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APPENDIX D: EXISTENCE OF SOLUTIONS

WE NOW TURN to establishing the existence of a solution to HN (V ) and Hh. Through-
out this section, we take bk = inf{x ≤Xk : x ∈ Dk} and Bk = sup{x ≥Xk : x ∈ Dk} as in
Appendix A.

Let X d
k = {x ≥ Xk+1 : d = arg maxd′ g(x�k�d′)}, Dd

k = Dk ∩ X d
k be the set of x ∈ Dk

at which action d is optimal and D′
k�d be the set of x ∈ Dd

k for which there exists a τ
such that P(τ > 0|X0 = x) > 0 and Fk(x) = E

x[e−r(τ∧τ(Xk+1))Gk(Xτ∧τ(Xk+1))]; that is, for
x ∈D′

k�d it is optimal both to stop immediately and to continue according to some stopping
rule which (with positive probability) continues for some positive amount of time. Let
Do
k�d = Dd

k\D′
k�d and Do

k = Do
k�0 ∪ Do

k�1. It is strictly optimal to immediately stop at any
history ht withXt ∈Do

κ(Mt ) . Our next result provides sufficient conditions under which the
solution to the Lagrangian in our general stopping problem (rewritten below) is unique:

sup
(τ�dτ)

E
x

[
e−rτg

(
Xτ�κ(Mτ)� dτ

) +
P∑
k=1

e−rτ(Xk)ξk1
(
τ ≥ τ(Xk

))]
� (11)

PROPOSITION 7: Suppose g(x�k�1) − g(x�k�0) and g(x�k�1) are strictly increasing in
x. Then D′

k�1 = ∅ for all k. If D′
k�0 
= ∅, then it is a singleton. If D′

k�0 = ∅ for all k, then (τ∗� d∗
τ)

as defined in Proposition 4 is the unique solution to (11).

PROOF: We first argue that x ∈ Dk implies Gk(x) = g(x�k�dxk) ≥ 0. Suppose g(x�k�
dxk) < 0. Take ε > 0 such that x− ε >Xk+1 and max{g(x− ε�k�dxk)� g(x+ ε�k�dxk)}< 0.
Define τε = τ+(x+ε)∧τ(x−ε). Because g(Xt�k�d

x
k) is a martingale, Ex[g(Xτε�k�d

x
k)] =

g(x�k�dxk) by Doob’s optional stopping theorem and

Fk(x) ≥ E
x
[
e−rτεGk(Xτε)

] ≥ E
x
[
e−rτεg

(
Xτε�k�d

x
k

)]
> E

x
[
g
(
Xτε�k�d

x
k

)] = g(x�k�dxk) =Gk(x)�

a contradiction of x ∈Dk.
Because g(x�k�1) −g(x�k�0) is increasing in x, X d

k is either empty or a connected set.
Thus, for any x1�x2 ∈Dd

k and x3 ∈ (x1�x2), x3 ∈Dk implies x3 ∈Dd
k.

For each d and k, we argue Dd
k must be a connected set or empty. Suppose not; then

there exists a d and x /∈ Dd
k and x1�x2 ∈ Dd

k such that x ∈ (x1�x2). Since x1 ∈ Dd
k implies

x1 >X
k+1 and X is continuous, X must enter Dd

k before τ(Xk+1) when X0 = x. Stopping
at inf{t :Xt ∈Dκ(Mt )} is an optimal stopping rule, so when (X0�M0) = (x�m) with m such
that κ(m) = k, τ′ = inf{t : Xt ∈ Dk} is an optimal stopping rule. Because x is bounded
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above and below by elements of Dd
k, P(Xτ′ ∈ Dd

k|X0 = x) = 1 and, using g(Xτ′�k�d) ≥ 0,
we have

Fk(x) = E
x
[
e−rτ′g(Xτ′�k�d)

] ≤ E
x
[
g(Xτ′�k�d)

] = g(x�k�d) =Gk(x)� (12)

which contradicts Fk(x) >Gk(x) by x /∈Dk.
Because g(x�k�1) − g(x�k�0) is increasing in x, if x ∈ D1

k, then for all x′ > x, x′ ∈ Dk

implies x′ ∈ D1
k. Suppose D1

k 
= ∅ and sup{x ∈ D1
k} < ∞. Let B′ = sup{x ∈ D1

k}, so
inf{t : Xt ∈ Dk} = τ(B′) when X0 = x > B′. For such x, Fk(x) = E

x[e−rτ(B′)Gk(B′)]. Be-
cause limx→∞ E

x[e−rτ(B′)] = 0, we have

lim
x→∞

Fk(x) = lim
x→∞

E
x
[
e−rτ(B′)Gk

(
B′)] = 0< lim

x→∞
Gk(x)� (13)

a contradiction of Fk(x) ≥Gk(x). Therefore, either D1
k = ∅ or sup{x ∈D1

k}= ∞.
We next argue that if D′

k�d 
= ∅, then Dd
k = D′

k�d and must be a singleton. For any d and
x ∈D′

k�d , inf{|x− y| : y ∈Do
k�d}> 0; otherwise, with probability one,X immediately enters

Do
k�d when X0 = x, where stopping immediately is strictly optimal. This contradicts that

there was an optimal stopping rule, which did not stop for a positive length of time with
positive probability when (X0�M0) = (x�m) for some m with κ(m) = k.

If D′
k�d 
= ∅ and Do

k�d 
= ∅, then inf{|x− y| : x ∈D′
k�d� y ∈Do

k�d} = 0; otherwise, Dd
k would

not be a connected set. Because inf{|x − y| : y ∈ Do
k�d} > 0 for all x ∈ D′

k�d , D′
k�d is a

nonempty interval with at least one open end. Then there exists a nonempty interval
(x1�x2) ⊆ D′

k�d . Because it is not strictly optimal to stop immediately at x ∈ D′
k�d , there

exists an optimal strategy that never stops at x ∈ D′
k�d .

1 Letting τ′ = inf{t :Xt /∈ (x1�x2)},
because continuing is both weakly optimal at x ∈ D′

k�d and Fk(x′) = g(x′�k�d) for all
x′ ∈D′

k�d , we have

Fk(x) = E
x
[
e−rτ′Fk(Xτ′)

] = E
x
[
e−rτ′g(Xτ′�k�d)

]
< E

x
[
g(Xτ′�k�d)

] = g(x�k�d)

=Gk(x)�

a contradiction. Thus, either D′
k�d = ∅ or Do

k�d = ∅. If D′
k�d 
= ∅, then D′

k�d =Dd
k.

Next, we argue that D′
k�d = Dd

k implies D′
k�d is a singleton. Suppose not; then there

exists a nonempty interval (x1�x2) ⊂ D′
k�d , which we have just argued cannot be. Given

our previous characterization of D1
k as being either empty or an interval, we conclude

D′
k�1 = ∅ and Do

k�1 =D1
k. If D′

k�0 = ∅ for all k, then Do
k�0 =D0

k as well. In this case Dk =Do
k,

so it is strictly optimal to stop the first timeXt ∈Dκ(Mt ); thus, τ∗ as defined in Proposition 4
is the unique solution to (11). Q.E.D.

Proof of Proposition 5

We first prove a useful auxiliary lemma.

LEMMA 20: Let b′ < x<B. If Ṽ (B�b′�x) ≥ 0, then Ṽ (B�b′′�x) > 0 ∀b′′ ∈ (b′�x).

1We can always replace stopping at a history ht with Xt ∈ D′
k�d with a continuation mechanism at ht that

continues with positive probability and achieves the same payoff as stopping immediately.
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PROOF: Suppose Ṽ (B�b′�x) ≥ 0. By single-peakedness, Ṽ (B�b�x) is decreasing in b
on [b∗(B)�x]. Since Ṽ (B�x�x) = 0, we have Ṽ (B�b′′�x) > 0 for all b′′ ∈ [b∗(B)�x). The
only remaining case is b′ < b′′ < b∗(B). By single-peakedness, Ṽ (B�b�x) is increasing in
b on (−∞� b∗(B)]. Thus, 0 ≤ Ṽ (B�b′�x) < Ṽ (B�b′′�x). Q.E.D.

Let �̂ ∈ arg min�∈RN+1− L∗(�). With some abuse of notation, we let BN = {X1� � � � �XP}
be the set of Xn such that λ̂n < 0, keeping the dependence of BN on �̂ implicit. After
dropping constant terms, we can write sup(τ�dτ) L(τ�dτ� �̂) in the form of (11) by taking
g(x�k�d) = u(x�d) − (γ̂ + ∑k

j=1 λ̂
j)v(x�d) and ξk = λ̂k cA

r
. Both g(x�k�1) − g(x�k�0)

and g(x�k�1) are then strictly increasing in x. Because ũ(Xt)� ṽ(Xt) are martingales
in Xt , g(Xt�k�d) is also a martingale. Note that dxk = 1 if and only if ũ(x) − (γ̂ +∑k

j=1 λ̂
j)ṽ(x) ≥ 0. Because ũ(x) ≤ ṽ(x), dxk = 1 implies ṽ(x) ≥ 0. Thus,

g
(
Xk+1�k+ 1� dX

k+1

k

) − g(Xk+1�k�dX
k+1

k

) = −λ̂k+1

(
ṽ
(
Xk+1

)
dX

k+1

k + cA

r

)
≥ −λ̂k+1 cA

r
�

meeting all the assumptions on g in the general stopping problem. By Proposition 4, a
solution to sup(τ�dτ) L(τ�dτ� �̂) exists.

