maximally enforced deficit limit features $\theta^{*}>\theta_{c}$, which implies $\theta^{* *} \geq \bar{\theta}$. Consider a perturbation that reduces θ^{*} by $\varepsilon>0$ arbitrarily small. Since in the original rule the enforcement constraint of all types $\theta \in \Theta$ is slack, this perturbation is incentive feasible. The change in social welfare, using the representation in (B.4), is

$$
\begin{equation*}
-\int_{\theta^{*}}^{\bar{\theta}} \frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}} U^{\prime}\left(\omega+b^{r}\left(\theta^{*}\right)\right) Q(\theta) d \theta \tag{B.8}
\end{equation*}
$$

Assumption 1 together with (11) imply $\theta_{e}<\widehat{\theta}$. It then follows from $\theta^{*}>\theta_{c}>\theta_{e}$ and Assumption 1 that $\int_{\theta^{*}}^{\bar{\theta}} Q(\theta) d \theta<0$, and thus, since $\frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}}>0,(\mathrm{~B} .8)$ is strictly positive. Hence, the perturbation strictly increases social welfare, implying that $\theta^{*}>\theta_{c}$ cannot hold.

STEP 4: We show that if $\theta_{c}>\theta_{e}$ and condition (14) holds, then the optimal maximally enforced deficit limit is unique and has $\theta^{*}=\theta_{c}$ and $\theta^{* *}=\bar{\theta}$.

Assume that $\theta_{c}>\theta_{e}$ and condition (14) holds. By Step 3, an optimal maximally enforced deficit limit has $\theta^{*} \leq \theta_{c}$. Suppose by contradiction that $\theta^{*}<\theta_{c}$, which implies $\theta^{* *}=\rho\left(\theta^{*}\right)<\bar{\theta}$ for $\rho(\cdot)$ as defined in (B.6). Consider a perturbation that changes θ^{*} by some $\varepsilon \gtrless 0$ for $|\varepsilon|$ arbitrarily small, where $\theta^{* *}=\rho\left(\theta^{*}\right)$ is also changed to preserve (B.6). This perturbation is incentive feasible. Using the representation in (B.4), for this perturbation to not increase social welfare for any arbitrarily small $\varepsilon \gtrless 0$, we must have

$$
\begin{aligned}
& \int_{\theta^{*}}^{\rho\left(\theta^{*}\right)} U^{\prime}\left(\omega+b^{r}\left(\theta^{*}\right)\right) \frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}} Q(\theta) d \theta \\
& \quad+\frac{d \rho\left(\theta^{*}\right)}{d \theta^{*}}\left(U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{p}\left(\rho\left(\theta^{*}\right)\right)\right)\right) Q\left(\rho\left(\theta^{*}\right)\right)=0
\end{aligned}
$$

Using (B.7) to substitute for $\frac{d \rho\left(\theta^{*}\right)}{d \theta^{*}}$ and simplifying terms, we can rewrite this condition as

$$
\begin{equation*}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta=0 \tag{B.9}
\end{equation*}
$$

Given Assumption 1, (B.9) requires $\theta^{*}<\widehat{\theta}<\rho\left(\theta^{*}\right)$ with

$$
\begin{equation*}
Q\left(\theta^{*}\right)>Q\left(\rho\left(\theta^{*}\right)\right) \tag{B.10}
\end{equation*}
$$

Now note that the derivative of the left-hand side of (B.9) with respect to θ^{*} is equal to

$$
\begin{equation*}
\left.-\left(Q\left(\theta^{*}\right)-Q\left(\rho\left(\theta^{*}\right)\right)\right)-\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)} Q^{\prime}\left(\rho\left(\theta^{*}\right)\right)\right) \frac{d \rho\left(\theta^{*}\right)}{d \theta^{*}} d \theta . \tag{B.11}
\end{equation*}
$$

By (B.10), the first term is strictly negative. Moreover, since $\rho\left(\theta^{*}\right)>\widehat{\theta}$, Assumption $1 \mathrm{im}-$ plies $\left.Q^{\prime}\left(\rho\left(\theta^{*}\right)\right)\right)>0$. Given $\frac{d \rho\left(\theta^{\prime}\right)}{d \theta^{\prime}}>0$ (as established in Step 1), it then follows that the second term in (B.11) is also strictly negative. Hence, the derivative of the left-hand side of (B.9) with respect to θ^{*} is strictly negative. However, using the contradiction assumption that $\theta^{*}<\theta_{c}$, condition (B.9) then requires that the left-hand side of (14) be strictly negative, contradicting the assumption that condition (14) holds. Therefore, there exists a perturbation that changes θ^{*} by some $\varepsilon \gtrless 0$ which strictly increases social welfare, implying that the unique optimal maximally enforced deficit limit has $\theta^{*}=\theta_{c}$ and $\theta^{* *}=\bar{\theta}$.

