SUPPLEMENT TO "EXPERIMENTATION AND APPROVAL MECHANISMS"

(Econometrica, Vol. 90, No. 5, September 2022, 2215-2247)

Andrew MCClELLAN
Booth School of Business, University of Chicago

APPENDIX D: Existence of Solutions

WE NOW TURN to establishing the existence of a solution to $H_{N}(V)$ and H_{h}. Throughout this section, we take $b_{k}=\inf \left\{x \leq X^{k}: x \in \mathcal{D}_{k}\right\}$ and $B_{k}=\sup \left\{x \geq X^{k}: x \in \mathcal{D}_{k}\right\}$ as in Appendix A.

Let $\mathcal{X}_{k}^{d}=\left\{x \geq X^{k+1}: d=\arg \max _{d^{\prime}} g\left(x, k, d^{\prime}\right)\right\}, \mathcal{D}_{k}^{d}=\mathcal{D}_{k} \cap \mathcal{X}_{k}^{d}$ be the set of $x \in \mathcal{D}_{k}$ at which action d is optimal and $\mathcal{D}_{k, d}^{\prime}$ be the set of $x \in \mathcal{D}_{k}^{d}$ for which there exists a τ such that $\mathbb{P}\left(\tau>0 \mid X_{0}=x\right)>0$ and $F_{k}(x)=\mathbb{E}^{x}\left[e^{-r\left(\tau \wedge \tau\left(X^{k+1}\right)\right)} G_{k}\left(X_{\tau \wedge \tau\left(X^{k+1}\right)}\right)\right]$; that is, for $x \in \mathcal{D}_{k, d}^{\prime}$ it is optimal both to stop immediately and to continue according to some stopping rule which (with positive probability) continues for some positive amount of time. Let $\mathcal{D}_{k, d}^{\mathrm{o}}=\mathcal{D}_{k}^{d} \backslash \mathcal{D}_{k, d}^{\prime}$ and $\mathcal{D}_{k}^{\mathrm{o}}=\mathcal{D}_{k, 0}^{\circ} \cup \mathcal{D}_{k, 1}^{\mathrm{o}}$. It is strictly optimal to immediately stop at any history h_{t} with $X_{t} \in \mathcal{D}_{\kappa\left(M_{t}\right)}^{\circ}$. Our next result provides sufficient conditions under which the solution to the Lagrangian in our general stopping problem (rewritten below) is unique:

$$
\begin{equation*}
\sup _{\left(\tau, d_{\tau}\right)} \mathbb{E}^{x}\left[e^{-r \tau} g\left(X_{\tau}, \kappa\left(M_{\tau}\right), d_{\tau}\right)+\sum_{k=1}^{P} e^{-r \tau\left(X^{k}\right)} \xi^{k} \mathbb{1}\left(\tau \geq \tau\left(X^{k}\right)\right)\right] \tag{11}
\end{equation*}
$$

PROPOSITION 7: Suppose $g(x, k, 1)-g(x, k, 0)$ and $g(x, k, 1)$ are strictly increasing in x. Then $\mathcal{D}_{k, 1}^{\prime}=\emptyset$ for all k. If $\mathcal{D}_{k, 0}^{\prime} \neq \emptyset$, then it is a singleton. If $\mathcal{D}_{k, 0}^{\prime}=\emptyset$ for all k, then $\left(\tau^{*}, d_{\tau}^{*}\right)$ as defined in Proposition 4 is the unique solution to (11).

Proof: We first argue that $x \in \mathcal{D}_{k}$ implies $G_{k}(x)=g\left(x, k, d_{k}^{x}\right) \geq 0$. Suppose $g(x, k$, $\left.d_{k}^{x}\right)<0$. Take $\epsilon>0$ such that $x-\epsilon>X^{k+1}$ and $\max \left\{g\left(x-\epsilon, k, d_{k}^{x}\right), g\left(x+\epsilon, k, d_{k}^{x}\right)\right\}<0$. Define $\tau^{\epsilon}=\tau_{+}(x+\epsilon) \wedge \tau(x-\epsilon)$. Because $g\left(X_{t}, k, d_{k}^{x}\right)$ is a martingale, $\mathbb{E}^{x}\left[g\left(X_{\tau^{\epsilon}}, k, d_{k}^{x}\right)\right]=$ $g\left(x, k, d_{k}^{x}\right)$ by Doob's optional stopping theorem and

$$
\begin{aligned}
F_{k}(x) \geq \mathbb{E}^{x}\left[e^{-r \tau^{\epsilon}} G_{k}\left(X_{\tau^{\epsilon}}\right)\right] & \geq \mathbb{E}^{x}\left[e^{-r \tau^{\epsilon}} g\left(X_{\tau^{\epsilon}}, k, d_{k}^{x}\right)\right] \\
& >\mathbb{E}^{x}\left[g\left(X_{\tau^{\epsilon}}, k, d_{k}^{x}\right)\right]=g\left(x, k, d_{k}^{x}\right)=G_{k}(x)
\end{aligned}
$$

a contradiction of $x \in \mathcal{D}_{k}$.
Because $g(x, k, 1)-g(x, k, 0)$ is increasing in x, \mathcal{X}_{k}^{d} is either empty or a connected set. Thus, for any $x_{1}, x_{2} \in \mathcal{D}_{k}^{d}$ and $x_{3} \in\left(x_{1}, x_{2}\right), x_{3} \in \mathcal{D}_{k}$ implies $x_{3} \in \mathcal{D}_{k}^{d}$.

For each d and k, we argue \mathcal{D}_{k}^{d} must be a connected set or empty. Suppose not; then there exists a d and $x \notin \mathcal{D}_{k}^{d}$ and $x_{1}, x_{2} \in \mathcal{D}_{k}^{d}$ such that $x \in\left(x_{1}, x_{2}\right)$. Since $x_{1} \in \mathcal{D}_{k}^{d}$ implies $x_{1}>X^{k+1}$ and X is continuous, X must enter \mathcal{D}_{k}^{d} before $\tau\left(X^{k+1}\right)$ when $X_{0}=x$. Stopping at $\inf \left\{t: X_{t} \in \mathcal{D}_{\kappa\left(M_{t}\right)}\right\}$ is an optimal stopping rule, so when $\left(X_{0}, M_{0}\right)=(x, m)$ with m such that $\kappa(m)=k, \tau^{\prime}=\inf \left\{t: X_{t} \in \mathcal{D}_{k}\right\}$ is an optimal stopping rule. Because x is bounded
above and below by elements of $\mathcal{D}_{k}^{d}, \mathbb{P}\left(X_{\tau^{\prime}} \in \mathcal{D}_{k}^{d} \mid X_{0}=x\right)=1$ and, using $g\left(X_{\tau^{\prime}}, k, d\right) \geq 0$, we have

$$
\begin{equation*}
F_{k}(x)=\mathbb{E}^{x}\left[e^{-r \tau^{\prime}} g\left(X_{\tau^{\prime}}, k, d\right)\right] \leq \mathbb{E}^{x}\left[g\left(X_{\tau^{\prime}}, k, d\right)\right]=g(x, k, d)=G_{k}(x) \tag{12}
\end{equation*}
$$

which contradicts $F_{k}(x)>G_{k}(x)$ by $x \notin \mathcal{D}_{k}$.
Because $g(x, k, 1)-g(x, k, 0)$ is increasing in x, if $x \in \mathcal{D}_{k}^{1}$, then for all $x^{\prime}>x, x^{\prime} \in \mathcal{D}_{k}$ implies $x^{\prime} \in \mathcal{D}_{k}^{1}$. Suppose $\mathcal{D}_{k}^{1} \neq \emptyset$ and $\sup \left\{x \in \mathcal{D}_{k}^{1}\right\}<\infty$. Let $B^{\prime}=\sup \left\{x \in \mathcal{D}_{k}^{1}\right\}$, so $\inf \left\{t: X_{t} \in \mathcal{D}_{k}\right\}=\tau\left(B^{\prime}\right)$ when $X_{0}=x>B^{\prime}$. For such $x, F_{k}(x)=\mathbb{E}^{x}\left[e^{-r \tau\left(B^{\prime}\right)} G_{k}\left(B^{\prime}\right)\right]$. Because $\lim _{x \rightarrow \infty} \mathbb{E}^{x}\left[e^{-r \tau\left(B^{\prime}\right)}\right]=0$, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} F_{k}(x)=\lim _{x \rightarrow \infty} \mathbb{E}^{x}\left[e^{-r \tau\left(B^{\prime}\right)} G_{k}\left(B^{\prime}\right)\right]=0<\lim _{x \rightarrow \infty} G_{k}(x) \tag{13}
\end{equation*}
$$

a contradiction of $F_{k}(x) \geq G_{k}(x)$. Therefore, either $\mathcal{D}_{k}^{1}=\emptyset$ or $\sup \left\{x \in \mathcal{D}_{k}^{1}\right\}=\infty$.
We next argue that if $\mathcal{D}_{k, d}^{\prime} \neq \emptyset$, then $\mathcal{D}_{k}^{d}=\mathcal{D}_{k, d}^{\prime}$ and must be a singleton. For any d and $x \in \mathcal{D}_{k, d}^{\prime}, \inf \left\{|x-y|: y \in \mathcal{D}_{k, d}^{o}\right\}>0$; otherwise, with probability one, X immediately enters $\mathcal{D}_{k, d}^{\mathrm{o}}$ when $X_{0}=x$, where stopping immediately is strictly optimal. This contradicts that there was an optimal stopping rule, which did not stop for a positive length of time with positive probability when $\left(X_{0}, M_{0}\right)=(x, m)$ for some m with $\kappa(m)=k$.

If $\mathcal{D}_{k, d}^{\prime} \neq \emptyset$ and $\mathcal{D}_{k, d}^{o} \neq \emptyset$, then $\inf \left\{|x-y|: x \in \mathcal{D}_{k, d}^{\prime}, y \in \mathcal{D}_{k, d}^{o}\right\}=0$; otherwise, \mathcal{D}_{k}^{d} would not be a connected set. Because $\inf \left\{|x-y|: y \in \mathcal{D}_{k, d}^{o}\right\}>0$ for all $x \in \mathcal{D}_{k, d}^{\prime}, \mathcal{D}_{k, d}^{\prime}$ is a nonempty interval with at least one open end. Then there exists a nonempty interval $\left(x_{1}, x_{2}\right) \subseteq \mathcal{D}_{k, d}^{\prime}$. Because it is not strictly optimal to stop immediately at $x \in \mathcal{D}_{k, d}^{\prime}$, there exists an optimal strategy that never stops at $x \in \mathcal{D}_{k, d}^{\prime}{ }^{1}$ Letting $\tau^{\prime}=\inf \left\{t: X_{t} \notin\left(x_{1}, x_{2}\right)\right\}$, because continuing is both weakly optimal at $x \in \mathcal{D}_{k, d}^{\prime}$ and $F_{k}\left(x^{\prime}\right)=g\left(x^{\prime}, k, d\right)$ for all $x^{\prime} \in \mathcal{D}_{k, d}^{\prime}$, we have

$$
\begin{aligned}
F_{k}(x) & =\mathbb{E}^{x}\left[e^{-r \tau^{\prime}} F_{k}\left(X_{\tau^{\prime}}\right)\right]=\mathbb{E}^{x}\left[e^{-r \tau^{\prime}} g\left(X_{\tau^{\prime}}, k, d\right)\right]<\mathbb{E}^{x}\left[g\left(X_{\tau^{\prime}}, k, d\right)\right]=g(x, k, d) \\
& =G_{k}(x)
\end{aligned}
$$

a contradiction. Thus, either $\mathcal{D}_{k, d}^{\prime}=\emptyset$ or $\mathcal{D}_{k, d}^{o}=\emptyset$. If $\mathcal{D}_{k, d}^{\prime} \neq \emptyset$, then $\mathcal{D}_{k, d}^{\prime}=\mathcal{D}_{k}^{d}$.
Next, we argue that $\mathcal{D}_{k, d}^{\prime}=\mathcal{D}_{k}^{d}$ implies $\mathcal{D}_{k, d}^{\prime}$ is a singleton. Suppose not; then there exists a nonempty interval $\left(x_{1}, x_{2}\right) \subset \mathcal{D}_{k, d}^{\prime}$, which we have just argued cannot be. Given our previous characterization of \mathcal{D}_{k}^{1} as being either empty or an interval, we conclude $\mathcal{D}_{k, 1}^{\prime}=\emptyset$ and $\mathcal{D}_{k, 1}^{o}=\mathcal{D}_{k}^{1}$. If $\mathcal{D}_{k, 0}^{\prime}=\emptyset$ for all k, then $\mathcal{D}_{k, 0}^{o}=\mathcal{D}_{k}^{0}$ as well. In this case $\mathcal{D}_{k}=\mathcal{D}_{k}^{o}$, so it is strictly optimal to stop the first time $X_{t} \in \mathcal{D}_{\kappa\left(M_{t}\right)}$; thus, τ^{*} as defined in Proposition 4 is the unique solution to (11).
Q.E.D.

Proof of Proposition 5

We first prove a useful auxiliary lemma.
LEMMA 20: Let $b^{\prime}<x<B$. If $\widetilde{V}\left(B, b^{\prime}, x\right) \geq 0$, then $\widetilde{V}\left(B, b^{\prime \prime}, x\right)>0 \forall b^{\prime \prime} \in\left(b^{\prime}, x\right)$.

[^0]Proof: Suppose $\tilde{V}\left(B, b^{\prime}, x\right) \geq 0$. By single-peakedness, $\widetilde{V}(B, b, x)$ is decreasing in b on $\left[b^{*}(B), x\right]$. Since $\tilde{V}(B, x, x)=0$, we have $\widetilde{V}\left(B, b^{\prime \prime}, x\right)>0$ for all $b^{\prime \prime} \in\left[b^{*}(B), x\right)$. The only remaining case is $b^{\prime}<b^{\prime \prime}<b^{*}(B)$. By single-peakedness, $\widetilde{V}(B, b, x)$ is increasing in b on $\left(-\infty, b^{*}(B)\right]$. Thus, $0 \leq \widetilde{V}\left(B, b^{\prime}, x\right)<\widetilde{V}\left(B, b^{\prime \prime}, x\right)$.

