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APPENDIX A: MATHEMATICAL APPENDIX

HERE, WE COLLECT SOME MATHEMATICAL BACKGROUND INFORMATION used through-
out the paper without much ado. The reader is assumed to be familiar with basic notions
of general topology and a bit of measure and integration theory. The material on weak
convergence of measures can be found in Parthasarathy (1967) and Billingsley (1999),
with the caveat that these books only deal with probability measures. Nonprobability mea-
sures are dealt with in Bogachev (2007, Chapter II.8), but that book is considerably less
accessible. However, there is a mechanical way to identify a family of uniformly bounded
measures with a family of probability measures that allows one to transfer results on prob-
ability measures to the more general case. Let F be a family of measures on a measurable
space (X�X ) such that for some b > 0, μ(X) < b for all μ ∈F . Define a new measurable
space (X∗�X ∗) such that for some ∗ /∈ X , X∗ = X ∪{∗} and X ∗ =X ∪{A∪{∗} |A ∈X}.
For each μ ∈F , let μ∗ be the probability measure on (X∗�X ∗) such that μ∗(A) = μ(A)/b
for A ∈X and μ∗({∗}) = 1 −μ(X)/b. The function μ �→ μ∗ identifies measures in F with
probability measures. If X has a Polish topology, to be defined below, there is a unique
Polish topology on X∗ such that X is a subspace and ∗ an isolated point. A continuous
real-valued function on X can then be identified with a continuous real-valued function
on X∗ that vanishes on ∗. With these tools at hand, the reader should be able to obtain
the general results from the special case of probability measures.

A topological space is metrizable if there exists a metric that induces the topology; such
a metric is then compatible. A topological space is completely metrizable if there exists
a complete metric that induces the topology. A subset of a topological space is dense
if it intersects every nonempty open set or, equivalently, its closure is the whole space.
A topological space is separable if there is some countable dense subset. A metrizable
topological space is separable if and only if it has a countable basis, that is, if there is a
countable family of open sets such that every open set is a union of open sets from this
family. A topological space is Polish if it is separable and completely metrizable. The dis-
tinction between Polish spaces and separable complete metric spaces is not just nitpicking.
A metric subspace S of a separable complete metric space is a separable complete metric
space if and only if S is closed. But a topological subspace S of a Polish space is Polish if
and only if S is the countable intersection of open sets (which includes closed sets). The
countable topological product of Polish spaces is again Polish. We usually view products
of topological spaces as being endowed with the product topology without further com-
ment. A topological space is locally compact if every point is in the interior of a compact
set. Euclidean spaces are locally compact. Examples of Polish spaces that fail to be locally
compact are infinite-dimensional separable Banach spaces.
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We endow each Polish space X with the Borel σ-algebra, the smallest σ-algebra that
includes all open sets. Measurable sets in this σ-algebra are Borel sets. We only consider
measures with real values (∞ is not allowed as the value of a measure). A measure de-
fined on the Borel σ-algebra is a Borel measure. It is a Borel probability measure if X has
measure 1. A Borel measure μ on a Polish space is always regular, that is, for each Borel
set B ⊆X ,

μ(B) = sup
{
μ(K) | K is compact and K ⊆ B

} = inf
{
μ(O) |O is open and O ⊇ B

}
�

If X is a Polish space, we let M(X) be the corresponding set of Borel measures and
P (X) be the corresponding space of Borel probability measures. We endow M(X) with
the topology of weak convergence. This is the weakest topology such that for every bounded
continuous function g : X → R, the function μ �→ ∫

gdμ is continuous. Endowed with
the topology of weak convergence, M(X) is again a Polish space and P (X) a closed
subspace. Convergence of sequences of measures will always be understood to be with
respect to this topology. Write ∂B for the boundary of B, that is, the set of closure points
of B that are not interior points. If μ is a Borel measure, the set B is a μ-continuity set
if μ(∂B) = 0. Note that X itself has an empty boundary and is therefore always a μ-
continuity set. The so-called Portmanteau theorem states that the following are equivalent
for a sequence 〈μn〉 in M(X) and a measure μ ∈M(X):

(i) the sequence 〈μn〉 converges to μ,
(ii) lim supn μn(F) ≤ μ(F) for every closed set F ⊆ X and limn μn(X) = μ(X),

(iii) lim infn μ(O) ≥ μ(O) for every open set O ⊆X and limn μn(X) = μ(X),
(iv) limn μn(B) = μ(B) for every μ-continuity set B ⊆X .