STEP 5: We show that if $\theta_{c}>\theta_{e}$ and condition (14) does not hold, then the optimal maximally enforced deficit limit is unique and has $\theta^{*} \in\left(\theta_{e}, \theta_{c}\right)$ and $\theta^{* *}<\bar{\theta}$.

Assume that $\theta_{c}>\theta_{e}$ and condition (14) is violated. By Step 3, an optimal maximally enforced deficit limit has $\theta^{*} \leq \theta_{c}$. We begin by showing that $\theta^{*}=\theta_{c}$ cannot be optimal. Suppose by contradiction that an optimal maximally enforced deficit limit sets $\theta^{*}=\theta_{c}$ and thus $\theta^{* *}=\rho\left(\theta_{c}\right)=\bar{\theta}$. Consider a perturbation that reduces θ^{*} by $\varepsilon>0$ arbitrarily small, where $\theta^{* *}=\rho\left(\theta^{*}\right)$ is also changed to preserve (B.6). This perturbation is incentive feasible. Using the representation in (B.4), for this perturbation to not increase social welfare for any arbitrarily small $\varepsilon>0$, we must have

$$
\begin{aligned}
& -\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)} U^{\prime}\left(\omega+b^{r}\left(\theta^{*}\right)\right) \frac{d b^{r}\left(\theta^{*}\right)}{d \theta^{*}} Q(\theta) d \theta \\
& \quad-\frac{d \rho\left(\theta^{*}\right)}{d \theta^{*}}\left[U\left(\omega+b^{r}\left(\theta^{*}\right)\right)-U\left(\omega+b^{p}\left(\rho\left(\theta^{*}\right)\right)\right)\right] Q\left(\rho\left(\theta^{*}\right)\right) \leq 0 .
\end{aligned}
$$

By analogous logic as in Step 4 above, we can rewrite this condition as

$$
\int_{\theta_{c}}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta \geq 0
$$

where we have taken into account that $\theta^{*}=\theta_{c}$ and $\theta^{* *}=\rho\left(\theta_{c}\right)=\bar{\theta}$. However, this inequality contradicts the assumption that condition (14) does not hold. Therefore, the perturbation strictly increases social welfare, implying that any optimal maximally enforced deficit limit has $\theta^{*}<\theta_{c}$ and $\theta^{* *}=\rho\left(\theta^{*}\right)<\bar{\theta}$.

We next show that the optimal values of θ^{*} and $\theta^{* *}=\rho\left(\theta^{*}\right)$ are unique with $\theta^{*}>\theta_{e}$. By analogous logic as in Step 4 above, the optimal value of θ^{*} must satisfy (B.9). As shown in Step 4, the left-hand side of (B.9) is strictly decreasing in θ^{*}. This has two implications. First, it implies that there is a unique value of θ^{*} and associated $\theta^{* *}=\rho\left(\theta^{*}\right)$ which solve (B.9). Second, given (11), Assumption 1, and the fact that the left-hand side of (B.9) is strictly decreasing in $\rho\left(\theta^{*}\right)$, it implies that if $\theta^{*} \leq \theta_{e}$, then the left-hand side of (B.9) must be strictly positive, a contradiction. Therefore, the unique value of θ^{*} that solves (B.9) must satisfy $\theta^{*}>\theta_{e}$.

B.4. Proof of Proposition 5

Let $\theta^{L}, \theta^{H} \in \Theta$ and $\Delta>0$ be defined as in Definition 2. We prove the proposition by proving the following three claims.

Claim 1: Suppose Assumption 1 is strictly violated. If a maximally enforced deficit limit $\left\{\theta^{*}, \theta^{* *}\right\}$ is a solution to (6) for given functions $V(b), \bar{P}(b)$, then $\theta^{*} \leq \theta^{L}$ and $\theta^{* *} \geq \theta^{H}$.