Let $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda)$. With some abuse of notation, we let $\mathcal{B}_{N}=\left\{X^{1}, \ldots, X^{P}\right\}$ be the set of X_{n} such that $\widehat{\lambda}_{n}<0$, keeping the dependence of \mathcal{B}_{N} on $\widehat{\Lambda}$ implicit. After dropping constant terms, we can write $\sup _{\left(\tau, d_{\tau}\right)} \mathcal{L}\left(\tau, d_{\tau}, \widehat{\Lambda}\right)$ in the form of (11) by taking $g(x, k, d)=u(x, d)-\left(\widehat{\gamma}+\sum_{j=1}^{k} \widehat{\lambda}^{j}\right) v(x, d)$ and $\xi^{k}=\widehat{\lambda}^{k} \frac{c_{A}}{r}$. Both $g(x, k, 1)-g(x, k, 0)$ and $g(x, k, 1)$ are then strictly increasing in x. Because $\tilde{u}\left(X_{t}\right), \tilde{v}\left(X_{t}\right)$ are martingales in $X_{t}, g\left(X_{t}, k, d\right)$ is also a martingale. Note that $d_{k}^{x}=1$ if and only if $\tilde{u}(x)-(\widehat{\gamma}+$ $\left.\sum_{j=1}^{k} \widehat{\lambda}^{j}\right) \tilde{v}(x) \geq 0$. Because $\tilde{u}(x) \leq \tilde{v}(x), d_{k}^{x}=1$ implies $\tilde{v}(x) \geq 0$. Thus,

$$
g\left(X^{k+1}, k+1, d_{k}^{X^{k+1}}\right)-g\left(X^{k+1}, k, d_{k}^{X^{k+1}}\right)=-\widehat{\lambda}^{k+1}\left(\tilde{v}\left(X^{k+1}\right) d_{k}^{X^{k+1}}+\frac{c_{A}}{r}\right) \geq-\widehat{\lambda}^{k+1} \frac{c_{A}}{r}
$$

meeting all the assumptions on g in the general stopping problem. By Proposition 4, a solution to $\sup _{\left(\tau, d_{\tau}\right)} \mathcal{L}\left(\tau, d_{\tau}, \widehat{\Lambda}\right)$ exists.

For each $k, \lim _{x \rightarrow \infty} g(x, k, 1)=1+\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{j=1}^{k} \widehat{\lambda}^{j}\right)\left(1+\frac{c_{A}}{r}\right)>0$. By a similar argument as in (13), if $\mathcal{D}_{k}^{1}=\emptyset$, then $\lim _{x \rightarrow \infty} F_{k}(x)=0$, contradicting $F_{k}(x) \geq g(x, k, 1)$. Therefore, $\mathcal{D}_{k}^{1} \neq \emptyset$.

Let $\mathcal{M}^{*}(\Lambda)=\arg \max _{\left(\tau, d_{\tau}\right)} \mathcal{L}\left(\tau, d_{\tau}, \Lambda\right)$. If stopping at $t=0$ is strictly optimal, then the optimal mechanism is unique. Suppose stopping at $t=0$ is not strictly optimal. For arbitrary $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}^{N+1}} \mathcal{L}^{*}(\Lambda)$, let $X^{L}=\min \left\{X^{k} \in \mathcal{B}_{N}: \exists\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})\right.$ s.t. $\mathbb{P}(\tau>$ $\left.\left.\tau\left(X^{k}\right)\right)>0\right\}$ if $\mathcal{B}_{N} \neq \emptyset$; otherwise, take $X^{L}=0$ (we keep the dependence on $\widehat{\Lambda}$ implicit). For each $X^{k} \in \mathcal{B}_{N}, X^{k}<X^{L}$ implies that $\tau \leq \tau\left(X^{k}\right)$ for all $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})$. Our next proof shows that for every optimal mechanism, its continuation mechanism at $\tau\left(X^{L}\right)$ is the same. In this case, we say the optimal continuation mechanism at $\tau\left(X^{L}\right)$ is unique.

LEMMA 21: Suppose stopping at $t=0$ is not strictly optimal. For each $\widehat{\Lambda}$ and corresponding $X^{L}, \mathcal{D}_{L, 0}^{\prime}=\emptyset$ and the unique optimal continuation mechanism at $\tau\left(X^{L}\right)$ is $\left(\tau^{L}, d_{\tau}^{L}\right)$ where $\tau^{L}=\inf \left\{t: X_{t} \notin\left(b_{L}, B_{L}\right)\right\}$ and $d_{\tau}^{L}=\mathbb{1}\left(X_{t} \geq B_{L}\right)$.

PROOF: It suffices to show $\mathcal{D}_{L, 0}^{\prime}=\emptyset$; if this is so, then the same arguments as in Proposition 7 imply the optimal continuation mechanism $\left(\tau^{L}, d_{\tau}^{L}\right)$ is unique and $\tau^{L}=\inf \left\{t: X_{t} \notin\right.$ $\left.\left(b_{L}, B_{L}\right)\right\}$ and $d_{\tau}^{L}=\mathbb{1}\left(X_{t} \geq B_{L}\right)$. That $\tau \geq \tau\left(X^{k}\right)$ for all $X^{k}<X^{L}$ means either $X^{L}=X^{P}$ or there is a lower stopping threshold in $b_{L} \in\left(X^{L+1}, X^{L}\right]$ at which stopping is strictly optimal (namely, $b_{L} \in \mathcal{D}_{L}^{\mathrm{o}}$). In the latter case, if $b_{L} \in \mathcal{D}_{L}^{1}$, then because \mathcal{D}_{L}^{1} is an interval unbounded above, $X^{L} \in \mathcal{D}_{L}^{1}$ and so it is strictly optimal to stop immediately at $\tau\left(X^{L}\right)$, a contradiction of the definition of X^{L}. Therefore, $b_{L} \in \mathcal{D}_{L, 0}^{\circ}$, which as shown in the proof of Proposition 7, implies $\mathcal{D}_{L, 0}^{\prime}=\emptyset$.

Suppose $X^{L}=X^{P}$. The payoff to rejecting at $t>\tau\left(X^{L}\right)$ is $\widehat{c}=\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{L} \widehat{\lambda}^{k}\right) \frac{c_{A}}{r}$. If $\widehat{c}=0$, then it is never optimal to stop and reject as there is always always a positive option value of continued experimentation, so $\mathcal{D}_{k, 0}^{\prime}=\emptyset$. Suppose $\widehat{c}>0$. If $\mathcal{D}_{L, 0}^{\prime} \neq \emptyset$, then $\mathcal{D}_{L, 0}^{\prime}=\mathcal{D}_{L}^{0}=\left\{b_{L}\right\}$. For $X_{0}<b_{L}, \inf \left\{t: X_{t} \in \mathcal{D}_{L}\right\}=\inf \left\{t: X_{t} \geq b_{L}\right\}$ and so

$$
\lim _{x \rightarrow-\infty} F_{L}(x)=\lim _{x \rightarrow-\infty} \mathbb{E}^{x}\left[e^{-r \tau_{+}\left(b_{L}\right)} G_{L}\left(b_{L}\right)\right]=0<\widehat{c} \leq \lim _{x \rightarrow-\infty} G_{L}(x)
$$

a contradiction. This argument implies that stopping is strictly optimal at sufficiently low x and so $b_{L}>-\infty$. Thus, $\mathcal{D}_{L, 0}^{\prime}=\emptyset$.

Our next lemma looks at complementary slackness conditions. We note that $R D P\left(X_{n}\right)$ can be rewritten as $\mathbb{E}^{X_{n}}\left[e^{-r \tau\left[h_{\tau\left(X_{n}\right)}\right]} v\left(X_{\tau\left[h_{\tau\left(X_{n}\right)}\right]}, d_{\tau}\left[h_{\tau\left(X_{n}\right)}\right]\right)\right] \geq 0$ and so only depends on the continuation mechanism at $\tau\left(X_{n}\right)$. When the optimal continuation mechanism at $\tau\left(X_{n}\right)$ is unique, we will will simply say that $R D P\left(X_{n}\right)$ binds (or is violated), keeping the dependence of $R D P\left(X_{n}\right)$ on the optimal continuation mechanism at $\tau\left(X_{n}\right)$ implicit.

Lemma 22: There exists $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda)$ and $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})$ such that $\left(\tau, d_{\tau}\right)$ and $\widehat{\Lambda}$ satisfy complementary slackness for all $R D P\left(X_{n}\right)$ with $X_{n} \leq X^{L}$.

Proof: Take some $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda) . \mathcal{L}^{*}(\widehat{\Lambda})$ can be written as

$$
\begin{aligned}
& \max _{\left(\tau, d_{\tau}\right)} \mathbb{E}\left[e^{-r \tau}\left(u\left(X_{\tau}, d_{\tau}\right)-\left(\widehat{\gamma}+\sum_{k=1}^{L-1} \widehat{\lambda}^{k}\right) v\left(X_{\tau}, d_{\tau}\right)\right) \mathbb{1}\left(\tau<\tau\left(X^{L}\right)\right)\right. \\
& \quad+\sum_{k=1}^{L-1} e^{-r\left(\tau \wedge \tau\left(X^{k}\right)\right)} \widehat{\lambda}^{k} v\left(X_{\tau \wedge \tau\left(X_{k}\right)}, d_{\tau}\left(X^{k}\right)\right) \\
& \left.\quad+e^{-r \tau\left(X^{L}\right)}\left(F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{L} \frac{c_{A}}{r}\right) \mathbb{1}\left(\tau \geq \tau\left(X^{L}\right)\right)\right]+\widehat{\gamma}\left(V+\frac{c_{A}}{r}\right),
\end{aligned}
$$

where F_{L} is defined as in our general stopping problem only now making the dependence on $\widehat{\Lambda}$ explicit. Any change to $\widehat{\Lambda}$ that decreases $F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{L} \frac{c_{A}}{r}$ will weakly decrease $\mathcal{L}^{*}(\widehat{\Lambda})$, strictly so if $b_{k}=-\infty$ for all $k<L .{ }^{2}$
$R D P\left(X_{n}\right)$ binds for $X_{n}<b_{L}$ since $\mathbb{P}\left(\tau>\tau\left(X_{n}\right)\right)=0$, so complementary slackness conditions hold. Suppose $R D P\left(X^{L}\right)$ is violated. We can apply the same arguments as in Lemma 5 to show ${ }^{3}$ that A 's continuation value under any $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})$ at $\tau\left(X^{L}\right)$, namely $\tilde{V}\left(B_{L}, b_{L}, X^{L}\right)$, must be strictly negative. $F_{L}\left(X^{L} ; \widehat{\Lambda}\right)$ is then equal to

$$
\begin{align*}
\mathbb{E}^{X^{L}} & {\left[e^{-r \tau_{+}\left(B_{L} ; b_{L}\right)}\left(u\left(B_{L}, 1\right)-\left(\widehat{\gamma}+\sum_{k=1}^{L} \widehat{\lambda}^{k}\right) v\left(B_{L}, 1\right)\right)\right.} \\
& \left.+e^{-r \tau\left(b_{L} ; B_{L}\right)}\left(\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{L} \widehat{\lambda}^{k}\right) \frac{c_{A}}{r}\right)\right] \\
= & \widetilde{J}\left(B_{L}, b_{L}, X^{L}\right)+\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{L} \widehat{\lambda}^{k}\right)\left(\widetilde{V}\left(B_{L}, b_{L}, X^{L}\right)+\frac{c_{A}}{r}\right) . \tag{14}
\end{align*}
$$

[^1]Suppose $b_{k}=-\infty$ for all $k<L$. By the theorem of the maximum, the optimal thresholds and decisions at each threshold are continuous in Λ at $\widehat{\Lambda}$. Applying the envelope theorem, we have

$$
\frac{d}{d \widehat{\lambda}^{1}}\left[F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{L} \frac{c_{A}}{r}\right]=-\left[\widetilde{V}\left(B_{L}, b_{L}, X^{L}\right)+\frac{c_{A}}{r}\right]+\frac{c_{A}}{r}>0
$$

Thus, decreasing $\widehat{\lambda}^{L}$ will lower $\mathcal{L}^{*}(\widehat{\Lambda})$, a contradiction of $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda)$. Therefore, $R D P\left(X^{L}\right)$ cannot be violated at $\widehat{\Lambda}$. A similar argument holds if $R D P\left(X^{L}\right)$ is slack, only now we derive a contradiction by increasing $\widehat{\lambda}^{L}$ instead of decreasing $\widehat{\lambda}^{L}$. Because the optimal continuation mechanism is also unique at $\tau\left(X_{n}\right)$ for $X_{n} \in\left(b_{L}, X^{L}\right)$, an analogous argument implies $R D P\left(X_{n}\right)$ cannot be violated.

Suppose there exists a j such that $b_{j}>-\infty$ for $j<L$ and let k be the largest such j. Decreasing $F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{L} \frac{c_{A}}{r}$ reduces the value continuing at $\tau\left(b_{k}\right)$, which then makes stopping at $\tau\left(b_{k}\right)$ strictly optimal. The continuation mechanism at $\tau\left(X^{k}\right)$ is now unique. Thus, if $R D P\left(X^{L}\right)$ is not binding or $R D P\left(X_{n}\right)$ is violated for some $X_{n} \leq X^{L}$, then by changing $\widehat{\Lambda}$ as in the previous paragraph to some $\widehat{\Lambda}^{\prime}$ which lowers $F_{L}\left(X^{L} ; \Lambda\right)+\lambda^{L} \frac{c_{A}}{r}$, we have not decreased the Lagrangian so $\mathcal{L}^{*}(\widehat{\Lambda})=\mathcal{L}^{*}\left(\widehat{\Lambda}^{\prime}\right)$ and $\widehat{\Lambda}^{\prime} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda)$. We can apply the same arguments as above, taking X^{k} to replace X^{L}, to conclude that if $b_{j}=-\infty$ for all $j<k$, then $\widehat{\Lambda}^{\prime}$ and any $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}\left(\widehat{\Lambda}^{\prime}\right)$ must satisfy complementary slackness conditions for $R D P\left(X_{n}\right)$ for $X_{n} \leq X^{k}$. If there exists a $j>k$ such that $b_{j}>-\infty$, then we can apply the same arguments as above until we have reached an k^{\prime} such that $b_{j}=-\infty$ for all $j<k^{\prime}$. In this case, complementary slackness conditions must hold for all $R D P\left(X_{n}\right)$ with $X_{n} \leq X^{k^{\prime}}$ and $X^{k^{\prime}}$ takes the role of X^{L} for our corresponding choice of Λ derived from $\widehat{\Lambda}$ using the above procedure.
Q.E.D.

Take $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N+1}} \mathcal{L}^{*}(\Lambda)$ such that for some $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})$, complementary slackness conditions hold for all $R D P\left(X_{n}\right)$ with $X_{n} \leq X^{L}$. By the same arguments as in Lemma 5, that $\operatorname{RDP}\left(X^{L}\right)$ binds implies $\widetilde{V}\left(B_{L}, b_{L}, X^{L}\right)=0$. Using (14), because ${\underset{\sim}{G}}_{L}(x) \geq \frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{L} \widehat{\lambda}^{k}\right) \frac{c_{A}}{r}$ and $\widetilde{V}\left(B_{L}, b_{L}, X^{L}\right)=0, F_{L}\left(X^{L}\right)>G_{L}\left(X^{L}\right)^{4}$ implies $\widetilde{J}\left(B_{L}, b_{L}, X^{L}\right)>0$.

