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APPENDIX A: COMMON KNOWLEDGE WITHOUT ALIGNMENT

THIS SECTION SHOWS HOW TO APPLY now-standard “ironing” logic (see, e.g., Myerson
(1981)) to solve the optimal contracting problem under common knowledge of agent type
when the upper bound acceptance rule is not monotonic, and therefore the monotonicity
constraint (5) may be binding.

First, let us rewrite the function describing the principal’s utility for an applicant. Pre-
viously, I defined the expected quality in (T�UA)-space through UP(t�uA) = E[Q|T =
t�UA = uA]. Now define a similar function, l, which tells us the expected quality at a given
test result and a quantile (rather than a realization) of UA. Specifically, at each test result
t, there is a continuous conditional distribution of UA which can be rewritten in terms
of its quantiles (i.e., by going from a CDF to an inverse CDF): UA increases in quantile
at each t, with quantile 0 at the infimum of the support of UA|T = t and quantile 1 at
the supremum. For t ∈ T and x ∈ [0�1], let l(t� x) be equal to UP(t�uA) for uA at the
xth quantile of the distribution of UA|T = t. Higher x gives higher uA; alignment up to
distinguishability is equivalent to the statement that l(t� x) is weakly increasing in x for
every t.

When alignment up to distinguishability fails, there exist test results t for which l(t� ·)
is not weakly increasing. At these test results, define an ironed version of the function l
as follows. First, integrate l over quantiles to get L(t�x) ≡ ∫ x

0 l(t� x′)dx′. Now “iron” L,
separately at each test result t, by defining L(t� ·) to be the convex hull of L(t� ·), that is,
the highest convex function that is weakly below L(t� ·). Finally, let the ironed l be defined
as l(t� x) ≡ ∂L

∂x
(t� x). The function l is defined for almost every x ∈ [0�1] by convexity of

L(t�x) in x, and furthermore, l(t� x) is weakly increasing in x at every t. At any t for
which l(t� ·) is weakly increasing, it holds that l(t� x)= l(t� x) for all x.36

To restate, the principal’s utility for an applicant with test result t and agent utility quan-
tile x is l(t� x). The ironed principal utility is l(t� x). Loosely speaking, we now proceed as
if we were solving for UBAR as in Section 3.1, after replacing true principal utilities for
each applicant with ironed—and therefore aligned—utilities.

More formally, let us now write an acceptance rule as χ : T × [0�1] → [0�1], mapping
test result and quantile (t�x) into an acceptance probability. As before, implementable
acceptance rules must be monotonic—weakly increasing in x—and lead to a total mass of
k acceptances. A new ironing constraint also states that any applicants with the same test
result and the same ironed principal utility must be given the same acceptance rate:

For any x�x′� t with l(t� x)= l
(
t� x′)� it must hold that χ(t�x) = χ

(
t� x′)� (31)
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36If l(t� x) is increasing in x, then L(t�x) is convex in x with ∂

∂x
L(t�x) = l(t� x). Convexity of L(t�x) in x

implies that L(t�x)= L(t�x) for every x, and therefore that l(t� x)= ∂
∂x
L(t�x) = ∂

∂x
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Continuing the ironing procedure, the optimizing acceptance rule χ is constructed as
follows: accept k applicants so as to maximize the average ironed principal utility for
those accepted, 1

k
E[χ(T�X) · l(T�X)], for X uniformly drawn on [0�1]. The value of

this problem is unaffected by the ironing constraint (31), so that constraint can be cost-
lessly imposed. The constructed acceptance rule will satisfy monotonicity because l(t� x)
is weakly increasing in x even if l(t� x) is not.

This acceptance rule amounts to first finding the cutoff ironed principal utility level lc

that will lead to accepting k applicants. The acceptance rule then accepts applicants (t�x)
with l(t� x) > lc and rejects those with l(t� x) < lc . One can choose arbitrary acceptance
probabilities in [0,1] when l(t� x) = lc as long as the total share of applicants accepted is
k, and as long as we satisfy the ironing constraint at each t.

One way of satisfying this ironing constraint is to choose a single acceptance probability
in [0�1] for all applicants (t�x) with l(t� x) = lc , where the probability is set so that a
total of k applicants are accepted. This does indeed give an optimal (implementable)
acceptance rule. It involves randomization at any test result t for which there is an interval
of x over which l(t� x)= lc .

Alternatively, we can satisfy the ironing constraint by choosing acceptance probabilities
for those applicants with l(t� x) = lc that are constant in x (as above) but may vary in t.
For instance, it is always possible to order the possibly multidimensional test results in T
in such a manner that the acceptance probability for applicants with l(t� x)= lc is set at 1
for test results t below a threshold t∗; 0 for test results above t∗; and some intermediate
level in [0,1] for the single threshold test result t∗.

In this alternative way of satisfying the ironing constraint, there is at most a single test
result for which an interior acceptance rate is ever used. That is to say, it is always possible
to find an optimal contract which is either deterministic, or in which there are stochastic
acceptances at just a single test result. When test results are continuously distributed, of
course, behavior at any single test result can be disregarded. So with continuously dis-
tributed test scores, there exists a deterministic optimal contract.