Proof: Suppose Assumption 1 is strictly violated. Suppose by contradiction that a maximally enforced deficit limit with $\theta^{*}>\theta^{L}$ is a solution to (6). Then analogously to Step 2 (Case 2) in the proof of Proposition 1, consider a perturbation that drills a hole in the borrowing schedule in the range $\left[\theta^{L}, \theta^{L}+\varepsilon\right]$ for arbitrarily small $\varepsilon>0$ satisfying $\theta^{L}+\varepsilon<\min \left\{\theta^{*}, \theta^{L}+\Delta\right\}$. This perturbation is incentive feasible. Moreover, since $Q(\theta)$ is strictly increasing in this range, the arguments in Step 2 in the proof of Proposition 1 imply that this perturbation strictly increases social welfare, yielding a contradiction.

Next, suppose by contradiction that a maximally enforced deficit limit with $\theta^{* *}<\theta^{H}$ is a solution to (6). Then consider types $\theta \in\left[\theta^{H}-\varepsilon, \theta^{H}\right]$ for arbitrarily small $\varepsilon>0$ satisfying $\theta^{H}-\varepsilon>\max \left\{\theta^{* *}, \theta^{H}-\Delta\right\}$. For each such type θ, we have $(b(\theta), P(\theta))=$ $\left(b^{p}(\theta), \bar{P}\left(b^{p}(\theta)\right)\right)$ and $Q^{\prime}(\theta)<0$. Thus, this is the same situation as in Step 1 in the proof of Proposition 2. Analogously to that step, we can show that there is an incentive feasible perturbation that strictly increases social welfare, yielding a contradiction.
Q.E.D.

CLAIM 2: Suppose Assumption 1 is strictly violated. For any function $V(b)$, there exists a function $\bar{P}(b)$ such that no solution to (6) is a maximally enforced deficit limit.

Proof: Suppose Assumption 1 is strictly violated. Given $V(b)$, define $\bar{P}(b)=P$ for $P>0$. By Claim 1, if a maximally enforced deficit limit $\left\{\theta^{*}, \theta^{* *}\right\}$ solves (6), then $\theta^{*} \leq \theta^{L}$ and $\theta^{* *} \geq \theta^{H}$. Consider the indifference condition (8) which defines, for any given θ^{*}, a unique value of $\theta^{* *}>\theta^{*}$. This condition shows that given $V(b)$ and $\bar{P}(b)=P$, the value of $\left(\theta^{* *}-\theta^{*}\right)$ is continuous in P and approaches 0 as P goes to 0 . Hence, if we take $P>0$ small enough, then $\theta^{*} \leq \theta^{L}<\theta^{H} \leq \theta^{* *}$ cannot hold. The claim follows.
Q.E.D.

CLAIM 3: Suppose Assumption 1 is weakly violated. For any function $V(b)$, there exists a function $\bar{P}(b)$ such that not every solution to (6) is a maximally enforced deficit limit.

Proof: Suppose Assumption 1 is weakly violated and a maximally enforced deficit limit $\left\{\theta^{*}, \theta^{* *}\right\}$ is a solution to (6). Then $\left\{\theta^{*}, \theta^{* *}\right\}$ satisfy condition (8) and analogous arguments as in the proof of Claim 2 above imply that, given $V(b)$, there exists a function $\bar{P}(b)$ such that $\theta^{*} \leq \theta^{L}<\theta^{H} \leq \theta^{* *}$ cannot hold. This means that given such functions, any maximally enforced deficit limit $\left\{\theta^{*}, \theta^{* *}\right\}$ solving (6) must have either $\theta^{*}>\theta^{L}$ or $\theta^{* *}<\theta^{H}$ (or both). Suppose first that $\theta^{*}>\theta^{L}$. Then consider a perturbation as in the proof of Claim 1 above which drills a hole in the borrowing schedule in the range $\left[\theta^{L}, \theta^{L}+\varepsilon\right.$] for arbitrarily small $\varepsilon>0$ satisfying $\theta^{L}+\varepsilon<\min \left\{\theta^{*}, \theta^{L}+\Delta\right\}$. The same arguments as in the proof of Claim 1, given $Q^{\prime}(\theta) \geq 0$ for $\theta \in\left[\theta^{L}, \theta^{L}+\varepsilon\right]$, imply that this perturbation weakly increases social welfare. The resulting allocation is therefore a solution to (6), and it is not a maximally enforced deficit limit.
Suppose next that $\theta^{* *}<\theta^{H}$. Then as in the proof of Claim 1 above, consider types $\theta \in\left[\theta^{H}-\varepsilon, \theta^{H}\right]$ for arbitrarily small $\varepsilon>0$ satisfying $\theta^{H}-\varepsilon>\max \left\{\theta^{* *}, \theta^{H}-\Delta\right\}$. For each
such type θ, we have $(b(\theta), P(\theta))=\left(b^{p}(\theta), \bar{P}\left(b^{p}(\theta)\right)\right)$ and $Q^{\prime}(\theta) \leq 0$. Thus, we can perturb the allocation of these types as in Step 1 in the proof of Proposition 2 and weakly increase social welfare. The resulting allocation is therefore a solution to (6), and it is not a maximally enforced deficit limit.
Q.E.D.

