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This Supplementary Appendix for Noor and Takeoka (2022) provides (i) a charac-
terization for the General Discounted Utility (GDU) model both on the deterministic
streams and on the streams of lotteries, (ii) a weaker definition of present equivalents in
the off-diagonal approach, (iii) omitted proofs for results in Noor and Takeoka (2022),
and (iv) a new axiomatization result about a variant of homogeneous CE representa-
tion, called the smooth homogeneous CE model.

S1. PRELIMINARIES

IN THIS SUPPLEMENTARY APPENDIX for Noor and Takeoka (2022) (henceforth NT), we
provide the omitted proofs for results in NT (NT, Sections 4, 5, and 6) as well as a char-
acterization of the GDU model (NT, Section 2) and a characterization of the smooth
homogeneous CE representation (NT, Section 7). We also show how the definition of
present equivalents in the off-diagonal approach can be relaxed to allow for positive fu-
ture consumption (NT, Section 3).

Recall that there are T + 1 < ∞ periods, starting with period 0. The space of outcomes
is assumed to be C = R+. Let � denote the set of simple lotteries over C, with generic
elements p�q� � � �. Let Z denote either C or �. The set of consumption streams is defined
as X = ZT+1. A typical element in X is denoted by x = (x0�x1� � � � � xT ). The primitive of
our model is a preference � over X .

Let Z0 ⊂ X denote the set of streams x = (z�0� � � � �0) that offer consumption z ∈ Z
immediately and 0 in every subsequent period. Abusing notation, we often use z to denote
both a consumption z ∈ Z and a stream (z�0� � � � �0) ∈ Z0. Thus, 0 also denotes the stream
(0� � � � �0). Denote by zt the stream that pays consumption z ∈ Z at time t and 0 in all other
periods. Such a stream is called a dated reward.
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S2. GDU REPRESENTATIONS

S2.1. Basic Axioms

First, we consider axioms that are commonly imposed on both X = CT+1 and X = �T+1.
We collect several standard conditions under a single heading.

AXIOM S1—Regularity: (a) (Order). � is complete and transitive.
(b) (Continuity). For all x ∈ X , {y ∈ X|y � x} and {y ∈X|x� y} are closed.
(c) (Impatience). For any z ∈ Z and t < t ′, zt � zt′ .
(d) (C-Monotonicity). For all c� c′ ∈C, c ≥ c′ ⇐⇒ c � c′.
(e) (Monotonicity). For any x� y ∈X ,

(xt�0� � � � �0) � (yt�0� � � � �0) for all t =⇒ x� y�

Moreover, if (xt�0� � � � �0) 	 (yt�0� � � � �0) for some t, then x	 y .

Order and Continuity are standard. Impatience states that consumption is better when
received sooner than later. C-Monotonicity states that more consumption is better than
less. While C-Monotonicity applies only to immediate consumption, Monotonicity is a
property on arbitrary streams: it requires that pointwise preferred streams are preferred.

S2.2. GDU Representations Over Deterministic Streams

In this subsection, we consider the case of Z = C, that is, preferences over X = CT+1.
For notational convenience, for all streams x, y ∈ X and all S ⊂ {0�1� � � � � T}, let xSy

denote the stream that pays according to x on S and according to y otherwise.

AXIOM S2—Strong Separability: For all S ⊂{0�1� � � � � T} and for all x�x′� y� y ′ ∈ X ,

xSy � x′Sy =⇒ xSy ′ � x′Sy ′�

As an intermediate result and benchmark, we show the following.

THEOREM S1: Assume T ≥ 3. A preference � over X = CT+1 satisfies Regularity and
Strong Separability if and only if it admits a GDU representation.

Moreover, if two GDU representations (ui�Di), i = 1�2 represent the same preference �,
then there exists a scalar λ > 0 s.t. (i) u2 = λu1, and (ii) for all c ∈ C and t > 0,

D1
u1(c) (t) =D2

u2(c) (t)�

PROOF: Take any c� c′ ∈C with c > c′. By C-Monotonicity and Monotonicity, ct 	 (c′)t
for all t ≥ 0. Moreover, since � satisfies Regularity and Strong Separability, Debreu (1960,
Theorem 3) ensures that � over X admits an additively separable utility representation

U (x) =
∑
t≥0

Ut (xt)� (S1)

where Ut : C → R is continuous for any t ≥ 0. Since ct 	 (c′)t for all t ≥ 0 whenever c > c′,
Ut is strictly increasing. Define u(c) = U0(c). Then Ut is written as Vt (u) for some strictly
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increasing continuous function Vt . That is, � over X admits a utility representation of the
form

U (x) = u(x0) +
∑
t≥1

Vt

(
u(xt)

)
� (S2)

By normalization, we can assume u(0) = 0 and Vt (0) = 0.
Define Dx by Du(xt ) (t) = Vt (u(xt ))

u(xt )
> 0 for any xt > 0. Then

U (x) = u(x0) +
∑
t≥1

Du(xt ) (t)u(xt)� for all x ∈X�

with convention that Du(xt ) (t)u(xt) = 0 whenever u(xt) = 0.
Since u and Vt are continuous, so is Du(c)(t) on the domain of c > 0. By Impatience,

for all positive c and t ≥ 1, u(c) =U (c0) ≥U (ct) =Du(c) (t)u(c), which implies Du(c) (t) ≤
1. Moreover, by Impatience, for all t < T , Du(c) (t)u(c) = U (ct) ≥ U (ct+1) = Du(c) (t +
1)u(c). Thus, Du(c) (t) is weakly decreasing wrt t.

Finally, we establish uniqueness.

LEMMA S1: If GDU (ui�Di) for i = 1�2 both represent the same preference �, then there
exists a scalar λ > 0 s.t. for all c ∈ C and t > 0,

u2(c) = λu1(c) and D1
u1(c) (t) =D2

u2(c) (t)�

PROOF: By the uniqueness property of the additive separable utility function (De-
breu (1960)), we obtain λ > 0 and γ ∈ R s.t. u2 = λu1 + γ. Due to the normalization
u(0) = 0 in the representation, we have γ = 0. Thus, u2 = λu1.

Next, take any c > 0. Since Dui (c) (t) ∈ (0�1], ui(c) ≥ Dui (c) (t)ui(c). By continuity of ui,
there exists ci ∈ C such that ui(ci) = Dui (c) (t)ui(c). From the representation, this equation
means Ui(ci) = Ui(ct), or ci ∼ ct , i = 1�2. That is, ci is a present equivalent of ct . Since a
present equivalent is unique by C-Monotonicity, c1 = c2 = c. Since u2 = λu1, we therefore
see that

D1
u1(c) (t) = u1(c)

u1(c)
= u2(c)

u2(c)
=D2

u2(c) (t)�

as desired. The converse is readily established. Q.E.D.

S2.3. GDU Representations Over Streams of Lotteries

An element of � that is a mixture between two consumption alternatives p�q ∈ � is
denoted α ◦p+ (1 −α) ◦ q for any α ∈ [0�1]. The mixture of any pair of streams x� y ∈ X
is given by

α ◦ x+ (1 − α) ◦ y := (
α ◦ x0 + (1 − α) ◦ y0� � � � �α ◦ xT + (1 − α) ◦ yT

)
�

For any stream x, we refer to cx ∈ C as its present equivalent if it satisfies cx ∼ x. Present
equivalents will be used instrumentally below.

AXIOM S3—Present Equivalents: For any stream x, there exist c ∈ C such that c � x.
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Present Equivalents states that for any stream, there are immediate consumption levels
that are better than x. Given Order and Continuity, this ensures that each stream x has
a present equivalent cx ∈ C . Notably, each x has a unique present equivalent cx (by C-
Monotonicity, x ∼ cx > cy ∼ y implies cx 	 cy and, therefore, x 	 y).

AXIOM S4—Risk Preference: For any p�p′�p′′ ∈ � and α ∈ (0�1],

p	 p′ =⇒ α ◦p+ (1 − α) ◦p′′ 	 α ◦p′ + (1 − α) ◦p′′�

Risk Preference imposes vNM Independence only on immediate consumption.
For notational convenience, for all streams x, y ∈ X and all t, let xty denote the stream

that pays according to x at t and according to y otherwise.