APPENDIX B: FURTHER ANALYSIS OF THE NORMAL SPECIFICATION UNDER

COMMON KNOWLEDGE

Consider the normal specification under common knowledge of the agent’s type, as in
Section 3.3. The optimal contract was summarized in Proposition 3. Comparative statics
on the steepness of the acceptance rate function for this contract were given in Proposi-
tion 4, with steeper contracts indicating less agent discretion.

B.1. Additional Comparative Statics

In this subsection, I explore comparative statics on the steepness of the optimal contract
with respect to the three parameters k, σ2

T , and σ2
Q that were omitted from Proposition 4.

One new qualification to bear in mind is that, as we increase σ2
Q or σ2

T , the unconditional
variance of the test scores, σ2

Q + σ2
T , increases as well. The coefficient that tells us the

relative impact of a one standard deviation increase in test scores, rather than the abso-
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lute impact of one unit increase, is γ∗
T

√
σ2

Q + σ2
T .37 Proposition 7 correspondingly includes

comparative statics on this renormalized coefficient when relevant (parts 2 and 3).

PROPOSITION 7: In the contract of Proposition 3 part 1, the contracting parameter γ∗
T given

by (12) has the following comparative statics and limits:
1. γ∗

T is independent of k.

2. γ∗
T and γ∗

T

√
σ2

Q + σ2
T decrease in σ2

T , with limσ2
T →0 γ

∗
T = limσ2

T →0 γ
∗
T

√
σ2

Q + σ2
T = ∞ and

limσ2
T →∞ γ∗

T = limσ2
T →∞ γ∗

T ·
√
σ2

Q + σ2
T = 0.

3. γ∗
T and γ∗

T

√
σ2

Q + σ2
T may increase or decrease in σ2

Q, with limσ2
Q→0 γ

∗
T = limσ2

Q→0 γ
∗
T ×√

σ2
Q + σ2

T = ∞, limσ2
Q→∞ γ∗

T ∈ (0�∞), and limσ2
Q→∞ γ∗

T

√
σ2

Q + σ2
T = ∞.

Part 1 reiterates that the steepness of the contract does not depend on the number of
people to be hired. Hiring fewer or more applicants just translates the acceptance rate
function left or right.

Part 2 finds that as the test becomes less informative, the contract gets flatter: it places
less weight on the test results, measured in absolute or relative terms. As the test becomes
uninformative, the contract sets a constant acceptance rate across all scores. As the test
becomes fully informative, we approach the infinitely steep No Discretion contract in
which hiring is entirely based on test results.38

Part 3, included for completeness, establishes that the steepness of the contract can vary
nonmonotonically with the variance of quality in the population.

B.2. The Full Discretion Contract

An agent who has full discretion to select k applicants will choose those with UA above
some fixed level—in Figure 1, above a horizontal line. We can solve explicitly for this Full
Discretion acceptance rate under the normal specification. Working through the algebra
of Section 3.3, but replacing the UBAR acceptance cutoff line uc

A(T) with a constant in
T , under Full Discretion the agent chooses an acceptance rate of �(γFD

T T − γ0) for

γFD
T = σ2

Q(
σ2

Q + σ2
T

)√
σ2

B +η
� (32)

with η as defined in (11). Putting together (12) and (32), γ∗
T = γFD

T + σ2
Qσ2

B

η(σ2
Q+σ2

T )
√

σ2
B+η

, and

hence 0 < γFD
T < γ∗

T . The agent with Full Discretion accepts a greater share of applicants
at higher test scores (0 < γFD

T ) because she places some weight on quality. But, as dis-
cussed in Section 3.3, the Full Discretion outcome is flatter than the principal’s optimal
contract under knowledge of the agent’s type (γFD

T < γ∗
T ).

37�(γ∗
T T − γ0) can be rewritten as �(γ∗

T

√
σ2
Q + σ2

T · T√
σ2
Q+σ2

T

− γ0), where T√
σ2
Q+σ2

T

∼ N (0�1).
38Taken together, Proposition 4 part 2 and Proposition 7 part 2 confirm in this environment the so-called

“ally principle” and “uncertainty principle” of delegation, reviewed in Huber and Shipan (2006). A principal
should grant more discretion to an agent when the agent’s preferences are more aligned with his own, and
when he has more uncertainty about what actions to take.
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We can replicate the comparative statics of Propositions 4 and 7 for the Full Discretion

outcome rather than the optimal contract, where γFD
T

√
σ2

Q + σ2
T is the coefficient on the

z-score of the test result.

PROPOSITION 8: Under the normal specification, the Full Discretion steepness parameter
γFD
T from (32) has the following comparative statics and limits:
1. γFD

T increases in σ2
S , with 0 < limσ2

S→0 γ
FD
T < limσ2

S→0 γ
∗
T and limσ2

S→∞ γFD
T ∈ (0�∞).

2. γFD
T decreases in σ2

B, with limσ2
B→0 γ

FD
T = limσ2

B→0 γ
∗
T and limσ2

B→∞ γFD
T = 0.