B.5. Proof of Proposition 6

We prove each part of the proposition in order.
Part 1. Suppose the enforcement constraint binds under $\bar{P}(b)$. Then for $k=0$, we have

$$
\begin{align*}
& \bar{\theta} U\left(\omega+b^{r}\left(\theta_{e}\right)\right)+\beta \delta V\left(b^{r}\left(\theta_{e}\right)\right) \\
& \quad<\bar{\theta} U\left(\omega+b^{p}(\bar{\theta})\right)+\beta \delta\left(V\left(b^{p}(\bar{\theta})\right)-\bar{P}\left(b^{p}(\bar{\theta})\right)-k\right) \tag{B.12}
\end{align*}
$$

Observe that there exists a finite value $k^{\prime}>0$ such that the right-hand side of (B.12) equals the left-hand side under $k=k^{\prime}$. If $k \in\left[0, k^{\prime}\right.$), the inequality in (B.12) is preserved and the enforcement constraint continues to bind under $\bar{P}(b)+k$. If instead $k \geq k^{\prime}$, this inequality no longer holds and the enforcement constraint does not bind under $\bar{P}(b)+k$.

Part 2. Suppose the enforcement constraint binds and on-path penalties are optimal under $\bar{P}(b)$. By analogous arguments as in the proof of Part 1 above, there exists a finite $k^{\prime \prime \prime}>0$ such that the enforcement constraint under $\bar{P}(b)+k$ binds if $k \in\left[0, k^{\prime \prime \prime}\right)$ and does not bind if $k \geq k^{\prime \prime \prime}$. To complete the proof, take $k \in\left[0, k^{\prime \prime \prime}\right)$ and define $\theta_{c}(k)$ as the solution to

$$
\begin{align*}
& \bar{\theta} U\left(\omega+b^{r}\left(\theta_{c}(k)\right)\right)+\beta \delta V\left(b^{r}\left(\theta_{c}(k)\right)\right) \\
& \quad=\bar{\theta} U\left(\omega+b^{p}(\bar{\theta})\right)+\beta \delta\left(V\left(b^{p}(\bar{\theta})\right)-\bar{P}\left(b^{p}(\bar{\theta})\right)-k\right) \tag{B.13}
\end{align*}
$$

The value of $\theta_{c}(k)$ corresponds to the value of θ_{c} defined in (13) as a function of the additional penalty $k \in\left[0, k^{\prime \prime \prime}\right)$. We show that $\theta_{c}(k)$ is strictly decreasing. Implicit differentiation of (B.13) yields

$$
\begin{equation*}
\frac{d \theta_{c}(k)}{d k}=-\frac{\beta \delta}{\left(\bar{\theta}-\theta_{c}(k)\right) \frac{d b^{r}\left(\theta_{c}(k)\right)}{d \theta} U^{\prime}\left(\omega+b^{r}\left(\theta_{c}(k)\right)\right)}<0 \tag{B.14}
\end{equation*}
$$

where we have used the fact that $\theta_{c}(k) U^{\prime}\left(\omega+b^{r}\left(\theta_{c}(k)\right)\right)=-\beta \delta V^{\prime}\left(b^{r}\left(\theta_{c}(k)\right)\right)$. Since onpath penalties are optimal under $k=0$, Proposition 4 implies

$$
\begin{equation*}
\int_{\theta_{c}(0)}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta<0 \tag{B.15}
\end{equation*}
$$

By the definition of $k^{\prime \prime \prime}$, the value of $\theta_{c}(k)$ approaches θ_{e} from above as k approaches $k^{\prime \prime \prime}$. Given the definition of θ_{e} in (11) and the fact that $Q(\bar{\theta})<0$, it follows that

$$
\begin{equation*}
\int_{\theta_{c}\left(k^{\prime \prime \prime}\right)}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta>0 \tag{B.16}
\end{equation*}
$$