For each k, limx→∞ g(x�k�1) = 1 + cR
r

− (γ̂ + ∑k

j=1 λ̂
j)(1 + cA

r
) > 0. By a similar ar-

gument as in (13), if D1
k = ∅, then limx→∞ Fk(x) = 0, contradicting Fk(x) ≥ g(x�k�1).

Therefore, D1
k 
= ∅.

Let M∗(�) = arg max(τ�dτ) L(τ�dτ��). If stopping at t = 0 is strictly optimal, then the
optimal mechanism is unique. Suppose stopping at t = 0 is not strictly optimal. For ar-
bitrary �̂ ∈ arg min�∈RN+1− L∗(�), let XL = min{Xk ∈ BN : ∃(τ�dτ) ∈ M∗(�̂) s.t. P(τ >

τ(Xk)) > 0} if BN 
= ∅; otherwise, take XL = 0 (we keep the dependence on �̂ implicit).
For each Xk ∈ BN , Xk < XL implies that τ ≤ τ(Xk) for all (τ�dτ) ∈ M∗(�̂). Our next
proof shows that for every optimal mechanism, its continuation mechanism at τ(XL) is
the same. In this case, we say the optimal continuation mechanism at τ(XL) is unique.

LEMMA 21: Suppose stopping at t = 0 is not strictly optimal. For each �̂ and corresponding
XL, D′

L�0 = ∅ and the unique optimal continuation mechanism at τ(XL) is (τL�dLτ ) where
τL = inf{t :Xt /∈ (bL�BL)} and dLτ = 1(Xt ≥ BL).

PROOF: It suffices to show D′
L�0 = ∅; if this is so, then the same arguments as in Propo-

sition 7 imply the optimal continuation mechanism (τL�dLτ ) is unique and τL = inf{t :Xt /∈
(bL�BL)} and dLτ = 1(Xt ≥ BL). That τ ≥ τ(Xk) for all Xk <XL means either XL =XP

or there is a lower stopping threshold in bL ∈ (XL+1�XL] at which stopping is strictly op-
timal (namely, bL ∈ Do

L). In the latter case, if bL ∈ D1
L, then because D1

L is an interval
unbounded above, XL ∈ D1

L and so it is strictly optimal to stop immediately at τ(XL), a
contradiction of the definition of XL. Therefore, bL ∈ Do

L�0, which as shown in the proof
of Proposition 7, implies D′

L�0 = ∅.
Suppose XL =XP . The payoff to rejecting at t > τ(XL) is ĉ = cR

r
− (γ̂ + ∑L

k=1 λ̂
k) cA

r
.

If ĉ = 0, then it is never optimal to stop and reject as there is always always a positive
option value of continued experimentation, so D′

k�0 = ∅. Suppose ĉ > 0. If D′
L�0 
= ∅, then

D′
L�0 =D0

L ={bL}. For X0 < bL, inf{t :Xt ∈DL}= inf{t :Xt ≥ bL} and so

lim
x→−∞

FL(x) = lim
x→−∞

E
x
[
e−rτ+(bL)GL(bL)

] = 0< ĉ ≤ lim
x→−∞

GL(x)�
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a contradiction. This argument implies that stopping is strictly optimal at sufficiently low
x and so bL >−∞. Thus, D′

L�0 = ∅. Q.E.D.

Our next lemma looks at complementary slackness conditions. We note that RDP(Xn)
can be rewritten as EXn[e−rτ[hτ(Xn) ]v(Xτ[hτ(Xn) ]� dτ[hτ(Xn)])] ≥ 0 and so only depends on the
continuation mechanism at τ(Xn). When the optimal continuation mechanism at τ(Xn)
is unique, we will will simply say that RDP(Xn) binds (or is violated), keeping the depen-
dence of RDP(Xn) on the optimal continuation mechanism at τ(Xn) implicit.

LEMMA 22: There exists �̂ ∈ arg min�∈RN+1− L∗(�) and (τ�dτ) ∈ M∗(�̂) such that (τ�dτ)

and �̂ satisfy complementary slackness for all RDP(Xn) with Xn ≤XL.

PROOF: Take some �̂ ∈ arg min�∈RN+1− L∗(�). L∗(�̂) can be written as

max
(τ�dτ)

E

[
e−rτ

(
u(Xτ�dτ) −

(
γ̂+

L−1∑
k=1

λ̂k

)
v(Xτ�dτ)

)
1
(
τ < τ

(
XL

))
+

L−1∑
k=1

e−r(τ∧τ(Xk))λ̂kv
(
Xτ∧τ(Xk)� dτ

(
Xk

))
+ e−rτ(XL)

(
FL

(
XL; �̂) + λ̂L cA

r

)
1
(
τ ≥ τ(XL

))] + γ̂
(
V + cA

r

)
�

where FL is defined as in our general stopping problem only now making the dependence
on �̂ explicit. Any change to �̂ that decreases FL(XL; �̂) + λ̂L cA

r
will weakly decrease

L∗(�̂), strictly so if bk = −∞ for all k<L.2
RDP(Xn) binds for Xn < bL since P(τ > τ(Xn)) = 0, so complementary slackness con-

ditions hold. Suppose RDP(XL) is violated. We can apply the same arguments as in
Lemma 5 to show3 that A’s continuation value under any (τ�dτ) ∈ M∗(�̂) at τ(XL),
namely Ṽ (BL�bL�XL), must be strictly negative. FL(XL; �̂) is then equal to

E
XL

[
e−rτ+(BL;bL)

(
u(BL�1) −

(
γ̂+

L∑
k=1

λ̂k

)
v(BL�1)

)

+ e−rτ(bL;BL)

(
cR

r
−

(
γ̂+

L∑
k=1

λ̂k

)
cA

r

)]

= J̃(BL�bL�XL
) + cR

r
−

(
γ̂+

L∑
k=1

λ̂k

)(
Ṽ

(
BL�bL�X

L
) + cA

r

)
� (14)

2If bk = −∞ for all k < L, then continuing at τ(bk) is strictly optimal and a small change in FL(XL; �̂) +
λ̂L cA

r
will still preserve bk = −∞. If bk >∞, then bk ∈ D′

k, so stopping and continuing are both optimal at
τ(bk). In this case, reducing FL(XL; �̂) + λ̂L cA

r
lowers the value of continuing at τ(bk) and so would make

stopping at τ(bk) strictly optimal. Since stopping at τ(bk) was optimal before, the value of the Lagrangian is
the same.

3The proof of Lemma 5 for Xn =XL only depends on the continuation mechanism of (τ∗
N�d

∗
N�τ) at τ(XL)

being unique and so applies here.
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Suppose bk = −∞ for all k < L. By the theorem of the maximum, the optimal thresh-
olds and decisions at each threshold are continuous in � at �̂. Applying the envelope
theorem, we have

d

dλ̂1

[
FL

(
XL; �̂) + λ̂L cA

r

]
= −

[
Ṽ

(
BL�bL�X

L
) + cA

r

]
+ cA

r
> 0�

Thus, decreasing λ̂L will lower L∗(�̂), a contradiction of �̂ ∈ arg min�∈RN+1− L∗(�). There-

fore, RDP(XL) cannot be violated at �̂. A similar argument holds if RDP(XL) is slack,
only now we derive a contradiction by increasing λ̂L instead of decreasing λ̂L. Because the
optimal continuation mechanism is also unique at τ(Xn) forXn ∈ (bL�XL), an analogous
argument implies RDP(Xn) cannot be violated.

Suppose there exists a j such that bj > −∞ for j < L and let k be the largest such j.
Decreasing FL(XL; �̂) + λ̂L cA

r
reduces the value continuing at τ(bk), which then makes

stopping at τ(bk) strictly optimal. The continuation mechanism at τ(Xk) is now unique.
Thus, if RDP(XL) is not binding or RDP(Xn) is violated for some Xn ≤ XL, then by
changing �̂ as in the previous paragraph to some �̂′ which lowers FL(XL;�) + λL cA

r
,

we have not decreased the Lagrangian so L∗(�̂) = L∗(�̂′) and �̂′ ∈ arg min�∈RN+1− L∗(�).
We can apply the same arguments as above, taking Xk to replace XL, to conclude that
if bj = −∞ for all j < k, then �̂′ and any (τ�dτ) ∈ M∗(�̂′) must satisfy complementary
slackness conditions for RDP(Xn) forXn ≤Xk. If there exists a j > k such that bj >−∞,
then we can apply the same arguments as above until we have reached an k′ such that
bj = −∞ for all j < k′. In this case, complementary slackness conditions must hold for all
RDP(Xn) with Xn ≤Xk′ and Xk′ takes the role of XL for our corresponding choice of �
derived from �̂ using the above procedure. Q.E.D.