3. γFD
T is independent of k.

4. γFD
T and γFD

T

√
σ2

Q + σ2
T decrease in σ2

T , with limσ2
T →0 γ

FD
T ∈ (0�∞), limσ2

T →0 γ
FD
T ×√

σ2
Q + σ2

T ∈ (0�∞), and limσ2
T →∞ γFD

T = limσ2
T →∞ γFD

T

√
σ2

Q + σ2
T = 0.

5. γFD
T and γFD

T

√
σ2

Q + σ2
T increase in σ2

Q, with limσ2
Q→0 γ

FD
T = limσ2

Q→0 γ
FD
T

√
σ2

Q + σ2
T = 0,

0 < limσ2
Q→∞ γFD

T < limσ2
Q→∞ γ∗

T , and limσ2
Q→∞ γFD

T

√
σ2

Q + σ2
T = ∞.

There are a few main comparisons to make with the comparative statics on γ∗
T in Propo-

sitions 4 and 7. The first (parts 1 and 2) is that the sign of the comparative static on γFD
T

is the same as that on γ∗
T with respect to the agent’s information σ2

S , but the signs are
reversed for the comparative static on bias σ2

B. As discussed in the main text, the principal
and agent agree that a more informed agent should have a flatter acceptance rate func-
tion. But when the agent is more biased, she prefers flatter acceptance rates, while the
principal prefers steeper ones.

Part 2 also confirms that as the agent’s bias disappears, the agent’s preferred outcome
goes to that of the principal’s optimal contract: γFD

T → γ∗
T . Without bias, the incentives of

the two parties are perfectly aligned.
Finally, part 5 now finds a clean comparative static on σ2

Q, whereas its sign under the
optimal contract (Proposition 7 part 3) was ambiguous. The Full Discretion acceptance
rate gets steeper with respect to test scores (in both absolute and relative terms) when
the variance of population quality increases. When this variance goes to zero, the agent’s
preferences are entirely driven by bias, and so the Full Discretion outcome becomes flat
even as the principal-optimal contract becomes infinitely steep.

APPENDIX C: APPROXIMATED MECHANISMS IN A FINITE ECONOMY

In this section, I explore how one might implement finite approximations of the opti-
mal contract when the agent’s type is commonly known. The body of the paper develops
two characterizations of the continuum optimal contract, through the acceptance rate
function of Proposition 1 and the minimum average score of Proposition 2, which are
summarized for the normal specification in Proposition 3 parts 1 and 2. Here, I separately
explore finite approximations of these two contract forms. This exercise is intended to
illustrate how one might put these contract forms into practice, while also giving insight
into how the two contract forms compare.

C.1. A Finite Example

Example Primitives. In the continuum model of the paper, there is a mass 1 of appli-
cants, of which k will be accepted. The aggregate distributions of applicant characteristics
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Q, T , S, and B are given by FQ, FT |Q, FS|T�Q, and FB|T�S . For this section, I instead suppose
that there is a finite number N of applicants with characteristics drawn i.i.d. from these
distributions, from which kN will be accepted.

Specifically, let the distributions follow the normal specification, with parameters set
to σ2

Q = 1, σ2
T = 4, σ2

S = 1, and σ2
B = 1. The agent will accept a share k = 1/3 of the

applicants.39 I will consider finite economies with N = 12, 24, 48, or 96 applicants, out of
which 4, 8, 16, or 32 will be accepted.

Overview of the Mechanisms. In the context of this example, I will go through what
I view as the most natural finite approximations of the two contract forms of Proposition 3,
with technical details in Appendix C.2. Of course, the exact implementations I consider
are certainly not the only possible ways of approximating the continuum contracts for a
finite economy. It is doubtless the case that some further tuning could improve payoffs.

To approximate the acceptance rate function of Proposition 3 part 1, I use a binned
acceptance rate implementation: applicants are divided into bins based on their test scores,
and then the agent chooses a specified number of applicants from each bin. I consider bins
that put together a uniform number of applicants M for every possible bin size M that is
a factor of N . For instance, at N = 24, I consider M = 1�2�3�4�8�12�24. (The numbers
of applicants N have been chosen as multiples of 12 to allow for many possible bin sizes.)
The top M scores are binned together, then the next M , and so forth. The manager then
selects some predetermined number of applicants from each bin. At the extremes, M = 1
corresponds to No Discretion, in which applicants are selected based only on their test
scores; and M = N corresponds to Full Discretion, in which the manager can select any
kN applicants. After calculating the principal’s expected payoffs for every possible M at
some fixed N , we can say that the value M yielding the highest payoff is the preferred bin
size.