Equations (B.15) and (B.16) imply that there exists $k^{\prime \prime} \in\left(0, k^{\prime \prime \prime}\right)$ satisfying

$$
\begin{equation*}
\int_{\theta_{c}\left(k^{\prime \prime}\right)}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta=0 \tag{B.17}
\end{equation*}
$$

Note that $k^{\prime \prime}$ is unique: the derivative of the left-hand side of (B.17) with respect to k is

$$
-\frac{d \theta_{c}\left(k^{\prime \prime}\right)}{d k}\left(Q\left(\theta_{c}\left(k^{\prime \prime}\right)\right)-Q(\bar{\theta})\right)>0
$$

where the inequality follows from the fact that $\frac{d \theta_{c}\left(k^{\prime \prime}\right)}{d k}<0$ (by (B.14)) and $Q\left(\theta_{c}\left(k^{\prime \prime}\right)\right)>$ $Q(\bar{\theta})$ (by (B.17) and Assumption 1). Therefore, we obtain $\int_{\theta_{c}(k)}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta<0$ if $k \in\left[0, k^{\prime \prime}\right)$ and $\int_{\theta_{c}(k)}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta>0$ if $k \in\left(k^{\prime \prime}, k^{\prime \prime \prime}\right)$. By Proposition 4, it follows that on-path penalties are optimal if $k \in\left[0, k^{\prime \prime}\right)$ and suboptimal if $k \in\left[k^{\prime \prime}, k^{\prime \prime \prime}\right)$.

B.6. Proof of Proposition 7

We prove each part of the proposition in order.
Part 1. There are two cases to consider.
Case 1: Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal rule sets $\theta^{*}=\theta_{c}(k)$ for $\theta_{c}(k)$ defined in (B.13) in the proof of Proposition 6. Since $\theta_{c}(k)$ is strictly decreasing in k by (B.14), it follows that θ^{*} strictly decreases (increases) when $\bar{P}(b)$ is shifted to $\bar{P}(b)+k$ for $k>0(k<0)$.

Case 2: Suppose that on-path penalties are optimal. We prove the result for the case of a positive penalty shift. The proof of the negative-shift case is analogous and thus omitted.

Given a penalty shift k, define $\rho^{k}(\theta)$ as the unique solution to

$$
\begin{aligned}
& \rho^{k}(\theta) U\left(\omega+b^{r}(\theta)\right)+\beta \delta V\left(b^{r}(\theta)\right) \\
& \quad=\rho^{k}(\theta) U\left(\omega+b^{p}\left(\rho^{k}(\theta)\right)\right)+\beta \delta\left(V\left(b^{p}\left(\rho^{k}(\theta)\right)\right)-\bar{P}\left(b^{p}\left(\rho^{k}(\theta)\right)\right)-k\right) .
\end{aligned}
$$

Observe that $\rho^{k}(\theta)$ corresponds to the value of $\theta^{* *}$ that satisfies the indifference condition (8) given $\theta=\theta^{*}$ and the penalty shift k, and for $k=0$ it corresponds to $\rho\left(\theta^{*}\right)$ defined in the proof of Proposition 4. It follows from Step 1 in that proof that $\rho^{k}(\theta)$ is strictly increasing in θ. Moreover, by implicit differentiation,

$$
\frac{d \rho^{k}(\theta)}{d k}=-\frac{\beta \delta}{U\left(\omega+b^{r}(\theta)\right)-U\left(\omega+b^{p}\left(\rho^{k}(\theta)\right)\right)}>0
$$

where we have used the fact that $b^{p}\left(\rho^{k}(\theta)\right)>b^{r}(\theta)$, as implied by the arguments in Step 2 of the proof of Corollary 1.