We say that a family F ⊆ M(X) of Borel measures is tight if for each ε > 0 there is
a compact set Kε ⊆ X such that μ(X \ Kε) < ε for all μ ∈ F . Similarly, we say that a
sequence 〈μn〉 of elements of M(X) is tight if the family {μn | n ∈N} is. Prohorov’s theorem
states that F ⊆ M(X) is relatively compact (has compact closure) if and only if F is
tight and supμ∈F μ(X) < ∞. The support suppμ of a Borel measure μ ∈ M(X) is the
largest closed set whose complement has μ-measure zero. In particular, μ has full support
if suppμ = X; this is equivalent to every open set of μ-measure zero being empty. The
family of all Borel measures with finite support is dense in M(X).

If (Xi�Xi)i∈I is a family of measurable spaces, the product σ-algebra ⊗iXi on
∏

i Xi is
the smallest σ-algebra that makes the coordinate projections measurable. Alternatively,
it is the smallest σ-algebra on

∏
i Xi that includes every measurable rectangle, where a

measurable rectangle is a set of the form
∏

i Ai with Ai ∈ Xi for all i and Ai = Xi for all
but finitely many i. For the countable topological product of Polish spaces, the Borel σ-
algebra of the topological product coincides with the product σ-algebra of the individual
Borel σ-algebras. If we look at only two measurable spaces (X�X ) and (Y�Y), we write
X ⊗Y for the product σ-algebra. If (X�X � ν) and (Y�Y�μ) are measure spaces, there is
a unique measure ν⊗μ defined on the product σ-algebra, the product measure, such that
ν ⊗μ(A×B) = ν(A)μ(B) for each measurable rectangle A×B. We heavily rely on the
fact that for two Polish spaces X and Y and sequences 〈μn〉 in M(X) and 〈νn〉 in M(Y ),
〈μn〉 converges to μ ∈M(X) and 〈νn〉 converges to ν ∈M(Y ) if and only if the sequence
〈μn ⊗ νn〉 converges to μ⊗ ν ∈M(X ×Y ) (see Billingsley (1999, Theorem 2.8)).

For probability measures, product measures can be defined even with infinitely many
factors. If (Xi�Xi�μi)i∈I is a family of probability spaces, there is a unique probability
measure ⊗iμi, the independent product or, again, product measure, defined on ⊗iXi such
that μ(

∏
i Ai) = ∏

i:Ai �=Xi
μi(Ai) for every measurable rectangle

∏
i Ai. If X is a Polish
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space and ω = 〈ωn〉 a sequence in X and n a natural number, we let μω
n ∈ P (X) be the

n-th sample distribution given by

μω
n (B) = n−1#{m≤ n |ωm ∈ B}

for each Borel set B ⊆ X (#A is the cardinality of A). The Varadarajan (1958) version of
the Glivenko–Cantelli theorem says that for each μ ∈ P (X), the random sequence 〈μω

n 〉
converges to μ for ⊗nμ-almost all ω ∈ ∏

n X .

APPENDIX B: NONEXISTENCE OF AN INDIVIDUALISTIC MATCHING UNDER
TRANSFERABLE UTILITY

EXAMPLE 3: Let again the set of agents on one side of the market be AW = [0�1] and
the set of agents on the other side of the market be AM = [0�1/2]×{1�2} as in Example 1.
But now we consider a transferable utility model in which the surplus generated by a ∈ AW

and (x�m) ∈ AM when matched is ax. Matched agents are free to divide the surplus
between them any way they see fit. The utility of an unmatched agent is simply 0, so
there is no reason for anyone to stay unmatched. A matching can now be represented
by a bijection f : AW → AM and functions VW : AW → R+ and VM : AM → R+ such that
VM (x�m) + VW (f−1(x�m)) = xf−1(x�m) for all (x�m) ∈ AM . The matching f is stable if
there is no blocking pair, that is, there are no a ∈ AW and (x�m) ∈AM such that VW (a) +
VM (x�m) < ax.

Let f , VW , and VM be any matching; we show it is not stable. Pick any x ∈ [0�1/2]. With-
out loss of generality, assume that f−1(x�1) < f−1(x�2). Let a ∈ AW satisfy f−1(x�1) <
a < f−1(x�2) and let (y�m) = f (a). We must either have y > x or y < x. We look
at the case y > x. If f were stable, we would have both VW (a) + VM (x�2) ≥ ax and
VW (f−1(x�2)) + VM (y�m) ≥ f−1(x�2)y . But then, using the supermodularity of the sur-
plus function,

VW (a) + VM (x�2) + VW

(
f−1(x�2)

) + VM (y�m)

≥ ax+ f−1(x�2)y > ay + f−1(x�2)x

= VW (a) + VM (y�m) + VW

(
f−1(x�2)

) + VM (x�2)�

which is impossible. A similar argument shows y < x is not compatible with f being stable.
Hence, f is not stable.