To approximate the average score contract of Proposition 3 part 2, I use a minimum
average score implementation: the manager can select any kN applicants whose average
test score is sufficiently high. I consider two possible floors for the average score. The first
is the “naive floor” that is set in advance at the level that is optimal for the continuum
contract. Among other concerns with this naive floor, it may be the case that realized
test scores were lower than expected and no set of kN applicants have average scores at
or above this level. I correct the naive implementation in an ad hoc manner by suppos-
ing that if the floor is not achievable, then the manager must select the applicants with
the top kN test scores. The second floor I consider is a “responsive floor” that adjusts
the floor up or down when the applicant pool has high or low realized test scores; see
Appendix C.2.5 below for the adjustment formula. For instance, under the responsive
floor, if all test scores go up by some increment, then the floor itself shifts up by the same
amount. Moreover, the applicants with the top kN test scores are guaranteed to have an
average score above the floor. I consider the responsive floor to be the preferred floor in
every case, but I include analysis of the naive floor for comparison.

Numerical Results and Takeaways. I numerically simulated the principal’s expected
payoffs for each of the contract implementations and values of N discussed above. Ta-
ble 1 summarizes the results. There are three main takeaways that I draw from this table.

39The numbers were chosen in part to guarantee that in the continuum economy, the optimal contract does
considerably better than contracts which give the agent either No Discretion or Full Discretion. See numerical
details in Appendix C.2.1.
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TABLE 1

PRINCIPAL PAYOFFS IN FINITE ECONOMIES FOR DIFFERENT CONTRACT IMPLEMENTATIONSa

N = 12 N = 24 N = 48 N = 96 Continuum
Accept 4 Accept 8 Accept 16 Accept 32 Accept 1/3

Benchmarks
(Principal Payoff)

No Discretion 0.4556 0.4712 0.4794 0.4836 0.4878
Full Discretion 0.4537 0.4693 0.4775 0.4817 0.4859
UBAR upper bound 0.5516 0.5706 0.5805 0.5856 0.5907

Binned Acc Rate
(No Disc to UBAR %)

Bin size M = 1 0% 0% 0% 0%
2 40 36 34 33
3 42 48 52 51
4 59 56 62 60
6 53 68 72 73
8 71 76 77
12 −2 57 80 83
16 77 84
24 −2 63 85
32 81
48 −2 68
96 −2

Min Avg Score
(No Disc to UBAR %)

Naive floor 32 43 62 77
Responsive floor 72 82 93 96

aPayoffs for the binned acceptance rate and minimum average score contracts are reported as a percentage of the way from the
No Discretion to the UBAR payoff for the corresponding value of N , rounded to the nearest percent. For each N , I have bolded the
best payoff within each contract type. Binned acceptance rate payoffs for bins of size M with 1 <M <N and all minimum average
score payoffs are calculated from simulations with 100,000 draws each; the standard error of each such payoff is between 0.5 and 1.6
percentage points.

First, we see that for both the binned acceptance rate and the minimum average score
contracts, payoffs of the preferred implementation improve as we increase the number
of applicants N . Moreover, as we would expect, with larger N the payoffs seem to be
approaching those from the “large numbers” continuum model.

Putting numbers to those points, for each of these finite economies I first derive the
principal payoffs from the No Discretion and Full Discretion contracts, which can both
easily be implemented (by mechanically selecting the applicants with the top test scores,
or by letting the agent choose her favorite applicants). It turns out that under the given pa-
rameters, the No Discretion contract does slightly better. Next, I derive the payoffs from
the outcomes of the upper bound acceptance rule, which is a theoretical upper bound on
the performance of an optimal contract that is exactly achieved in the continuum limit (see
Appendix C.2.2). Finally, I simulate the performance of the various binned acceptance
rate and minimum average score implementations. These simulations find that when ac-
cepting 4 out of 12 applicants, a binned acceptance rate contract already achieves 59% of
the benefit of moving from No Discretion to the Upper Bound; a minimum average score
contract does even better, achieving 72% of the benefit. Accepting 32 out of 96 applicants,
a binned acceptance rate contract achieves 85% while a minimum average score contract
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achieves 96%. It is not shown in the table, but a minimum average score contract achieves
about 99% of this theoretical upper bound when accepting 100 out of 300 applicants.40

In other words, the analysis from the continuum model translates well to a finite model
of reasonable size. Without solving for exactly optimal contracts in the finite model, I can
confirm that these straightforward translations of continuum contracts into finite ones
deliver a high share of any possible payoff gains from optimal discretion.

Second, we see that the responsive average score implementation gives higher payoffs
than any of the binned acceptance rate implementations. This numerical result does not
prove that there would not have been a different finite approximation of “binned accep-
tance rates” that did even better, of course. But the observation is consistent with the
informal argument of Section 5.1 that, in a finite economy, we might expect to prefer
some version of a minimum average score contract. Binned acceptance rates impose a
number of constraints on the agent while a minimum average score contract links all of
the constraints into a single inequality, which can mitigate sampling variation.

Finally, fixing the number of applicants N , we see evidence of the tradeoff over bin size
versus number of bins in the binned acceptance rate implementation. As we move from
many small bins to fewer large bins by increasing M , the principal payoff tends to increase
and then decrease.