AXIOM S5—Separability: For all x ∈ X and all t,

1
2

◦ cxt0 + 1
2

◦ c0tx ∼ 1
2

◦ cx + 1
2

◦ c0�

The axiom can be justified by a thought experiment appealing to standard axioms. Sup-
pose there are only 3 periods (periods 0,1,2). Imagine that, in a hypothetical period −1,
the agent has a vNM preference �∗ over the set �(X) of lotteries over streams (of lot-
teries). Denote the lottery mixture of two streams x� y ∈ X by β � x+ (1 −β) � y for any
β ∈ [0�1], and consider the following condition:

1
2

� (0� c1�0) + 1
2

� (c0�0� c2) ∼∗ 1
2

� (c0� c1� c2) + 1
2

� (0�0�0)�

which involves a 50-50 chance at (0� c1�0) and (c0�0� c2) versus a 50-50 chance at
(c0� c1� c2) and (0�0�0). The indifference expresses a notion of separability: the agent only
cares that in each period t, she can end up with either ct or 0 with equal probabilities, and
in particular, does not care about the correlation in consumption realizations across pe-
riods. If cx is the present equivalent of stream x, then by vNM Independence on �∗, the
following indifference involving lotteries over present equivalents is implied:

1
2

� c(0�c1�0) + 1
2

� c(c0�0�c2) ∼∗ 1
2

� c(c0�c1�c2) + 1
2

� c(0�0�0)�

Separability obtains by assuming indifference to the timing of resolution of risk. That is,
since the timing of resolution of risk is inconsequential for eventual consumption, conse-
quentialism yields

1
2

� c(0�c′�0) + 1
2

� c(c�0�c′′) ∼∗ 1
2

◦ c(0�c′�0) + 1
2

◦ c(c�0�c′′)�

and
1
2

� c(c�c′�c′′) + 1
2

� c(0�0�0) ∼∗ 1
2

◦ c(c�c′�c′′) + 1
2

◦ c(0�0�0)�

Note that the left-hand side of ∼∗ is a lottery over X , which resolves in period −1. On the
other hand, the right-hand side of ∼∗ is an element of X . The risk resolves in period 0.
Finally, by transitivity of �∗, we obtain 1

2 ◦c(0�c1�0) + 1
2 ◦c(c0�0�c2) ∼∗ 1

2 ◦c(c0�c1�c2) + 1
2 ◦c(0�0�0), and

presuming dynamic consistency between periods −1 and 0, we obtain the corresponding
indifference in terms of �. This illustrates the justification for Separability.
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Note that Separability is a statement about the mixture of present equivalents of
streams, rather than about the mixture of streams. These two kinds of mixtures are equiv-
alent if the Independence axiom holds, but as is evident from the behavioral definition of
MDI (Weak Homotheticity in the main paper), the Independence axiom is at odds with
MDI and, therefore, we have to formulate Separability in a novel manner.

Separability is a potentially objectionable condition for our story: if an agent establishes
empathy for self t, then it is conceivable that she may costlessly empathize with adjacent
selves t−1 and t+1. This would violate Separability. However, we could alternatively view
the duration of a period as sufficiently long that such intertemporal complementarities
disappear.

S2.3.1. Representation Result

THEOREM S2: A preference � over X = �T+1 satisfies Regularity, Present Equivalents,
Risk Preference, and Separability if and only if it admits an unbounded GDU representation.

Moreover, if two GDU representations (ui�Di), i = 1�2 represent the same preference �,
then there exists a scalar λ > 0 s.t. (i) u2 = λu1, and (ii) for all p ∈ � and t > 0,

D1
u1(p) (t) =D2

u2(p) (t)�

PROOF: The necessity of the axioms is straightforward to establish. We establish its
sufficiency in the following lemmas.

LEMMA S2: The preference �|�0 is represented by a utility function u : � → R+ with
u(0) = 0 which is continuous, mixture linear, unbounded above, and homogeneous (i.e.,
u(α ◦ p) = αu(p) for all α ≥ 0). The preference � on X is represented by a continuous
utility function U :X → R+ such that U (p) = u(p) for all p ∈ �.

PROOF: By Regularity, �|�0 satisfies the vNM axioms. There exists a continuous mix-
ture linear function u : � → R+, which represents �|�0 and which can be chosen so that
u(0) = 0.

Establish homogeneity of u next. For any α ∈ [0�1], by mixture linearity of u, together
with identifying α ◦p with α ◦p+ (1 − α) ◦ 0,

u(α ◦p) = u
(
α ◦p+ (1 − α) ◦ 0

) = αu(p) + (1 − α)u(0) = αu(p)�

For any α > 1, we identify α ◦p with p′ ∈ C satisfying p = 1
α

◦p′ + α−1
α

◦ 0. Then mixture
linearity of u implies that u(p) = 1

α
u(p′), that is, u(α ◦p) = u(p′) = αu(p), as desired.

Homogeneity implies that u(�) =R+, which in turn implies u(C) = R+.
For any x ∈X , the Present Equivalents axiom ensures that there exists cx ∈ C such that

cx ∼ x. Define U (x) = u(cx). By construction, U represents �. Moreover, for all p ∈ �,
U (p) = u(p). In particular, we have U (0) = u(0) = 0.

To show the continuity of U , take any sequence xn → x. There exists a corresponding
present equivalent pxn ∼ xn. We want to show that U (xn) = u(pxn) converges to U (x) =
u(px). Fix p∗ ∈ � with p∗ 	 0 arbitrarily. Since u is continuous and homogeneous, there
exists a unique λ(xn) ≥ 0 such that u(pxn) = λ(xn)u(p∗) = u(λ(xn) ◦p∗). For λ > λ(x), x
belongs to the set W = {x ∈ X|λ ◦p∗ 	 x� 0}. By Continuity, we can assume xn ∈ W for
all n without loss of generality.

Since U (xn) = λ(xn)u(p∗) and U (x) = λ(x)u(p∗), it is enough to show that λ(xn) →
λ(x). Seeking a contradiction, suppose otherwise. Then there exists a neighborhood of
λ(x), denoted by B(λ(x)), such that λ(xm) /∈ B(λ(x)) for infinitely many m. Let {xm}
denote the corresponding subsequence of {xn}. Since xn → x, {xm} also converges to x.
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Since {λ(xm)} is a sequence in [0�λ], there exists a convergent subsequence {λ(x	)} with
a limit λ̃ �= λ(x). On the other hand, since x	 → x and x	 ∼ λ(x	) ◦p∗, Continuity implies
x ∼ λ̃ ◦p∗. Since λ(x) is unique, λ(x) = λ̃, which is a contradiction. Q.E.D.

LEMMA S3: U can be written in an additively separable utility form, that is, U : X → R+
s.t. for all x ∈X ,

U (x) = u(x0) +
∑
t≥1

Ut (xt)�

where u is given as in Lemma S2 and Ut : �→ R+ is continuous with Ut (0) = 0 for each t.

PROOF: Take any x = (x0�x1� � � � � xT ) ∈ X s.t. x 	 0. By Monotonicity, there exists
some t > 0 with xt 	 0. We start with the case where there are two xt�xs 	 0. By nota-
tional convenience, denote such a stream by (xt�xs�0� � � � �0). By Separability,

1
2

◦ c(0�xs�0�����0) + 1
2

◦ c(xt �0�����0) ∼ 1
2

◦ c(xt �xs�0�����0) + 1
2

◦ 0�

Since u is mixture linear,

u(c(0�xs�0�����0)) + u(c(xt �0�����0)) = u(c(xt �xs�0�����0)) + u(0)

⇐⇒ U (0�xs�0� � � � �0) +U (xt�0� � � � �0) =U (xt�xs�0� � � � �0)�

Define Ut (xt) = U (xt�0� � � � �0) and Us(xs) = U (0�xs�0� · · · �0). Then we have

U (xt�xs�0� � � � �0) =Ut (xt) +Us(xs)� (S3)

In particular, if t = 0, Ut (xt) = u(xt).
If a stream has three outcomes xt�xs�xr 	 0, denote it by (xt�xs�xr�0� � � � �0). From the

above argument, we have (S3). By Separability,

1
2

◦ c(0�0�xr �0�����0) + 1
2

◦ c(xt �xs�0�����0) ∼ 1
2

◦ c(xt �xs�xr �0�����0) + 1
2

◦ 0�

Since u is mixture linear,

u(c(0�0�xr �0�����0)) + u(c(xt �xs�0�����0)) = u(c(xt �xs�xr �0�����0)) + u(0)

⇐⇒ U (0�0�xr�0 · · · �0) +U (xt�xs�0� � � � �0) =U (xt�xs�xr�0� � � � �0)�

Define Ur(xr) = U (0�0�xr�0� � � � �0). Then we have

U (xt�xs�xr�0� � � � �0) = Ur(xr) +U (xt�xs�0� � � � �0) =Ut (xt) +Us(xs) +Ur(xr)�

By repeating the same argument finitely many times, we have

U (x) = u(x0) +
∑
t≥1

Ut (xt)�

where Ut (xt) is defined as Ut (xt) = U (0� � � � �0�xt�0� � � � �0). By definition, Ut (0) = 0.
Since U is continuous, Ut is also continuous. Q.E.D.
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LEMMA S4: The function U :X → R+ defined as in Lemma S3 can be written as

U (x) = u(x0) +
∑
t≥1

Du(xt ) (t)u(xt)�

where for all t > 0 and for all u(p) > 0, Du(p) (t) ∈ (0�1], and Du(p) (t) is continuous in
u(p) > 0 and is weakly decreasing in t.