Other examples for the nonexistence of stable matchings can be obtained from the op-
timal transport literature using Kantorovich duality. One constructs examples in which
every solution of the primal optimal transport problem is nondeterministic. By duality, no
dual problem, and hence no stable matching is deterministic. Examples in mathematics
are Santambrogio (2015, p. 21) or Villani (2009, Example 4.9); examples in economics
are Gretsky, Ostroy, and Zame (1992, Example 5) and Chiappori, McCann, and Nesheim
(2010, Example 8). Our Example 3 is somewhat simpler; it relies only on the order struc-
ture of the unit interval and makes no use of measure theory. Also, the same argument
works verbatim for AW = [0�1] ∩Q and AM = [0�1/2] ×{1�2}∩Q×{1�2}. The nonexis-
tence of stable matchings does not depend on there being a continuum of agents.
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APPENDIX C: FAILURE OF LOWER HEMICONTINUITY OF THE SOLUTION
CORRESPONDENCE

EXAMPLE 4: We are in a setting without transfers, so we suppress the space C. The
types of women and men are simply points on a circle. Formally, we let W = M = [0�1),
endowed with the metric d given by

d(x� y) = min
{|x− y|�1 − |x− y|}�

Basically, we wrap the half-open unit interval [0�1) around a circle of circumference 1, or
equivalently, take the closed interval [0�1] and glue the endpoints together.

Now we let uW :W ×M∅ →R be given by uW (w�m) = d(w�m) and uW (w�∅) = −1 for
all w ∈ W and m ∈ M , and we let uM : W∅ × M → R be given by uM (w�m) = −d(w�m)
and uM (∅�m) = −1 for all w ∈ W and m ∈ M . So every woman wants a man whose type
is as far away as possible from her type on the circle, every man wants a woman whose
type is as close as possible to his type on the circle, and everyone is desperate to avoid
loneliness.

For any real number r, we let [r] be the largest integer not larger than r. We also let
(r) = r − [r]. Note that (r) ∈ [0�1) for ever real number r. Fix some irrational number θ.
We define population measures νnW and νnM for each natural number n by

νnW = νnM = 1
n

n∑
l=1

δ(θl)�

where δx denotes the probability measure with support {x}. This means, we are allocating
n points on a circle of circumference 1, with clockwise distance (θ) between consecutive
points. The irrationality of θ ensures that all these points will be different. Let μn be the
matching for νnW and νnM that pairs a man of type (θl) with a woman of type (θl). Since
every man gets his top choice, μn is stable. We let νW = νM be the uniform distribution on
[0�1). It can be shown that 〈νnW 〉 converges to νW and 〈νnM〉 converges to νM ; see Kuipers
and Niederreiter (1974, Theorem 1.1 and Example 2.1). Let μ be the uniform distribution
on the diagonal D={(x� y) | x = y�x� y ∈ [0�1)}. Then 〈μn〉 converges to μ, so

0 = lim
n→∞

∫
W ×M

d dμn =
∫
W ×M

d dμ�
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We now define a new sequence 〈νnM ′〉 of population measures for men, adding a single
man of type 0 to each νnM . That is,

νnM
′ = 1

n
δ0 + 1

n

n∑
l=1

δ(θl)�

Clearly, 〈νnM ′〉 still converges to νM ; the presence of one more man is not observable in
the limit. But there will be no sequence 〈μ′

n〉 such that μ′
n is a stable matching for the

population measures μn
W and μn

M
′ for each natural number n, and such that 〈μ′

n〉 converges
to μ.

To see this, take any sequence 〈μ′
n〉 such that μ′

n is a stable matching for population
distributions μn

W and μn
M

′ for each natural number n. Since νW is uniformly distributed on
[0�1), we get

∫
d(·�m) dνW = 1/4, the average distance to any point on the circle under

the given metric, for each m ∈ [0�1). Now in each matching μ′
n exactly one man will stay

single, and for large n, the average d-distance between the types of the women in the
population and the type of the unmatched man will be close to 1/4. Since μ′

n is stable, no
woman prefers the unmatched man to her current partner, and almost every woman must
be matched with a partner whose type is at least as good. So the average distance between
the type of a woman and her partner is close to at least 1/4. Therefore,