Take �̂ ∈ arg min�∈RN+1− L∗(�) such that for some (τ�dτ) ∈ M∗(�̂), complementary
slackness conditions hold for all RDP(Xn) with Xn ≤ XL. By the same arguments as
in Lemma 5, that RDP(XL) binds implies Ṽ (BL�bL�XL) = 0. Using (14), because
GL(x) ≥ cR

r
− (γ̂ + ∑L

k=1 λ̂
k) cA

r
and Ṽ (BL�bL�XL) = 0, FL(XL) > GL(XL)4 implies

J̃(BL�bL�XL) > 0.
We now argue that rejection at Xt = x > XL is strictly suboptimal. Because X has

independent increments conditional on θ, we have

Ṽ (B�b�x;z0) = ezx

1 + ezx Ṽ (B�b�x;∞) + 1
1 + ezx Ṽ (B�b�x;−∞)

= ezx

1 + ezx Ṽ (B− x�b− x�0;∞) + 1
1 + ezx Ṽ (B− x�b− x�0;−∞)

= Ṽ (B− x�b− x�0;zx)�
Thus, Ṽ (BN (XL)� bL�XL;z0) = 0 implies Ṽ (BN (XL) − XL�bL − XL�0� zXL) = 0. By
Lemma 3, Ṽ (BN (XL) − XL�bL − XL�0� zx) > 0 for all x > XL. Then, by Lemma 20,
Ṽ (BN (XL) −XL�−ε�0� zx) > 0 for any ε ∈ (0�XL − bL) and all x >XL. A similar argu-
ment holds for R so that J̃(BN (XL) −XL�−ε�0� zx) > 0.

4By the definition of XL, we must have XL /∈ DL; otherwise, P(τ > τ(XL)) = 0 for all (τ�dτ) ∈ M∗(�̂).
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Take some (x�m) and ε > 0 with m > bL, x > XL and x − ε > Xκ(m)+1. Let B′ =
BN (XL) −XL + x and define τ′ = inf{t :Xt /∈ (x− ε�B′)} and d′

τ = 1(Xτ′ ≥ B′). The con-
tinuation value in our Lagrangian from using (τ′� d′

τ) at a history ht such that (Xt�Mt) =
(x�m) is

Ex�m

[
e−rτ+(B′;x−ε)

(
u
(
B′�1

) −
(
γ̂+

κ(m)∑
k=1

λ̂k

)
v
(
B′�1

))

+ e−rτ(x−ε;B′)

(
cR

r
−

(
γ̂+

κ(m)∑
k=1

λ̂k

)
cA

r

)]

= J̃(BN(
XL

) −XL�−ε�0;zx
) + cR

r

−
(
γ̂+

κ(m)∑
k=1

λ̂k

)(
Ṽ

(
BN

(
XL

) −XL�−ε�0;zx
) + cA

r

)
�

which is strictly greater than cR
r

− (γ̂ + ∑κ(m)
k=1 λ̂

k) cA
r

, the payoff at x of rejecting. Thus,
rejection when (Xt�Mt) = (x�m) cannot be optimal and so D0

k = D′
k�0 = ∅ for all k < L.

D′
L�1 = ∅ by Lemma 21, so Proposition 7 implies the solution to the Lagrangian, call it

(τ∗
N�d

∗
N�τ), is unique.

By analogous arguments those in Lemma 22, (τ∗
N�d

∗
N�τ) and �̂must satisfy complemen-

tary slackness conditions for allRDP(Xn) and PK(V ). We conclude that (τ∗
N�d

∗
N�τ) solves

HN (V ). Finally, if BN (0) > 0, but BN (m) =m for some m< 0, then the stopping rule ap-
proves with probability one. It is easy to see that immediate approval at t = 0 strictly
dominates this mechanism.

Although complementary slackness conditions imply RDP(Xk) binds under (τ∗
N�d

∗
N�τ)

for allXk ∈ BN , they do not imply thatRDP(Xn) is slack for allXn /∈ BN . However, we can
add into BN any Xn such that RDP(Xn) binds but λ̂n = 0 without changing the statement
of Proposition 5.

Proof of Proposition 6

PROOF: Let �̂ ∈ arg min�∈RN′
−
L∗(�) with {X1� � � � �XP} = {Xn : λ̂n < 0}. For 0 ≤ k ≤

P−1, take g(x�k�1) = ũ(x) +∑P

j=k+1 λ̂
jv̂�(x�1), g(x�P�1) = ũ(x) and ξk = λ̂kv̂�(Xk�0).

We rule out the choice of d = 0 by setting g(x�k�d) to be a sufficiently low constant.5 It
is straightforward to verify that g(Xt�k�1) is a martingale. Then

g
(
Xk+1�k+ 1�1

) − g(Xk+1�k�1
) = −λ̂k+1v̂�

(
Xk+1�1

) ≥ −λ̂k+1v̂�
(
Xk+1�0

)
= −ξk+1�

A solution τ∗
N to supτL(τ� �̂) exists by Proposition 4.

5We can safely ignore all conditions on g for d = 0 since d = 0 will never be optimal.
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We next to show g(x�k�1) is increasing in x at �̂. Note that

∂g(x�k�1)
∂x

=
2μ
σ2 e

zh(x)(
1 + ezh(x)

)2

[
1 − f +

P∑
j=k+1

λ̂j
1 + ezh
1 + ez�

(
e−�z

(
1 + cA

r

)
− a− cA

r

)]
�

If e−�z (1 + cA
r

) − a− cA
r

≤ 0, then ∂g(x�k�d)
∂x

> 0.
Suppose e−�z (1 + cA

r
) − a− cA

r
> 0. The sign of ∂g(x�k�1)

∂x
is the same for all x, but may

be negative for arbitrary �̂. In this case, ∂g(x�k�1)
∂x

is increasing in k, so it suffices to show
∂g(x�1�1)

∂x
> 0. Suppose ∂g(x�1�1)

∂x
≤ 0. The limit limx→−∞ g(x�1�1) < 0, so ∂g(x�1�1)

∂x
≤ 0 implies

g(x�1�1) < 0 for all x, in which case it is never optimal to stop at t < τ(X1) and

L∗(�̂) = E

[
e−rτ(X1)

(
F1

(
X1; �̂) + λ̂1 cA

r

)
)
]

−
P∑
k=1

λ̂k
(
V� + cA

r

)
�

λ̂1 does not appear in F1(X1; �̂), so changing λ̂1 has no impact on the continuation value
F1(X1; �̂) and ∂L∗(�̂)

∂̂λ1 = E[e−rτ(X1) cA
r

] − V� − cA
r
< 0, a contradiction of λ̂1 < 0 and �̂ ∈

arg min�∈RN′
−
L∗(�). Therefore, we must have ∂g(x�1�1)

∂x
> 0. We conclude that g(x�k�1) is

strictly increasing in x for all k.
We next argue that limx→∞ g(x�k�1) > 0. If limx→∞ g(x�1�1) ≤ 0, then g(x�1�1) < 0

for all x. A similar contradiction can be derived from the fact that stopping at t < τ(X1)
would never be optimal and so limx→∞ g(x�1�1) > 0. Because g(x�k�1) is increasing in
k, we conclude limx→∞ g(x�k�1) > 0 for all k. As argued in the proof of Proposition 7,
this implies D1

k 
= ∅ for all k.
By ruling out dτ = 0, we know D0

k =D′
k�0 = ∅ and we can apply Proposition 7 to conclude

that τ∗
N is the unique solution to L∗(�̂). Let BN (m) = Bκ(m). To show τ∗

N = inf{t : Xt ≥
BN (Mt)}, it suffices to show that if Bk > Xk, then bk = −∞. Suppose not, so that bk >
Xk+1 for some k. By the same arguments as in Proposition 7, bk ∈Dk =D1

k implies x ∈D1
k

for all x > bk, contradicting Bk >Xk. Therefore, bk = −∞ for all k with Bk >Xk.
We can apply an analogous argument as in Lemma 22 to show that (τ∗

N�1) and �̂ must
satisfy complementary slackness conditions for all RDIC(Xn) constraints. Theorem 1 of
Balzer and Janßen (2002) then shows that (τ∗

N�1) solves Hh. As we did in Proposition 5,
we let BN = {X1� � � � �XP} and then add into BN any Xn such that RDP(Xn) binds but
λ̂n = 0 without changing the result. Q.E.D.

Satisfying Conditions of Theorem 1 of Balzer and Janßen (2002)

Balzer and Janßen (2002) make two restrictions on the choice of (τ�dτ), requiring
P(τ > 0) = 1 and P(τ < ∞) = 1. The restriction P(τ > 0) = 1 can be dropped as we
allow τ to depend on the randomization device Y0. The restriction P(τ <∞) = 1 can be
dropped as well, because for each d ∈{0�1}, both e−rtu(Xt�d) and e−rtv(Xt�d) go to 0 as
t → ∞.

Their theorem also requires a Slater condition that there exists a mechanism for which
all constraints are slack. To construct such a mechanism for HN (V ), let BFBA be the static
approval threshold in A’s first best mechanism. Take a mechanism, which approves with
probability 1 − ε at τ(Xn) for each Xn ≥ BFBA and uses A’s first-best mechanism as its
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continuation mechanism at τ(x̄) where x̄ = sup{Xn :Xn < B
FB
A }. For small enough ε, all

constraints will be slack. For the problem inHh, the Slater condition is satisfied by τ′ with
P(τ′ = ∞) = 1.