PROOF: Taking the additive representation from Lemma S3, by Monotonicity, we have
that Ut (xt) can be written as an increasing transformation of u(xt). So we can write Ut (xt)
as Ut (u(xt)). Define Dx by Du(xt ) (t) = Ut (u(xt ))

u(xt )
> 0 for any xt ∈ � with u(xt) > 0. Then

U (x) = u(x0) +
∑
t≥1

Du(xt ) (t)u(xt)� for all x ∈X�

with convention that Du(xt ) (t)u(xt) = 0 whenever u(xt) = 0.
Since u and Ut are continuous, so is Du(c) (t) in u(c) on the domain of u(c) > 0. By Im-

patience, for all positive c and t ≥ 1, u(c) = U (c0) ≥ U (ct) = Du(c) (t)u(c), which implies
Du(c) (t) ≤ 1. Moreover, by Impatience, for all t < T , Du(c) (t)u(c) = U (ct) ≥ U (ct+1) =
Du(c) (t + 1)u(c). Thus, Du(c) (t) is weakly decreasing wrt t. Q.E.D.

Finally, we establish uniqueness.

LEMMA S5: If GDU (ui�Di) for i = 1�2 both represent the same preference �, then there
exists a scalar λ > 0 s.t. for all p ∈ � and t > 0,

u2(p) = λu1(p) and D1
u1(p) (t) = D2

u2(p) (t)�

PROOF: By considering the restriction �|�0 and applying the mixture space theorem,
we obtain λ > 0 and γ s.t. u2 = λu1 + γ. Due to the normalization u(0) = 0 in the repre-
sentation, we have γ = 0. Thus, u2 = λu1.

Next, observe that there exists a present equivalent cpt for each dated reward pt , the
representation implies that ui(cpt ) = Di

ui (p) (t)u
i(p) for any p ∈ � and t > 0. Since u2 =

λu1, we therefore see that

D1
u1(p) (t) = u1(cpt )

u1(p)
= u2(cpt )

u2(p)
=D2

u2(p) (t)�

as desired. The converse is readily established. Q.E.D.

S3. OFF-DIAGONAL APPROACH: WEAKER DEFINITION OF PRESENT EQUIVALENTS

Recall that for any stream x ∈ X , its present equivalent is defined by

cx ∼ x�

where cx pays 0 consumption in all future periods t > 0. The requirement of 0 future
consumption can be relaxed if for every t > 0, the agent’s impatience is magnitude-
independent for all consumption below some threshold c∗

t > 0 (in terms of the represen-
tation, this condition is equivalent dt > 0 and limδ↘dt

ϕ′
t (δ) > 0). In this case, present



8 J. NOOR AND N. TAKEOKA

equivalents can be defined with future consumption fixed at c∗
t > 0 in each t, and Weak

Homotheticity can be adapted accordingly to show that, in the GDU representation, it
yields MDI. This is because the key requirement for our behavioral definition of MDI is
that scaling down the present equivalent (along with the future stream c∗

1� � � � � c
∗
T ) does

not change the optimal discount function applied to that stream. We demonstrate all this
next.

Assume that there exists a stream x∗ such that for all t ≥ 1 and for all xt � x∗
t and

x0 � x∗
0 with (

x0�x
∗
1� � � � � x

∗
t−1�xt� x

∗
t+1 · · · �x∗

T

) ∼ x∗�

we have

α ◦ (
x0�x

∗
1� � � � � x

∗
t−1�xt� x

∗
t+1 · · · �x∗

T

) ∼ α ◦ x∗

for all α ∈ (0�1]. Let us confirm that this stream defines a threshold for “magnitude-
independent impatience” in the representation: If � admits a CE representation, this
indifference means

u(α ◦ x0) +Du(α◦xt ) (t)u(α ◦ xt) +
∑
τ �=0�t

Du(α◦x∗
τ) (τ)u

(
α ◦ x∗

τ

)
= u

(
α ◦ x∗

0

) +Du(α◦x∗
t ) (t)u

(
α ◦ x∗

t

) +
∑
τ �=0�t

Du(α◦x∗
τ) (τ)u

(
α ◦ x∗

τ

)
�

which is equivalent to

u(α ◦ x0) − u
(
α ◦ x∗

0

) = Du(α◦x∗
t ) (t)u

(
α ◦ x∗

t

) −Du(α◦xt ) (t)u(α ◦ xt)

⇐⇒ βαu(x0) −βαu
(
x∗

0

) = βαDu(α◦x∗
t ) (t)u

(
x∗
t

) −βαDu(α◦xt ) (t)u(xt)

⇐⇒ u(x0) − u
(
x∗

0

) =Du(α◦x∗
t ) (t)u

(
x∗
t

) −Du(α◦xt ) (t)u(xt)�

Since this equality holds for α= 1 in particular, we have

Du(x∗
t ) (t)u

(
x∗
t

) −Du(xt ) (t)u(xt) = Du(α◦x∗
t ) (t)u

(
x∗
t

) −Du(α◦xt ) (t)u(xt)�

By rearrangement,(
Du(x∗

t ) (t) −Du(α◦x∗
t ) (t)

)
u
(
x∗
t

) = (
Du(xt ) (t) −Du(α◦xt ) (t)

)
u(xt) (S4)

holds for all α ∈ (0�1) and all u(xt) ≤ u(x∗
t ). We want to show that Dr (t) is constant

for all r ≤ u(x∗
t ). Seeking a contradiction, suppose there exists some r ≤ u(x∗

t ) such that
Dr (t) �= Du(x∗

t ) (t). Take some α ∈ [0�1] satisfying r = u(α ◦ x∗
t ). Then the left-hand side

of (S4) is not equal to zero. On the other hand, as u(xt) → 0, the right-hand side of (S4)
vanishes to zero because Du(xt ) (t) − Du(α◦xt ) (t) is bounded. This is a contradiction. Note
that since Dr (t) is constant for all r ≤ u(x∗

t ), it is equal to the minimal discount factor dt .
Now we show that we can replace zero future consumption in the definition of present

equivalents with the consumption stream x∗ derived above. For any stream x such that
xt � x∗

t for all t ≥ 1, define the present equivalent cx ∈ C by (cx�x∗
1� � � � � x

∗
T ) ∼ x. Weak

Homotheticity requires that for all α ∈ (0�1),(
α ◦ cx�α ◦ x∗

1� � � � �α ◦ x∗
T

)
� (α ◦ x0�α ◦ x1� � � � �α ◦ xT )�
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In particular, if we take any stream x that gives p � x∗
t at time t ≥ 1 and gives x∗

τ at the
other τ, and write its certainty equivalent as cpt , then(

α ◦ cpt �α ◦ x∗
1� � � � �α ◦ x∗

t � � � � �α ◦ x∗
T

)
�

(
α ◦ x∗

0�α ◦ x∗
1� � � � �α ◦p� � � � �α ◦ x∗

T

)
�

This implies the desired MDI property: By the CE representation, and given the homo-
geneity of u, the left-hand side is equivalent to

u(α ◦ cpt ) +
∑

Du(α◦x∗
t ) (t)u

(
α ◦ x∗

t

) = u(α ◦ cpt ) +
∑

dtu
(
α ◦ x∗

t

)
= βα

(
u(cpt ) +

∑
dtu

(
x∗
t

)) = βαU (x)

= βα

(
Du(p) (t)u(p) + u

(
x∗

0

) +
∑
τ �=t�0

dτu
(
x∗
τ

))
�

while the right-hand side is equivalent to

Du(α◦p) (t)u(α ◦p) + u
(
α ◦ x∗

0

) +
∑
τ �=t�0

Du(α◦x∗
τ) (τ)u

(
α ◦ x∗

τ

)
=Du(α◦p) (t)u(α ◦p) + u

(
α ◦ x∗

0

) +
∑
τ �=t�0

dτu
(
α ◦ x∗

τ

)
= βα

(
Du(α◦p) (t)u(p) + u

(
x∗

0

) +
∑
τ �=t�0

dτu
(
x∗
τ

))
�

Thus, we have Du(p) (t) ≥ Dβαu(p)(t), which implies that Dr (t) is weakly increasing in r ≥
u(x∗

t ), as desired.

S4. QUASI-STATIONARITY

In the context of the homogeneous CE model, NT provide a characterization of the
following condition.