1/4 ≤ lim inf
n

∫
W ×M

d dμ′
n �=

∫
W ×M

d dμ = 0�

APPENDIX D: THE NEED FOR COMPACTNESS IN THEOREM 3

EXAMPLE 5: First, let W = [0�1), νW be the uniform distribution, M = R+, and let
νM be any continuous full support distribution with infinite expectation, such as a trun-
cated Cauchy distribution. We consider a transferable utility setting with a surplus func-
tion given by S(w�m) = w ·m. The value of staying single is zero for everyone; there is no
need for anyone to stay alone. A stable matching continues to be stable when restricted to
some subpopulation by Lemma 4 and by restricting the matching to types in given com-
pact sets we can apply Galichon (2016, Theorem 4.7), a result for compact type spaces,1
together with Theorem 4 to conclude the matching is positive assortative and supported
on the graph of the function T : W → M , where T is the quantile function of νM . Simi-
larly, it follows using Galichon (2016, Theorem 4.8) and outside options being zero that
almost every woman w obtains a payoff of

∫ w

0 T dt. This gives us a nice continuous in-
creasing value function VW : W → R. Since νW is uniform and T the quantile function of
νM , we have νM = νW ◦ T−1. Since the first moment does not exist for νM , the continuous
increasing function VW cannot be bounded above.

We now change the model in a seemingly innocuous way: We let W = [0�1], and νW be
the uniform distribution. We let everything else be as before and extend S in the nat-
ural way by letting S(1�m) = m. The only thing we changed is that we added a type
of woman that has zero measure in the population distribution. We still get exactly the
same stable matching μ. If there were a continuous function VW : [0�1] → R such that
VW (w) = uW (w�m�c) for μ-almost all (w�m�c), it would have to agree with the func-
tion constructed before on [0�1). But there is no way to extend an increasing, continuous,
unbounded real-valued function on [0�1) to a continuous real-valued function on all of

1What matters is not so much the compactness of the type spaces but the integrability of the surplus function.
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[0�1]. Intuitively, we would have to choose VW (1) = ∞, and that is not an available option.
The function VW is necessarily continuous almost everywhere, but there is no continuous
function that VW equals almost everywhere.

In Example 5, we cannot find a continuous version of VW because M is not compact.
W being compact is not essential to obtaining a continuous version of VW . We show in
Proposition E1 below that we can find a continuous version of VW when W is locally
compact (this covers Euclidean spaces) and M compact.

APPENDIX E: A SUFFICIENT CONDITION FOR ONE-SIDED EQUAL TREATMENT

In order to obtain strong equal treatment for women in a stable matching, we do not
need the assumption that W is compact in its full strength; it suffices that W is locally
compact. Recall that a topological space is locally compact if every point has a compact
neighborhood. The following proposition generalizes Lemma 9.

PROPOSITION E1: Let W be locally compact and M be compact and let μ be a stable
matching. Then there exists a unique continuous function VW : suppνW →R such that

VW (w) = uW (w�m�c)

for μ-almost all (w�m�c) ∈ W ×M∅ × [0�1].

The assumption that W is locally compact is fairly weak and will be satisfied if W is
a closed or open subspace of a Euclidean space. Still, there are known examples where
natural spaces of characteristics are not locally compact. In the model of Chiappori and
Reny (2016), each agent is endowed with a random variable representing a stochastic
income, and natural spaces of random variables are not locally compact.

To see the kind of restriction local compactness imposes, consider a quasilinear envi-
ronment so that uW can be interpreted in terms of some numeraire commodity. Let M be
compact. The function (w�c) �→ uW (w� ·� c) from W to the space C(M∅) of continuous
functions on the compact space M∅ endowed with the uniform topology is continuous.
It follows that the range of this function is a countable union of compact sets since the
local compactness of W implies that W is the countable union of compact sets. How-
ever, C(M∅) is not the countable union of compact sets unless M is finite. It follows that
{�w|w ∈W } can only include a proper subset of all conceivable preferences.

APPENDIX F: NONEXISTENCE OF STABLE MATCHINGS WITH FINITELY MANY AGENTS

EXAMPLE 6: Let W = [0�1]. We now interpret the members of this side of the market
as high school graduates who have to decide whether to go to college or join the labor
force directly. There is little use in making the other side explicit. The net value for a
high school graduate of going to college is αw for some α > 0, so R(w) = αw is their
reservation wage. There is a uniform wage paid on the labor market that depends on the
fraction λ of high school graduates joining the labor force; the decreasing inverse labor
demand function is given by P . We consider a finite population of n students placed on
the points 1/(2n) + (2k)/(2n) for k = 0� � � � � n− 1. Assume that R(1/2) = α/2 = P(1/2),
so that the market would clear exactly when the mass of students on the labor market is
exactly 1/2. But for n odd, this is impossible. There will be a high school graduate placed
exactly at 1/2, but since they have mass 1/n in the population, the mass on the labor
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market would be strictly below or above the market clearing mass, depending on whether
they join the labor market or go to college. The figure below illustrates. The black dots
on the inverse labor demand function correspond to wages that are feasible depending on
who joins the labor market. Clearly, none of them exactly clears the market.