We now argue that rejection at $X_{t}=x>X^{L}$ is strictly suboptimal. Because X has independent increments conditional on θ, we have

$$
\begin{aligned}
\tilde{V}\left(B, b, x ; z_{0}\right) & =\frac{e^{z_{x}}}{1+e^{z_{x}}} \tilde{V}(B, b, x ; \infty)+\frac{1}{1+e^{z_{x}}} \tilde{V}(B, b, x ;-\infty) \\
& =\frac{e^{z_{x}}}{1+e^{z_{x}}} \widetilde{V}(B-x, b-x, 0 ; \infty)+\frac{1}{1+e^{z_{x}}} \widetilde{V}(B-x, b-x, 0 ;-\infty) \\
& =\widetilde{V}\left(B-x, b-x, 0 ; z_{x}\right)
\end{aligned}
$$

Thus, $\tilde{V}\left(B_{N}\left(X^{L}\right), b_{L}, X^{L} ; z_{0}\right)=0$ implies $\tilde{V}\left(B_{N}\left(X^{L}\right)-X^{L}, b_{L}-X^{L}, 0, z_{X^{L}}\right)=0$. By Lemma 3, $\widetilde{V}\left(B_{N}\left(X^{L}\right)-X^{L}, b_{L}-X^{L}, 0, z_{x}\right)>0$ for all $x>X^{L}$. Then, by Lemma 20, $\widetilde{V}\left(B_{N}\left(X^{L}\right)-X^{L},-\epsilon, 0, z_{x}\right)>0$ for any $\epsilon \in\left(0, X^{L}-b_{L}\right)$ and all $x>X^{L}$. A similar argument holds for R so that $\widetilde{J}\left(B_{N}\left(X^{L}\right)-X^{L},-\epsilon, 0, z_{x}\right)>0$.

[^2]Take some (x, m) and $\epsilon>0$ with $m>b_{L}, x>X^{L}$ and $x-\epsilon>X^{\kappa(m)+1}$. Let $B^{\prime}=$ $B_{N}\left(X^{L}\right)-X^{L}+x$ and define $\tau^{\prime}=\inf \left\{t: X_{t} \notin\left(x-\epsilon, B^{\prime}\right)\right\}$ and $d_{\tau}^{\prime}=\mathbb{1}\left(X_{\tau^{\prime}} \geq B^{\prime}\right)$. The continuation value in our Lagrangian from using $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ at a history h_{t} such that $\left(X_{t}, M_{t}\right)=$ (x, m) is

$$
\begin{aligned}
\mathbb{E}_{x, m} & {\left[e^{-r \tau_{+}\left(B^{\prime} ; x-\epsilon\right)}\left(u\left(B^{\prime}, 1\right)-\left(\widehat{\gamma}+\sum_{k=1}^{\kappa(m)} \widehat{\lambda}^{k}\right) v\left(B^{\prime}, 1\right)\right)\right.} \\
& \left.+e^{-r \tau\left(x-\epsilon ; B^{\prime}\right)}\left(\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{\kappa(m)} \widehat{\lambda}^{k}\right) \frac{c_{A}}{r}\right)\right] \\
= & \widetilde{J}\left(B_{N}\left(X^{L}\right)-X^{L},-\epsilon, 0 ; z_{x}\right)+\frac{c_{R}}{r} \\
& -\left(\widehat{\gamma}+\sum_{k=1}^{\kappa(m)} \widehat{\lambda}^{k}\right)\left(\widetilde{V}\left(B_{N}\left(X^{L}\right)-X^{L},-\epsilon, 0 ; z_{x}\right)+\frac{c_{A}}{r}\right),
\end{aligned}
$$

which is strictly greater than $\frac{c_{R}}{r}-\left(\widehat{\gamma}+\sum_{k=1}^{\kappa(m)} \widehat{\lambda}^{k}\right) \frac{c_{A}}{r}$, the payoff at x of rejecting. Thus, rejection when $\left(X_{t}, M_{t}\right)=(x, m)$ cannot be optimal and so $\mathcal{D}_{k}^{0}=\mathcal{D}_{k, 0}^{\prime}=\emptyset$ for all $k<L$. $\mathcal{D}_{L, 1}^{\prime}=\emptyset$ by Lemma 21, so Proposition 7 implies the solution to the Lagrangian, call it $\left(\tau_{N}^{*}, d_{N, \tau}^{*}\right)$, is unique.

By analogous arguments those in Lemma $22,\left(\tau_{N}^{*}, d_{N, \tau}^{*}\right)$ and $\widehat{\Lambda}$ must satisfy complementary slackness conditions for all $R D P\left(X_{n}\right)$ and $P K(V)$. We conclude that $\left(\tau_{N}^{*}, d_{N, \tau}^{*}\right)$ solves $H_{N}(V)$. Finally, if $B_{N}(0)>0$, but $B_{N}(m)=m$ for some $m<0$, then the stopping rule approves with probability one. It is easy to see that immediate approval at $t=0$ strictly dominates this mechanism.

Although complementary slackness conditions imply $R D P\left(X^{k}\right)$ binds under $\left(\tau_{N}^{*}, d_{N, \tau}^{*}\right)$ for all $X^{k} \in \mathcal{B}_{N}$, they do not imply that $R D P\left(X_{n}\right)$ is slack for all $X_{n} \notin \mathcal{B}_{N}$. However, we can add into \mathcal{B}_{N} any X_{n} such that $R D P\left(X_{n}\right)$ binds but $\widehat{\lambda}_{n}=0$ without changing the statement of Proposition 5.

Proof of Proposition 6

Proof: Let $\widehat{\Lambda} \in \arg \min _{\Lambda \in \mathbb{R}_{-}^{N^{\prime}}} \mathcal{L}^{*}(\Lambda)$ with $\left\{X^{1}, \ldots, X^{P}\right\}=\left\{X_{n}: \widehat{\lambda}_{n}<0\right\}$. For $0 \leq k \leq$ $P-1$, take $g(x, k, 1)=\tilde{u}(x)+\sum_{j=k+1}^{P} \widehat{\lambda}^{j} \hat{v}_{\ell}(x, 1), g(x, P, 1)=\tilde{u}(x)$ and $\xi^{k}=\widehat{\lambda}^{k} \hat{v}_{\ell}\left(X^{k}, 0\right)$. We rule out the choice of $d=0$ by setting $g(x, k, d)$ to be a sufficiently low constant. ${ }^{5}$ It is straightforward to verify that $g\left(X_{t}, k, 1\right)$ is a martingale. Then

$$
\begin{aligned}
g\left(X^{k+1}, k+1,1\right)-g\left(X^{k+1}, k, 1\right) & =-\widehat{\lambda}^{k+1} \hat{v}_{\ell}\left(X^{k+1}, 1\right) \geq-\widehat{\lambda}^{k+1} \widehat{v}_{\ell}\left(X^{k+1}, 0\right) \\
& =-\xi^{k+1}
\end{aligned}
$$

A solution τ_{N}^{*} to $\sup _{\tau} \mathcal{L}(\tau, \widehat{\Lambda})$ exists by Proposition 4.

[^3]We next to show $g(x, k, 1)$ is increasing in x at $\widehat{\Lambda}$. Note that

$$
\frac{\partial g(x, k, 1)}{\partial x}=\frac{\frac{2 \mu}{\sigma^{2}} e^{z_{h}(x)}}{\left(1+e^{z_{h}(x)}\right)^{2}}\left[1-f+\sum_{j=k+1}^{P} \widehat{\lambda}^{j} \frac{1+e^{z_{h}}}{1+e^{z_{\ell}}}\left(e^{-\Delta_{z}}\left(1+\frac{c_{A}}{r}\right)-a-\frac{c_{A}}{r}\right)\right]
$$

If $e^{-\Delta_{z}}\left(1+\frac{c_{A}}{r}\right)-a-\frac{c_{A}}{r} \leq 0$, then $\frac{\partial g(x, k, d)}{\partial x}>0$.
Suppose $e^{-\Delta_{z}}\left(1+\frac{c_{A}}{r}\right)-a-\frac{c_{A}}{r}>0$. The sign of $\frac{\partial g(x, k, 1)}{\partial x}$ is the same for all x, but may be negative for arbitrary $\widehat{\Lambda}$. In this case, $\frac{\partial g(x, k, 1)}{\partial x}$ is increasing in k, so it suffices to show $\frac{\partial g(x, 1)}{\partial x}>0$. Suppose $\frac{\partial g(x, 1,1)}{\partial x} \leq 0$. The limit $\lim _{x \rightarrow-\infty} g(x, 1,1)<0$, so $\frac{\partial g(x, 1,1)}{\partial x} \leq 0$ implies $g(x, 1,1)<0$ for all x, in which case it is never optimal to stop at $t<\tau\left(X^{1}\right)$ and

$$
\left.\mathcal{L}^{*}(\widehat{\Lambda})=\mathbb{E}\left[e^{-r \tau\left(X^{1}\right)}\left(F_{1}\left(X^{1} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{1} \frac{c_{A}}{r}\right)\right)\right]-\sum_{k=1}^{P} \widehat{\lambda}^{k}\left(V_{\ell}+\frac{c_{A}}{r}\right) .
$$

$\widehat{\lambda}^{1}$ does not appear in $F_{1}\left(X^{1} ; \widehat{\Lambda}\right)$, so changing $\widehat{\lambda}^{1}$ has no impact on the continuation value $F_{1}\left(X^{1} ; \widehat{\Lambda}\right)$ and $\frac{\partial \mathcal{L}^{*}(\widehat{\Lambda})}{\partial \lambda^{1}}=\mathbb{E}\left[e^{-r \tau\left(X^{1}\right)} \frac{c_{A}}{r}\right]-V_{\ell}-\frac{c_{A}}{r}<0$, a contradiction of $\widehat{\lambda}^{1}<0$ and $\widehat{\Lambda} \in$ $\arg \min _{\Lambda \in \mathbb{R}_{-}^{N^{\prime}}} \mathcal{L}^{*}(\Lambda)$. Therefore, we must have $\frac{\partial g(x, 1,1)}{\partial x}>0$. We conclude that $g(x, k, 1)$ is strictly increasing in x for all k.

We next argue that $\lim _{x \rightarrow \infty} g(x, k, 1)>0$. If $\lim _{x \rightarrow \infty} g(x, 1,1) \leq 0$, then $g(x, 1,1)<0$ for all x. A similar contradiction can be derived from the fact that stopping at $t<\tau\left(X^{1}\right)$ would never be optimal and so $\lim _{x \rightarrow \infty} g(x, 1,1)>0$. Because $g(x, k, 1)$ is increasing in k, we conclude $\lim _{x \rightarrow \infty} g(x, k, 1)>0$ for all k. As argued in the proof of Proposition 7, this implies $\mathcal{D}_{k}^{1} \neq \emptyset$ for all k.

By ruling out $d_{\tau}=0$, we know $\mathcal{D}_{k}^{0}=\mathcal{D}_{k, 0}^{\prime}=\emptyset$ and we can apply Proposition 7 to conclude that τ_{N}^{*} is the unique solution to $\mathcal{L}^{*}(\widehat{\Lambda})$. Let $B_{N}(m)=B_{\kappa(m)}$. To show $\tau_{N}^{*}=\inf \left\{t: X_{t} \geq\right.$ $\left.B_{N}\left(M_{t}\right)\right\}$, it suffices to show that if $B_{k}>X^{k}$, then $b_{k}=-\infty$. Suppose not, so that $b_{k}>$ X^{k+1} for some k. By the same arguments as in Proposition 7, $b_{k} \in \mathcal{D}_{k}=\mathcal{D}_{k}^{1}$ implies $x \in \mathcal{D}_{k}^{1}$ for all $x>b_{k}$, contradicting $B_{k}>X_{k}$. Therefore, $b_{k}=-\infty$ for all k with $B_{k}>X^{k}$.

We can apply an analogous argument as in Lemma 22 to show that $\left(\tau_{N}^{*}, 1\right)$ and $\widehat{\Lambda}$ must satisfy complementary slackness conditions for all $\operatorname{RDIC}\left(X_{n}\right)$ constraints. Theorem 1 of Balzer and Janßen (2002) then shows that $\left(\tau_{N}^{*}, 1\right)$ solves H_{h}. As we did in Proposition 5, we let $\mathcal{B}_{N}=\left\{X^{1}, \ldots, X^{P}\right\}$ and then add into \mathcal{B}_{N} any X_{n} such that $R D P\left(X_{n}\right)$ binds but $\widehat{\lambda}_{n}=0$ without changing the result.
Q.E.D.

Satisfying Conditions of Theorem 1 of Balzer and Janßen (2002)

Balzer and Janßen (2002) make two restrictions on the choice of $\left(\tau, d_{\tau}\right)$, requiring $\mathbb{P}(\tau>0)=1$ and $\mathbb{P}(\tau<\infty)=1$. The restriction $\mathbb{P}(\tau>0)=1$ can be dropped as we allow τ to depend on the randomization device Y_{0}. The restriction $\mathbb{P}(\tau<\infty)=1$ can be dropped as well, because for each $d \in\{0,1\}$, both $e^{-r t} u\left(X_{t}, d\right)$ and $e^{-r t} v\left(X_{t}, d\right)$ go to 0 as $t \rightarrow \infty$.

Their theorem also requires a Slater condition that there exists a mechanism for which all constraints are slack. To construct such a mechanism for $H_{N}(V)$, let $B_{A}^{F B}$ be the static approval threshold in A 's first best mechanism. Take a mechanism, which approves with probability $1-\epsilon$ at $\tau\left(X_{n}\right)$ for each $X_{n} \geq B_{A}^{F B}$ and uses A 's first-best mechanism as its
continuation mechanism at $\tau(\bar{x})$ where $\bar{x}=\sup \left\{X_{n}: X_{n}<B_{A}^{F B}\right\}$. For small enough ϵ, all constraints will be slack. For the problem in H_{h}, the Slater condition is satisfied by τ^{\prime} with $\mathbb{P}\left(\tau^{\prime}=\infty\right)=1$.

APPENDIX E: Static Threshold Mechanism Proofs

Let $\Phi(B, b, x)=\mathbb{E}^{x}\left[e^{-r \tau_{+}(B ; b)}\right]$ be the discounted probability of reaching B before b when $\left(X_{0}, Z_{0}\right)=\left(x, z_{x}\right)$ and $\phi(B, b, x)=\mathbb{E}^{x}\left[e^{-r \tau(b ; B)}\right]$ be the discounted probability of reaching b before B when $\left(X_{0}, Z_{0}\right)=\left(x, z_{x}\right) .{ }^{6}$ In both functions, we restrict attention to $B>b$. It is easy to see that Φ is decreasing in B and b, ϕ is increasing b and B. $\Phi(B, b, x)+\phi(B, b, x)$ is strictly less than 1 and is decreasing in B for $x \in(b, B) .^{7} \Phi, \phi$ are differentiable in all arguments. Let $\Phi_{B}(B, b, x):=\frac{\partial \Phi(B, b, x)}{\partial B}$ and let $\Phi_{b}(B, b, x):=\frac{\partial \Phi(B, b, x)}{\partial x}$, with a similar definition for $\phi_{B}(B, b, x), \phi_{b}(B, b, x)$.