AXIOM S6—Quasi-Stationarity: For any streams x, y such that x0 = y0 = xT = yT = 0
and any c,

x� y ⇐⇒ cx� cy�

PROPOSITION S1—NT (2022, Proposition 1): Suppose that T ≥ 3. A homogeneous CE
representation (u�m�{dt� at}) satisfies Quasi-Stationarity iff there exist c∗ > 0, 0 < δ ≤ 1, and
0 <β≤ 1/(δu(c∗)

1
m−1 ) such that

at = 1

mβm−1
(
δm−1

)t � dt = βδtu(c∗)
1

m−1 for each t�

and the optimal discount function takes the form:

Dc(t) =
{
βδtu(c)

1
m−1 if c ≤ c∗�

βδtu
(
c∗) 1

m−1 if c > c∗�
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PROOF: Denote by �1 the preference over one-period-delayed streams: x �1 y ⇐⇒
0x � 0y . From the reduced form of the homogeneous CE model as given in NT (2022,
Theorem 2), we see that �1 is represented by

U1(x) =
∑
t≥1

κtu(xt)
m

m−1 for all xt ≤ u−1
(
matd

m−1

t

)
�

Let δ = κ2
κ1

. By definition of a homogeneous CE model, κ1 ≥ κ2 > 0 and so we have 0 <

δ ≤ 1. There exist sufficiently small but strictly positive c, c′ such that U1(c�0� � � � �0) =
U1(0� c′�0� � � � �0), which is equivalent to κ1u(c)

m
m−1 = κ2u(c′)

m
m−1 . By Quasi-Stationarity,

κ2u(c)
m

m−1 = κ3u(c′)
m

m−1 and so δ = κ2
κ1

= κ3
κ2

. By repeating this argument, we have κt+1
κt

= δ

for all t ≥ 1, and so

κt = δt−1κ1 = βδt�

where β= κ1/δ > 0. Since κt = ( 1
mat

)
1

m−1 , we obtain

at = 1
mκm−1

t

= 1

m
(
βδt

)m−1 = 1

mβm−1
(
δm−1

)t �
The optimal discount function takes the form

Dc(t) =
(
u(c)
mat

) 1
m−1

= κtu(c)
1

m−1 = βδtu(c)
1

m−1

for all u(c) ≤ ( dt
βδt

)m−1.
Next, take sufficiently large c, c′ satisfying U1((c�0� � � � �0)) = U1((0� c′�0� � � � �0)),

which then yields d1u(c) = d2u(c′). By Quasi-Stationarity, d2u(c) = d3u(c′). Let δ = d2
d1

.

By repeating the same argument as above, we have dt+1
dt

= δ for all t ≥ 1, and so

dt = δ
t−1

d1�

Moreover, let c∗
t be the threshold consumption at t satisfying u(c∗

t ) = ( dt
βδt

)m−1. Since

dt�β�δ > 0, it must be that c∗
t > 0. Then dt = βδtu(c∗

t )
1

m−1 > 0, and δ = dt+1
dt

=
δ(

u(c∗
t+1)

u(c∗
t ) )

1
m−1 > 0. Equivalently,

u(c∗
t+1)

u(c∗
t ) = ( δ

δ
)m−1 := α > 0. We have therefore established

that

Dc(t) =
{
βδtu(c)

1
m−1 if u(c) ≤ u

(
c∗
t

)
�

βδtu
(
c∗
t

) 1
m−1 otherwise�

The value of Dc(t) depends on c∗
t . The proof is complete once we can show that c∗

t+1 = c∗
t

for all t. It suffices to establish that α = u(c∗
t+1)

u(c∗
t ) = 1. Seeking a contradiction, first suppose

α > 1. Since u(c∗
t+1) = αu(c∗

t ) for all t, it must be that c∗
t+1 > c∗

t for all t. From the preced-
ing, we know that c∗

2 > 0.
Consider c∗

2 and take ε that satisfies

U
(
0� c∗

2 + ε�0� � � � �0
) =U

(
0� c∗

2� c
∗
2�0� � � � �0

)
�
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By Monotonicity it must be that ε > 0. Since c∗
1 < c∗

2 < c∗
2 + ε, we can compute that

U
(
0� c∗

2 + ε�0� � � � �0
) =U

(
0� c∗

2� c
∗
2�0� � � � �0

)
⇐⇒ Dc∗

2+ε(1)u
(
c∗

2 + ε
) = Dc∗

2
(1)u

(
c∗

2

) +Dc∗
2
(2)u

(
c∗

2

)
⇐⇒ βδu

(
c∗

1

) 1
m−1 u

(
c∗

2 + ε
) = βδu

(
c∗

1

) 1
m−1 u

(
c∗

2

) +βδ2u
(
c∗

2

) 1
m−1 u

(
c∗

2

)
⇐⇒ u

(
c∗

2 + ε
)

u
(
c∗

2

) = 1 + δ

(
u
(
c∗

2

)
u
(
c∗

1

)) 1
m−1

�

which yields our first expression for u(c∗
2+ε)

u(c∗
2 ) . Given Quasi-Stationarity, we reason further

that

U
(
0� c∗

2 + ε�0� � � � �0
) =U

(
0� c∗

2� c
∗
2�0� � � � �0

)
⇐⇒ U

(
0�0� c∗

2 + ε�0� � � � �0
) =U

(
0�0� c∗

2� c
∗
2�0� � � � �0

)
⇐⇒ Dc∗

2+ε(2)u
(
c∗

2 + ε
) =Dc∗

2
(2)u

(
c∗

2

) +Dc∗
3
(3)u

(
c∗

2

)
⇐⇒ βδ2u

(
c∗

2

) 1
m−1 u

(
c∗

2 + ε
) = βδ2u

(
c∗

2

) 1
m−1 u

(
c∗

2

) +βδ3u
(
c∗

2

) 1
m−1 u

(
c∗

2

)
⇐⇒ u

(
c∗

2 + ε
)

u
(
c∗

2

) = 1 + δ�

Therefore, we obtain the second expression for u(c∗
2+ε)

u(c∗
2 ) . Putting both together, we see that

1 + δ

(
u
(
c∗

2

)
u
(
c∗

1

)) 1
m−1

= 1 + δ�

Since all the terms are strictly positive and m > 1, we conclude that u(c∗
2 )

u(c∗
1 ) = 1. But then

α= u(c∗
2 )

u(c∗
1 ) = 1, while we had supposed that α> 1, a contradiction.

Next, suppose by way of contradiction that α < 1. Since it is the case that u(c∗
t+1) =

αu(c∗
t ) for all t, it must be that c∗

t+1 < c∗
t for all t. Consider c∗

1 , c∗
2 , c∗

3 and take ε > 0 that
satisfies

U
(
0� c∗

1 + ε�0� � � � �0
) = U

(
0� c∗

1� c
∗
3�0� � � � �0

)
�

Since by hypothesis, c∗
3 < c∗

2 < c∗
1 , we can compute that

U
(
0� c∗

1 + ε�0� � � � �0
) =U

(
0� c∗

1� c
∗
3�0� � � � �0

)
⇐⇒ Dc∗

1+ε(1)u
(
c∗

1 + ε
) = Dc∗

1
(1)u

(
c∗

1

) +Dc∗
3
(2)u

(
c∗

3

)
⇐⇒ βδu

(
c∗

1

) 1
m−1 u

(
c∗

1 + ε
) = βδu

(
c∗

1

) 1
m−1 u

(
c∗

1

) +βδ2u
(
c∗

3

) 1
m−1 u

(
c∗

3

)
⇐⇒ u

(
c∗

1 + ε
) = u

(
c∗

1

) + δ

(
u
(
c∗

3

)
u
(
c∗

1

)) 1
m−1

u
(
c∗

3

)
�
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By Quasi-Stationarity, we should also have

U
(
0�0� c∗

1 + ε�0� � � � �0
) = U

(
0�0� c∗

1� c
∗
3�0� � � � �0

)
⇐⇒ Dc∗

1+ε(2)u
(
c∗

1 + ε
) = Dc∗

1
(2)u

(
c∗

1

) +Dc∗
3
(3)u

(
c∗

3

)
⇐⇒ βδ2u

(
c∗

2

) 1
m−1 u

(
c∗

1 + ε
) = βδ2u

(
c∗

2

) 1
m−1 u

(
c∗

1

) +βδ3u
(
c∗

3

) 1
m−1 u

(
c∗

3

)
⇐⇒ u

(
c∗

1 + ε
) = u

(
c∗

1

) + δ

(
u
(
c∗

3

)
u
(
c∗

2

)) 1
m−1

u
(
c∗

3

)
�

From the preceding, we obtain two expressions for u(c∗
1 + ε) − u(c∗

1). Putting them to-
gether we see that δ( u(c∗

3 )
u(c∗

1 ) )
1

m−1 u(c∗
3) = δ( u(c∗

3 )
u(c∗

2 ) )
1

m−1 u(c∗
3), which is equivalent to

u
(
c∗

1

) = u
(
c∗

2

)
�

This implies α= u(c∗
2 )

u(c∗
1 ) = 1 whereas we had assumed α< 1, a contradiction.