But the population distribution converges to the uniform distribution on [0�1] as n
increases to infinity,2 and market clearing is possible in the limit.

APPENDIX G: THE SET OF STABLE MATCHINGS FOR THE MARRIAGE MODEL

In this section, we study the solution correspondence for the classical marriage prob-
lem. Under the assumption that W and M are compact, that preferences are negatively
transitive, and that type spaces and preferences are compatible with small indifference
curves in a measure-theoretic sense, we obtain for a topologically large set of matching
problems the existence of extremal matchings in Theorem G1 and a version of the lone
wolf theorem in Theorem G2.3

Let φ : M(W ) × M(M) → 2M(W∅×M∅) be the correspondence in the marriage model
that maps a matching problem to the corresponding set of stable matchings and assume
that W and M are both compact. The correspondence φ is upper hemicontinuous with
nonempty and compact values. That the values are nonempty is simply Theorem 1. More-
over, the proof of Theorem 1 shows that φ is compact-valued and has a closed graph. It
then follows from the closed-graph theorem that φ is upper hemicontinuous, Aliprantis
and Border (2006, Theorem 17.11).4 We know from Example 4 that φ need not be lower
hemicontinuous at every point. However, the failure of lower hemicontinuity in Exam-
ple 4 is a knife edge case and not robust. By a result in Fort (1949), an upper hemicontin-
uous correspondence with nonempty compact values in a metrizable space is continuous

2This follows from Kuipers and Niederreiter (1974, Theorem 1.1).
3Recall that the lone wolf theorem says that for the classical marriage problem with finitely many agents,

the set of unmatched agents is the same in every stable matching.
4Aliprantis and Border (2006, Theorem 17.11) require the range of the correspondence to be compact,

which will in general not hold for φ. However, upper hemicontinuity is a local property, so it suffices to show
that we can find for each matching problem (νW � νM) a neighborhood U ⊆ M(W ) × M(M) and a compact
set K ⊆ M(W∅ ×M∅) such that φ(ν′

W � ν′
M) ⊆ K for all (ν′

W � ν′
M) ∈ U . We can take U to be the set of matching

problems (ν′
W � ν′

M) such that ν′
W (W ) < α and ν′

M (M) < α for some α sufficiently large. As the corresponding
K, we can take the set of all μ ∈ M(W∅ ×M∅) such that μ(W∅ ×M∅) ≤ 3α.
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on a residual set, that is, a countable intersection of open dense sets. By the Baire category
theorem, each residual set must be dense in a completely metrizable space. Residual sets
are sometimes used as a topological notion of genericity, but this interpretation is not
without problems. A residual subset of a Euclidean space can have Lebesgue measure
zero; Hunt, Sauer, and Yorke (1992) provide a number of non-artificial examples. How-
ever, we can at least say that a property cannot be robust and hold on a nonempty open
set if it fails on a residual, and hence dense set.

Before we can discuss the existence of extremal stable matchings, we have to define
them and this requires us to define an appropriate ordering. We assume that all prefer-
ences are negatively transitive, so preferences can be represented by continuous functions
uW :W ×M∅ →R and uM :W∅ ×M → R by Mas-Colell (1977). Let μ and μ′ be matchings.
We write μ�W μ′ if

μ
(
B ×M∅ ∩ u−1

W

(
[r�∞)

)) ≥ μ′(B ×M∅ ∩ u−1
W

(
[r�∞)

))
for every Borel set B ⊆ W and r ∈ R. We define �M analogously. It is not hard to show that
�W and �M do not depend on the specific utility representations uW and uM , respectively,
they only depend on the underlying preferences.

LEMMA G1: The graph of �W is closed.

The next lemma does most of the mathematical heavy lifting for proving Theorem G1
and Theorem G2. It shows that the set of matching problems that have full support and
under which all indifference curves have measure zero is residual, provided at least one
such matching problem exists. A sufficient condition for the existence of such a matching
problem is that both W and M are convex compact subsets of Euclidean spaces with
nonempty interior and that preferences are strictly increasing in every coordinate. In that
case, one can take νW and νM both to be Lebesgue measures restricted to W and M ,
respectively.