Proof of Lemma 1

Proof: We first present the proof of single-peakedness in B for $\tilde{V}(B, b, x)$. The proof for \widetilde{J} is analogous. Fix $b<x$. If \widetilde{V} is not single-peaked in B, then there exist $B^{3}>B^{2}>$ $B^{1} \geq x$ such that $\widetilde{V}\left(B^{1}, b, x\right)=\widetilde{V}\left(B^{3}, b, x\right) \geq \widetilde{V}\left(B^{2}, b, x\right)$. For threshold B^{1}, we have

$$
\tilde{V}\left(B^{1}, b, x\right)=\Phi\left(B^{1}, b, x\right) v\left(B^{1}, 1\right)+\phi\left(B^{1}, b, x\right) v(b, 0)-\frac{c_{A}}{r} .
$$

For B^{2}, by standard dynamic programming arguments, we have

$$
\begin{align*}
\widetilde{V}\left(B^{2}, b, x\right) & =\mathbb{E}\left[e^{-r \tau_{+}\left(B^{1} ; b\right)} \mathbb{E}^{B^{1}}\left[e^{-r \tau\left(B^{2} ; b\right)} v\left(B^{2}, 1\right)+e^{-r \tau\left(b ; B^{2}\right)} \frac{c_{A}}{r}\right]+e^{-r \tau\left(b ; B^{1}\right)} v(b, 0)\right]-\frac{c_{A}}{r} \\
& =\Phi\left(B^{1}, b, x\right)\left(\widetilde{V}\left(B^{2}, b, B^{1}\right)+\frac{c_{A}}{r}\right)+\phi\left(B^{1}, b, x\right) v(b, 0)-\frac{c_{A}}{r} \tag{15}
\end{align*}
$$

Similarly, we have

$$
\begin{aligned}
& \tilde{V}\left(B^{3}, b, x\right)=\Phi\left(B^{1}, b, x\right)\left(\tilde{V}\left(B^{3}, b, B^{1}\right)+\frac{c_{A}}{r}\right)+\phi\left(B^{1}, b, x\right) v(b, 0)-\frac{c_{A}}{r} \\
& \widetilde{V}\left(B^{2}, b, x\right)=\Phi\left(B^{2}, b, x\right) v\left(B^{2}, 1\right)+\phi\left(B^{2}, b, x\right) v(b, 0)-\frac{c_{A}}{r} \\
& \tilde{V}\left(B^{3}, b, x\right)=\Phi\left(B^{2}, b, x\right)\left(\widetilde{V}\left(B^{3}, b, B^{2}\right)+\frac{c_{A}}{r}\right)+\phi\left(B^{2}, b, x\right) v(b, 0)-\frac{c_{A}}{r}
\end{aligned}
$$

Using the above expressions and $\tilde{V}\left(B^{1}, b, x\right)=\widetilde{V}\left(B^{3}, b, x\right) \geq \widetilde{V}\left(B^{2}, b, x\right)$, we get $\tilde{V}\left(B^{3}\right.$, $\left.b, B^{1}\right)+\frac{c_{A}}{r}=v\left(B^{1}, 1\right) \geq \widetilde{V}\left(B^{2}, b, B^{1}\right)+\frac{c_{A}}{r}$ and $\widetilde{V}\left(B^{3}, b, B^{2}\right)+\frac{c_{A}}{r} \geq v\left(B^{2}, 1\right)$.

[^4]Suppose $v\left(B^{1}, 1\right) \geq 0$. Using $\widetilde{V}\left(B^{3}, b, B^{1}\right)+\frac{c_{A}}{r}=v\left(B^{1}, 1\right)$, by similar dynamic programming arguments as in (15), we have

$$
\begin{aligned}
\tilde{V}\left(B^{3}, b, B^{2}\right) & =\Phi\left(B^{3}, B^{1}, B^{2}\right) v\left(B^{3}, 1\right)+\phi\left(B^{3}, B^{1}, B^{2}\right)\left(\tilde{V}\left(B^{3}, b, B^{1}\right)+\frac{c_{A}}{r}\right)-\frac{c_{A}}{r} \\
& =\Phi\left(B^{3}, B^{1}, B^{2}\right) v\left(B^{3}, 1\right)+\phi\left(B^{3}, B^{1}, B^{2}\right) v\left(B^{1}, 1\right)-\frac{c_{A}}{r} \\
& =\mathbb{E}^{B^{2}}\left[e^{-r\left(\tau_{+}\left(B^{3}\right) \wedge \tau\left(B^{1}\right)\right)} v\left(X_{\tau_{+}\left(B^{3}\right) \wedge \tau\left(B^{1}\right)}, 1\right)\right]-\frac{c_{A}}{r} \\
& <\mathbb{E}^{B^{2}}\left[v\left(X_{\tau_{+}\left(B^{3}\right) \wedge \tau\left(B^{1}\right)}, 1\right)\right]-\frac{c_{A}}{r}=v\left(B^{2}, 1\right)-\frac{c_{A}}{r}
\end{aligned}
$$

contradicting $\tilde{V}\left(B^{3}, b, B^{2}\right)+\frac{c_{A}}{r} \geq v\left(B^{2}, 1\right)$. The first inequality above follows from $v\left(B^{1}, 1\right) \geq 0$ and $v\left(B^{3}, 1\right)>0$ while the last equality follows by an application of Doob's optional stopping theorem and that $v\left(X_{t}, 1\right)$ is a martingale.

Now suppose $v\left(B^{1}, 1\right)<0$. Because $\Phi\left(B^{2}, b, B^{1}\right)+\phi\left(B^{2}, b, B^{1}\right)<1$, multiplying both sides by $v\left(B^{1}, 1\right)<0$, we have

$$
\begin{aligned}
v\left(B^{1}, 1\right) & <\Phi\left(B^{2}, b, B^{1}\right) v\left(B^{1}, 1\right)+\phi\left(B^{2}, b, B^{1}\right) v\left(B^{1}, 1\right) \\
& <\Phi\left(B^{2}, b, B^{1}\right) v\left(B^{2}, 1\right)+\phi\left(B^{2}, b, B^{1}\right) \frac{c_{A}}{r}=\widetilde{V}\left(B^{2}, b, B^{1}\right)+\frac{c_{A}}{r}
\end{aligned}
$$

a contradiction of $v\left(B^{1}, 1\right) \geq \tilde{V}\left(B^{2}, b, B^{1}\right)+\frac{c_{A}}{r}$. It must be that \tilde{V} is strictly single-peaked in B. By interchanging the roles of B with b and $v(B, 1)$ with $v(b, 0)$, an analogous argument shows single-peakedness with respect to b.
Q.E.D.

Proof of Lemma 2

Proof: Fix $b<x$ and let $B^{\prime}=\arg \max _{B} \widetilde{V}(B, b, x)$. Given the single-peakedness of \widetilde{J}, if $B^{\prime}>\arg \max _{B} \widetilde{J}(B, b, x)$, then $\left.\frac{\partial \widetilde{I}(B, b, x)}{\partial B}\right|_{B=B^{\prime}}<0=\left.\frac{\partial \widetilde{V}(B, b, x)}{\partial B}\right|_{B=B^{\prime}}$. To generate a contradiction, it suffices to show $\frac{\partial \widetilde{J}(B, b, x)}{\partial B} \geq \frac{\partial \widetilde{V}(B, b, x)}{\partial B}$. This follows from

$$
\begin{aligned}
\frac{\partial \widetilde{J}(B, b, x)}{\partial B} & =\Phi_{B}(B, b, x) u(B, 1)+\Phi(B, b, x) \frac{\partial u(B, 1)}{\partial B}+\phi_{B}(B, b, x) \frac{c_{R}}{r} \\
& =\Phi_{B}(B, b, x) \tilde{u}(B)+\Phi(B, b, x) \tilde{u}^{\prime}(B)+\left(\Phi_{B}(B, b, x)+\phi_{B}(B, b, x)\right) \frac{c_{R}}{r} \\
& \geq \Phi_{B}(B, b, x) \tilde{v}(B)+\Phi(B, b, x) \tilde{v}^{\prime}(B)+\left(\Phi_{B}(B, b, x)+\phi_{B}(B, b, x)\right) \frac{c_{A}}{r} \\
& =\frac{\partial \widetilde{V}(B, b, x)}{\partial B}
\end{aligned}
$$

The inequality follows from $\Phi_{B} \leq 0, \tilde{u} \leq \tilde{v}, \tilde{v}^{\prime} \leq \tilde{u}^{\prime}, \Phi_{B}+\phi_{B} \leq 0$ and $c_{A} \geq c_{R}$.

Proof of Lemma 3

Proof: Suppose $\tilde{V}(B, b, x ; z) \geq 0 . \widetilde{V}(B, b, x ; z)$ is a convex combination of $\tilde{V}(B, b, x$; ∞) (with weight $\frac{e^{z+\frac{2 \mu}{\sigma^{2} x}}}{1+e^{z+\frac{2 \mu}{\sigma^{2}} x}}$) and $\widetilde{V}(B, b, x ;-\infty)$ (with weight $\frac{1}{1+e^{z+\frac{2 \mu}{\sigma^{2}} x}}$), so the proof
is immediate if $\widetilde{V}(B, b, x ; \infty)>\tilde{V}(B, b, x ;-\infty)$. Let $\Psi=\mathbb{E}^{x}\left[e^{-r \tau_{+}(B ; b)} \mid H\right]$ and $\psi=$ $\mathbb{E}^{x}\left[e^{-r \tau(b ; B)} \mid H\right]$. Then $\widetilde{V}(B, b, x ; \infty)=\Psi\left(1+\frac{c_{A}}{r}\right)+\psi \frac{c_{A}}{r}-\frac{c_{A}}{r}$. Stokey (2009) shows $\mathbb{E}^{x}\left[e^{-r \tau_{+}(B ; b)} \mid L\right]=\Psi e^{\frac{2 \mu}{\sigma^{2}}(x-B)}$ and $\mathbb{E}^{x}\left[e^{-r \tau(b ; B)} \mid L\right]=\psi e^{\frac{2 \mu}{\sigma^{2}}(x-b)}$, so $\widetilde{V}(B, b, x ;-\infty)=$ $\Psi e^{\frac{2 \mu}{\sigma^{2}}(x-B)}\left(a+\frac{c_{A}}{r}\right)+\psi e^{\frac{2 \mu}{\sigma^{2}}(x-b)} \frac{c_{A}}{r}-\frac{c_{A}}{r}$.

In order for $\widetilde{V}(B, b, x ; z) \geq 0$, either $\widetilde{V}(B, b, x ; \infty) \geq 0$ or $\widetilde{V}(B, b, x ;-\infty) \geq 0$. Therefore, we only need to show $\widetilde{V}(B, b, x ;-\infty)<\max \{0, \widetilde{V}(B, b, x ; \infty)\}$. Suppose $\widetilde{V}(B, b, x ;-\infty) \geq \max \{0, \widetilde{V}(B, b, x ; \infty)\}$. Then

$$
\Psi e^{\frac{2 \mu}{\sigma^{2}}(x-B)}\left(a+\frac{c_{A}}{r}\right)+\psi e^{\frac{2 \mu}{\sigma^{2}}(x-b)} \frac{c_{A}}{r}-\frac{c_{A}}{r} \geq \max \left\{0, \Psi\left(1+\frac{c_{A}}{r}\right)+\psi \frac{c_{A}}{r}-\frac{c_{A}}{r}\right\} .
$$

The LHS is increasing in a so it suffices to show a contradiction when $a=1$. For $a=1$, we can rearrange this inequality to get

$$
\frac{c_{A}}{r+c_{A}} \frac{1-\psi e^{\frac{2 \mu}{\sigma^{2}}(x-b)}}{e^{\frac{2 \mu}{\sigma^{2}}(x-B)}} \leq \Psi \leq \frac{c_{A}}{r+c_{A}} \frac{\psi\left(e^{\left.\frac{2 \mu}{\sigma^{2}}(x-b)\right)}-1\right)}{1-e^{\frac{2 \mu}{\sigma^{2}}(x-B)}} .
$$

Simplifying the LHS and RHS of these inequalities, we get $\psi \geq \frac{e^{-\frac{2 \mu}{\sigma^{2}}(x-B)}-1}{e^{-\frac{\mu}{\sigma^{2}}(b-B)}-1}$. Stokey (2009) shows $\psi=\frac{e^{R_{1}(x-B)}-e^{R_{2}(x-B)}}{e^{R_{1}(b-B)}-e^{R_{2}(b-B)}}$ where $R_{1}=\frac{-\mu-\sqrt{\mu^{2}+2 r \sigma^{2}}}{\sigma^{2}}, R_{2}=\frac{-\mu+\sqrt{\mu^{2}+2 r \sigma^{2}}}{\sigma^{2}}$. At $r=0$, we have $R_{1}=-\frac{2 \mu}{\sigma^{2}}$ and $R_{2}=0$, which implies $\psi=\frac{e^{-\frac{2 \mu}{\sigma^{2}}(x-B)}-1}{e^{-\frac{2 \mu}{\sigma^{(}(b-B)}}-1}$. As is easily seen from its definition, ψ is strictly decreasing in r. Thus, for any $r>0$, we have $\psi<\frac{e^{-\frac{2 \mu}{\sigma^{2}}(x-B)}-1}{e^{-\frac{2 \mu}{\sigma^{2}}(b-B)}-1}$, a contradiction.
Q.E.D.

Proof of Lemma 4

Proof: The same arguments as in Lemma 1 imply \check{J} is single-peaked in B and b. Given this, it suffices to show that $\frac{\partial \check{J}\left(B, b, x, U^{\prime}\right)}{\partial B} \geq \frac{\partial \breve{J}(B, b, x, U)}{\partial B}$ for $U^{\prime}>U \geq 0$. Using $\phi_{B} \geq 0$, we have

$$
\begin{align*}
\frac{\partial \check{J}\left(B, b, x, U^{\prime}\right)}{\partial B} & =\Phi_{B}(B, b, x) u(B, 1)+\Phi(B, b, x) \tilde{u}^{\prime}(B)+\phi_{B}(B, b, x)\left(U^{\prime}+\frac{c_{R}}{r}\right) \\
& \geq \Phi_{B}(B, b, x) u(B, 1)+\Phi(B, b, x) \tilde{u}^{\prime}(B)+\phi_{B}(B, b, x)\left(U+\frac{c_{R}}{r}\right) \\
& =\frac{\partial \check{J}(B, b, x, U)}{\partial B} .
\end{align*}
$$

For our next two proofs, it is useful to define the function $\bar{V}(B, x):=\max _{b} \widetilde{V}(B, b, x)$, which gives A 's continuation value at $X_{t}=x$ when A is allowed to choose optimally when to quit but R fixes the approval threshold at B.

Proof of Lemma 7

PROOF: Take $m^{1}<m^{2}$. As shown in the proof of Proposition 5, $\widetilde{V}\left(\underline{B}_{N}\left(m^{i}\right), m^{i}-\right.$ $\left.\delta_{N}, m^{i} ; z_{0}\right)=\widetilde{V}\left(\underline{B}_{N}\left(m^{i}\right)-m^{i},-\delta_{N}, 0 ; z_{m^{i}}\right)$. By Lemma 3,

$$
\tilde{V}\left(\underline{B}_{N}\left(m^{1}\right)-m^{1},-\delta_{N}, 0 ; z_{m^{2}}\right)>\tilde{V}\left(\underline{B}_{N}\left(m^{1}\right)-m^{1},-\delta_{N}, 0 ; z_{m^{1}}\right)=0 .
$$

Because $\lim _{B \rightarrow \infty} \tilde{V}(B, b, 0 ; z)<0$ for any $b<0$ and \tilde{V} is single-peaked in B, we can find a unique $B^{\prime}>\underline{B}_{N}\left(m^{1}\right)-m^{1}$ such that $\widetilde{V}\left(B^{\prime},-\delta_{N}, 0 ; z_{m^{2}}\right)=0$. It must then be that $\underline{B}_{N}\left(m^{2}\right)=$ $B^{\prime}+m^{2}>\underline{B}_{N}\left(m^{1}\right)+m^{2}-m^{1}>\underline{B}_{N}\left(m^{1}\right)$, so $\underline{B}_{N}(m)$ is increasing.