Since Dc∗ (1) = βδu(c∗)
1

m−1 ≤ 1, which yields β ≤ 1/(δu(c∗)
1

m−1 ). This completes the
proof of sufficiency.

We now establish necessity. Define a time-invariant function f by f (c) = u(c)
m

m−1 for
any c ≤ c∗ and f (c) = u(c∗)

1
m−1 u(c) otherwise. Then the representation is written as

U (x) = u(x0) + ∑
t≥1 βδ

tf (xt).
Now take any x, y satisfying the presumption of Quasi-Stationarity. For any c,

U (x) ≥U (y) ⇐⇒
∑
t≥1

βδtf (xt) ≥
∑
t≥1

βδtf (yt)

⇐⇒
∑
t≥1

βδt+1f (xt) ≥
∑
t≥1

βδt+1f (yt)

⇐⇒ u(c) +
∑
t≥1

βδt+1f (xt) ≥ u(c) +
∑
t≥1

βδt+1f (yt)

⇐⇒ U (cx) ≥U (cy)�

as desired. Q.E.D.

S5. CONSUMPTION SMOOTHING

In the context of the homogeneous CE model, NT provide a characterization of the
following condition.

DEFINITION S1—Consumption Smoothing: A preference � exhibits consumption
smoothing if for any α ∈ [0�1] and for all deterministic streams x, y ∈ CT+1 and αx + (1 −
α)y ∈ CT+1,

x∼ y =⇒ αx+ (1 − α)y � x�

NT state that



OPTIMAL DISCOUNTING 13

PROPOSITION S2—NT (2022, Proposition 3): Assume that � admits a homogeneous
CE representation. If u(c)

m
m−1 is concave in c ∈ R+, then � exhibits consumption smooth-

ing. Conversely, if � exhibits consumption smoothing, then at least T of functions u(x0),
Du(x1)u(x1)� � � � �Du(xT )u(xT ) are concave. Moreover, u : R+ → R+ is concave if there are
t� s ≥ 1 such that xt �= xs.

PROOF: We first show the “if” part. First of all, note that u is concave because u
is an increasing concave transformation of a concave function u(c)

m
m−1 . Note also that

Du(xt ) (t)u(xt) = κtu(xt)
m

m−1 if xt ≤ u−1(rt) and Du(xt ) (t)u(xt) = dtu(xt) if xt > u−1(rt).
Since Du(xt ) (t)u(xt) is the pointwise minimum of two concave functions on R+, that is,
κtu(xt)

m
m−1 and dtu(xt), it is concave. Thus, U (x) = u(x0) +∑

t>0 Du(xt ) (t)u(xt) is concave
in deterministic streams x, which in turn implies that � has preference for consumption
smoothing.

Next, we show the “only if” part. We first claim that if � has preference for consumption
smoothing, then U (x) is quasi-concave in deterministic consumption streams. It suffices
to show that x� y implies αx+ (1 −α)y � y . If x∼ y , it follows directly from preference
for consumption smoothing. Now assume x 	 y . Seeking a contradiction, suppose y 	
α̃x+ (1− α̃)y for some α̃ ∈ (0�1). Let A ={α ∈ [0�1]|y � αx+ (1−α)y}. Since α̃ ∈ A, A
is nonempty. By Continuity, A is closed, that is, compact. Thus, there exists a maximum
of A, denoted by α.

Let xα = αx+ (1 −α)y . We show that xα ∼ y . By definition, α ∈ A. If α= 1, xα = x 	 y ,
which is a contradiction. Thus, α< 1. By seeking a contradiction, suppose xα � y . That is,
y 	 xα. Since A◦ = {α ∈ [0�1]|y 	 αx + (1 − α)y} is open and α ∈ A◦, we can find some
α̂ > α with α̂ ∈ A◦. But, this contradicts the maximality of α in A.

Now, since xα ∼ y , by preference for consumption smoothing, λxα + (1 − λ)y � y for
all λ ∈ (0�1). In particular, let λ= α̃

α
∈ (0�1). On the other hand, by assumption,

α̃

α

(
αx+ (1 − α)y

) +
(

1 − α̃

α

)
y = α̃x+ (1 − α̃)y ≺ y�

which is a contradiction. Therefore, x 	 y implies αx+ (1 − α)y � y for all α ∈ (0�1), as
desired.

Yaari (1977) shows that if an additively separable function F (x1� � � � � xS) = ∑
s fs(xs)

is quasi-concave, then at least S − 1 of functions f1� � � � � fS are concave. Therefore, at
least T of u(x0), Du(x1)u(x1)� � � � �Du(xT )u(xT ) are concave. If u is included in the group of
T functions, we are done. Hence, assume that Du(x1)u(x1), · · · , Du(xT )u(xT ) are concave.
Now assume in addition that xt > xs for some t, s. Then u is concave on [0� rt] and [rs�∞),
which implies that u is concave on R+ by Lemma 2.2 of Li and Yeh (2010). Q.E.D.

S6. PROCRASTINATION

PROPOSITION S3—NT (2022, Proposition 4): Consider a sophisticated DU agent. Sup-
pose self 2 would not complete any task when there is only one to be done. Then, there exists
a unique subgame perfect equilibrium and, in it, neither self 0 nor self 2 completes any tasks.

PROOF: Denote by Vt (n|m) the utility of self t = 0�2 of completing n tasks in period
t out of m uncompleted tasks in that period. As is standard, we proceed using backward
induction. Suppose that self 2 would not exert the effort to complete one task when one
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remains to be completed:

V2(1|1) = u(b− e) +D(1)u(b+R) < u(b) +D(1)u(b) = V2(0|1)�

which is equivalent to

D(1)
[
u(b+R) − u(b)

]
< u(b) − u(b− e)� (S5)

Since the expressions remain the same even if there were two tasks to be completed, we
see that V2(1|1) < V2(0|1) implies that V2(1|2) < V2(0|2), that is, self 2 would do zero tasks
rather than one task if 2 tasks remained to be done.

Given weak concavity of u, u(b + 2R) − u(b) ≤ 2[u(b + R) − u(b)] and u(b) − u(b −
2e) ≥ 2[u(b) − u(b− e)], and so by (S5),

D(1)
[
u(b+ 2R) − u(b)

]
< u(b) − u(b− 2e)� (S6)

It follows that

V2(2|2) = u(b− 2e) +D(1)u(b+ 2R) < u(b) +D(1)u(b) = V2(0|2)�

that is, self 2 will not do two tasks together.
We have therefore shown that self 2 will never complete any task, regardless of how

many tasks have been completed by self 0. We show next that self 0 will not complete any
task either. Indeed, conditional on self 2 never completing any task, self 0 would not do
any of the tasks either because her choice considerations are identical to those of self 2:
like self 2, self 0 must decide whether to incur effort costs today for a return tomorrow.
We conclude that no self will do any task. Q.E.D.

PROPOSITION S4—NT (2022, Proposition 5): Consider a sophisticated CE agent. If self
2 would not complete any task when there is only one to be done, then there exists a unique
subgame perfect equilibrium, and it permits only the following three possibilities:

(i) Neither of self 0 nor self 2 completes any tasks.
(ii) Self 0 completes no task and self 2 completes 2 tasks.
(iii) Self 0 completes 2 tasks.

PROOF: Consider the homogeneous CE model where the optimal discount factor is
given by Dr (t) = κtr

1
m−1 if r ≤ rt and Dr (t) = dt otherwise, where κt = (mat)− 1

m−1 and
rt = matd

m−1

t . Let Ut (n|m) denote the utility of self t = 0�2 of completing n tasks in
period t given that there are m uncompleted tasks in that period.