APPENDIX E: STATIC THRESHOLD MECHANISM PROOFS

Let �(B�b�x) = E
x[e−rτ+(B;b)] be the discounted probability of reaching B before b

when (X0�Z0) = (x�zx) and φ(B�b�x) = E
x[e−rτ(b;B)] be the discounted probability of

reaching b before B when (X0�Z0) = (x�zx).6 In both functions, we restrict attention
to B > b. It is easy to see that � is decreasing in B and b, φ is increasing b and B.
�(B�b�x)+φ(B�b�x) is strictly less than 1 and is decreasing in B for x ∈ (b�B).7 ��φ are
differentiable in all arguments. Let �B(B�b�x) := ∂�(B�b�x)

∂B
and let �b(B�b�x) := ∂�(B�b�x)

∂x
,

with a similar definition for φB(B�b�x)�φb(B�b�x).

Proof of Lemma 1

PROOF: We first present the proof of single-peakedness in B for Ṽ (B�b�x). The proof
for J̃ is analogous. Fix b < x. If Ṽ is not single-peaked in B, then there exist B3 > B2 >
B1 ≥ x such that Ṽ (B1� b�x) = Ṽ (B3� b�x) ≥ Ṽ (B2� b�x). For threshold B1, we have

Ṽ
(
B1� b�x

) =�(
B1� b�x

)
v
(
B1�1

) +φ(
B1� b�x

)
v(b�0) − cA

r
�

For B2, by standard dynamic programming arguments, we have

Ṽ
(
B2� b�x

) = E

[
e−rτ+(B1;b)

E
B1

[
e−rτ(B2;b)v

(
B2�1

) + e−rτ(b;B2) cA

r

]
+ e−rτ(b;B1)v(b�0)

]
− cA

r

=�(
B1� b�x

)(
Ṽ

(
B2� b�B1

) + cA

r

)
+φ(

B1� b�x
)
v(b�0) − cA

r
� (15)

Similarly, we have

Ṽ
(
B3� b�x

) =�(
B1� b�x

)(
Ṽ

(
B3� b�B1

) + cA

r

)
+φ(

B1� b�x
)
v(b�0) − cA

r
�

Ṽ
(
B2� b�x

) =�(
B2� b�x

)
v
(
B2�1

) +φ(
B2� b�x

)
v(b�0) − cA

r
�

Ṽ
(
B3� b�x

) =�(
B2� b�x

)(
Ṽ

(
B3� b�B2

) + cA

r

)
+φ(

B2� b�x
)
v(b�0) − cA

r
�

Using the above expressions and Ṽ (B1� b�x) = Ṽ (B3� b�x) ≥ Ṽ (B2� b�x), we get Ṽ (B3�
b�B1) + cA

r
= v(B1�1) ≥ Ṽ (B2� b�B1) + cA

r
and Ṽ (B3� b�B2) + cA

r
≥ v(B2�1).

6Stokey (2009) gives closed-form formula for these discounted probabilities conditional on θ, which can
then be used to calculate ��φ explicitly based on the belief about θ implies by x.

7That �+φ is decreasing in B follows from the observation that �+φ= E
x[e−r(τ+(B)∧τ(b))] and for B <B′,

τ(B) ∧ τ(b) ≤ τ(B′) ∧ τ(b).
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Suppose v(B1�1) ≥ 0. Using Ṽ (B3� b�B1) + cA
r

= v(B1�1), by similar dynamic program-
ming arguments as in (15), we have

Ṽ
(
B3� b�B2

) =�(
B3�B1�B2

)
v
(
B3�1

) +φ(
B3�B1�B2

)(
Ṽ

(
B3� b�B1

) + cA

r

)
− cA

r

=�(
B3�B1�B2

)
v
(
B3�1

) +φ(
B3�B1�B2

)
v
(
B1�1

) − cA

r

= E
B2[
e−r(τ+(B3)∧τ(B1))v(Xτ+(B3)∧τ(B1)�1)

] − cA

r

< E
B2[
v(Xτ+(B3)∧τ(B1)�1)

] − cA

r
= v(B2�1

) − cA

r
�

contradicting Ṽ (B3� b�B2) + cA
r

≥ v(B2�1). The first inequality above follows from
v(B1�1) ≥ 0 and v(B3�1) > 0 while the last equality follows by an application of Doob’s
optional stopping theorem and that v(Xt�1) is a martingale.

Now suppose v(B1�1) < 0. Because �(B2� b�B1) + φ(B2� b�B1) < 1, multiplying both
sides by v(B1�1) < 0, we have

v
(
B1�1

)
<�

(
B2� b�B1

)
v
(
B1�1

) +φ(
B2� b�B1

)
v
(
B1�1

)
<�

(
B2� b�B1

)
v
(
B2�1

) +φ(
B2� b�B1

)cA
r

= Ṽ (
B2� b�B1

) + cA

r
�

a contradiction of v(B1�1) ≥ Ṽ (B2� b�B1) + cA
r

. It must be that Ṽ is strictly single-peaked
in B. By interchanging the roles of B with b and v(B�1) with v(b�0), an analogous argu-
ment shows single-peakedness with respect to b. Q.E.D.

Proof of Lemma 2

PROOF: Fix b < x and let B′ = arg maxB Ṽ (B�b�x). Given the single-peakedness of J̃, if
B′ > arg maxB J̃(B�b�x), then ∂J̃(B�b�x)

∂B
|B=B′ < 0 = ∂Ṽ (B�b�x)

∂B
|B=B′ . To generate a contradiction,

it suffices to show ∂J̃(B�b�x)
∂B

≥ ∂Ṽ (B�b�x)
∂B

. This follows from

∂J̃(B�b�x)
∂B

=�B(B�b�x)u(B�1) +�(B�b�x)
∂u(B�1)
∂B

+φB(B�b�x)
cR

r

=�B(B�b�x)ũ(B) +�(B�b�x)ũ′(B) + (
�B(B�b�x) +φB(B�b�x)

)cR
r

≥�B(B�b�x)ṽ(B) +�(B�b�x)ṽ′(B) + (
�B(B�b�x) +φB(B�b�x)

)cA
r

= ∂Ṽ (B�b�x)
∂B

�

The inequality follows from �B ≤ 0, ũ≤ ṽ, ṽ′ ≤ ũ′, �B +φB ≤ 0 and cA ≥ cR. Q.E.D.

Proof of Lemma 3

PROOF: Suppose Ṽ (B�b�x;z) ≥ 0. Ṽ (B�b�x;z) is a convex combination of Ṽ (B�b�x;
∞) (with weight e

z+ 2μ
σ2 x

1+ez+
2μ
σ2 x

) and Ṽ (B�b�x;−∞) (with weight 1

1+ez+
2μ
σ2 x

), so the proof
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is immediate if Ṽ (B�b�x;∞) > Ṽ (B�b�x;−∞). Let � = E
x[e−rτ+(B;b)|H] and ψ =

E
x[e−rτ(b;B)|H]. Then Ṽ (B�b�x;∞) = �(1 + cA

r
) + ψcA

r
− cA

r
. Stokey (2009) shows

E
x[e−rτ+(B;b)|L] = �e

2μ
σ2 (x−B) and E

x[e−rτ(b;B)|L] = ψe
2μ
σ2 (x−b) , so Ṽ (B�b�x;−∞) =

�e
2μ
σ2 (x−B) (a+ cA

r
) +ψe 2μ

σ2 (x−b) cA
r

− cA
r

.
In order for Ṽ (B�b�x;z) ≥ 0, either Ṽ (B�b�x;∞) ≥ 0 or Ṽ (B�b�x;−∞) ≥ 0.

Therefore, we only need to show Ṽ (B�b�x;−∞) < max{0� Ṽ (B�b�x;∞)}. Suppose
Ṽ (B�b�x;−∞) ≥ max{0� Ṽ (B�b�x;∞)}. Then

�e
2μ
σ2 (x−B)

(
a+ cA

r

)
+ψe 2μ

σ2 (x−b) cA

r
− cA

r
≥ max

{
0��

(
1 + cA

r

)
+ψcA

r
− cA

r

}
�

The LHS is increasing in a so it suffices to show a contradiction when a = 1. For a = 1,
we can rearrange this inequality to get

cA

r + cA
1 −ψe 2μ

σ2 (x−b)

e
2μ
σ2 (x−B)

≤�≤ cA

r + cA
ψ

(
e

2μ
σ2 (x−b)) − 1

)
1 − e 2μ

σ2 (x−B)
�

Simplifying the LHS and RHS of these inequalities, we get ψ ≥ e
− 2μ
σ2 (x−B)−1

e
− 2μ
σ2 (b−B)−1

. Stokey

(2009) shows ψ = eR1(x−B)−eR2(x−B)

eR1(b−B)−eR2(b−B) where R1 = −μ−
√
μ2+2rσ2

σ2 �R2 = −μ+
√
μ2+2rσ2

σ2 . At r = 0,

we have R1 = − 2μ
σ2 and R2 = 0, which implies ψ = e

− 2μ
σ2 (x−B)−1

e
− 2μ
σ2 (b−B)−1

. As is easily seen from its

definition, ψ is strictly decreasing in r. Thus, for any r > 0, we have ψ < e
− 2μ
σ2 (x−B)−1

e
− 2μ
σ2 (b−B)−1

, a

contradiction. Q.E.D.