Consider the optimal deficit limit $\left\{\theta^{*}, \theta^{* *}\right\}$ under $\bar{P}(b)$ and denote by $\left\{\theta^{* k}, \theta^{* * k}\right\}$ the optimal deficit limit under $\bar{P}(b)+k$. Since the enforcement constraint binds, we have $\theta^{* *}=\rho\left(\theta^{*}\right)$ and $\theta^{* * k}=\rho^{k}\left(\theta^{* k}\right)$. By Step 4 in the proof of Proposition 4, the following first-order conditions uniquely define θ^{*} and $\theta^{* k}$:

$$
\begin{align*}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta & =0 \tag{B.18}\\
\int_{\theta^{* k}}^{\rho^{k}\left(\theta^{* k}\right)}\left(Q(\theta)-Q\left(\rho^{k}\left(\theta^{* k}\right)\right)\right) d \theta & =0 \tag{B.19}
\end{align*}
$$

By Assumption 1, these conditions require that $\theta^{*}<\widehat{\theta}<\rho\left(\theta^{*}\right)$ and $\theta^{* k}<\widehat{\theta}<\rho^{k}\left(\theta^{* k}\right)$ and that $Q\left(\theta^{*}\right)>Q\left(\rho\left(\theta^{*}\right)\right)$ and $Q\left(\theta^{* k}\right)>Q\left(\rho^{k}\left(\theta^{* k}\right)\right)$.

Suppose by contradiction that $\theta^{*} \leq \theta^{* k}$ for some $k>0$. Then, given Assumption 1, conditions (B.18) and (B.19), and the fact that $\rho^{k}(\theta)$ is strictly increasing in θ and k, we must have

$$
\begin{equation*}
\theta^{*} \leq \theta^{* k}<\widehat{\theta}<\rho\left(\theta^{*}\right)<\rho^{k}\left(\theta^{* k}\right) \tag{B.20}
\end{equation*}
$$

and

$$
\begin{equation*}
Q\left(\theta^{*}\right) \geq Q\left(\theta^{* k}\right)>Q\left(\rho^{k}\left(\theta^{* k}\right)\right)>Q\left(\rho\left(\theta^{*}\right)\right) \tag{B.21}
\end{equation*}
$$

Note that by the arguments in Step 4 in the proof of Proposition 4, the function

$$
\int_{\theta^{L}}^{\theta^{H}}\left(Q(\theta)-Q\left(\theta^{H}\right)\right) d \theta
$$

is strictly decreasing in θ^{L} and in θ^{H} for any θ^{L} and θ^{H} satisfying $Q\left(\theta^{L}\right)>Q\left(\theta^{H}\right)$ and $\theta^{H}>\widehat{\theta}$. However, combined with conditions (B.20) and (B.21), this implies

$$
\begin{aligned}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta & \geq \int_{\theta^{* k}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta \\
& >\int_{\theta^{* k}}^{\rho^{k}\left(\theta^{* k}\right)}\left(Q(\theta)-Q\left(\rho^{k}\left(\theta^{* k}\right)\right)\right) d \theta
\end{aligned}
$$

which cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it follows that $\theta^{*}>\theta^{* k}$ for all $k>0$.

Part 2. We prove the result for the case of a positive penalty shift. The proof of the negative-shift case is analogous and thus omitted.

Suppose by contradiction that $\theta^{* *}=\rho\left(\theta^{*}\right) \geq \theta^{* * k}=\rho^{k}\left(\theta^{* k}\right)$ for some $k>0$. Since $\theta^{* k}<$ θ^{*} by Part 1 , it follows by analogous reasoning as in the proof of Part 1 that

$$
\begin{aligned}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta & <\int_{\theta^{* k}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta \\
& \leq \int_{\theta^{* k}}^{\rho^{k}\left(\theta^{* k}\right)}\left(Q(\theta)-Q\left(\rho^{k}\left(\theta^{* k}\right)\right)\right) d \theta
\end{aligned}
$$

However, this cannot hold simultaneously with equations (B.18) and (B.19). Therefore, it follows that $\theta^{* *}<\theta^{* * k}$ for all $k>0$.

B.7. Proof of Proposition 8

We prove each part of the proposition in order.
Part 1. Suppose that on-path penalties are suboptimal under $f(\theta)$. By Proposition 4, the following condition holds:

$$
\begin{equation*}
\int_{\theta_{c}}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta \geq 0 \tag{B.22}
\end{equation*}
$$

Consider a Q-decreasing perturbation that yields $\widetilde{f}(\theta)$ over $\widetilde{\Theta}=\Theta$. Observe that the value of θ_{c} defined in (13) does not vary with the perturbation since $\bar{\theta}=\widetilde{\bar{\theta}}$. Suppose by contra-
diction that on-path penalties are optimal under $\tilde{f}(\theta)$. By Proposition 4, this implies

$$
\begin{equation*}
\int_{\theta_{c}}^{\bar{\theta}}(\widetilde{Q}(\theta)-\widetilde{Q}(\bar{\theta})) d \theta<0 \tag{B.23}
\end{equation*}
$$