Suppose there is a discontinuity in \underline{B}_{N} at m^{\prime}. For sufficiently small ϵ, continuity of \tilde{V} implies

$$
0=\widetilde{V}\left(\underline{B}_{N}\left(m^{\prime}+\epsilon\right), m^{\prime}+\epsilon-\delta_{N}, m^{\prime}+\epsilon\right) \approx \tilde{V}\left(\underline{B}_{N}\left(m^{\prime}+\epsilon\right), m^{\prime}-\epsilon-\delta_{N}, m^{\prime}-\epsilon\right) .
$$

$\widetilde{V}\left(B, m^{\prime}-\epsilon-\delta_{N}, m^{\prime}-\epsilon\right)$ is strictly decreasing in B for $B \geq \underline{B}_{N}\left(m^{\prime}-\epsilon\right)$. Because $\lim _{\epsilon \rightarrow 0}\left(\underline{B}_{N}\left(m^{\prime}+\epsilon\right)-\underline{B}_{N}\left(m^{\prime}-\epsilon\right)\right)>0$, we have $\lim _{\epsilon \rightarrow 0} \widetilde{V}\left(\underline{B}_{N}\left(m^{\prime}+\epsilon\right), m^{\prime}-\epsilon-\delta_{N}, m^{\prime}-\epsilon\right)<$ 0 , a contradiction. Therefore, \underline{B}_{N} must be continuous.

Because $\widetilde{V}\left(\underline{B}_{N}(m), m, m\right)=0$ and \widetilde{V} is single-peaked with respect to b, in order for $\widetilde{V}\left(\underline{B}_{N}(m), m-\delta_{N}, m\right)=0$, it must be that $b^{*}\left(\underline{B}_{N}(m)\right) \in\left(m-\delta_{N}, m\right)$; taking the limit, we get $b^{*}\left(\underline{B}_{\infty}(m)\right)=m$ where $\underline{B}_{\infty}(m)=\lim _{N \rightarrow \infty} \underline{B}_{N}(m)$.

Take any $m^{\prime}>b_{A}^{F B}+\delta_{N}$. Choosing $B_{A}^{F B}=\arg \max _{B} \bar{V}(B, x)$ maximizes $\bar{V}(B, x)$ for all x, ${ }^{8}$ and so increases $\inf \{x: \bar{V}(B, x)>0\}=b^{*}(B)$. Thus, $\widetilde{V}\left(B_{A}^{F B}, b_{A}^{F B}, m^{\prime}\right)>0$, which implies $\widetilde{V}\left(B_{A}^{F B}, m^{\prime}-\delta_{N}, m^{\prime}\right)>0$ by Lemma 20. Since $\lim _{B \rightarrow \infty} \widetilde{V}(B, b, x)<0$ for all $b<x$, we can find a $B^{\prime}>B_{A}^{F B}$ such that $\widetilde{V}\left(B^{\prime}, m^{\prime}-\delta_{N}, m^{\prime}\right)=0$. Thus, $\underline{B}_{N}\left(m^{\prime}\right)>B_{A}^{F B}$ and so $\underline{B}_{\infty}\left(m^{\prime}\right) \geq$ $B_{A}^{F B}$.

We now show $b^{*}(B)$ is increasing and continuous in B for $B>B_{A}^{F B}$. Uniqueness of A 's optimal stopping thresholds (and so $b^{*}(B)$) follows from the same arguments in Lemma 21. Continuity of $b^{*}(B)$ follows from the theorem of the maximum. For $x^{\prime} \in$ $(x, B], \bar{V}(B, x)=\mathbb{E}^{x}\left[e^{-r \tau_{+}\left(x^{\prime} ; b^{*}(B)\right)} \bar{V}\left(B, x^{\prime}\right)+e^{-r \tau\left(b^{*}(B) ; x^{\prime}\right)} \frac{c_{A}}{r}\right]-\frac{c_{A}}{r}$. Because A prefers immediate approval whenever above $B_{A}^{F B}$, we know $\bar{V}\left(B, x^{\prime}\right)<\bar{V}\left(x^{\prime}, x^{\prime}\right)$ for each $B>x^{\prime} \geq B_{A}^{F B}$. Thus, increasing $B \geq B_{A}^{F B}$ reduces A 's continuation value at all $x<B$ and so must increase $b^{*}(B)$. Because $b^{*}(B)$ is increasing in $B \geq B_{A}^{F B}$, there is a unique $B \geq B_{A}^{F B}$ such that $b^{*}(B)=m^{\prime}$. Since $\underline{B}_{\infty}\left(m^{\prime}\right)>B_{A}^{F B}, \underline{B}_{\infty}\left(m^{\prime}\right)$ is this unique B. We conclude that $\underline{B}_{\infty}(m)=\underline{B}(m)$. Continuity of $\underline{B}(m)$ follows from continuity of $b^{*}(B)$. Q.E.D.

Continuity in Limit of Optimal Mechanisms

Here, we verify $\lim _{N \rightarrow \infty} J\left(\tau_{N}^{*}, d_{N, \tau}^{*}, z_{0}\right)=J\left(\tau^{*}, d_{\tau}^{*}, z_{0}\right)$. Take $\epsilon \in\left(0, \min _{m} B(m)-m\right)$, $K<\max \{u(-\infty, 1), 0\}, \underline{\tau}_{N}=\tau^{*} \wedge \tau_{N}^{*}, \bar{\tau}_{N}=\tau^{*} \vee \tau_{N}^{*}, \underline{d}_{N}=d_{\tau}^{*} \mathbb{1}\left(\underline{\tau}_{N}=\tau^{*}\right)+d_{N, \tau}^{*} \mathbb{1}\left(\underline{\tau}_{N}=\tau_{N}^{*}\right)$. Define \bar{d}_{N} analogously but replacing $\underline{\tau}_{N}$ with $\bar{\tau}_{N}$. Let $\bar{B}_{\underline{\tau}_{N}}=B\left(M_{\underline{\tau}_{N}}\right) \vee B_{N}\left(M_{\underline{\tau}_{N}}\right)$ and $\bar{b}_{N}=$ $\underline{b} \wedge \underline{b}_{N}$. Then $\left|J\left(\tau^{*}, d_{\tau}^{*}, z_{0}\right)-J\left(\tau_{N}^{*}, d_{N, \tau}^{*}, z_{0}\right)\right|$ is equal to

$$
\begin{aligned}
& \mathbb{E}\left[e^{-r \underline{\tau}_{N}}\left|u\left(X_{\underline{\tau}_{N}}, \underline{d}_{N}\right)-\mathbb{E}_{X_{\underline{I}_{N}}, M_{\underline{I}_{N}}}\left[e^{-r\left(\bar{\tau}_{N}-\underline{\tau}_{N}\right)} u\left(X_{\bar{\tau}_{N}}, \bar{d}_{N}\right)\right]\right|\right] \\
& \leq \mathbb{E}\left[e^{-r \underline{\underline{I}}_{N}} \underline{d}_{N} \mid u\left(X_{\underline{\tau}_{N}}, 1\right)-\mathbb{E}^{X_{\tau_{N}}}\left[e^{-r \tau_{+}\left(\bar{B}_{I_{N}} ; X_{I_{N}}-\epsilon\right)} u\left(X_{\underline{\tau}_{N}}-\epsilon, 1\right)+e^{-r \tau\left(X_{I_{N}}-\epsilon ; \bar{B}_{\tau_{N}}\right)} K \mid\right]\right.
\end{aligned}
$$

[^5]$$
+\mathbb{E}\left[e^{-r_{I_{N}}}\left(1-\underline{d}_{N}\right) \mid u\left(X_{I_{N}}, 0\right)-\mathbb{E}^{X_{I_{N}}}\left[e^{-r \tau\left(\underline{b N}_{N}: X_{I_{N}}+\epsilon\right.} u\left(\underline{b}_{N}, 0\right)+e^{-r \tau_{\tau}+\left(X_{X_{N}}+\epsilon ; \underline{b}_{N}\right)} K \mid\right] .\right.
$$

Because $X_{\tau_{N}}=B\left(M_{I_{N}}\right) \wedge B_{N}\left(M_{\tau_{N}}\right)$ when $\underline{d}_{N}=1$ and $\lim _{N \rightarrow \infty}\left|B(m)-B_{N}(m)\right|=0$, it is easily verified that for each history $h_{I_{N}}, \lim _{N \rightarrow \infty} \mathbb{E}^{B\left(M_{I_{N}}\right) \wedge B_{N}\left(M_{I_{N}}\right)}\left[e^{-r \tau_{+}\left(\bar{B}_{I_{N} N}: X_{I_{N}-\epsilon}\right)}\right]=1$ and $\lim _{N \rightarrow \infty} \mathbb{E}^{B\left(M_{I_{N}}\right) \wedge B_{N}\left(M_{I_{N}}\right)}\left[e^{-r \tau\left(X_{I_{N}-\epsilon} ; \bar{B}_{I_{N}}\right)}\right]=0$, so the first absolute value after the inequality above converges to $\underline{d}_{N}\left(u\left(X_{\tau_{N}}, 1\right)-u\left(X_{\tau_{N}}-\epsilon, 1\right)\right)$ as $N \rightarrow \infty$. Since ϵ is arbitrary, the first expectation can be made to converge to 0 . A similar argument holds for the second expectation after the inequality. We conclude that $\lim _{N \rightarrow \infty}\left|J\left(\tau^{*}, d_{\tau}^{*}, z_{0}\right)-J\left(\tau_{N}^{*}, d_{N, \tau}^{*}, z_{0}\right)\right|=0$. Analogous arguments show the difference in A 's continuation value after history h_{t} from τ_{N}^{*} and τ^{*} goes to 0 as $N \rightarrow \infty$.

APPENDIX F: Additional Results From Section 4

We now show that $D P$ is a relaxation of the dynamic participation constraint.
LEMMA 23: If $\left(\tau, d_{\tau}\right)$ satisfies the dynamic participation constraint, it satisfies $D P$.
Proof: Suppose $\left(\tau, d_{\tau}\right)$ satisfies the dynamic participation constraint. For any τ^{\prime}, $V\left(\tau, d_{\tau}, z_{0}\right)-V\left(\tau \wedge \tau^{\prime}, d_{\tau} \mathbb{\mathbb { 1 }}\left(\tau<\tau^{\prime}\right), z_{0}\right)$ is equal to

$$
\mathbb{E}\left[e^{-r \tau^{\prime}} \mathbb{1}\left(\tau \geq \tau^{\prime}\right)\left\{\mathbb{E}^{X_{\tau^{\prime}}}\left[e^{-r \tau\left[h_{\tau^{\prime}}\right]} v\left(X_{\tau\left[h_{\tau^{\prime}}\right]}, d_{\tau}\left[h_{\tau^{\prime}}\right]\right)\right]-\frac{c_{A}}{r}\right\}\right]
$$

$D P$ holds if $\mathbb{E}\left[e^{-r \tau^{\prime}} \mathbb{1}\left(\tau \geq \tau^{\prime}\right)\left\{\mathbb{E}^{X_{\tau^{\prime}}}\left[e^{-r \tau\left[h_{\tau^{\prime}}\right]} v\left(X_{\tau\left[h_{\tau^{\prime}}\right]}, d_{\tau}\left[h_{\tau^{\prime}}\right]\right)\right]-\frac{c_{A}}{r}\right\}\right] \geq 0$ for all τ^{\prime}, which follows because $\mathbb{E}^{X_{\tau^{\prime}}}\left[e^{-r \tau\left[h_{\tau^{\prime}}\right]} v\left(X_{\tau\left[h_{\tau^{\prime}}\right]}, d_{\tau}\left[h_{\tau^{\prime}}\right]\right)\right]-\frac{c_{A}}{r}$ is A 's continuation value under $\left(\tau, d_{\tau}\right)$ at $h_{\tau^{\prime}}$ and is positive by the dynamic participation constraint.
Q.E.D.

We next prove the result mentioned in the Introduction of Section 4 in which we consider R 's problem with only a time-zero participation constraint.

Proposition 8: For any $W \in\left[0, \sup _{\left(\tau, d_{\tau}\right)} V\left(\tau, d_{\tau}, z_{0}\right)\right)$, the solution to $\sup _{\left(\tau, d_{\tau}\right)} J\left(\tau, d_{\tau}\right.$, $\left.z_{0}\right)$ subject to $V\left(\tau, d_{\tau}, z_{0}\right) \geq W$ is a static threshold mechanism.

Proof: Using Theorem 1 of Balzer and Janßen (2002), there exists a $\widehat{\lambda} \leq 0$ such that the value of R 's problem is equal to

$$
\sup _{\left(\tau, d_{\tau}\right)} \mathbb{E}\left[e^{-r \tau}\left(u\left(X_{\tau}, d_{\tau}\right)-\widehat{\lambda} v\left(X_{\tau}, d_{\tau}\right)\right)\right]-\frac{c_{R}}{r}+\widehat{\lambda}\left(W+\frac{c_{A}}{r}\right) .
$$

Given that $u(x, 1)-\widehat{\lambda} v(x, 1)$ is increasing in x, by standard optimal stopping arguments, the optimal stopping rule takes the form $\tau^{*}=\inf \left\{t: X_{t} \notin\left(b^{*}, B^{*}\right)\right\}$ for some $b^{*} \leq 0 \leq B^{*}$ and $d_{\tau}^{*}=\mathbb{1}\left(X_{\tau} \geq B^{*}\right)$ (we allow for $b^{*}=-\infty$ if it is never optimal to reject). The same arguments as in the proof of Proposition 5 show that $\left(\tau^{*}, d_{\tau}^{*}\right)$ will solve R 's problem for an appropriate choice of $\widehat{\lambda}$.
Q.E.D.

Proof of Proposition 1

Proof: Compare the optimal mechanisms (in Z-space) for $Z_{0} \in\left\{z^{1}, z^{2}\right\}$ with $z^{1}>z^{2}$. Let $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$ be the optimal mechanism when $Z_{0}=z^{i}$ and let $B_{i}^{Z}(m)$ be the approval
threshold from $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$ in Z-space when $M_{t}^{Z}=m$. Define $b_{Z}^{*}(\cdot)$ and $\underline{B}_{Z}(\cdot)$ analogously to the $b^{*}(\cdot), \underline{B}(\cdot)$. Let $\tau_{+}^{Z}(B)=\inf \left\{t: Z_{t} \geq B\right\}$ and $\tau^{Z}(b)=\inf \left\{t: Z_{t} \leq b\right\}$.