Proof of Lemma 4

PROOF: The same arguments as in Lemma 1 imply J̌ is single-peaked in B and b. Given
this, it suffices to show that ∂J̌(B�b�x�U ′)

∂B
≥ ∂J̌(B�b�x�U)

∂B
for U ′ >U ≥ 0. Using φB ≥ 0, we have

∂J̌
(
B�b�x�U ′)
∂B

=�B(B�b�x)u(B�1) +�(B�b�x)ũ′(B) +φB(B�b�x)
(
U ′ + cR

r

)
≥�B(B�b�x)u(B�1) +�(B�b�x)ũ′(B) +φB(B�b�x)

(
U + cR

r

)

= ∂J̌(B�b�x�U)
∂B

� Q.E.D.

For our next two proofs, it is useful to define the function V̄ (B�x) := maxb Ṽ (B�b�x),
which givesA’s continuation value atXt = x whenA is allowed to choose optimally when
to quit but R fixes the approval threshold at B.
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Proof of Lemma 7

PROOF: Take m1 < m2. As shown in the proof of Proposition 5, Ṽ (BN (mi)�mi −
δN�m

i;z0) = Ṽ (BN (mi) −mi�−δN�0;zmi). By Lemma 3,

Ṽ
(
BN

(
m1

) −m1�−δN�0;zm2

)
> Ṽ

(
BN

(
m1

) −m1�−δN�0;zm1

) = 0�

Because limB→∞ Ṽ (B�b�0;z) < 0 for any b < 0 and Ṽ is single-peaked in B, we can find a
unique B′ >BN (m1)−m1 such that Ṽ (B′�−δN�0;zm2) = 0. It must then be that BN (m2) =
B′ +m2 >BN (m1) +m2 −m1 >BN (m1), so BN (m) is increasing.

Suppose there is a discontinuity in BN at m′. For sufficiently small ε, continuity of Ṽ
implies

0 = Ṽ (
BN

(
m′ + ε)�m′ + ε− δN�m′ + ε) ≈ Ṽ (

BN
(
m′ + ε)�m′ − ε− δN�m′ − ε)�

Ṽ (B�m′ − ε − δN�m
′ − ε) is strictly decreasing in B for B ≥ BN (m′ − ε). Because

limε→0(BN (m′ +ε)−BN (m′ −ε)) > 0, we have limε→0 Ṽ (BN (m′ +ε)�m′ −ε−δN�m′ −ε) <
0, a contradiction. Therefore, BN must be continuous.

Because Ṽ (BN (m)�m�m) = 0 and Ṽ is single-peaked with respect to b, in order for
Ṽ (BN (m)�m−δN�m) = 0, it must be that b∗(BN (m)) ∈ (m−δN�m); taking the limit, we
get b∗(B∞(m)) =m where B∞(m) = limN→∞BN (m).

Take anym′ > bFBA +δN . Choosing BFBA = arg maxB V̄ (B�x) maximizes V̄ (B�x) for all x,8

and so increases inf{x : V̄ (B�x) > 0} = b∗(B). Thus, Ṽ (BFBA �b
FB
A �m

′) > 0, which implies
Ṽ (BFBA �m

′ − δN�m′) > 0 by Lemma 20. Since limB→∞ Ṽ (B�b�x) < 0 for all b < x, we can
find a B′ > BFBA such that Ṽ (B′�m′ − δN�m

′) = 0. Thus, BN (m′) > BFBA and so B∞(m′) ≥
BFBA .

We now show b∗(B) is increasing and continuous in B for B > BFBA . Uniqueness of
A’s optimal stopping thresholds (and so b∗(B)) follows from the same arguments in
Lemma 21. Continuity of b∗(B) follows from the theorem of the maximum. For x′ ∈
(x�B], V̄ (B�x) = E

x[e−rτ+(x′;b∗(B))V̄ (B�x′) +e−rτ(b∗(B);x′) cA
r

]− cA
r

. BecauseA prefers imme-
diate approval whenever above BFBA , we know V̄ (B�x′) < V̄ (x′�x′) for each B > x′ ≥ BFBA .
Thus, increasing B ≥ BFBA reduces A’s continuation value at all x < B and so must
increase b∗(B). Because b∗(B) is increasing in B ≥ BFBA , there is a unique B ≥ BFBA
such that b∗(B) = m′. Since B∞(m′) > BFBA , B∞(m′) is this unique B. We conclude that
B∞(m) = B(m). Continuity of B(m) follows from continuity of b∗(B). Q.E.D.

Continuity in Limit of Optimal Mechanisms

Here, we verify limN→∞ J(τ∗
N�d

∗
N�τ� z0) = J(τ∗� d∗

τ� z0). Take ε ∈ (0�minm B(m) − m),
K <max{u(−∞�1)�0}, τN = τ∗ ∧ τ∗

N , τN = τ∗ ∨ τ∗
N , dN = d∗

τ1(τN = τ∗) +d∗
N�τ1(τN = τ∗

N).
Define dN analogously but replacing τN with τN . Let BτN = B(MτN

) ∨BN (MτN
) and bN =

b∧ bN . Then |J(τ∗� d∗
τ� z0) − J(τ∗

N�d
∗
N�τ� z0)| is equal to

E
[
e−rτN

∣∣u(XτN
�dN) −EXτN �MτN

[
e−r(τN−τN )u(XτN �dN)

]∣∣]
≤ E[e−rτN dN|u(XτN

�1) −E
XτN

[
e−rτ+(BτN ;XτN−ε)u(XτN

− ε�1) + e−rτ(XτN−ε;BτN )K|
]

8Standard dynamic programming arguments imply that A’s optimal threshold can be chosen independent
of x.
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+E[e−rτN (1 − dN)|u(XτN
�0) −E

XτN
[
e−rτ(bN ;XτN+ε)u(bN�0) + e−rτ+(XτN+ε;bN )K|

]
�

Because XτN
= B(MτN

) ∧ BN (MτN
) when dN = 1 and limN→∞|B(m) − BN (m)|= 0, it is

easily verified that for each history hτN , limN→∞ E
B(MτN )∧BN (MτN )[e−rτ+(BτN ;XτN−ε)] = 1 and

limN→∞ E
B(MτN )∧BN (MτN )[e−rτ(XτN−ε;BτN )] = 0, so the first absolute value after the inequality

above converges to dN (u(XτN
�1) −u(XτN

−ε�1)) asN → ∞. Since ε is arbitrary, the first
expectation can be made to converge to 0. A similar argument holds for the second expec-
tation after the inequality. We conclude that limN→∞|J(τ∗� d∗

τ� z0) − J(τ∗
N�d

∗
N�τ� z0)|= 0.

Analogous arguments show the difference in A’s continuation value after history ht from
τ∗
N and τ∗ goes to 0 as N → ∞.

APPENDIX F: ADDITIONAL RESULTS FROM SECTION 4

We now show that DP is a relaxation of the dynamic participation constraint.

LEMMA 23: If (τ�dτ) satisfies the dynamic participation constraint, it satisfies DP .

PROOF: Suppose (τ�dτ) satisfies the dynamic participation constraint. For any τ′,
V (τ�dτ� z0) − V (τ ∧ τ′� dτ1(τ < τ′)� z0) is equal to

E

[
e−rτ′1

(
τ ≥ τ′){

E
Xτ′

[
e−rτ[hτ′ ]v

(
Xτ[hτ′ ]� dτ[hτ′]

)] − cA

r

}]
DP holds if E[e−rτ′1(τ ≥ τ′){EXτ′ [e−rτ[hτ′ ]v(Xτ[hτ′ ]� dτ[hτ′])] − cA

r }] ≥ 0 for all τ′, which fol-
lows because E

Xτ′ [e−rτ[hτ′ ]v(Xτ[hτ′ ]� dτ[hτ′])] − cA
r

isA’s continuation value under (τ�dτ) at
hτ′ and is positive by the dynamic participation constraint. Q.E.D.

We next prove the result mentioned in the Introduction of Section 4 in which we con-
sider R’s problem with only a time-zero participation constraint.

PROPOSITION 8: For any W ∈ [0� sup(τ�dτ) V (τ�dτ� z0)), the solution to sup(τ�dτ) J(τ�dτ�
z0) subject to V (τ�dτ� z0) ≥W is a static threshold mechanism.

PROOF: Using Theorem 1 of Balzer and Janßen (2002), there exists a λ̂ ≤ 0 such that
the value of R’s problem is equal to

sup
(τ�dτ)

E
[
e−rτ(u(Xτ�dτ) − λ̂v(Xτ�dτ)

)] − cR

r
+ λ̂

(
W + cA

r

)
�

Given that u(x�1) − λ̂v(x�1) is increasing in x, by standard optimal stopping arguments,
the optimal stopping rule takes the form τ∗ = inf{t :Xt /∈ (b∗�B∗)} for some b∗ ≤ 0 ≤ B∗

and d∗
τ = 1(Xτ ≥ B∗) (we allow for b∗ = −∞ if it is never optimal to reject). The same

arguments as in the proof of Proposition 5 show that (τ∗� d∗
τ) will solve R’s problem for

an appropriate choice of λ̂. Q.E.D.