Combining (B.22) and (B.23) yields

$$
\begin{equation*}
\int_{\theta_{c}}^{\bar{\theta}}(\widetilde{Q}(\bar{\theta})-Q(\bar{\theta})) d \theta>\int_{\theta_{c}}^{\bar{\theta}}(\widetilde{Q}(\theta)-Q(\theta)) d \theta \tag{B.24}
\end{equation*}
$$

However, since the perturbation is Q-decreasing and support-preserving, it necessarily admits

$$
\widetilde{Q}(\bar{\theta})-Q(\bar{\theta})<\widetilde{Q}(\theta)-Q(\theta)
$$

for all $\theta \leq \bar{\theta}$. For $\theta \in[\underline{\theta}, \bar{\theta}]$, this inequality follows by the definition of Q-decreasing. For $\underset{\sim}{\theta}<\underline{\theta}$, the inequality follows from the fact that $\widetilde{Q}(\theta)=Q(\theta)=1$ for all $\theta<\underline{\theta}$ and $Q(\bar{\theta}) \geq$ $\widetilde{Q}(\bar{\theta})$, where the latter follows from the fact that $\widetilde{f}(\bar{\theta}) \geq f(\bar{\theta})$ in a support-preserving Q-decreasing perturbation. ${ }^{31}$ Hence, we obtain that (B.24) cannot hold, which yields a contradiction and proves that on-path penalties are suboptimal under $\widetilde{f}(\theta)$.

Part 2. Suppose that on-path penalties are optimal under $f(\theta)$. By Proposition 4, the following condition holds:

$$
\int_{\theta_{c}}^{\bar{\theta}}(Q(\theta)-Q(\bar{\theta})) d \theta<0 .
$$

Consider a Q-increasing perturbation that yields $\widetilde{f}(\theta)$ over $\widetilde{\Theta}=\Theta$. Suppose by contradiction that on-path penalties are suboptimal under $\widetilde{f}(\theta)$. By Proposition 4, this implies

$$
\int_{\theta_{c}}^{\bar{\theta}}(\widetilde{Q}(\theta)-\widetilde{Q}(\bar{\theta})) d \theta \geq 0
$$

Analogous arguments as in the proof of Part 1 imply that these two inequalities cannot simultaneously hold under a support-preserving, Q-increasing perturbation. We thus obtain a contradiction, which proves that on-path penalties are optimal under $\tilde{f}(\theta)$.

B.8. Proof of Proposition 9

Denote by $\left\{\widetilde{\theta}^{*}, \widetilde{\theta}^{* *}\right\}$ the optimal deficit limit under $\widetilde{f}(\theta)$. Observe that given the binding enforcement constraint, $\widetilde{\theta}^{* *}=\rho\left(\widetilde{\theta}^{*}\right)$ for $\rho(\cdot)$ defined in Step 1 of the proof of Proposition 4 . We prove each part of the proposition in order.
Part 1. Suppose that on-path penalties are suboptimal. By Proposition 4, the optimal deficit limits under $f(\theta)$ and $\widetilde{f}(\theta)$ set $\theta^{*}=\theta_{c}$ and $\widetilde{\theta}^{*}=\widetilde{\theta}_{c}$, respectively, where $\widetilde{\theta}_{c}=\theta_{c}$ if $\bar{\theta}=\widetilde{\bar{\theta}}$ (since θ_{c} and $\widetilde{\theta}_{c}$ are defined by (13)). To complete the proof, it is thus sufficient to prove that $\widetilde{\theta}_{c}$ strictly increases in $\widetilde{\bar{\theta}}$. Note that $\widetilde{\bar{\theta}}=\rho\left(\widetilde{\theta}_{c}\right)$, where $\rho(\cdot)$ (defined in Step 1 of the proof of Proposition 4) is strictly increasing. It thus follows that $\widetilde{\theta}_{c}=\rho^{-1}(\widetilde{\bar{\theta}})$ is strictly increasing in $\widetilde{\bar{\theta}}$.

[^1]Part 2. We prove the result for the case of a Q-increasing perturbation. The proof for the case of a Q-decreasing perturbation is analogous and thus omitted.