C.2. Implementation Details

C.2.1. Continuum Benchmark

For this running example, the (continuum) optimal contract can be expressed in two
equivalent ways. First, as an acceptance rate function, the manager accepts a share

�(γ∗
T t − γ∗

0) of applicants with test score t, where from (12) we have γ∗
T =

√
549

1280 
 0�6549
and we can numerically calculate that γ∗

0 
 0�7638 given k = 1/3. Second, as an average
test score restriction, the manager accepts her favorite k applicants subject to their aver-
age test score being at or above κ∗ 
 2�0143, which is the average test score of accepted
applicants when using the above acceptance rate function. (The floor will be binding.)

Applicants have a mean quality of 0 with a standard deviation of 1. Hence, if applicants
were accepted completely randomly, the principal payoff (the expected quality of hired
applicants) would be 0. On the other hand, if quality were perfectly observable and the
firm could accept the 1/3 of applicants with the highest quality, the principal payoff would
work out to 1.0908.

The optimal contract, which implements the upper bound acceptance rule, leads to a
principal payoff of 0�5907. By comparison, under the No Discretion contract in which
the applicants with the highest 1/3 of test scores were hired automatically, the principal’s
payoff would be 0.4878. Under the Full Discretion contract in which the manager selected
her favorite 1/3 of applicants, the principal’s payoff would be 0.4859.

C.2.2. Finite Economy Benchmarks

Under the No Discretion outcome, the applicants with the top kN out of N test scores
are accepted. Under the Full Discretion outcome, the applicants with the top kN out

40Simulating 500,000 draws of N = 300 applicants, I found that the principal’s payoff from the responsive
minimum average score was 98.9% of the way from the No Discretion benchmark to the UBAR upper bound,
estimated with a standard error of 0.1%.
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of N realizations of UA = E[Q|T�S] + B are accepted. Under the Upper Bound Ac-
ceptance Rule (UBAR) outcome, the applicants with the top kN out of N realizations
of UP(T�UA) = E[Q|T�UA] are accepted. Note that UBAR is not necessarily imple-
mentable by any incentive-compatible contract in the finite economy, but it provides an
upper bound for what any incentive-compatible contract can achieve.

As we vary N , the No Discretion, Full Discretion, and UBAR benchmark payoffs all
scale linearly with each other as some constants times the expectation of the top kN
draws out of N from a standard normal distribution. This expectation term increases in
N , asymptoting to the expectation of an appropriately truncated normal.41

C.2.3. Further Notation for the Finite Economy

Denote the realized test score of applicant i ∈ {1� � � � �N} by ti, where without loss of
generality we label scores so that t1 ≤ t2 ≤ · · · ≤ tN .

I now define a term αi�N , which is a finite approximation of the continuum contract’s
acceptance rate of the applicant with the ith lowest test score out of N . Recalling that the
distribution of test scores in the population is N (0�σ2

Q + σ2
T ), the “ith lowest test score

out of N” essentially corresponds to test scores ranging from the i−1
N

to i
N

quantiles of this
distribution. This range of quantiles corresponds to test scores in the interval [xi−1�N�xi�N]
for

xi�N ≡
√(

σ2
Q + σ2

T

)
�−1

(
i

N

)
�

In the continuum economy, the optimal acceptance share at test score t is �(γ∗
T t − γ∗

0).
Integrating the acceptance share over this range of quantiles, the finite approximation of
the acceptance rate of the ith lowest scoring applicant out of N , αi�N , is given by

αi�N ≡ N√(
σ2

Q + σ2
T

)
∫ xi�N

xi−1�N
�
(
γ∗
T t − γ∗

0

)
φ

(
t√(

σ2
Q + σ2

T

)
)
dt�

C.2.4. Approximate Implementation #1: Binned Acceptance Rates

Here we approximate the continuum contract through one that imposes a specified
acceptance rate on some binned sets of applicants. Fixing the number of applicants N , we
will have one parameter to optimize over, the bin size M .

For any bin size M that is a factor of the number of applicants N , now create N/M bins
of size M each. Given the notation that applicants are labeled in order of lowest to highest
test scores, the first bin βM�N

1 = {1� � � � �M} consists of the M lowest-scoring applicants, the
jth bin are applicants βM�N

j = {(j− 1)M + 1� � � � � jM}, and so on up to the highest-scoring
applicant bin βM�N

N/M = {N −M + 1� � � � �N}.
Fixing M and N , we will determine the number of applicants to accept in bins

βM�N
1 � � � � �βM�N

N/M as follows. At the jth such bin βM�N
j , recall that the finite approximation

of the acceptance rate of applicants in this bin is given by the real number
∑

i∈βM�N
j

αi�N .
We will simply round these values to integers to find the number of applicants to accept

41It holds for any distribution that the expectation of the top kN draws out of N is increasing in N . For
instance, with k = 1/2, the top 1 draw out of 2 from a U[0�1] distribution has an expectation of 2/3, while for
large N , the expectation of the average of the top N/2 draws out of N approaches 3/4.
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at bin βM�N
j . We do the least rounding possible consistent with making sure that when we

add up across all bins j, we accept a total of kN applicants.
For instance, suppose we will accept 4 out of N = 12 applicants using six bins that

are each of size M = 2. Adding up the αi�N values, we get—prior to rounding—that we
should accept 0.0084 from the first bin, 0�0853 from the second bin, 0.2905 from the third
bin, 0.6556 from the fourth bin, 1.1816 from the fifth bin, and 1.7785 from the top bin.
Rounding these values, we accept 0 of the applicants from the bottom three bins (the
bottom six test scores); 1 of the applicants with the next two higher test scores; 1 of the
applicants with the next two higher test scores; and, finally, both of the applicants with the
top two test scores. Similarly, when N = 12 and M = 3, adding up the αi�N values implies
that we should accept 0�0344 from the bottom bin, then 0�3498 from the next bin, then
1�1721 from the next one, and finally 2�4437 of the top bin. Rounding as little as possible
to get to a total of four accepted applicants, we accept 0 of the applicants with the bottom
three test scores, 0 of the next three, 1 of the next three, and finally all 3 of the top three
scoring applicants.