Proof of Proposition 1

PROOF: Compare the optimal mechanisms (in Z-space) for Z0 ∈ {z1� z2} with z1 > z2.
Let (τZ�i� dZ�iτ ) be the optimal mechanism when Z0 = zi and let BZi (m) be the approval
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threshold from (τZ�i� dZ�iτ ) in Z-space when MZ
t =m. Define b∗

Z(·) and BZ(·) analogously
to the b∗(·)�B(·). Let τZ+(B) = inf{t :Zt ≥ B} and τZ(b) = inf{t :Zt ≤ b}.

We start by arguing that the rejection threshold in all optimal mechanisms is equal to
the highest z, call it z, such that sup(τ�dτ) J(τ�dτ� z) subject to DP(z) is equal to 0. It is
never optimal to reject at τZ(z) for z > z as, for each (τZ�i� dZ�iτ ), there exists a continu-
ation mechanism at τZ(z) that makes both R and A better off.9 If R does not reject at
τZ(z) under (τZ�i� dZ�iτ ), thenA’s continuation value at τZ(z) is strictly positive; otherwise
R could reject at τZ(z) and be better off without making A worse off.

Suppose A’s continuation value was strictly positive at τZ(z) under (τZ�i� dZ�iτ ). The
approval threshold must be constant prior to τZ(z) and b∗

Z(BZi (z)) < z. R would be better
off increasing the rejection threshold to z. By the same arguments as in Lemma 20, doing
so will not violate DP ,10 contradicting the optimality of (τZ�i� dZ�iτ ). We conclude that all
optimal mechanisms will use the rejection threshold z.

We now show BZ1 (m) = BZ2 (m) for all m ≤ z2. Once the approval threshold begins to
decrease, it is pinned down as BZ . Therefore, it suffices to show that B̄Z1 := BZ1 (z2) =
BZ2 (z2) =: B̄Z2 . Suppose B̄Z1 
= B̄Z2 . Let Ji(z) be R’s continuation value under (τZ�i� dZ�i)
at τZ(z). Because the continuation mechanism for (τZ�1� dZ�1τ ) at τZ(z2) satisfies DP , we
must have J1(z2) ≤ J2(z2) by the optimality when Z0 = z2 of using (τZ�2� dZ�2τ ) rather than
the continuation mechanism for (τZ�1� dZ�1τ ) at τZ(z2).

Suppose J1(z2) < J2(z2). IfA’s continuation value is 0 at τZ(z2) under (τZ�1� dZ�1τ ), then
R is strictly better off changing the continuation mechanism of (τZ�1� dZ�1τ ) at τZ(z2) to
(τZ�2� dZ�2τ ) because it (weakly) increases both players’ continuation values, strictly so for
R.

Suppose A’s continuation value under (τZ�1� dZ�1τ ) at τZ(z2) is strictly positive. Then
z2 > b∗

Z(B̄Z1 ). Construct a mechanism (τ′� d′
τ) that only stops prior to τZ(z2) if Zt ≥ B̄Z1

and then uses (τZ�2� dZ�2τ ) as its continuation mechanism at τZ(z2). When Z0 = z1, (τ′� d′
τ)

leads to the same outcomes as (τZ�1� dZ�1τ ) if τZ�1 < τZ(z2) and increases R’s continua-
tion value at τZ(z2). Because (τZ�2� dZ�2τ ) satisfies DP , to show that DP is satisfied un-
der (τ′� d′

τ) we need only verify that A has no incentive to quit before τZ(z2). Because
A’s continuation value under (τZ�1� dZ�1τ ) is weakly positive at τZ(z2), A’s continuation
value under (τ′� d′

τ) at ht with t < τZ(z2) is bounded below his value of a static thresh-
old mechanism (with thresholds in Z-space) with approval threshold B̄Z1 and rejection
threshold z2. Because z2 > b∗

Z(B̄Z1 ), A’s value of this static threshold mechanism is posi-
tive by the arguments in Lemma 20. Thus, (τ′� d′

τ) satisfiesDP and is a strict improvement
for R over (τZ�1� dZ�1τ ) when Z0 = z1, contradicting the optimality of (τZ�1� dZ�1τ ). There-
fore, J1(z2) = J2(z2). Using the continuation mechanism from (τZ�1� dZ�1τ ) at τZ(z2) when
Z0 = z2 is therefore optimal, meaning the B̄Z1 = B̄Z2 . Q.E.D.

This result implies that, in X space, the approval threshold function in the optimal SI-
mechanism when (X0�Z0) = (0� z0) and in the optimal SI-mechanism when (X0�Z0) =
(x�zx) are the same when x < 0.

9To see this, note that by fixing the optimal mechanism at some Z0 as a function of (X�M) and increasing
Z0, we will slacken DP and raise R’s expected utility.

10The same properties in Lemma 20 hold when we write Ṽ in terms of Zt rather than Xt .
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General Utility Functions

As mentioned at the end of Section 4, we can extend Theorem 1 to allow for more gen-
eral utility functions than presented in the main body of the text. We place the following
assumptions on ũ and ṽ.

ASSUMPTION 1: ũ� ṽ are bounded, differentiable, and such that ṽ(x) ≥ ũ(x), ũ′(x) ≥
ṽ′(x) ≥ 0 and ũ(Xt)� ṽ(Xt) are supermartingales.

In our main specification of the model, ṽ(x) ≥ ũ(x), ũ′(x) ≥ ṽ′(x) ≥ 0 are captured
by a ∈ [f�1]. Translating from Xt into πt , because πt is a martingale, ũ and ṽ are super-
martingales if they are weakly concave in πt . This condition holds in our main model, in
which ũ and ṽ are linear in πt .

The proof when ũ and ṽ are supermartingales changes only slightly; in particular, we
only need to change the equalities that result when we apply Doob’s optional stopping
theorem and the fact ũ and ṽ are martingales to inequalities going in the needed direction
when they are supermartingales.

No Commitment

We first specify the details of the model without commitment. We assume A can tem-
porarily stop experimenting at any time. No flow cost is paid while experimentation is
stopped and R can approve at any time.11

A strategy for A is a process α={αt : 0 ≤ t <∞} that is measurable with respect to the
filtration generated by X . A continuation strategy of α∗ at history ht is α∗[ht] defined by,
for each ω with history ht , α∗[ht](χtω) = α∗(ω). Both agents observe X , which solves to
stochastic differential equation dXt = αt (μθdt+σ dWt). R’s strategy is given as before by
a stopping time and decision rule (τ�dτ).12

DEFINITION 8: A pair (α∗� (τ∗� d∗
τ)) is an equilibrium if for every history ht , the contin-

uation actions α∗[ht] and (τ∗[ht]� d∗
τ[ht]) satisfy

• α∗[ht] ∈ arg maxαEXt [e−rτ∗[ht ]ṽ(Xτ∗[ht ]) d∗
τ[ht] − ∫ τ∗[ht ]

0 e−rsαscA ds|α].
• (τ∗[ht]� d∗

τ[ht]) ∈ arg maxτ�dτ EXt [e−rτũ(Xτ) dτ − ∫ τ

0 e
−rsα∗

s [ht]cR ds|α
∗[ht]].

PROPOSITION 9: The optimal mechanism can be implemented as an equilibrium.

PROOF: Suppose R uses (τ∗� d∗
τ) from Theorem 1 and A uses the following strategy:

experiment until τ∗, at which immediately stop and never restart experimenting, and if
experimentation has stopped before τ∗, immediately restart experimenting and keep ex-
perimenting until τ∗.

We claim this is an equilibrium. First, consider the incentives of R to deviate. Suppose
the equilibrium calls for R to approve at time τ∗. If she does not approve at τ∗, A quits
experimenting at τ∗ forever. Because no new learning occurs, R prefers to approve im-
mediately at τ∗ because ũ(Xτ∗) ≥ 0. Suppose R had a profitable deviation to stop at some

11The case when A can irrevocably quit experimenting has been studied in Kolb (2019) and Henry and
Ottaviani (2019). Using the Markov perfect equilibrium as the solution concept, they find an equilibrium in
which R’s approval decision takes a static threshold form.

12(τ�dτ) is taken to be measurable with respect to the sigma algebra generated by {αs�Xs : 0 ≤ s ≤ t}.
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τ′ such that τ′ ≤ τ∗. R will never find it profitable to reject earlier than τ∗. If R’s continua-
tion value was negative at some history ht with Xt ≥Mt > b, then R’s continuation value
would be negative at τ(Mt) and R would be better off under rejecting at τ(Mt); by simi-
lar arguments as those made in the proof of Proposition 1, rejection at τ(Mt) would still
satisfy DP , a contradiction of the optimality of (τ∗� d∗

τ). Therefore, R must approve at τ′

when τ′ < τ∗. If R is better off approving at a history hτ′ with Xτ′ ∈ [Mτ′�B(Mτ′)), then R
would better off lowering the approval threshold B(Mτ′), which would increaseA’s utility
as well by the arguments in Lemma 8, contradicting the optimality of τ∗. Therefore, no
such deviation can exist.