We start by arguing that the rejection threshold in all optimal mechanisms is equal to the highest z, call it \underline{z}, such that $\sup _{\left(\tau, d_{\tau}\right)} J\left(\tau, d_{\tau}, z\right)$ subject to $D P(z)$ is equal to 0 . It is never optimal to reject at $\tau^{Z}(z)$ for $z>\underline{z}$ as, for each $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$, there exists a continuation mechanism at $\tau^{Z}(z)$ that makes both R and A better off. ${ }^{9}$ If R does not reject at $\tau^{Z}(\underline{z})$ under $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$, then A 's continuation value at $\tau^{Z}(\underline{z})$ is strictly positive; otherwise R could reject at $\tau^{Z}(\underline{z})$ and be better off without making A worse off.

Suppose A 's continuation value was strictly positive at $\tau^{Z}(\underline{z})$ under $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$. The approval threshold must be constant prior to $\tau^{Z}(\underline{z})$ and $b_{Z}^{*}\left(B_{i}^{Z}(\underline{z})\right)<\underline{z} . R$ would be better off increasing the rejection threshold to \underline{z}. By the same arguments as in Lemma 20, doing so will not violate $D P,{ }^{10}$ contradicting the optimality of $\left(\tau^{Z, i}, d_{\tau}^{Z, i}\right)$. We conclude that all optimal mechanisms will use the rejection threshold \underline{z}.

We now show $B_{1}^{Z}(m)=B_{2}^{Z}(m)$ for all $m \leq z^{2}$. Once the approval threshold begins to decrease, it is pinned down as \underline{B}_{Z}. Therefore, it suffices to show that $\bar{B}_{1}^{Z}:=B_{1}^{Z}\left(z^{2}\right)=$ $B_{2}^{Z}\left(z^{2}\right)=: \bar{B}_{2}^{Z}$. Suppose $\bar{B}_{1}^{Z} \neq \bar{B}_{2}^{Z}$. Let $J_{i}(z)$ be R 's continuation value under $\left(\tau^{Z, i}, d^{Z, i}\right)$ at $\tau^{Z}(z)$. Because the continuation mechanism for $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ at $\tau^{Z}\left(z^{2}\right)$ satisfies $D P$, we must have $J_{1}\left(z^{2}\right) \leq J_{2}\left(z^{2}\right)$ by the optimality when $Z_{0}=z^{2}$ of using $\left(\tau^{Z, 2}, d_{\tau}^{Z, 2}\right)$ rather than the continuation mechanism for $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ at $\tau^{Z}\left(z^{2}\right)$.

Suppose $J_{1}\left(z^{2}\right)<J_{2}\left(z^{2}\right)$. If A 's continuation value is 0 at $\tau^{Z}\left(z^{2}\right)$ under $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$, then R is strictly better off changing the continuation mechanism of $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ at $\tau^{Z}\left(z^{2}\right)$ to ($\tau^{Z, 2}, d_{\tau}^{Z, 2}$) because it (weakly) increases both players' continuation values, strictly so for R.

Suppose A^{\prime} s continuation value under $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ at $\tau^{Z}\left(z^{2}\right)$ is strictly positive. Then $z^{2}>b_{Z}^{*}\left(\bar{B}_{1}^{Z}\right)$. Construct a mechanism $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ that only stops prior to $\tau^{Z}\left(z^{2}\right)$ if $Z_{t} \geq \bar{B}_{1}^{Z}$ and then uses $\left(\tau^{Z, 2}, d_{\tau}^{Z, 2}\right)$ as its continuation mechanism at $\tau^{Z}\left(z^{2}\right)$. When $Z_{0}=z^{1},\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ leads to the same outcomes as $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ if $\tau^{Z, 1}<\tau^{Z}\left(z^{2}\right)$ and increases R 's continuation value at $\tau^{Z}\left(z^{2}\right)$. Because $\left(\tau^{Z, 2}, d_{\tau}^{Z, 2}\right)$ satisfies $D P$, to show that $D P$ is satisfied un$\operatorname{der}\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ we need only verify that A has no incentive to quit before $\tau^{Z}\left(z^{2}\right)$. Because A 's continuation value under $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ is weakly positive at $\tau^{Z}\left(z^{2}\right)$, A 's continuation value under $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ at h_{t} with $t<\tau^{Z}\left(z^{2}\right)$ is bounded below his value of a static threshold mechanism (with thresholds in Z-space) with approval threshold \bar{B}_{1}^{Z} and rejection threshold z^{2}. Because $z^{2}>b_{Z}^{*}\left(\bar{B}_{1}^{Z}\right), A$'s value of this static threshold mechanism is positive by the arguments in Lemma 20. Thus, $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ satisfies $D P$ and is a strict improvement for R over $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ when $Z_{0}=z^{1}$, contradicting the optimality of ($\tau^{Z, 1}, d_{\tau}^{Z, 1}$). Therefore, $J_{1}\left(z^{2}\right)=J_{2}\left(z^{2}\right)$. Using the continuation mechanism from $\left(\tau^{Z, 1}, d_{\tau}^{Z, 1}\right)$ at $\tau^{Z}\left(z^{2}\right)$ when $Z_{0}=z^{2}$ is therefore optimal, meaning the $\bar{B}_{1}^{Z}=\bar{B}_{2}^{Z}$.

This result implies that, in X space, the approval threshold function in the optimal $S I$ mechanism when $\left(X_{0}, Z_{0}\right)=\left(0, z_{0}\right)$ and in the optimal $S I$-mechanism when $\left(X_{0}, Z_{0}\right)=$ $\left(x, z_{x}\right)$ are the same when $x<0$.

[^6]
General Utility Functions

As mentioned at the end of Section 4, we can extend Theorem 1 to allow for more general utility functions than presented in the main body of the text. We place the following assumptions on \tilde{u} and \tilde{v}.

ASSUMPTION 1: \tilde{u}, \tilde{v} are bounded, differentiable, and such that $\tilde{v}(x) \geq \tilde{u}(x), \tilde{u}^{\prime}(x) \geq$ $\tilde{v}^{\prime}(x) \geq 0$ and $\tilde{u}\left(X_{t}\right), \tilde{v}\left(X_{t}\right)$ are supermartingales.

In our main specification of the model, $\tilde{v}(x) \geq \tilde{u}(x), \tilde{u}^{\prime}(x) \geq \tilde{v}^{\prime}(x) \geq 0$ are captured by $a \in[f, 1]$. Translating from X_{t} into π_{t}, because π_{t} is a martingale, \tilde{u} and \tilde{v} are supermartingales if they are weakly concave in π_{t}. This condition holds in our main model, in which \tilde{u} and \tilde{v} are linear in π_{t}.

The proof when \tilde{u} and \tilde{v} are supermartingales changes only slightly; in particular, we only need to change the equalities that result when we apply Doob's optional stopping theorem and the fact \tilde{u} and \tilde{v} are martingales to inequalities going in the needed direction when they are supermartingales.

No Commitment

We first specify the details of the model without commitment. We assume A can temporarily stop experimenting at any time. No flow cost is paid while experimentation is stopped and R can approve at any time. ${ }^{11}$

A strategy for A is a process $\alpha=\left\{\alpha_{t}: 0 \leq t<\infty\right\}$ that is measurable with respect to the filtration generated by X. A continuation strategy of α^{*} at history h_{t} is $\alpha^{*}\left[h_{t}\right]$ defined by, for each ω with history $h_{t}, \alpha^{*}\left[h_{t}\right]\left(\chi_{t} \omega\right)=\alpha^{*}(\omega)$. Both agents observe X, which solves to stochastic differential equation $d X_{t}=\alpha_{t}\left(\mu_{\theta} d t+\sigma d W_{t}\right)$. R 's strategy is given as before by a stopping time and decision rule $\left(\tau, d_{\tau}\right) .{ }^{12}$

DEFINITION 8: A pair $\left(\alpha^{*},\left(\tau^{*}, d_{\tau}^{*}\right)\right)$ is an equilibrium if for every history h_{t}, the continuation actions $\alpha^{*}\left[h_{t}\right]$ and $\left(\tau^{*}\left[h_{t}\right], d_{\tau}^{*}\left[h_{t}\right]\right)$ satisfy

- $\alpha^{*}\left[h_{t}\right] \in \arg \max _{\alpha} \mathbb{E}^{X_{t}}\left[e^{-r \tau^{*}\left[h_{t}\right]} \tilde{v}\left(X_{\tau^{*}\left[h_{t}\right]}\right) d_{\tau}^{*}\left[h_{t}\right]-\int_{0}^{\tau^{*}\left[h_{t}\right]} e^{-r s} \alpha_{s} c_{A} d s \mid \alpha\right]$.
- $\left(\tau^{*}\left[h_{t}\right], d_{\tau}^{*}\left[h_{t}\right]\right) \in \arg \max _{\tau, d_{\tau}} \mathbb{E}^{X_{t}}\left[e^{-r \tau} \tilde{u}\left(X_{\tau}\right) d_{\tau}-\int_{0}^{\tau} e^{-r s} \alpha_{s}^{*}\left[h_{t}\right] c_{R} d s \mid \alpha^{*}\left[h_{t}\right]\right]$.

PROPOSITION 9: The optimal mechanism can be implemented as an equilibrium.
Proof: Suppose R uses $\left(\tau^{*}, d_{\tau}^{*}\right)$ from Theorem 1 and A uses the following strategy: experiment until τ^{*}, at which immediately stop and never restart experimenting, and if experimentation has stopped before τ^{*}, immediately restart experimenting and keep experimenting until τ^{*}.

We claim this is an equilibrium. First, consider the incentives of R to deviate. Suppose the equilibrium calls for R to approve at time τ^{*}. If she does not approve at τ^{*}, A quits experimenting at τ^{*} forever. Because no new learning occurs, R prefers to approve immediately at τ^{*} because $\tilde{u}\left(X_{\tau^{*}}\right) \geq 0$. Suppose R had a profitable deviation to stop at some

[^7]τ^{\prime} such that $\tau^{\prime} \leq \tau^{*} . R$ will never find it profitable to reject earlier than τ^{*}. If R 's continuation value was negative at some history h_{t} with $X_{t} \geq M_{t}>\underline{b}$, then R 's continuation value would be negative at $\tau\left(M_{t}\right)$ and R would be better off under rejecting at $\tau\left(M_{t}\right)$; by similar arguments as those made in the proof of Proposition 1, rejection at $\tau\left(M_{t}\right)$ would still satisfy $D P$, a contradiction of the optimality of $\left(\tau^{*}, d_{\tau}^{*}\right)$. Therefore, R must approve at τ^{\prime} when $\tau^{\prime}<\tau^{*}$. If R is better off approving at a history $h_{\tau^{\prime}}$ with $X_{\tau^{\prime}} \in\left[M_{\tau^{\prime}}, B\left(M_{\tau^{\prime}}\right)\right)$, then R would better off lowering the approval threshold $B\left(M_{\tau^{\prime}}\right)$, which would increase A 's utility as well by the arguments in Lemma 8, contradicting the optimality of τ^{*}. Therefore, no such deviation can exist.

Next, we consider the incentives of A to deviate from the proposed equilibrium. Under the proposed approval rule, the dynamic participation constraint implies A has no incentive to quit early. If he were to quit early, R would believe A will restart experimenting immediately and, therefore, not find it optimal to approve. Moreover, A has an incentive to stop experimenting at τ^{*} because he believes R will approve immediately. In the off-path event that R does not approve, A believes R will approve in the next instant and has no incentive to restart experimentation because it is costly and will not increase the probability of approval. Because neither A nor R have an incentive to deviate, $\left(\tau^{*}, d_{\tau}^{*}\right)$ is an equilibrium.
Q.E.D.

APPENDIX G: Omitted Proofs From Section 5

Proof of Lemma 11

Proof: Because $a \geq 0, v_{i}(x, 1)>v_{i}(x, 0)>0$ for all x and $i \in\{\ell, h\}$. Because $v_{i}\left(X_{t}, 1\right)$ is a strictly positive martingale, for any $b<x<B$ we have

$$
\begin{aligned}
\tilde{V}_{i}(B, b, x) & \leq \mathbb{E}^{x, z_{i}(x)}\left[e^{-r\left(\tau_{+}(B) \wedge \tau(b)\right)} v_{i}\left(X_{\tau_{+}(B) \wedge \tau(b)}, 1\right)\right]-\frac{c_{A}}{r} \\
& <\mathbb{E}^{x, z_{i}(x)}\left[v_{i}\left(X_{\tau_{+}(B) \wedge \tau(b)}, 1\right)\right]-\frac{c_{A}}{r}=\tilde{v}_{i}(x)=\tilde{V}_{i}(x, b, x) .
\end{aligned}
$$

Take any $B^{\prime} \in(x, B)$. Using $\tilde{V}_{i}\left(B, b, B^{\prime}\right)<\tilde{v}_{i}\left(B^{\prime}\right)$, we have

$$
\begin{aligned}
\widetilde{V}_{i}(B, b, x) & =\mathbb{E}^{x, z_{i}(x)}\left[e^{-r \tau_{+}\left(B^{\prime} ; b\right)}\right]\left(\widetilde{V}_{i}\left(B, b, B^{\prime}\right)+\frac{c_{A}}{r}\right)+\mathbb{E}^{x, z_{i}(x)}\left[e^{-r \tau\left(b ; B^{\prime}\right)}\right] \frac{c_{A}}{r}-\frac{c_{A}}{r} \\
& <\mathbb{E}^{x, z_{i}(x)}\left[e^{-r \tau_{+}\left(B^{\prime} ; b\right)}\right]\left(\tilde{v}_{i}\left(B^{\prime}\right)+\frac{c_{A}}{r}\right)+\mathbb{E}^{x, z_{i}(x)}\left[e^{-r \tau\left(b ; B^{\prime}\right)}\right] \frac{c_{A}}{r}-\frac{c_{A}}{r}=\widetilde{V}_{i}\left(B^{\prime}, b, x\right) .
\end{aligned}
$$

Thus, \widetilde{V}_{i} is decreasing in B.