The hypothesis states that self 2 would not exert effort when there is 1 task to complete:

U2(1|1) <U2(0|1)

⇐⇒ u(b− e) +Du(b+R) (1)u(b+R) < u(b) +Du(b) (1)u(b)

⇐⇒ Du(b+R) (1)u(b+R) −Du(b) (1)u(b) < u(b) − u(b− e)� (S7)

Next, consider the subgame where self 2 faces two tasks. It is easy to see that the ex-
pressions are no different if there were 2 tasks to complete. Therefore,

U2(1|1) <U2(0|1) =⇒ U2(1|2) <U2(0|2)� (S8)
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Since, by (S8), completing 0 tasks is preferred to completing 1 task, we see that self 2
completes both tasks if and only if

U2(2|2) ≥U2(0|2)

⇐⇒ u(b− 2e) +Du(b+2R) (1)u(b+ 2R) ≥ u(b) +Du(b) (1)u(b)

⇐⇒ Du(b+2R) (1)u(b+ 2R) −Du(b) (1)u(b) ≥ u(b) − u(b− 2e)� (S9)

A novel feature of the CE model is that self 2 may complete two tasks due to magnitude-
dependent impatience, even when she is reluctant to complete one task. To see that in-
equalities (S7) and (S9) can both hold, suppose that u(b+R) is below r1, and u(b+ 2R)
is above r1. Then, (S7) and (S9) are reduced to

κ1

[
u(b+R)

m
m−1 − u(b)

m
m−1

]
< u(b) − u(b− e)� (S10)

d1u(b+ 2R) − κ1u(b)
m

m−1 ≥ u(b) − u(b− 2e)� (S11)

respectively. Moreover, suppose m is sufficiently close to one. Then, the curvature of the
convex transformation z

m
m−1 is so strong that payoffs u(b)

m
m−1 and u(b + R)

m
m−1 become

negligible compared with a payoff d1u(b + 2R). Hence, there exist parameter values for
which both (S10) and (S11) can hold simultaneously. For example, when a1 = 1

m
and d1 =

1, we have r1 = κ1 = 1. Moreover, assume u(b) − u(b − 2e) ≤ 1. Since u(b + 2R) > 1 >

u(b+R), u(b)
m

m−1 → 0 and u(b+R)
m

m−1 → 0 as m → 1, and hence, both (S10) and (S11)
hold.

Consider two cases for self 2’s behavior and derive the corresponding self 0 behavior.
Case (i): U2(2|2) <U2(0|2)
That is, self 2 would not complete two tasks. By hypothesis she would not complete 1

task either when facing one task to be completed. Given self 2’s optimal actions on the
subgames, self 0’s considerations are identical with those of self 2 facing with two tasks.
By hypothesis and case (i), self 0 would not complete any tasks either. This establishes the
first possibility in the statement of the proposition.

Case (ii): U2(2|2) ≥U2(0|2)
That is, self 2 would complete both tasks. First, rule out the possibility that self 0 will

complete 1 task. Recall that for self 2, completing one task is dominated by completing
none, which is in turn dominated by completing two tasks by case (ii). Since self 2 does not
complete any task after self 0 completes one task, self 0’s comparison between completing
one and two tasks is identical with self 2’s comparison between these two actions. Thus,
for self 0, completing one task is dominated by completing two tasks.

Now we compare self 0’s utilities from completing two tasks or none. If self 0 completes
both tasks, then her utility is given by

U0(2|2) = u(b− 2e) +Du(b+2R) (1)u(b+ 2R) +Du(b) (2)u(b) +Du(b) (3)u(b)�

and if she completes none, then given that self 2 will complete both, her utility is

U0(0|2) = u(b) +Du(b) (1)u(b) +Du(b−2e)(2)u(b− 2e) +Du(b+2R) (3)u(b+ 2R)�
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Therefore, self 0 completes both tasks iff

U0(2|2) ≥U0(0|2)

⇐⇒ [Du(b+2R) (1)u(b+ 2R) −Du(b) (1)u(b)] + [Du(b) (2)u(b) −Du(b−2e) (2)u(b− 2e)]

≥ u(b) − u(b− 2e) + [Du(b+2R) (3)u(b+ 2R) −Du(b) (3)u(b)]� (S12)

Another novel feature of the CE model is that self 0 may exploit self 2’s incentive to
complete both tasks by leaving them to self 2. For example, suppose that u(b + R) is
below r1, and u(b+ 2R) is above r1. Moreover, assume dt = 1 for all t, and a1 and a3 are
sufficiently close. Then, r1 and r3 are close, and κ1 and κ3 are also close to each other.
Then, (S12) is reduced to[

d1u(b+ 2R) − κ1u(b)
m

m−1
] + κ2

[
u(b)

m
m−1 − u(b− 2e)

m
m−1

]
≥ [u(b) − u(b− 2e)] + [

d3u(b+ 2R) − κ3u(b)
m

m−1
]
� (S13)

By assumption, the first bracket of the left-hand side and the second bracket of the right-
hand side are almost the same. Moreover, if m is close to one, the curvature of the convex
transformation z

m
m−1 is so strong that small payoffs u(b)

m
m−1 and u(b − 2e)

m
m−1 become

negligible, and the inequality (S13) is almost dominated by the magnitude of u(b) −u(b−
2e) > 0. Thus, U0(0|2) >U0(2|2) may hold.

Conclude that, depending on parameters, self 0 either completes both tasks by herself
or leaves both to self 2 to complete, who then completes them. Q.E.D.

S7. SMOOTH HOMOGENEOUS CE REPRESENTATION

Consider preference � on X = CT+1. In NT, the homogeneous CE representation is
characterized on this domain by exploiting the magnitude sensitivity toward the scaling
operation. In this section, we provide an alternative way to capture the magnitude sensi-
tivity in terms of the MRS and derive the corresponding representation result.

S7.1. Axiomatization

DEFINITION S2—Magnitude-Sensitivity on the Diagonal: A stream x ∈X on the diago-
nal is magnitude sensitive wrt period t > 0 if

MRSαx(t) < MRSx(t) for all α ∈ (0�1)�

The set of all magnitude sensitive streams wrt period t is denoted by Xm(t) ⊂X .

Magnitude sensitivity behaviorally identifies streams on the diagonal for which the dis-
count function is strictly increasing in consumption. We place structure on magnitude
sensitivity.

AXIOM S7—Xm-Regularity: For any t > 0 and any stream x ∈ X on the diagonal,
(i) if x /∈ Xm(t), then αx ∈ Xm(t) for some α ∈ (0�1], and

(ii) if x ∈Xm(t), then αx ∈Xm(t) for all α ∈ (0�1).

Thus, if a stream on the diagonal is not magnitude sensitive then scaling it down makes
it so, and keeps it so as it is scaled down further. The content of the axiom is that, along
the diagonal, MRSx(t) is strictly increasing between the origin and some stream, and is
constant beyond that stream.
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The next condition requires the MRS to define a homogeneous function along the di-
agonal and parallel to the x0-axis. Recall our notation: if x is a stream, then αx is a stream
that yields αxt for any t, and α0 · x is a stream that yields αx0 in period 0 and xt in any
future period.

AXIOM S8—MRS-Homogeneity: For any t� s > 0, any α ∈ (0�1], and any β > 0, (i) for
any x ∈Xm(t) and y ∈ Xm(s) on the diagonal,

MRSαx(t) = βMRSx(t) =⇒ MRSαy (s) = βMRSy (s)�

and (ii) for any x� y ∈X ,

MRSα0·x(t) = βMRSx(t) =⇒ MRSα0·y (s) = βMRSy (s)�

MRS-Homogeneity (i) implies that, for the values of r for which Dr (t) is strictly in-
creasing, Du(xt ) (t)u(xt) is homogeneous in xt . In particular, there exists a function that
maps each α ∈ (0�1] to some β(α) ∈ (0�1] such that

Du(αxt ) (t) = β(α)u(xt)
u(αxt)

×Du(xt ) (t)�

In order to obtain homogeneity of D, we require the same of u. This is achieved by MRS-
Homogeneity (ii). We obtain the following.

THEOREM S3: Suppose � over X admits a smooth GDU representation. Then � satis-
fies Increasing MRS, Xm-Regularity, and MRS-Homogeneity if and only if � admits a CE
representation with a utility index u of the power form such that {ϕt} is given by

ϕt (d) =

⎧⎪⎨⎪⎩
atd

m if d ∈ [0� d̃t]�
−At ln(dt − d) +Ct if d ∈ (d̃t� dt)�
∞ if d ∈ [dt�1]�

(S14)

where m> 1, at > 0 increasing in t,

d̃t := m− 1
m

dt� At := at

(
m− 1
m

)m−1

d
m

t > 0� and

Ct :=At

(
m− 1
m

+ ln
dt

m

)
∈ R�

Since ϕt is smooth, a CE model with the cost function (S14) is called the smooth homo-
geneous CE model. Moreover, since ϕt is strictly increasing and strictly convex, it is easy
to obtain an optimal discount factor from the FOC.

COROLLARY S1: In the smooth homogeneous CE model, the optimal discount function
takes the form

Dr (t) =
⎧⎨⎩κtr

1
m−1 if r ≤ r̃t �

dt − At

r
if r > r̃t�

where κt = (mat)− 1
m−1 > 0 and r̃t = mat (d̃t)m−1 > 0.
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This optimal discount function takes a power form on the subdomain of [0� r̃t]. Since
the right and left derivatives of Dr (t) coincide at r̃t , the above Dr (t) is differentiable
throughout. Moreover, Dr (t) is strictly increasing on the whole domain and converges to
the upper bound dt as r → ∞.