Suppose that on-path penalties are optimal. By Step 4 in the proof of Proposition 4, the following two first-order conditions uniquely define θ^{*} and $\widetilde{\theta}^{*}$:

$$
\begin{align*}
& \int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta=0 \tag{B.25}\\
& \int_{\widetilde{\theta}^{*}}^{\rho\left(\widetilde{\theta}^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right)\right) d \theta=0 \tag{B.26}
\end{align*}
$$

By Assumption 1, these conditions require that $\theta^{*}<\widehat{\theta}<\rho\left(\theta^{*}\right)$ and $\widetilde{\theta}^{*}<\widetilde{\widehat{\theta}}<\rho\left(\widetilde{\theta}^{*}\right)$, where $\widetilde{\widehat{\theta}}$ corresponds to the analog of $\widehat{\theta}$ under the perturbed distribution. Moreover, we must have that $\underset{\sim}{Q}\left(\theta^{*}\right)>Q\left(\rho\left(\theta^{*}\right)\right)$ and $\widetilde{Q}\left(\widetilde{\theta^{*}}\right)>\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right)$.

Suppose that $\widetilde{f}(\theta)$ is the result of a Q-increasing perturbation satisfying the conditions in the proposition. Suppose by contradiction that $\theta^{*} \geq \theta^{*}$. It then follows that

$$
\begin{equation*}
\theta^{*} \leq \widetilde{\theta}^{*}<\widetilde{\widehat{\theta}}<\rho\left(\widetilde{\theta}^{*}\right) \quad \text { and } \quad \widehat{\theta}<\rho\left(\theta^{*}\right) \leq \rho\left(\widetilde{\theta}^{*}\right) \tag{B.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{Q}\left(\theta^{*}\right) \geq \widetilde{Q}\left(\widetilde{\theta}^{*}\right)>\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right) \tag{B.28}
\end{equation*}
$$

where we observe that $\widetilde{Q}(\theta)$ is well defined at all $\theta \leq \widetilde{\bar{\theta}}$ and thus at θ^{*} and $\rho\left(\theta^{*}\right)$. Since the perturbation is Q-increasing, we can show that

$$
\begin{equation*}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta>\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\theta^{*}\right)\right)\right) d \theta \tag{B.29}
\end{equation*}
$$

The inequality follows from the fact that $\widetilde{\sim}(\theta)-Q(\theta)<\widetilde{Q}\left(\rho\left(\theta^{*}\right)\right)-Q\left(\rho\left(\theta^{*}\right)\right)$ for all $\theta \in\left(\max \{\underline{\theta}, \underline{\widetilde{\theta}}\}, \rho\left(\theta^{*}\right)\right)$ with $\theta^{*} \geq \max \{\underline{\theta}, \underline{\widetilde{\theta}}\}$. Moreover, by arguments analogous to those in the proof of Part 1 of Proposition 7, and appealing to (B.27) and (B.28), we obtain

$$
\begin{align*}
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\theta^{*}\right)\right)\right) d \theta & \geq \int_{\theta^{*}}^{\rho\left(\widetilde{\theta}^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right)\right) d \theta \\
& \geq \int_{\widetilde{\theta}^{*}}^{\rho\left(\widetilde{\theta}^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right)\right) d \theta \tag{B.30}
\end{align*}
$$

However, combining (B.29) and (B.30) yields

$$
\int_{\theta^{*}}^{\rho\left(\theta^{*}\right)}\left(Q(\theta)-Q\left(\rho\left(\theta^{*}\right)\right)\right) d \theta>\int_{\widetilde{\theta}^{*}}^{\rho\left(\widetilde{\theta}^{*}\right)}\left(\widetilde{Q}(\theta)-\widetilde{Q}\left(\rho\left(\widetilde{\theta}^{*}\right)\right)\right) d \theta
$$

which cannot hold simultaneously with equations (B.25) and (B.26). Therefore, it follows that $\widetilde{\theta}^{*}<\theta^{*}$.

[^0]: ${ }^{30}$ To see that $\int_{\varepsilon}^{\bar{\theta}} Q(\theta) d \theta>0$ for ε sufficiently small, note that using integration by parts yields

 $$
 \int_{\varepsilon}^{\bar{\theta}} Q(\theta) d \theta=-(1-F(\varepsilon)) \varepsilon+\int_{\varepsilon}^{\bar{\theta}} f(\theta) \theta d \theta-\int_{\varepsilon}^{\bar{\theta}} f(\theta) \theta(1-\beta) d \theta
 $$

[^1]: ${ }^{31}$ See footnote 25 .