LEMMA G2: If W and M are compact and if there exists a full support measure ν∗
M on M

such that

ν∗
M

({
m′ ∈ M | uW

(
w�m′) = uW (w�m)

}) = 0

for all w ∈W and m ∈M , then the set of νM ∈M(M) such that

νM
({
m′ ∈ M | uW

(
w�m′) = uW (w�m)

}) = 0

for all w ∈W and m ∈M is residual.

We are now ready to show that extremal matchings exist for a residual set of matching
problems.

THEOREM G1: Suppose that W and M are compact and there exists a matching problem
(ν∗

W � ν
∗
M) such that

ν∗
M

({
m′ ∈ M | uW

(
w�m′) = uW (w�m)

}) = 0

and

ν∗
W

({
w′ ∈ W | uM

(
w′�m

) = uW (w�m)
}) = 0

for all w ∈ W and m ∈ M . Then for a residual set of matching problems, there exist stable
matchings μW and μM such that for all stable matchings μ:
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(i) μW �W μ �W μM ,
(ii) μM �M μ �M μW .

PROOF: By Fort (1949), the upper hemicontinuous and compact-valued correspon-
dence φ is continuous on a residual sets of matching problems and by Lemma G2, we
have

νM
({
m′ ∈ M | uW

(
w�m′) = uW (w�m)

}) = 0

and

νW
({
w′ ∈ W | uM

(
w′�m

) = uW (w�m)
}) = 0

for all w ∈ W and m ∈ M for a residual set of matchings problem (νW � νM). The inter-
section of the two residual sets is again residual and will serve as the desired residual
set.

So take any (νW � νM) in the intersection. Since all indifference curves have νM -measure
zero or νW -measure zero, respectively, so does every singleton. This implies that νW and
νM are atomless. Using the Varadarajan version of the Glivenko–Cantelli theorem, we
can find, via sampling and rescaling, a sequence of finite matching problems 〈νnW � νnM〉
converging to (νnW � ν

n
M) such that no type in the support of νnW is indifferent between any

two distinct types in the support of νnM and vice versa for any n. By Baïou and Balinski
(2002, Theorem 5 and Theorem 6), we can find for each n stable matchings μW

n and μM
n for

the matching problem (νnW � ν
n
M) such that for any stable matching μ of the same matching

problem, both μW
n �W μ �W μM

n and μM �M μ�M μW
n hold. As in the proof of Theorem 1,

we can by passing to a subsequence assume that the sequences 〈μW
n 〉 and 〈μM

n 〉 converge
to stable matchings μW and μM , respectively, for the matching problem (νW � νM).

We show that μW and μM have the desired properties. Let μ be any stable matching for
the matching problem (νW � νM). Since φ is lower hemicontinuous at (νW � νM), there exists
a sequence 〈μn〉 of measures on W∅ × M∅ such that μn ∈ φ(νnW � ν

n
M) for all but finitely

many n. This implies that for all but finitely many n, both μW
n �W μn �W μM

n and μM �M

μn �M μW
n hold. The result now follows from Lemma G1. Q.E.D.

Next, we show that the conclusion of the lone wolf theorem holds for a residual set of
matching problems.

THEOREM G2: Suppose that W and M are compact and there exists a matching problem
(ν∗

W � ν
∗
M) such that

ν∗
M

({
m′ ∈ M | uW

(
w�m′) = uW (w�m)

}) = 0

and

ν∗
W

({
w′ ∈ W | uM

(
w′�m

) = uW (w�m)
}) = 0

for all w ∈W and m ∈ M . Then for a residual set of matching problems, all stable matchings
have the same traces on W ×{∅} and {∅}×M .

PROOF: We do one case, the other one works the same way. We can proceed exactly
as in the proof of Theorem G1 up to, and including, the choice of the approximating
sequence of matching problems (νnW � ν

n
M). Now let μ and μ′ be stable matchings for the

matching problem (νnW � ν
n
M). We have to show that μ(A×{∅}) = μ′(A×{∅}) for all Borel

sets A ⊆ W . As in the proof of Lemma 2, it suffices to show this for Borel sets A such
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that μ(∂A×{∅}) = μ′(∂A×{∅}) = 0, where we use the fact that ∂(A×{∅}) = ∂A×{∅}∪
A× ∂{∅}= ∂A×{∅}, the last equality following from ∅ being an isolated point.

So let A ⊆W be a Borel set such that μ(∂A×{∅}) = μ′(∂A×{∅}) = 0. Since φ is lower
hemicontinuous at (νW � νM), there exists sequences 〈μn〉 and 〈μ′

n〉 of measures on W∅ ×M∅
such that μn ∈ φ(νnW � ν

n
M) and μ′

n ∈ φ(νnW � ν
n
M) for all but finitely many n, 〈μn〉 converges

to μ, and 〈μ′
n〉 converges to μ′. By Baïou and Balinski (2002, Lemma 8), a version of the

rural hospital theorem, we have μn(A × {∅}) = μ′
n(A × {∅}) for all but finitely many n

and, therefore, by the Portmanteau theorem, μ(A×{∅}) = μ′(A×{∅}). Q.E.D.