From Table 1, the best bin size at N = 12 is M = 4. For N = 12 and M = 4, the number
of applicants accepted from each of the three bins—from lowest scoring to highest—is 0,
1, 3. The best bin size at N = 24 is M = 8, in which case the number of applicants accepted
from each of the three bins is 0, 2, 6. The best bin size at N = 48 is M = 12, in which case
the number of applicants accepted from each of the four bins is 0, 1, 5, 10. Finally, the
best bin size at N = 96 is M = 24, in which case the number of applicants accepted from
the four bins is 0, 3, 9, and 20.

C.2.5. Approximate Implementation #2: Minimum Average Scores

Here we approximate the continuum contract through one that lets the agent accept
any applicants she wants subject to a constraint on the minimum average test score of
those that she hires. I will introduce two possible test score floors. The naive floor is set
in advance, while the responsive floor depends on the realized distribution of test scores.

Let the naive floor be equal to the predetermined value of κ∗ = 2�0143. Unfortunately,
sometimes the top kN applicants have test scores that actually average less than κ∗; in
simulations, this happens about 38% of the time with N = 12 and 9% of the time with
N = 96. When this is the case, we simply use the ad hoc correction that the agent must
default to the No Discretion rule of accepting the applicants with the top kN test scores.

To motivate the construction of a responsive floor, recall that the naive floor is de-
termined by solving for the average test score of accepted applicants in the continuum
limit. This can be thought of as taking a weighted mean over the theoretical distribution
of population test scores, with weights given by the acceptance shares. We will create a
new responsive floor that is based on a similar weighted average of the realized rather
than theoretical distribution of test scores. We will use the weights that we have already
solved for above, the αi�N values that give us the finite approximation of the theoretical
acceptance rate for the applicant with the ith lowest test score out of N .

In particular, let the responsive floor given N applicants with ordered realized test scores
{t1� � � � � tN} be equal to

∑
i
αi�N

kN
ti. Since the weights αi�N

kN
are all in [0�1] and add up to

1, we know that the responsive floor is always less than the average of the top kN test
scores. Hence, it is always possible to find at least one combination of kN applicants
whose average test scores are above the responsive floor.
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APPENDIX D: ADDITIONAL ANALYSIS OF SYSTEMATIC BIASES

D.1. Two-Factor Model Under Common Knowledge of Agent’s Type

Consider the two-factor model of Section 2.4.2 under common knowledge of the agent’s
type (consisting of FS and λ). Recalling that E[Q1|T�S] = E[Q1|T ], it holds that UA =
E[Q1|T ] + λE[Q2|T�S]. Rearranging,

E[Q2|T�S] = UA −E[Q1|T ]
λ

�

The principal’s expected utility UP(T�UA) is therefore

UP(T�UA)= E[Q1 +Q2|T�UA] = E[Q1|T ] + UA −E[Q1|T ]
λ

= (λ− 1)
λ

E[Q1|T ] + UA

λ
�

Given the assumption that λ > 0, the coefficient 1
λ

on UA is positive. Hence, utilities are
aligned up to distinguishability.

The sign of the coefficient λ−1
λ

on E[Q1|T ] in the expression for UP depends on whether
the agent’s bias term λ is above or below 1.42 For the advocate with λ > 1, there is a
positive coefficient on E[Q1|T ]. That means that if the agent is indifferent between an
applicant with a low test result and an applicant with a high test result (i.e., indicating
high E[Q1|T ]), the principal prefers the one with the high test result. For the cynic with
λ < 1, however, the reverse holds.

One implementation of the upper bound acceptance rule is to specify the acceptance
rate α(T) at αUBAR(T). This acceptance rate is determined only by the joint distribution of
E[Q1|T ] and E[Q2|T�S]; the principal selects the k applicants with the highest E[Q1|T ]+
E[Q2|T�S] as if T and S were both observable. This contract implements the principal’s
first-best outcomes, thanks to the assumed absence of idiosyncratic biases. Moreover,
while the acceptance rate function αUBAR depends on the agent’s information structure,
it does not depend on the bias term λ. Restating this point, the same acceptance rate
function would be optimal for a principal with any beliefs on λ, even if λ is not commonly
known.