Proof of Lemma 12

PROOF: Given $\underline{B}_{i}(m)=b_{i}^{*-1}(m)$, it suffices to show $b^{*}(B ; z)$ is decreasing in z. For the sake of contradiction, suppose $b^{*}(B ; \infty)>b^{*}(B ;-\infty)$. Without loss, assume $0 \in$ $\left(b^{*}(B ; \infty), B\right)$. As in Lemma 3, let $\Psi(b)=\mathbb{E}\left[e^{-r \tau_{+}(B ; b)} \mid H\right]$ and $\psi(b)=\mathbb{E}\left[e^{-r \tau(b ; B)} \mid H\right]$; we will drop dependence on b when $b=b^{*}(B ; \infty)$. By single-peakedness of \widetilde{V} with respect to $b,\left.\frac{\partial \widetilde{V}(B, b, 0 ; \infty)}{\partial b}\right|_{b=b^{*}(B ; \infty)}=0>\left.\frac{\partial \widetilde{V}(B, b, 0 ;-\infty)}{\partial b}\right|_{b=b^{*}(B ; \infty)}$. By the definitions of $\widetilde{V}(B, b, 0 ; \infty)$ and $\widetilde{V}(B, b, 0 ;-\infty)$ provided in Lemma 3, $\left.\frac{\partial \widetilde{V}(B, b, 0 ; \infty)}{\partial b}\right|_{b=b^{*}(B ; \infty)}=\frac{d \Psi}{d b}\left(1+\frac{c_{A}}{r}\right)+\frac{d \psi}{d b} \frac{c_{A}}{r}=0$, which
implies $\frac{d \Psi}{d b}=-\frac{d \psi}{d b} \frac{c_{A}}{r+c_{A}}$ and $0>\left.\frac{\partial \tilde{V}(B, b, 0 ;-\infty)}{\partial b}\right|_{b=b^{*}(B ; \infty)}$ implies

$$
0>\frac{d \Psi}{d b} e^{-\frac{2 \mu}{\sigma^{2}} B}\left(a+\frac{c_{A}}{r}\right)+\frac{d \psi}{d b} e^{-\frac{2 \mu}{\sigma^{2}} b^{*}(B ; \infty)} \frac{c_{A}}{r}-\frac{2 \mu}{\sigma^{2}} \psi e^{-\frac{2 \mu}{\sigma^{2}} b^{*}(B ; \infty)} \frac{c_{A}}{r} .
$$

Let $\Delta=B-b^{*}(B ; \infty)$. Using $\frac{d \psi}{d b}=-\frac{d \psi}{d b} \frac{c_{A}}{r+c_{A}}$, the above inequality is equivalent to

$$
\frac{d \psi}{d b}\left(1-\frac{a r+c_{A}}{r+c_{A}} e^{-\frac{2 \mu}{\sigma^{2}} \Delta}\right)-\frac{2 \mu}{\sigma^{2}} \psi<0 .
$$

Using the formula for ψ provided in Lemma 3, $\frac{d \psi}{d b}=\psi \frac{R_{2} e^{-R_{2} \Delta}-R_{1} e^{-R_{1} \Delta}}{e^{-R_{1} \Delta}-e^{-R_{2} \Delta}}$. Plugging this into the above inequality and simplifying, we have

$$
\frac{R_{2} e^{-R_{2} \Delta}-R_{1} e^{-R_{1} \Delta}}{e^{-R_{1} \Delta}-e^{-R_{2} \Delta}}<\frac{2 \mu}{\sigma^{2}\left(1-\frac{a r+c_{A}}{r+c_{A}} e^{-\frac{2 \mu}{\sigma^{2}} \Delta}\right)} \leq \frac{2 \mu}{\sigma^{2}\left(1-e^{-\frac{2 \mu}{\sigma^{2}} \Delta}\right)}
$$

Recall from Lemma 3 that $R_{1}+R_{2}=-\frac{2 \mu}{\sigma^{2}}$ and $R_{2} \geq 0$. If $R_{2}=0$, then $\frac{R_{2} e^{-R_{2} \Delta}-R_{1} e^{-R_{1} \Delta}}{e^{-R_{1} \Delta}-e^{-R_{2} \Delta}}=$ $\frac{2 \mu}{\sigma^{2}\left(1-e^{-\frac{2 \mu}{\sigma^{2}} \Delta}\right)}$. The derivative of $\frac{R_{2} e^{-R_{2} \Delta}-R_{1} e^{-R_{1} \Delta}}{e^{-R_{1} \Delta}-e^{-R_{2} \Delta}}$ with respect to R_{2} when $R_{1}=-\frac{2 \mu}{\sigma^{2}}-R_{2}$ is $\frac{\sinh \left(\Delta\left(\frac{2 \mu}{\sigma^{2}}+2 R_{2}\right)\right)-\Delta\left(\frac{2 \mu}{\sigma^{2}}+2 R_{2}\right)}{\cosh \left(\Delta\left(\frac{2 \mu}{\sigma^{2}}+2 R_{2}\right)\right)-1} \geq 0$. Thus, $\frac{R_{2} e^{-R_{2} \Delta}-R_{1} e^{-R_{1} \Delta}}{e^{-R_{1} \Delta}-e^{-R_{2} \Delta}} \geq \frac{2 \mu}{\sigma^{2}\left(1-e^{-\frac{2 \mu}{\sigma^{2}} \Delta}\right)}$, a contradiction. We conclude that $b^{*}(B ; \infty)<b^{*}(B ;-\infty)$.
$b^{*}(B ; z)$ is characterized by the first-order condition

$$
\begin{equation*}
\left.\frac{e^{z_{x}}}{1+e^{z_{x}}} \frac{\partial \tilde{V}(B, b, x ; \infty)}{\partial b}\right|_{b=b^{*}(B ; z)}+\left.\frac{1}{1+e^{z_{x}}} \frac{\partial \tilde{V}(B, b, x ;-\infty)}{\partial b}\right|_{b=b^{*}(B ; z)}=0 \tag{16}
\end{equation*}
$$

Given $b^{*}(B ; \infty)<b^{*}(B ;-\infty)$ and the single-peakedness of \widetilde{V} with respect to b, if $\frac{\partial \widetilde{V}(B, b, x ; \infty)}{\partial b}>0$, then $\frac{\partial \widetilde{V}(B, b, x ;-\infty)}{\partial b}>0$. To satisfy (16) at $b=b^{*}(B ; z)$, we must have $\frac{\partial \widetilde{V}(B, b, x ; \infty)}{\partial b}<0<\frac{\partial \widetilde{V}(B, b, x ;-\infty)}{\partial b}$. Taking the derivative of our first-order condition with respect to z and doing a bit of algebra, we get that the sign of $\frac{\partial b^{*}(B ; z)}{\partial z}$ is equal to $\left.\frac{\partial V(B, b, x ; \infty)}{\partial b}\right|_{b=b^{*}(B ; z)}-\left.\frac{\partial V(B, b, x ;-\infty)}{\partial b}\right|_{b=b^{*}(B ; z)}<0$.
Q.E.D.

Proof of Lemma 13

Proof: Let $m^{\prime}=\max \left\{m \leq 0: V^{*}\left(\tau^{\prime}, d_{\tau}^{\prime}, m, z_{\ell}(m)\right)=0\right\}$, because $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ rejects at $\tau(\underline{b}), m^{\prime} \geq \underline{b}$. Thus, $V^{*}\left(\tau^{\prime}, d_{\tau}^{\prime}, m, z_{\ell}(m)\right)>0$ for all $m \in\left(m^{\prime}, 0\right]$ if $m^{\prime}<0$.

Suppose $m^{\prime}<0$. Take some small $\epsilon>0$. Because ℓ always prefers a lower approval threshold and his continuation value is 0 at $\tau(\underline{m}), V^{*}\left(\tau^{\prime}, d_{\tau}^{\prime}, m^{\prime}+\epsilon, z_{\ell}\left(m^{\prime}+\epsilon\right)\right)$ is bounded above by his expected utility from the static threshold mechanism with approval threshold $B\left(m^{\prime}\right)$ and rejection threshold m^{\prime}, namely $\widetilde{V}_{\ell}\left(B\left(m^{\prime}\right), m^{\prime}, m^{\prime}+\epsilon\right) \geq$ $V^{*}\left(\tau^{\prime}, d_{\tau}^{\prime}, m^{\prime}+\epsilon, z_{\ell}\left(m^{\prime}+\epsilon\right)\right) \geq 0$. As is shown in in the proof of Lemma $7, b_{i}^{*}(B)$ is increasing in B for $B>B_{A}^{F B}$. Because $B_{A}^{F B}=-\infty$ when $a \geq 0$ and $B\left(m^{\prime}\right)>\underline{B}_{\ell}\left(m^{\prime}\right)$, $b_{\ell}^{*}\left(B\left(m^{\prime}\right)\right)>m^{\prime}$, which implies that ℓ^{\prime} s continuation value in the static threshold mechanism at $\tau\left(m^{\prime \prime}\right)$ for $m^{\prime \prime} \in\left(m^{\prime}, b_{\ell}^{*}\left(B\left(m^{\prime}\right)\right)\right.$ is strictly negative. For $\epsilon \in\left(0, b_{\ell}^{*}\left(B\left(m^{\prime}\right)\right)-m^{\prime}\right)$,
we have $\tilde{V}_{\ell}\left(B\left(m^{\prime}\right), m^{\prime}, m^{\prime}+\epsilon\right)<0$, a contradiction. Therefore, $m^{\prime}=0$, which implies $V^{*}\left(\tau^{\prime}, d_{\tau}^{\prime}, z_{\ell}\right)=0$.
Q.E.D.

Proof of Lemma 14

For this proof, we will use the characterization of the optimal mechanism when $\operatorname{DIC}(h)$ is dropped. None of the proofs when deriving the optimal mechanism when $\operatorname{DIC}(h)$ was dropped relied on this lemma. In the next two proofs, we will use X_{c}^{i} to denote the value of X_{c} when $z_{0}=z_{i}$.

Proof: Take z_{h} sufficiently large and let $\left(\tau^{i}, d_{\tau}^{i}\right)$ be type i 's mechanism when $\operatorname{DIC}(h)$ is dropped. As $z_{h} \rightarrow \infty, X_{c}^{h} \rightarrow-\infty$. By the arguments in Lemma $15, R$ will never reject h while $X_{t}>X_{c}^{h}$. Thus, the probability that R rejects h goes to 0 as $z_{h} \rightarrow \infty$.

Suppose h weakly prefers ℓ 's mechanism. It is straightforward to verify that h would never quit prior to $\tau\left(\underline{b}_{\ell}\right)$ under $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$. Consider a modification of ℓ 's mechanism, call it $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$, that uses the same approval threshold as $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$ prior to $\tau\left(\underline{b}_{\ell}\right)$ but uses a continuation mechanism $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ at $\tau\left(\underline{b}_{\ell}\right)$ with $\tau^{\prime}=\inf \left\{t: X_{t} \notin\left(X_{c}^{h}, B^{\prime}\left(M_{t}\right)\right)\right\}$ and $d_{\tau}^{\prime}=$ $\mathbb{1}\left(X_{\tau^{\prime}} \geq B^{\prime}\left(M_{\tau^{\prime}}\right)\right)$ for some function B^{\prime} with $B^{\prime}(m) \in\left(\underline{B}_{\ell}(m), \underline{B}_{h}(m)\right)$. By Lemma 13, ℓ will find it optimal to quit at $\tau\left(\underline{b}_{\ell}\right)$ under $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$, so $V^{*}\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}, z_{\ell}\right)=V\left(\tau^{\ell}, d_{\tau}^{\ell}, z_{\ell}\right)$. Thus, replacing $\left(\tau^{h}, d_{\tau}^{h}\right)$ with $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ will satisfy $\operatorname{DIC}(\ell)$ and increase the discounted probability of approval. It is easy to see that \underline{b}_{ℓ} is finite in the limit as $z_{h} \rightarrow \infty$, so this increase in the discounted probability of approval is bounded away from 0 as $z_{h} \rightarrow \infty$.
h 's continuation value under $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ is strictly positive at $\tau\left(\underline{b}_{\ell}\right)$, so h will now strictly prefer $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ to $\left(\tau^{h}, d_{\tau}^{h}\right)$. Because the discounted probability of rejection is approximately 0 under both $\left(\tau^{h}, d_{\tau}^{h}\right)$ and $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$, for h to strictly prefer $\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ to $\left(\tau^{h}, d_{\tau}^{h}\right)$, it must be that $\mathbb{E}^{0, z_{h}}\left[e^{-r \tau^{h}} d_{\tau}^{h}\left(1+\frac{c_{A}}{r}\right)\right]<\mathbb{E}^{0, z_{h}}\left[e^{-r \tilde{\tau}^{\ell}} \tilde{d}_{\tau}^{\ell}\left(1+\frac{c_{A}}{r}\right)\right]$, which implies $\mathbb{E}^{0, z_{h}}\left[e^{-r \tau^{h}} d_{\tau}^{h}\right]<$ $\mathbb{E}^{0, z_{h}}\left[e^{-r \tilde{\tau}^{\ell}} \tilde{d}_{\tau}^{\ell}\right]$.

For z_{h} sufficiently large, R 's expected utility from $\left(\tau, d_{\tau}\right)$ is approximately $\mathbb{E}^{0, z_{h}}\left[e^{-r \tau} d_{\tau}\right]$. Because offering $h\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ would satisfy $\operatorname{DIC}(\ell),\left(\tilde{\tau}^{\ell}, \tilde{d}_{\tau}^{\ell}\right)$ represents an improvement for R over $\left(\tau^{h}, d_{\tau}^{h}\right)$, a contradiction. Therefore, h must strictly prefer $\left(\tau^{h}, d_{\tau}^{h}\right)$ to $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$. Q.E.D.

Proof of Lemma 17

Proof: Suppose, for the sake of contradiction, $X^{k}>\underline{X}_{\ell}^{N}$ and $X^{k+1}<X^{k}-\delta_{N}$, so that $X^{k+1}+\delta_{N} \notin \mathcal{B}_{N}$. By Lemma 16, $\rho\left(X^{k+1}+\delta_{N}\right)>0>\rho\left(X^{k}\right)$. Because $B_{N}\left(X^{k+1}+\delta_{N}\right)=$ $B_{N}\left(X^{k}\right)$ and $\rho_{\ell}\left(X_{n}\right)=\widetilde{V}_{\ell}\left(B_{N}\left(X_{n}\right), X_{n}-\delta_{N}, X_{n}\right)$, we have

$$
\begin{equation*}
\tilde{V}_{\ell}\left(B_{N}\left(X^{k}\right), X^{k+1}, X^{k+1}+\delta_{N}\right)>0>\tilde{V}_{\ell}\left(B_{N}\left(X^{k}\right), X^{k}-\delta_{N}, X^{k}\right) \tag{17}
\end{equation*}
$$

Because \tilde{V}_{ℓ} is strictly decreasing in B, Lemma 17 implies $\underline{B}_{N, \ell}\left(X^{k+1}+\delta_{N}\right)>B_{N}\left(X^{k}\right)>$ $\underline{B}_{N, \ell}\left(X^{k}\right)$, which contradicts that $\underline{B}_{N, \ell}$ is increasing (Lemma 7).
Q.E.D.

PROPOSITION 10: If $z_{\ell}>\log (-f)$, then $B_{h}^{1} \leq B_{\ell}^{1}$ and $B_{h}^{1}<B_{\ell}^{1}$ implies $b_{\ell}^{1}<b_{h}^{1}$.
Proof: Because R would like to approve h immediately, $D I C(\ell)$ must bind. $z_{\ell}>$ $\log (-f)$ implies $X_{c}^{\ell}<0$. By the same arguments made in the example in Section $4, R$ will
never reject at any history h_{t} with $B^{\ell}\left(M_{t} ; \eta_{\ell}\right)>X_{c}^{\ell}$. Because $B_{\ell}^{1} \geq 0>X_{c}^{\ell}$ and $B^{\ell}\left(m ; \eta_{\ell}\right)$ only decreases at $m<b_{\ell}^{*}\left(B_{\ell}^{1}\right)$, we must have $\underline{b}_{\ell}<b_{\ell}^{*}\left(B_{\ell}^{1}\right)$. ℓ^{\prime} s expected utility from ($\tau^{\ell}, d_{\tau}^{\ell}$) is $\widetilde{V}_{\ell}\left(B_{\ell}^{1}, b_{\ell}^{*}\left(B_{\ell}^{1}\right), 0\right)$.