APPENDIX H: PROOFS

PROOF OF PROPOSITION E1: We know from Lemma 9 that the result holds for W com-
pact. But the only place where compactness of W was used was in invoking Lemma 8. It
suffices, therefore, to show that Lemma 8 holds even if we replace the compact space K
by a locally compact Polish space L.

Without loss of generality, we can take μ to have support L. Indeed, every closed sub-
space of a locally compact Hausdorff space is easily shown to be locally compact. Now by
Aliprantis and Border (2006, 2.76 and 2.77), there exists an increasing sequence 〈Kn〉 of
compact sets such that

⋃
n Kn = L and such that Kn is a subset of the interior of Kn+1 for

each natural number n. Let the Borel measure μn be defined by μn(B) = μ(B ∩ Kn) for
each natural number n and each Borel set B ⊆ L. By Lemma 8, there exists a continuous
function gn : Kn → R such that μn is supported on the graph gn and any two continuous
functions with this property must agree on the support of μn. Now for every point x ∈ L,
there is some natural number n such that x ∈ Kn and we let n(x) be the smallest natural
number with this property. We define g :L→ R by g(x) = gn(x)+1(x).

Next, we show that g(x) = gl(x) for each l ≥ n(x) + 1. Indeed, x is in the interior of
Kl for l ≥ n(x) + 1. By the full support assumption, the interior of Kl is a subset of the
support of μl. The support of μn(x)+1 is a subset of the support of μl for each l ≥ n(x) + 1.
Now gl restricted to the support of μn(x)+1 is a continuous function such that μn(x)+1 is
supported on its graph. But then this restriction must coincide with gn(x)+1 on the support
of μn(x)+1. It follows that g(x) = gl(x) for each l ≥ n(x) + 1.

To see that g is continuous, take any x ∈ L. By assumption, x ∈Kn(x) and Kn(x) is a subset
of the interior of Kn(x)+1. So there is an open neighborhood U of x that is wholly included
in the interior of Kn(x)+1. This implies n(y) ≤ n(x) + 1 and, therefore, g(y) = gn(x)+2(y)
for all y ∈ U . So g is continuous at x because gn(x)+2 is.

We are almost done; two details are left. First, note that μ(B) = limn μn(B) for every
Borel set B ⊆ L, so the measure μ is supported on the graph of g. Second, note that g is
the only continuous functions whose graph supports μ since the uniqueness argument in
the proof of Lemma 8 does not rely on L being compact. Q.E.D.

PROOF OF LEMMA G1: Let 〈μn〉 be a sequence of matchings converging to μ and 〈μ′
n〉

be a sequence of matchings converging to μ′ such that μn ≥G μ′
n for all n. We have to

show that μ ≥G μ′.
Observe that the functions

B �→ μ
(
B ×M∅ ∩ u−1

W

(
[r�∞)

))
and B �→ μ′(B ×M∅ ∩ u−1

W

(
[r�∞)

))
are finite Borel measures, which we shall denote by λ and λ′, respectively. Since finite
Borel measures on Polish spaces are regular, it suffices to show that the relevant inequal-
ities are satisfied for compact A. So fix a compact set B ⊆W and some r ∈ R.
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As in the proof of Lemma 2, we can construct a decreasing sequence 〈Bm〉 of Borel sets
that decreases to B such that λ(∂Bm) = λ′(∂Bm) = 0. Also, ∂u−1

W ([r ′�∞)) ⊆ u−1
W ({r ′}) for

each real number r ′. Since sets of the form u−1
W ({r ′}) are disjoint, only countably many can

have positive μ-measure or μ′-measure. It follows that there is a sequence 〈rm〉 of real
numbers that increases to r such that

μ
(
∂u−1

W

(
[rm�∞)

)) = μ′(∂u−1
W

(
[rm�∞)

)) = 0�

The intersection of two sets whose boundary has measure zero has a boundary of measure
zero, so

μ
(
∂
(
Bm ×M∅ ∩ u−1

W

(
[rm�∞)

))) = μ′(∂(Bm ×M∅ ∩ u−1
W

(
[rm�∞)

))) = 0�

By assumption, we have

μn

(
Bm ×M∅ ∩ u−1

W

(
[rm�∞)

)) ≥ μ′
n

(
Bm ×M∅ ∩ u−1

W

(
[rm�∞)

))
and, therefore, by the Portmanteau theorem

μ
(
Bm ×M∅ ∩ u−1

W

(
[rm�∞)

)) ≥ μ′(Bm ×M∅ ∩ u−1
W

(
[rm�∞)

))
�

Now the sequence 〈Bm ×M∅ ∩u−1
W ([rm�∞))〉 decreases to B×M∅ ∩u−1

W ([r�∞)). So by the
continuity of measures,

μ
(
B ×M∅ ∩ u−1

W

(
[r�∞)

)) ≥ μ′(B ×M∅ ∩ u−1
W

(
[r�∞)

))
� Q.E.D.