We can also implement UBAR in the alternative manner in which we fix a mini-
mum average score. For the advocate with λ > 1, we can set the score function as
C(T) = E[Q1|T ]. For the cynic with λ < 1, set the score function as C(T) = −E[Q1|T ].
The contract then specifies that E[C(T)|Hired = 1] ≥ κ, for some κ. The different signs
of C(T) based on the sign of (λ− 1) indicate that advocates prefer to push E[Q1|T ] to be
lower than what the principal wants, whereas cynics prefer E[Q1|T ] to be higher.

D.2. Utility Weight on a Public Signal

One source of systematic bias which is not captured by the two-factor model is that the
principal or agent may care directly about the realization of an applicant’s hard informa-
tion. Think about two specific applications.

First, there may be a third party organization (e.g., US News) that rates colleges based
on the public hard information of the applicants who matriculate. The college cares about

42Supposing that test results are real numbers normalized so that higher t yields higher E[Q1|T = t], a
positive coefficient on E[Q1|T ] corresponds to downward-sloping principal indifference curves in (T�UA)-
space, just as in the normal specification. A negative coefficient yields upward-sloping indifference curves.
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its ratings in addition to the “true quality” of its students. So the school is willing to admit
a slightly worse applicant who looks better on paper—a worse essay paired with a better
SAT score. The admissions officer does not care about ratings, though, and just wants to
maximize true student quality.

Second, one or both of the principal and agent may be “prejudiced” or may support
“affirmative action” based on an observable characteristic such as race, included as one
component of the vector T . This induces a bias—misaligned objectives—if the prefer-
ences over the observable characteristic are not perfectly shared by both parties.

To model this, let an applicant’s “true quality” be denoted by Q1. We have distribution
Q1 ∼ FQ1 of true quality, with corresponding signal distributions T ∼ FT |Q1 and S ∼ FS|Q1�T .
The expected value of true quality given all information is E[Q1|S�T ].

Then there is an addition to the principal utility, Q2P(T), and an addition to agent
utility, Q2A(T), where Q2P(·) and Q2A(·) are arbitrary functions of the realization of hard
information. Utilities for the two players are as follows:

P : Q1 +Q2P(T) =Q�

A : Q1 +Q2A(T)=Q+B� for B = Q2A(T)−Q2P(T)�

We see that this form of systematic bias shows up as a relationship between the bias real-
ization B and the hard information.

Utilities are aligned up to distinguishability: at any test result, applicants more pre-
ferred by the agent are more preferred by the principal. Formally, given T and UA =
E[Q1|S�T ] + Q2A(T), we can rearrange to get E[Q1|S�T ] = UA − Q2A(T). The induced
principal utility UP(T�UA) is

UP(T�UA) = E[Q1|S�T ] +Q2P(T) =UA −Q2A(T)+Q2P(T)�

which is increasing in UA. Hence, we can apply the results of Section 3 to solve for the op-
timal acceptance rate function. Just as with the two-factor model analyzed in Section D.1,
this acceptance rate does not depend on the agent’s bias function Q2A(·). Likewise, due
to the assumed lack of idiosyncratic bias, the optimal contract implements the first-best
payoff for the principal.

APPENDIX E: COMBINING IDIOSYNCRATIC AND SYSTEMATIC BIASES

This section puts together the idiosyncratic biases of the normal specification with the
systematic biases of the two-factor model into a combined model. I show that the quali-
tative results for the normal specification in Sections 3.3 and 4 extend to the combined
model.

E.1. Setup of the Combined Model

As in the two-factor model, quality Q in the combined model can be decomposed into
two quality factors Q1 and Q2, for which E[Q1|T�S] = E[Q1|T ]: the test result reveals ev-
erything relevant that can be inferred about Q1. The private signal S then gives additional
information about quality factor Q2. Adding normally distributed idiosyncratic biases, as-
sume that the principal’s utility for hiring an applicant is Q = Q1 + Q2 and the agent’s
utility is Q1 + λQ2 + εB, for εB ∼ N (0�σ2

B) independent of T , S, and with λ and σ2
B in
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R++. All together, then, conditional on signals T and S, the principal and agent utilities
of hiring an applicant are given by

Principal: E[Q|T�S] = E[Q1 +Q2|T�S] = E[Q1|T ] +E[Q2|T�S]�
Agent: UA ≡ E[Q1 + λQ2|T�S] + εB = E[Q1|T ] + λE[Q2|T�S] + εB�

Let us now add additional distributional assumptions on the two signals. In particu-
lar, rather than specifying the conditional distributions FT |Q and FS|Q�T , I will write out
the expectations of Q1 and Q2 given the signals in linear reduced forms. Let the signal
realization spaces T and S both be equal to R and assume that

E[Q1|T ] = T�

E[Q2|T�S] = rT + S�

for some r ∈ R. Finally, assume that the distribution of S conditional on T (but uncon-
ditional on the quality factors) is given by S|T ∼ N (0� l · σ2

2 ) for l ∈ (0�1) and σ2 ∈ R++.
Note that, while I do not commit to the details of the updating model that would get
us these posteriors, it would be straightforward to “microfound” these reduced form as-
sumptions through appropriate joint-normal priors on the two quality factors and nor-
mally distributed signals.43

We have introduced five relevant parameters: r, σ2
2 , l, λ, and σ2

B. Two of these, λ and
σ2

B, are familiar as the systematic bias term of the two-factor model and the idiosyncratic
bias term of the normal specification. The interpretation of the other three parameters is
as follows. First, conditional on the observation of T = t, the distribution of Q2 has mean
rt and variance of σ2

2 . A value r > 0 indicates a positive correlation of the two quality
factors, and r < 0 a negative correlation. The parameter l corresponds to the level of the
agent’s information on Q2: a more informative private signal means higher l. An agent
who perfectly observed the realization of Q2 would have l → 1, and one who received no
private information would have l → 0.