Suppose $B_{h}^{1}>B_{\ell}^{1}$. Because ℓ 's continuation value at $\tau\left(b_{h}^{1}\right)$ under (τ^{h}, d_{τ}^{h}) when optimally choosing when to quit is zero, $V^{*}\left(\tau^{h}, d_{\tau}^{h}, z_{\ell}\right)=\widetilde{V}_{\ell}\left(B_{h}^{1}, b_{h}^{1}, 0\right)$ and so

$$
V^{*}\left(\tau^{h}, d_{\tau}^{h}, z_{\ell}\right)=\widetilde{V}_{\ell}\left(B_{h}^{1}, b_{h}^{1}, 0\right)<\widetilde{V}_{\ell}\left(B_{\ell}^{1}, b_{h}^{1}, 0\right) \leq \widetilde{V}_{\ell}\left(B_{\ell}^{1}, b_{\ell}^{*}\left(B_{\ell}^{1}\right), 0\right)
$$

contradicting that $D I C(\ell)$ binds. We conclude that $B_{h}^{1} \leq B_{\ell}^{1}$.
Suppose $B_{h}^{1}<B_{\ell}^{1}$ and $b_{h}^{1}<b_{\ell}^{1}$. If ℓ chooses to misreport his type and quit at $\tau\left(b_{\ell}^{*}\left(B_{\ell}^{1}\right)\right)$, his expected utility is $\widetilde{V}_{\ell}\left(B_{h}^{1}, b_{\ell}^{*}\left(B_{\ell}^{1}\right), 0\right)$ since $B^{h}\left(m ; \eta_{h}\right)$ is constant for $m \geq b_{h}^{1}>b_{\ell}^{*}\left(B_{\ell}^{1}\right)$. We then have

$$
V^{*}\left(\tau^{h}, d_{\tau}^{h}, z_{\ell}\right) \geq \tilde{V}_{\ell}\left(B_{h}^{1}, b_{\ell}^{*}\left(B_{\ell}^{1}\right), 0\right)>\tilde{V}_{\ell}\left(B_{h}^{1}, b_{\ell}^{*}\left(B_{\ell}^{1}\right), 0\right),
$$

a contradiction of $\operatorname{DIC}(\ell)$. Thus, $B_{h}^{1}<B_{\ell}^{1}$ implies $b_{h}^{1}<b_{\ell}^{1}$.

Comparative Statics

We begin with a proposition that will be useful later. It shows that, when $c_{A}=0$, the optimal mechanism must pool h and ℓ. Let $\pi_{i}=\frac{e^{z_{i}}}{1+e^{z_{i}}}$.

PROPOSITION 11: R's value of the optimal mechanism when $c_{A}=0$ and $a=1$ is equal to the optimal mechanism in the R's single decision-maker problem with prior $\mathbb{P}\left(z_{h}\right) \pi_{h}+(1-$ $\left.\mathbb{P}\left(z_{h}\right)\right) \pi_{\ell}$.

Proof: Let $\alpha_{i}=\mathbb{E}\left[e^{-r \tau^{i}} d_{\tau}^{i} \mid \theta=H\right]$ and $\beta_{i}:=\mathbb{E}\left[e^{-r \tau^{i}} d_{\tau}^{i} \mid \theta=L\right]$. Incentive compatibility for h implies

$$
\begin{align*}
& \pi_{h} \alpha_{h}+\left(1-\pi_{h}\right) \beta_{h} a \geq \pi_{h} \alpha_{\ell}+\left(1-\pi_{h}\right) \beta_{\ell} a, \\
& \quad \Rightarrow \quad \pi_{h} \frac{\alpha_{h}}{a}+\left(1-\pi_{h}\right) \beta_{h} \geq \pi_{h} \frac{\alpha_{\ell}}{a}+\left(1-\pi_{h}\right) \beta_{\ell} \tag{18}
\end{align*}
$$

Because R does not offer ℓ 's mechanism to h, we also must have

$$
\begin{align*}
& \pi_{h} \alpha_{h}+f\left(1-\pi_{h}\right) \beta_{h} \geq \pi_{h} \alpha_{\ell}+f\left(1-\pi_{h}\right) \beta_{\ell} \\
& \quad \Rightarrow \quad \pi_{h} \frac{\alpha_{h}}{|f|}-\left(1-\pi_{h}\right) \beta_{h} \geq \pi_{h} \frac{\alpha_{\ell}}{|f|}-\left(1-\pi_{h}\right) \beta_{\ell} \tag{19}
\end{align*}
$$

Adding (19) with (18) and simplifying, we get $\alpha_{h} \geq \alpha_{\ell}$. A similar argument using incentive compatibility for ℓ implies $\alpha_{h} \leq \alpha_{\ell}$. Therefore, we conclude $\alpha_{h}=\alpha_{\ell}$ and, to preserve incentive compatibility, $\beta_{h}=\beta_{\ell}$. It is without loss to offer both types the same mechanism, which corresponds to R 's optimal solution with prior $\mathbb{P}\left(z_{h}\right) \pi_{h}+\left(1-\mathbb{P}\left(z_{h}\right)\right) \pi_{\ell}$. Q.E.D.

Proof of Proposition 2

Proof: Suppose $z_{h}=\infty, z_{\ell}=-\infty$. We first examine a limiting case where the signal to noise ratio $\frac{2 \mu}{\sigma^{2}} \rightarrow 0$ and $c_{A}=0$. By Proposition 11, we know the value of the optimal mechanism converges R 's single decision-maker problem with prior $\mathbb{P}\left(z_{h}\right) \pi_{h}+\left(1-\mathbb{P}\left(z_{h}\right)\right) \pi_{\ell}$.

As $\frac{2 \mu}{\sigma^{2}} \rightarrow 0$, learning becomes slow, and for any $\epsilon>0$, the expected time for beliefs to move by more than ϵ goes to infinity. If $\mathbb{P}\left(z_{\ell}\right)>\frac{\mathbb{P}\left(z_{h}\right)}{-f}$, then R 's expected utility will converge to zero.

Next, we want to show that for c_{A} large enough, we can find an approval rule such that ℓ will drop out immediately and h will be approved with strictly positive probability. Suppose R offers h a mechanism $(\tau, 1)$ with $\tau=\inf \left\{t: X_{t} \geq \underline{B}_{h}\left(M_{t}\right)\right\}$ and rejects ℓ immediately. This satisfies DIC and approves h with probability one. Moreover, as $c_{A} \rightarrow \infty$, the function $\underline{B}_{\ell}(m) \rightarrow m$, and so the expected length of experimentation time goes to 0 , giving R a strictly positive utility.
Q.E.D.

Proof of Proposition 3

Proof: Suppose A learns θ and R offers the $S I$-mechanism for $\pi=\mathbb{P}\left(z_{h}\right)$ to both h, ℓ. Call this $S I$-mechanism $\left(\tau^{S}, d_{\tau}^{S}\right)$. Because h is more optimistic about the state than he would be under symmetric information, h will never have an incentive to quit early. By an analogous argument, ℓ will choose to quit earlier than A would under symmetric information. Let us define $\left(\tau^{h}, d_{\tau}^{h}\right)=\left(\tau^{S}, d_{\tau}^{S}\right)$, and $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$ to be the same as $\left(\tau^{S}, d_{\tau}^{S}\right)$ except that it rejects immediately whenever ℓ would find it optimal to quit.

This menu of mechanisms is clearly incentive compatible. We argue that it yields a strictly higher utility than the optimal mechanism in the symmetric-information model. R 's utility is the same when $\theta=H$ in both the symmetric mechanism and under $\left(\tau^{h}, d_{\tau}^{h}\right)$, since the distribution of approval and rejection times is the same. R 's utility is strictly higher when $\theta=L$ from using $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$ when compared to (τ^{S}, d_{τ}^{S}). With positive probability, R approves when $\theta=L$ under $\left(\tau^{S}, d_{\tau}^{S}\right)$ and rejects under $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$ before she would have approved under $\left(\tau^{S}, d_{\tau}^{S}\right)$. Moreover, every ω that leads to approval under $\left(\tau^{\ell}, d_{\tau}^{\ell}\right)$ will also lead to approval in $\left(\tau^{S}, d_{\tau}^{S}\right)$ and $\tau^{S}(\omega)=\tau^{\ell}(\omega)$. Thus, R 's value of this mechanism when A is informed about θ is higher than under symmetric information.
Q.E.D.

APPENDIX H: GENERAL VALUES OF z_{h}

We consider R 's asymmetric information problem for arbitrary z_{h}. In this case, both $D I C(h)$ and $D I C(\ell)$ may bind and so we must solve $A M_{h}$ with the $P K_{h}\left(V_{h}^{\prime}\right)$ constraint for some value of V_{h}^{\prime}. Consider the problem of characterizing the Pareto frontier of R and h 's expected utility across all mechanisms that satisfy $D I C\left(\ell, V_{\ell}\right)$ and h 's dynamic participation constraint. Solving $A M_{h}$ with the $P K_{h}\left(V_{h}^{\prime}\right)$ is equivalent to finding the mechanism that generates the point with V_{h}^{\prime} utility for h on the Pareto frontier.

Each point on the Pareto frontier is generated by the mechanism that solves, for some weight γ_{h}, the problem of a social planner placing weight γ_{h} on R 's utility and $1-\gamma_{h}$ on h 's utility, namely maximizing $\mathbb{E}\left[e^{-r \tau}\left(\gamma_{h} u\left(X_{\tau}, d_{\tau}\right)+\left(1-\gamma_{h}\right) v_{h}\left(X_{\tau}, d_{\tau}\right)\right)\right]$ subject to $\operatorname{DIC}\left(\ell, V_{\ell}\right)$ and h 's dynamic participation constraint. This is equivalent to solving $A M_{h}$ when $\operatorname{DIC}\left(h, V_{h}^{\prime}\right)$ is dropped but R 's utility u is replace with $\gamma_{h} u+\left(1-\gamma_{h}\right) v_{h}$. All arguments continue to apply as in the proof of Theorem 2 and so we get the same structure to the optimal mechanism for h in the solution to this social planner's problem. ${ }^{13}$

[^8]
REFERENCES

Balzer, Thomas, and Klaus Janssen (2002): "A Duality Approach to Problems of Combined Stopping and Deciding Under Constraints," Mathematical Methods of Operations Research, 55, 431-446. [7,12]
Henry, Emeric, and Marco Ottaviani (2019): "Research and the Approval Process: The Organization of Persuasion," American Economic Review, 109, 911-955. [14]
Kolb, AARON (2019): "Strategic Real Options," Journal of Economic Theory, 183, 344-383. [14]
Stokey, Nancy L. (2009): The Economics of Inaction: Stochastic Control Models With Fixed Costs. Princeton University Press. [8,10]

Co-editor Joel Sobel handled this manuscript.
Manuscript received 29 January, 2019; final version accepted 7 February, 2022; available online 17 February, 2022.

[^0]: ${ }^{1}$ We can always replace stopping at a history h_{t} with $X_{t} \in \mathcal{D}_{k, d}^{\prime}$ with a continuation mechanism at h_{t} that continues with positive probability and achieves the same payoff as stopping immediately.

[^1]: ${ }^{2}$ If $b_{k}=-\infty$ for all $k<L$, then continuing at $\tau\left(b_{k}\right)$ is strictly optimal and a small change in $F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+$ $\widehat{\lambda}^{L} \frac{c_{A}}{r}$ will still preserve $b_{k}=-\infty$. If $b_{k}>\infty$, then $b_{k} \in \mathcal{D}_{k}^{\prime}$, so stopping and continuing are both optimal at $\tau\left(b_{k}\right)$. In this case, reducing $F_{L}\left(X^{L} ; \widehat{\Lambda}\right)+\widehat{\lambda}^{L} \frac{c_{A}}{r}$ lowers the value of continuing at $\tau\left(b_{k}\right)$ and so would make stopping at $\tau\left(b_{k}\right)$ strictly optimal. Since stopping at $\tau\left(b_{k}\right)$ was optimal before, the value of the Lagrangian is the same.
 ${ }^{3}$ The proof of Lemma 5 for $X_{n}=X^{L}$ only depends on the continuation mechanism of $\left(\tau_{N}^{*}, d_{N, \tau}^{*}\right)$ at $\tau\left(X^{L}\right)$ being unique and so applies here.

[^2]: ${ }^{4}$ By the definition of X^{L}, we must have $X^{L} \notin \mathcal{D}_{L}$; otherwise, $\mathbb{P}\left(\tau>\tau\left(X^{L}\right)\right)=0$ for all $\left(\tau, d_{\tau}\right) \in \mathcal{M}^{*}(\widehat{\Lambda})$.

[^3]: ${ }^{5}$ We can safely ignore all conditions on g for $d=0$ since $d=0$ will never be optimal.

[^4]: ${ }^{6}$ Stokey (2009) gives closed-form formula for these discounted probabilities conditional on θ, which can then be used to calculate Φ, ϕ explicitly based on the belief about θ implies by x.
 ${ }^{7}$ That $\Phi+\phi$ is decreasing in B follows from the observation that $\Phi+\phi=\mathbb{E}^{x}\left[e^{-r\left(\tau_{+}(B) \wedge \tau(b)\right)}\right]$ and for $B<B^{\prime}$, $\tau(B) \wedge \tau(b) \leq \tau\left(B^{\prime}\right) \wedge \tau(b)$.

[^5]: ${ }^{8}$ Standard dynamic programming arguments imply that A 's optimal threshold can be chosen independent of x.

[^6]: ${ }^{9}$ To see this, note that by fixing the optimal mechanism at some Z_{0} as a function of (X, M) and increasing Z_{0}, we will slacken $D P$ and raise R 's expected utility.
 ${ }^{10}$ The same properties in Lemma 20 hold when we write \tilde{V} in terms of Z_{t} rather than X_{t}.

[^7]: ${ }^{11}$ The case when A can irrevocably quit experimenting has been studied in Kolb (2019) and Henry and Ottaviani (2019). Using the Markov perfect equilibrium as the solution concept, they find an equilibrium in which R 's approval decision takes a static threshold form.
 ${ }^{12}\left(\tau, d_{\tau}\right)$ is taken to be measurable with respect to the sigma algebra generated by $\left\{\alpha_{s}, X_{s}: 0 \leq s \leq t\right\}$.

[^8]: ${ }^{13}$ The only important difference with this new utility is that costs of experimentation in our objective function are no longer 0 . However, the only point at which we used $c_{R}=0$ in the proof of Theorem 2 is in Lemma 15 to ensure R 's continuation value from $\left(\tau^{\prime}, d_{\tau}^{\prime}\right)$ was strictly positive. But if we replace R 's utility function with a weighted sum of R 's and h 's utility function, the same argument applies since h 's continuation value under ($\tau^{\prime}, d_{\tau}^{\prime}$) was equal to 0 .