PROOF OF LEMMA G2: Let CM be the family of nonempty compact subsets of M en-
dowed with the topology of closed convergence; see Aliprantis and Border (2006, p. 121).
We let I ⊆ CM be the family of indifference curves given by

I = {{
m′ ∈M | uW (w�m) = uW (w�m)

} |w ∈ W�m ∈M
}
�

We first show that I is compact. We view the set {(w�m�m′) : uW (w�m) = uW (w′�m)}
as the graph of a correspondence from W × M to 2M . Since the graph is clearly com-
pact, this correspondence is upper hemicontinuous with nonempty compact values. So,
by Aliprantis and Border (2006, Theorem 17.15), we can identify the correspondence
with a continuous function from the compact set W ×M to CI whose range I is therefore
compact.

By Dubins and Freedman (1964, Result 3.8), the function η : M(M) × CM → [0�1]
given by η(ν�F) = ν(F) is upper semicontinuous. Write Mr (M) for the set of μ ∈M(M)
such that μ(M) ≤ r and M<r(M) for the set of μ ∈M(M) such that μ(M) < r. Note that
Mr(M) is compact for each natural number r and its interior is M<r(M). Let

On = {
ν ∈M(M) | ν(I) < 1/n for all I ∈ I

}
�

We show that each On is open and dense, so that
⋂

n On ⊆ M(M) provides us with the
desired residual set.

To show that each On is open, it suffices to show for each r > 0 that the set
{
ν ∈M<r(M) | ν(I) < 1/n for all I ∈ I

}
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is open. Since η is upper semicontinuous and Mr (M) × I compact, the closed set
{

(ν� I) ∈Mr (M) × I | ν(I) ≥ 1/n
}

is compact, too, and so is its projection to Mr (M), which is simply
{
ν ∈Mr (M) | ν(I) ≥ 1/n for some I ∈ I

}
�

The relative complement of this projection in Mr(M) is therefore relatively open and its
intersection with M<r(M) is plainly open. But this is exactly the set

{
ν ∈M<r(M) | ν(I) < 1/n for all I ∈ I

}
�

Finally, we show that each On is dense in M(M). Note first that ν∗
M is in On, and so

is every measure in M(M) absolutely continuous with respect to ν∗
M . We also know that

the set of measures with finite support is dense in M(M). It therefore suffices to show
that such measures with finite support can be well approximated by measures that are
absolutely continuous with respect to ν∗

M . Let μ be such a measure with finite support. By
the definition of the topology of weak convergence, it suffices to show that there exists
for every finite family G of continuous functions on M and every ε > 0 some ν ∈ M(M)
absolutely continuous with respect to ν∗

M such that
∣∣∣∣
∫

gdμ−
∫

gdν
∣∣∣∣< ε

for all g ∈ G. Let S be the finite support of μ. For each m ∈ S, let Vm be an open neigh-
borhood on which each g ∈ F varies by less than ε/#S, where #S is the number of el-
ements of S. We can and do choose the Vm to be disjoint. Since ν∗

M has full support,
we have ν∗

M (Vm) > 0 for all m ∈ S. Define a measurable function h : M → R by letting
h(x) = μ(m)/ν∗

M (Vm) for x ∈ Vm and h(x) = 0 if x is in no Vm. Let ν be the measure that
has Radon–Nikodym derivative h with respect to ν∗

M . Take any g ∈ G. Then
∣∣∣∣
∫

gdμ−
∫

gdν
∣∣∣∣ =

∣∣∣∣
∫

gdμ−
∫

hgdν∗
M

∣∣∣∣
=

∣∣∣∣
∑
m∈S

(
g(m)μ(m) −

∫
Vm

hgdν∗
M

)∣∣∣∣

≤
∑
m∈S

∣∣∣∣
(
g(m)μ(m) −

∫
Vm

hgdν∗
M

)∣∣∣∣
<

∑
m∈S

μ(m)ε/#S = ε�
Q.E.D.
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