Finally, the smooth homogeneous CE model admits the following uniqueness prop-
erty.

THEOREM S4: If there are two smooth homogeneous CE representations (ui�mi�{d
i

t� a
i
t}),

i = 1�2 of the same preference �, then there exists λ > 0 such that (i) u2 = λu1, (ii) m2 =m1,
d

2

t = d
1

t , and a2
t = λa1

t for each t.

S7.2. Comparison With the Homogeneous CE Model

As shown by NT (Theorem 2), the optimal discount function in the homogeneous CE
model is given by

Dr (t) =
{
κtr

1
m−1 if r ≤ rt�

dt if r > rt�
(S15)

where κt = (mat)− 1
m−1 > 0, and rt = matd

m−1

t > 0. This optimal discount function is not
differentiable at the threshold.

It is easy to see that the homogeneous CE representation violates the Increasing MRS
axiom in Section 4.1 of NT. Since

∂
[
Dr (t)r

] =
⎧⎨⎩

m

m− 1
κtr

1
m−1 if r < rt�

dt if r > rt�

together with Lemma 8 of NT,

MRS−
rt

(t) = ∂
[
Dr (t)r

]
|r↗rt = m

m− 1
κtr

1
m−1
t = m

m− 1
dt > dt

= ∂
[
Dr (t)r

]
|r↘rt = MRS+

rt
(t)�

which violates Increasing MRS. Note that in the smooth homogeneous CE model,

MRS−
r̃t

(t) = ∂
[
Dr (t)r

]
|r↗r̃t = m

m− 1
d̃t = dt = ∂

[
Dr (t)r

]
|r↘r̃t = MRS+

r̃t
(t)�

which is consistent with the Increasing MRS axiom.

S7.3. Illustrations

We provide a numerical example of the two representations (homogeneous CE and
smooth homogeneous CE) under the same parameters as given below.

Assume m = 2. Take any at > 0, t ≥ 1, increasing in t, and any 0 < dt ≤ 1, t ≥ 1, de-
creasing in t. Then, by the formula derived above,

κt = 1
2at

� rt = 2atdt� d̃t = 1
2
dt� r̃t = 2atd̃t = 1

2
rt�
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At = 1
2
atd

2

t � Ct = 1
2
atd

2

t

(
1
2

+ ln
dt

2

)
�

S7.3.1. The Case of Homogeneous CE Representation

Under these parameter values, we first consider the case of homogeneous CE model.
The cost function on [0� dt] is given as a quadratic function ϕt (d) = atd

2. The corre-
sponding optimal discount function below the threshold is given as a linear function
Dr (t) = 1

2at
r. The period-t utility function is obtained as

Ut (r) = Dr (t)r =
⎧⎨⎩

1
2at

r2 if r ≤ rt�

dtr if r > rt�

Note that this is a star-shaped function; it is a quadratic function on [0� rt] and becomes a
linear function (passing through the origin) thereafter.

The marginal rate of substitution between time 0 and time t on the diagonal, denoted
MRSr (t), is obtained as

MRSr(t) = ∂
[
Dr (t)r

] =
⎧⎨⎩

1
at

r if r < rt�

dt if r > rt�

Thus, MRSr(t) is a linear function on [0� rt], takes a value of 2dt at rt = 2atdt , and jumps
down to a constant value of dt afterwards.

The solid lines of Figure 1 stand for (a) cost function ϕt(d), (b) optimal discount func-
tion Dr (t), (c) period-t utility function Ut (r), and (d) MRSr(t) when at = 1

2 and dt = 1.

S7.3.2. The Case of Smooth Homogeneous CE Representation

Under the same parameter values, we next consider the case of smooth homogeneous
CE model. The cost function is given by

ϕt (d) =

⎧⎪⎪⎨⎪⎪⎩
atd

2 if d ∈ [0� d̃t]�

−1
2
atd

2

t log(dt − d) +Ct if d ∈ (d̃t� dt)�

∞ if d ∈ [dt�1]�

Note that this cost function is smooth on the effective domain because ϕ′
t (d̃t) = atdt .

The corresponding optimal discount function and period-t utility function are obtained
as

Dr (t) =

⎧⎪⎪⎨⎪⎪⎩
1

2at

r if r ≤ r̃t �

dt − atd
2

t

2r
if r > r̃t�

Ut (r) =Dr (t)r =

⎧⎪⎪⎨⎪⎪⎩
1

2at

r2 if r ≤ r̃t �

dtr − atd
2

t

2
if r > r̃t �
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FIGURE 1.—m= 2, at = 1
2 , dt = 1: Solid lines stand for graphs of the homogeneous CE model, while dashed

lines stand for graphs of the smooth homogeneous CE model.

Note that this is a smooth function such that the derivative at r̃t is given as dt . Moreover,

MRSr(t) = ∂
[
Dr (t)r

] =
⎧⎨⎩

1
at

r if r < r̃t�

dt if r > r̃t �

Thus, MRSr (t) is a linear function on [0� r̃t], and takes a constant value of dt afterwards.
Therefore, this model is consistent with Increasing MRS.

The dashed lines of Figure 1 stand for (a) cost function ϕt (d), (b) optimal discount
function Dr (t), (c) period-t utility function Ut (r), and (d) MRSr (t) when at = 1

2 and
dt = 1.

S7.4. Intermediate Characterization

To characterize the smooth homogeneous CE representation, we use the following
proposition as an intermediate lemma.
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PROPOSITION S5: Suppose � over X admits a smooth GDU representation. Then � sat-
isfies Increasing MRS and Xm-Regularity if and only if � admits a CE representation where
the optimal discount function Dr (t) has the property that Dr (t)r is a convex function of r,
and [Dr (t)r]′ is strictly increasing on [0� r̃t] and is constant otherwise.

PROOF: First, we verify necessity. Since MRSr (t) = [Dr (t)r]′ on the diagonal, MRSr(t)
is strictly increasing up to r̃t and becomes constant beyond the threshold. Thus, Increasing
MRS holds. It is clear that a stream x is magnitude sensitive wrt period t > 0 iff u(xt) ≤ r̃t .
Thus, the necessity of Xm-Regularity follows.

We turn to the sufficiency. Denote Rm(t) ={r|r = u(x) for some x ∈Xm(t)}, where the
constant stream x is identified with a single period consumption x.

LEMMA S6: Rm(t) is an nonempty interval with infRm(t) = 0.

PROOF: By Xm-Regularity (i), for any x ∈ X on the diagonal, there is α such that αx ∈
Xm(t). Therefore Xm(t) and Rm(t) are nonempty. We show that Rm(t) is an interval: Take
any r ∈ Rm(t). There exists x ∈ Xm(t) with r = u(x). By Xm-Regularity (ii), αx ∈ Xm(t)
for all α ∈ (0�1). Thus, u(αx) ∈ Rm(t) for all α ∈ (0�1), which means that Rm(t) is an
interval with infRm(t) = 0. Q.E.D.

Denote r̃t = supRm(t). Together with Lemma 8 of NT, Xm-Regularity implies that for
all r̃t ≥ u(xt) > u(yt) ≥ 0, [

Dr (t)r
]′

|r=u(xt ) >
[
Dr (t)r

]′
|r=u(yt )� (S16)

LEMMA S7: For any u(xt) ≥ u(yt) > r̃t ,[
Dr (t)r

]′
|r=u(xt ) = [

Dr (t)r
]′

|r=u(yt )�

PROOF: Take any r = u(c) > r̃t . Define A(c� t) ={α ∈ (0�1]|MRSαc(t) = MRSc(t)}. We
have the following observations about A(c� t): (i) since c /∈Xm(t), A(c� t) �= ∅, and (ii) by
Increasing MRS, A(c� t) is convex, and hence it is an interval with supA(c� t) = 1.

Let α = infA(c� t). Note that from (S16), MRSαc(t) < MRSc(t) for any u(αc) < r̃t . In
other words, for any α < u−1 (̃rt )

c
= u−1 (̃rt )

u−1(r) := α∗, α /∈ A(c� t). Hence, α∗ ≤ α.
We will claim that α∗ = α. By seeking a contradiction, suppose α∗ < α. Since MRSr(t)

is continuous, MRSαc(t) = MRSc(t). On the other hand, α∗ < α implies r̃t < u(αc). Since
αc /∈ Xm(t), there exists β ∈ (0�1) such that MRSβαc(t) = MRSαc(t), which contradicts to
the fact that α is an infimum of A(c� t).

Now take any s = u(c′) ∈ (̃rt� r). By the above claim, u(c′) > r̃t = u(α∗c) = u(αc). There
exists some α̂ ∈ (α�1) such that u(c′) = u(α̂c). Since A(c� t) = [α�1], we have α̂ ∈ A(c� t),
and hence, MRSα̂c(t) = MRSc(t). By Lemma 8 of NT, we have the desired result. Q.E.D.