Next, we consider the incentives ofA to deviate from the proposed equilibrium. Under
the proposed approval rule, the dynamic participation constraint implies A has no incen-
tive to quit early. If he were to quit early, R would believe A will restart experimenting
immediately and, therefore, not find it optimal to approve. Moreover, A has an incen-
tive to stop experimenting at τ∗ because he believes R will approve immediately. In the
off-path event that R does not approve, A believes R will approve in the next instant and
has no incentive to restart experimentation because it is costly and will not increase the
probability of approval. Because neither A nor R have an incentive to deviate, (τ∗� d∗

τ) is
an equilibrium. Q.E.D.

APPENDIX G: OMITTED PROOFS FROM SECTION 5

Proof of Lemma 11

PROOF: Because a≥ 0, vi(x�1) > vi(x�0) > 0 for all x and i ∈{��h}. Because vi(Xt�1)
is a strictly positive martingale, for any b < x< B we have

Ṽi(B�b�x) ≤ E
x�zi (x)

[
e−r(τ+(B)∧τ(b))vi(Xτ+(B)∧τ(b)�1)

] − cA

r

< E
x�zi (x)

[
vi(Xτ+(B)∧τ(b)�1)

] − cA

r
= ṽi(x) = Ṽi(x�b�x)�

Take any B′ ∈ (x�B). Using Ṽi(B�b�B′) < ṽi(B′), we have

Ṽi(B�b�x) = E
x�zi (x)

[
e−rτ+(B′;b)

](
Ṽi

(
B�b�B′) + cA

r

)
+E

x�zi(x)
[
e−rτ(b;B′)]cA

r
− cA

r

< E
x�zi (x)

[
e−rτ+(B′;b)

](
ṽi

(
B′) + cA

r

)
+E

x�zi (x)
[
e−rτ(b;B′)]cA

r
− cA

r
= Ṽi

(
B′� b�x

)
�

Thus, Ṽi is decreasing in B. Q.E.D.

Proof of Lemma 12

PROOF: Given Bi(m) = b∗−1
i (m), it suffices to show b∗(B;z) is decreasing in z. For

the sake of contradiction, suppose b∗(B;∞) > b∗(B;−∞). Without loss, assume 0 ∈
(b∗(B;∞)�B). As in Lemma 3, let �(b) = E[e−rτ+(B;b)|H] and ψ(b) = E[e−rτ(b;B)|H]; we
will drop dependence on b when b = b∗(B;∞). By single-peakedness of Ṽ with respect
to b, ∂Ṽ (B�b�0;∞)

∂b
|b=b∗(B;∞) = 0> ∂Ṽ (B�b�0;−∞)

∂b
|b=b∗(B;∞) . By the definitions of Ṽ (B�b�0;∞) and

Ṽ (B�b�0;−∞) provided in Lemma 3, ∂Ṽ (B�b�0;∞)
∂b

|b=b∗(B;∞) = d�
db

(1 + cA
r

) + dψ

db

cA
r

= 0, which
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implies d�
db

= − dψ

db

cA
r+cA and 0> ∂Ṽ (B�b�0;−∞)

∂b
|b=b∗(B;∞) implies

0>
d�

db
e

− 2μ
σ2 B

(
a+ cA

r

)
+ dψ

db
e

− 2μ
σ2 b

∗(B;∞) cA

r
− 2μ
σ2ψe

− 2μ
σ2 b

∗(B;∞) cA

r
�

Let �= B− b∗(B;∞). Using d�
db

= − dψ

db

cA
r+cA , the above inequality is equivalent to

dψ

db

(
1 − ar + cA

r + cA e
− 2μ
σ2 �

)
− 2μ
σ2 ψ< 0�

Using the formula for ψ provided in Lemma 3, dψ
db

=ψR2e
−R2�−R1e

−R1�

e−R1�−e−R2�
. Plugging this into

the above inequality and simplifying, we have

R2e
−R2� −R1e

−R1�

e−R1� − e−R2�
<

2μ

σ2

(
1 − ar + cA

r + cA e
− 2μ
σ2 �

) ≤ 2μ

σ2
(
1 − e− 2μ

σ2 �
) �

Recall from Lemma 3 that R1 + R2 = − 2μ
σ2 and R2 ≥ 0. If R2 = 0, then R2e

−R2�−R1e
−R1�

e−R1�−e−R2�
=

2μ

σ2(1−e−
2μ
σ2 �)

. The derivative of R2e
−R2�−R1e

−R1�

e−R1�−e−R2�
with respect to R2 when R1 = − 2μ

σ2 − R2 is

sinh(�( 2μ
σ2 +2R2))−�( 2μ

σ2 +2R2)

cosh(�( 2μ
σ2 +2R2))−1

≥ 0. Thus, R2e
−R2�−R1e

−R1�

e−R1�−e−R2�
≥ 2μ

σ2(1−e−
2μ
σ2 �)

, a contradiction. We con-

clude that b∗(B;∞) < b∗(B;−∞).
b∗(B;z) is characterized by the first-order condition

ezx

1 + ezx
∂Ṽ (B�b�x;∞)

∂b

∣∣∣∣
b=b∗(B;z)

+ 1
1 + ezx

∂Ṽ (B�b�x;−∞)
∂b

∣∣∣∣
b=b∗(B;z)

= 0� (16)

Given b∗(B;∞) < b∗(B;−∞) and the single-peakedness of Ṽ with respect to b, if
∂Ṽ (B�b�x;∞)

∂b
> 0, then ∂Ṽ (B�b�x;−∞)

∂b
> 0. To satisfy (16) at b = b∗(B;z), we must have

∂Ṽ (B�b�x;∞)
∂b

< 0 < ∂Ṽ (B�b�x;−∞)
∂b

. Taking the derivative of our first-order condition with re-
spect to z and doing a bit of algebra, we get that the sign of ∂b∗(B;z)

∂z
is equal to

∂V (B�b�x;∞)
∂b

|b=b∗(B;z) − ∂V (B�b�x;−∞)
∂b

|b=b∗(B;z) < 0. Q.E.D.

Proof of Lemma 13

PROOF: Let m′ = max{m ≤ 0 : V ∗(τ′� d′
τ�m�z�(m)) = 0}, because (τ′� d′

τ) rejects at
τ(b), m′ ≥ b. Thus, V ∗(τ′� d′

τ�m�z�(m)) > 0 for all m ∈ (m′�0] if m′ < 0.
Suppose m′ < 0. Take some small ε > 0. Because � always prefers a lower approval

threshold and his continuation value is 0 at τ(m), V ∗(τ′� d′
τ�m

′ + ε� z�(m′ + ε)) is
bounded above by his expected utility from the static threshold mechanism with ap-
proval threshold B(m′) and rejection threshold m′, namely Ṽ�(B(m′)�m′�m′ + ε) ≥
V ∗(τ′� d′

τ�m
′ + ε� z�(m′ + ε)) ≥ 0. As is shown in in the proof of Lemma 7, b∗

i (B) is
increasing in B for B > BFBA . Because BFBA = −∞ when a ≥ 0 and B(m′) > B�(m

′),
b∗
�(B(m′)) > m′, which implies that �’s continuation value in the static threshold mech-

anism at τ(m′′) for m′′ ∈ (m′� b∗
�(B(m′)) is strictly negative. For ε ∈ (0� b∗

�(B(m′)) −m′),



EXPERIMENTATION AND APPROVAL MECHANISMS 17

we have Ṽ�(B(m′)�m′�m′ + ε) < 0, a contradiction. Therefore, m′ = 0, which implies
V ∗(τ′� d′

τ� z�) = 0. Q.E.D.

Proof of Lemma 14

For this proof, we will use the characterization of the optimal mechanism when DIC(h)
is dropped. None of the proofs when deriving the optimal mechanism when DIC(h) was
dropped relied on this lemma. In the next two proofs, we will use Xi

c to denote the value
of Xc when z0 = zi.

PROOF: Take zh sufficiently large and let (τi� diτ) be type i’s mechanism when DIC(h)
is dropped. As zh → ∞, Xh

c → −∞. By the arguments in Lemma 15, R will never reject
h while Xt >X

h
c . Thus, the probability that R rejects h goes to 0 as zh → ∞.

Suppose h weakly prefers �’s mechanism. It is straightforward to verify that h would
never quit prior to τ(b�) under (τ��d�τ). Consider a modification of �’s mechanism, call
it (τ̃�� d̃�τ), that uses the same approval threshold as (τ��d�τ) prior to τ(b�) but uses a
continuation mechanism (τ′� d′

τ) at τ(b�) with τ′ = inf{t : Xt /∈ (Xh
c �B

′(Mt))} and d′
τ =

1(Xτ′ ≥ B′(Mτ′)) for some function B′ with B′(m) ∈ (B�(m)�Bh(m)). By Lemma 13, �
will find it optimal to quit at τ(b�) under (τ̃�� d̃�τ), so V ∗(τ̃�� d̃�τ� z�) = V (τ��d�τ� z�). Thus,
replacing (τh�dhτ ) with (τ̃�� d̃�τ) will satisfy DIC(�) and increase the discounted probability
of approval. It is easy to see that b� is finite in the limit as zh → ∞, so this increase in the
discounted probability of approval is bounded away from 0 as zh → ∞.
h’s continuation value under (τ̃�� d̃�τ) is strictly positive at τ(b�), so h will now strictly

prefer (τ̃�� d̃�τ) to (τh�dhτ ). Because the discounted probability of rejection is approxi-
mately 0 under both (τh�dhτ ) and (τ̃�� d̃�τ), for h to strictly prefer (τ̃�� d̃�τ) to (τh�dhτ ), it
must be that E0�zh[e−rτh dhτ (1+ cA

r
)]< E

0�zh[e−rτ̃� d̃�τ(1+ cA
r

)], which implies E0�zh[e−rτh dhτ ]<
E

0�zh[e−rτ̃� d̃�τ].
For zh sufficiently large, R’s expected utility from (τ�dτ) is approximately E

0�zh[e−rτ dτ].
Because offering h (τ̃�� d̃�τ) would satisfy DIC(�), (τ̃�� d̃�τ) represents an improvement for
R over (τh�dhτ ), a contradiction. Therefore, h must strictly prefer (τh�dhτ ) to (τ��d�τ).

Q.E.D.

Proof of Lemma 17

PROOF: Suppose, for the sake of contradiction, Xk >XN
� and Xk+1 <Xk − δN , so that

Xk+1 + δN /∈ BN . By Lemma 16, ρ(Xk+1 + δN) > 0 > ρ(Xk). Because BN (Xk+1 + δN) =
BN (Xk) and ρ�(Xn) = Ṽ�(BN (Xn)�Xn − δN�Xn), we have

Ṽ�
(
BN

(
Xk

)
�Xk+1�Xk+1 + δN

)
> 0> Ṽ�

(
BN

(
Xk

)
�Xk − δN�Xk

)
� (17)

Because Ṽ� is strictly decreasing in B, Lemma 17 implies BN��(X
k+1 + δN) > BN (Xk) >

BN��(X
k), which contradicts that BN�� is increasing (Lemma 7). Q.E.D.

PROPOSITION 10: If z� > log(−f ), then B1
h ≤ B1

� and B1
h < B

1
� implies b1

� < b
1
h.

PROOF: Because R would like to approve h immediately, DIC(�) must bind. z� >
log(−f ) implies X�

c < 0. By the same arguments made in the example in Section 4, R will
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never reject at any history ht with B�(Mt;η�) >X�
c . Because B1

� ≥ 0>X�
c and B�(m;η�)

only decreases at m< b∗
�(B

1
�), we must have b� < b

∗
�(B

1
�). �’s expected utility from (τ��d�τ)

is Ṽ�(B1
�� b

∗
�(B

1
�)�0).

Suppose B1
h > B

1
� . Because �’s continuation value at τ(b1

h) under (τh�dhτ ) when opti-
mally choosing when to quit is zero, V ∗(τh�dhτ � z�) = Ṽ�(B1

h� b
1
h�0) and so

V ∗(τh�dhτ � z�) = Ṽ�
(
B1
h� b

1
h�0

)
< Ṽ�

(
B1
�� b

1
h�0

) ≤ Ṽ�
(
B1
�� b

∗
�

(
B1
�

)
�0

)
�

contradicting that DIC(�) binds. We conclude that B1
h ≤ B1

� .
Suppose B1

h < B
1
� and b1

h < b
1
� . If � chooses to misreport his type and quit at τ(b∗

�(B
1
�)),

his expected utility is Ṽ�(B1
h� b

∗
�(B

1
�)�0) since Bh(m;ηh) is constant for m ≥ b1

h > b
∗
�(B

1
�).

We then have

V ∗(τh�dhτ � z�) ≥ Ṽ�
(
B1
h� b

∗
�

(
B1
�

)
�0

)
> Ṽ�

(
B1
h� b

∗
�

(
B1
�

)
�0

)
�

a contradiction of DIC(�). Thus, B1
h < B

1
� implies b1

h < b
1
� . Q.E.D.

Comparative Statics

We begin with a proposition that will be useful later. It shows that, when cA = 0, the
optimal mechanism must pool h and �. Let πi = ezi

1+ezi .

PROPOSITION 11: R’s value of the optimal mechanism when cA = 0 and a= 1 is equal to
the optimal mechanism in the R’s single decision-maker problem with prior P(zh)πh + (1 −
P(zh))π�.

PROOF: Let αi = E[e−rτi diτ|θ =H]and βi := E[e−rτi diτ|θ = L]. Incentive compatibility
for h implies

πhαh + (1 −πh)βha≥ πhα� + (1 −πh)β�a�
⇒ πh

αh

a
+ (1 −πh)βh ≥ πhα�

a
+ (1 −πh)β�� (18)

Because R does not offer �’s mechanism to h, we also must have

πhαh + f (1 −πh)βh ≥ πhα� + f (1 −πh)β�
⇒ πh

αh

|f | − (1 −πh)βh ≥ πh α�|f | − (1 −πh)β�� (19)

Adding (19) with (18) and simplifying, we get αh ≥ α�. A similar argument using incen-
tive compatibility for � implies αh ≤ α�. Therefore, we conclude αh = α� and, to preserve
incentive compatibility, βh = β�. It is without loss to offer both types the same mechanism,
which corresponds to R’s optimal solution with prior P(zh)πh + (1 − P(zh))π�. Q.E.D.

Proof of Proposition 2

PROOF: Suppose zh = ∞, z� = −∞. We first examine a limiting case where the signal to
noise ratio 2μ

σ2 → 0 and cA = 0. By Proposition 11, we know the value of the optimal mech-
anism converges R’s single decision-maker problem with prior P(zh)πh + (1 − P(zh))π�.
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As 2μ
σ2 → 0, learning becomes slow, and for any ε > 0, the expected time for beliefs to move

by more than ε goes to infinity. If P(z�) >
P(zh)
−f , then R’s expected utility will converge to

zero.
Next, we want to show that for cA large enough, we can find an approval rule such

that � will drop out immediately and h will be approved with strictly positive probability.
Suppose R offers h a mechanism (τ�1) with τ = inf{t :Xt ≥ Bh(Mt)} and rejects � imme-
diately. This satisfies DIC and approves h with probability one. Moreover, as cA → ∞,
the function B�(m) →m, and so the expected length of experimentation time goes to 0,
giving R a strictly positive utility. Q.E.D.

Proof of Proposition 3

PROOF: Suppose A learns θ and R offers the SI-mechanism for π = P(zh) to both
h��. Call this SI-mechanism (τS�dSτ ). Because h is more optimistic about the state than
he would be under symmetric information, h will never have an incentive to quit early.
By an analogous argument, � will choose to quit earlier than A would under symmetric
information. Let us define (τh�dhτ ) = (τS�dSτ ), and (τ��d�τ) to be the same as (τS�dSτ )
except that it rejects immediately whenever � would find it optimal to quit.

This menu of mechanisms is clearly incentive compatible. We argue that it yields a
strictly higher utility than the optimal mechanism in the symmetric-information model.
R’s utility is the same when θ=H in both the symmetric mechanism and under (τh�dhτ ),
since the distribution of approval and rejection times is the same. R’s utility is strictly
higher when θ = L from using (τ��d�τ) when compared to (τS�dSτ ). With positive proba-
bility, R approves when θ=L under (τS�dSτ ) and rejects under (τ��d�τ) before she would
have approved under (τS�dSτ ). Moreover, every ω that leads to approval under (τ��d�τ)
will also lead to approval in (τS�dSτ ) and τS(ω) = τ�(ω). Thus, R’s value of this mecha-
nism when A is informed about θ is higher than under symmetric information. Q.E.D.

APPENDIX H: GENERAL VALUES OF zh

We consider R’s asymmetric information problem for arbitrary zh. In this case, both
DIC(h) and DIC(�) may bind and so we must solveAMh with the PKh(V ′

h) constraint for
some value of V ′

h . Consider the problem of characterizing the Pareto frontier of R and
h’s expected utility across all mechanisms that satisfy DIC(��V�) and h’s dynamic partici-
pation constraint. Solving AMh with the PKh(V ′

h) is equivalent to finding the mechanism
that generates the point with V ′

h utility for h on the Pareto frontier.
Each point on the Pareto frontier is generated by the mechanism that solves, for some

weight γh, the problem of a social planner placing weight γh on R’s utility and 1 − γh
on h’s utility, namely maximizing E[e−rτ(γhu(Xτ�dτ) + (1 − γh)vh(Xτ�dτ))] subject to
DIC(��V�) and h’s dynamic participation constraint. This is equivalent to solving AMh

when DIC(h�V ′
h) is dropped but R’s utility u is replace with γhu+ (1 − γh)vh. All argu-

ments continue to apply as in the proof of Theorem 2 and so we get the same structure to
the optimal mechanism for h in the solution to this social planner’s problem.13

13The only important difference with this new utility is that costs of experimentation in our objective function
are no longer 0. However, the only point at which we used cR = 0 in the proof of Theorem 2 is in Lemma 15
to ensure R’s continuation value from (τ′�d′

τ) was strictly positive. But if we replace R’s utility function with
a weighted sum of R’s and h’s utility function, the same argument applies since h’s continuation value under
(τ′�d′

τ) was equal to 0.
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