Define ft (r) := Dr (t)r. Together with Lemma 8 of NT, Condition (S16) and Lemma
S7 imply that f ′

t (r) is strictly increasing on [0� r̃t] and is constant on (̃rt�∞), respectively.
Thus, ft is strictly convex on [0� r̃t] and is affine otherwise. By the same argument as in
Lemma 10 of NT, Dr (t) is strictly increasing on [0� r̃t]. Q.E.D.
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S7.5. Proof of Theorem S3

First, we verify necessity. By Corollary S1, Dr (t) = κtr
1

m−1 if r ≤ r̃t , and Dr (t) = dt − At

r

otherwise. Hence, Dr (t)r = κtr
m

m−1 if r ≤ r̃t , and Dr (t)r = dtr − At otherwise. Therefore,
[Dr (t)r]′ = m

m−1κtr
1

m−1 if r ≤ r̃t , and [Dr(t)r]′ = dt otherwise. Since MRSr (t) = [Dr(t)r]′

on the diagonal, MRSr(t) is strictly increasing up to r̃t and becomes constant beyond the
threshold. Thus, Increasing MRS holds. It is clear that a stream x is magnitude sensitive
wrt period t > 0 iff u(xt) ≤ r̃t . Thus, the necessity of Xm-Regularity follows. Next, since
MRSx(t) = u′(xt )

u′(x0)
∂Dr (t)r

∂r
|r=u(xt ) in the GDU model (by Lemma 8 of NT) and since Dr (t)r

and u are homogeneous on Xm(t) and C, respectively, it follows by Euler’s theorem that
u′(xt )
u′(x0)

∂Dr (t)r
∂r

is homogeneous as well on Xm(t), and in turn that MRSx(t) is homogeneous
along the diagonal and the x0-axis. This confirms MRS-Homogeneity.

We turn to the sufficiency. By Proposition S5, [Dr(t)r]′ = MRSr(t) is strictly increasing
on [0� r̃t] and is constant otherwise.

LEMMA S8: Dr (t) is an affine function on (̃rt�∞).

PROOF: Since [Dr(t)r]′ is constant on this domain, Dr (t)r is an affine function and is
written as Dr (t)r = dtr −At for some dt and At . Hence, for all r > r̃t , Dr (t) = dt − At

r
. To

derive dt and At more explicitly, denote ft (r) = Dr (t)r for notational convenience. Since
ft (r) is differentiable at r = r̃t , we have dt = f ′

t (̃rt). Since Ut (c) is continuous, ft (̃rt) =
limr↘r̃t ft (r) = limr↘r̃t (dtr −At) = dt̃rt −At . That is, At = dt̃rt − ft (̃rt) = f ′

t (̃rt )̃rt − ft (̃rt).
Take any consumption c with r = u(c) > r̃t . By Impatience, r = U (c) ≥ U (ct) = dtr −

At . Since 1 ≥ dt − At

r
for all r > r̃t , we have 1 ≥ dt as r → ∞. Q.E.D.

LEMMA S9: Dr (t) and u(c) are homogeneous on [0� r̃t] and on R+, respectively.

PROOF: By Lemma 8 of NT, on the diagonal, MRSx(t) = ∂Dr (t)r
∂r

|r=u(xt ) , and so∫ 1
0 MRSαx(t) dα=Du(xt ) (t)u(xt). By MRS-Homogeneity (i),

Du(xt ) (t)u(xt) =
∫ 1

0
MRSαx(t) dα=

∫ 1

0
β(α)MRSx(t) dα

= MRSx(t) ×
∫ 1

0
β(α) dα= k× MRSx(t)� (S17)

where k := ∫ 1
0 β(α) dα. It follows that Du(xt ) (t)u(xt) is homogeneous because

Du(αxt ) (t)u(αxt) = k× MRSαx(t) = kβ(α) × MRSx(t)� (S18)

(Homogeneity of Du(xt ) (t)u(xt) could alternatively be obtained using Euler’s theorem,
since it is the integral of a homogeneous function). As a consequence, we see that

Du(αxt ) (t) = β(α)u(xt)
u(αxt)

×Du(xt ) (t)

since Du(αxt ) (t)u(αxt) = β(α) ×Du(xt ) (t)u(xt) by (S17) and (S18). The proof is complete
once we establish that u is homogeneous since then u(xt )

u(αxt )
is independent of xt .
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Recall that Lemma 8 of NT yields

MRSx(t) = 1
u′(x0)

[
∂Du(xt ) (t)

∂r
u′(xt)u(xt) +Du(xt ) (t)u

′(xt)
]
�

where the term in the square bracket does not depend on x0. Since MRS is homogeneous
in x0 by MRS-Homogeneity (ii), it follows that u′(x0) is a homogeneous function. By
Euler’s theorem, u(x0) must be homogeneous, as desired. Q.E.D.

Since Dr (t) is homogeneous on [0� r̃t], by Theorem 2 of NT, there exist θ > 0 and κt > 0
such that

Dr (t) = κtr
θ�

which is a strictly increasing function from [0� r̃t] onto [0� d̃t], where d̃t = κt̃r
θ
t .

Therefore, we fully characterize the discount function as follows:

Dr (t) =
⎧⎨⎩κtr

θ if 0 ≤ r ≤ r̃t �

dt − At

r
if r > r̃t �

Note that since ft (r) = Dr (t)r = κtr
θ+1 on r ≤ r̃t , dt = f ′

t (̃rt) = (θ + 1)κt̃r
θ
t and At =

f ′
t (̃rt )̃rt − ft (̃rt) = θκt̃r

θ+1
t > 0.

Since the above Dr (t) exhibits MDI, � is a CE representation. We show that ϕt of this
model has an explicit form as below.

LEMMA S10: There exist at > 0, m > 1 such that ϕt (d) = atd
m for all d ≤ d̃t , ϕt (d) =

−At ln(dt − d) +Ct for all d ∈ (d̃t� dt), and ϕt (d) = ∞ for all d ≥ dt . Moreover, d̃t = m−1
m

dt

and at+1 ≥ at .

PROOF: Recall d̃t = κt̃r
θ
t . Take any u(c) = r ≤ r̃t . By the same argument as in Lemma 7

of NT, there exist m= 1+θ
θ

> 1 and at = 1/(mκ
1
θ
t ) > 0 such that ϕt (d) = atd

m for all d ≤ d̃t .
Note also that dt = (θ+ 1)κt̃r

θ
t = m

m−1 d̃t , or d̃t = m−1
m

dt .
Next, take any u(c) = r > r̃t . From the FOC of the cognitive optimization problem, it

must be that u(c) = ϕ′
t (dt − At

u(c) ), which implies that by setting d = dt − At

u(c) , we have

d ∈ (d̃t� dt) and

ϕ′
t (d) = At

dt − d
> 0�

Since θ = 1
m−1 and r̃t = atm(d̃t)

1
θ ,

At = θκt̃r
θ+1
t = d̃t

m− 1
r̃t = atm

m− 1
(d̃t)m = at

(
m− 1
m

)m−1

d
m

t �

We have

ϕt (d) = −At ln(dt − d) +Ct�
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where Ct ∈ R is a constant. More explicitly, continuity requires that

Ct = ϕt(d̃t) +At ln(dt − d̃t) = at (d̃t)m + atm

m− 1
(d̃t)m ln

dt

m
=At

(
m− 1
m

+ ln
dt

m

)
�

Moreover, since dt − d̃t = θκt̃r
θ
t ,

lim
d↘d̃t

ϕ′
t (d) = At

dt − d̃t

= θκt̃r
θ+1
t

θκt̃r
θ
t

= r̃t = atm(d̃t)m−1 = lim
d↗d̃t

ϕ′
t(d)�

which implies that ϕt is differentiable at d̃t .
Note that ϕt is strictly increasing and strictly convex on d ∈ (d̃t� dt) and diverges to

infinity as d → dt . Thus, we can set ϕt (d) = ∞ for all d ∈ [dt�1]. Q.E.D.

S7.6. Proof of Theorem S4

Since u(C) is unbounded above by homogeneity of u, ϕt is automatically maximal.
From Theorem 4 of NT, we have already shown that there exists λ > 0 such that
u2 = λu1 and ϕ2

t = λϕ1
t . In particular, d

1

t = d
2

t = dt . Thus, a2
t d

m2 = λa1
t d

m1 for all d ≤
min[m1−1

m1
dt�

m2−1
m2

dt� ]. Note that dm1−m2 is constant and equal to a2
t

λa1
t

for all such d, which
happens only when m1 = m2. Consequently, a2

t = λa1
t , as desired.
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