Putting these assumptions together, we can rewrite the utilities:

Principal: E[Q1|T ] +E[Q2|T�S] = (1 + r)T + S�

Agent: UA = E[Q1|T ] + λE[Q2|T�S] + εB = (1 + λr)T + λS + εB�

In the notation Q = Q1 +Q2, we have that the agent maximizes the expectation of Q+B
for B = (λ− 1)(rT + S)+ εB.

The agent’s type θ consists of three parameters: l ∈ (0�1) for information (replacing,
but analogous to, σ2

S in the normal specification), σ2
B ∈ (0�∞) for idiosyncratic bias, and

43Here is one collection of primitives that would give rise to these reduced form distributional assumptions.
Take Q1 and Q2 to be joint normally distributed, and have T perfectly reveal Q1—it has a degenerate distribu-
tion at T = Q1. (I have not specified the distribution of T outside of this footnote, but under this assumption
the empirical distribution would be normal.) The mean of Q2, unconditional on other signals, will be linear
in T with slope depending on the variances and covariance of Q1 and Q2. The agent then receives a private
signal equal to Q2 plus some normally distributed noise (where a higher variance of noise corresponds to less
information, and so lower l); normalize the signal S to be the resulting deviation of the posterior belief from
the mean. The agent’s posterior expectation on Q2 is normally distributed about the mean with a variance
somewhere between 0 (no information) and σ2

2 (full information).
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λ ∈ (0�∞) for systematic bias.44 In line with Assumption 1, I take all other parameters to
be commonly known.

It holds that E[Q|T = t� S] and UA are jointly normally distributed. The marginal dis-
tribution of UA|T is given by

UA|T = t ∼N
(
μUA

(t)�σ2
UA

)
� for (33)

μUA
(t)= t(1 + λr)� (34)

σ2
UA

= λ2lσ2
2 + σ2

B� (35)

The marginal distribution of E[Q|T = t� S] is normal with mean t(1 + r) and variance
lσ2

2 . The covariance of E[Q|T = t� S] with UA|T = t is λlσ2
2 . Hence, we can calculate

UP(t�uA)= E[Q|T = t�UA = uA] = E[E[Q|T = t� S]|T = t�UA = uA] as

UP(t�uA)= βT t +βUA
uA� for (36)

βT = 1 − λlσ2
2 − rσ2

B

λ2lσ2
2 + σ2

B

� (37)

βUA
= λlσ2

2

λ2lσ2
2 + σ2

B

� (38)

The coefficient βUA
on agent utility is positive, implying that utilities are aligned up

to distinguishability. Larger idiosyncratic biases σ2
B reduce this coefficient, making beliefs

on quality less responsive to agent utilities, but do not affect the sign. Let us look next at
the coefficient βT on test scores. Without idiosyncratic shocks—that is, plugging in σ2

B =
0—βT reduces to λ−1

λ
as in the two-factor model (Appendix D.1). Adding idiosyncratic

shocks through σ2
B pulls the coefficient βT towards 1 + r. Putting the effects on βUA

and
βT together, we see that increasing the idiosyncratic preference shocks (larger σ2

B) takes
the principal’s belief, at any given test score T = t and utility realization UA = uA, in
the direction of (1 + r)t—the estimate of quality given T = t, and unconditional on UA.
In the case where there is weakly positive correlation of the two factors (r ≥ 0), larger
idiosyncratic shocks monotonically increase the coefficient βT . In particular, with r ≥ 0,
the sign of βT is always positive for advocates (λ > 1). The sign of βT can be negative for
cynical agents (λ < 1) but it switches to positive for sufficiently large idiosyncratic biases
σ2

B.

44The combined model here embeds the normal specification after a notational adjustment. Call S and T the
signals in the normal specification, and S′ and T ′ the signals in the combined model. The normal specification
maps into the combined model if we take λ= 1, along with

S′ =
(
S − T

σ2
Q

σ2
Q + σ2

T

)
· σ2

Tσ
2
Q

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

� T ′ = T · σ2
Sσ

2
Q

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

�

σ2
2 = σ2

Qσ
2
T

σ2
Q + σ2

T

� l = σ2
Qσ

2
T

σ2
Sσ

2
T + σ2

Qσ
2
S + σ2

Qσ
2
T

� r = σ2
Qσ

2
T

σ2
S

(
σ2
Q + σ2

T

) �
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From (36), we see that the distribution of UP(t�UA)—that is, expected quality condi-
tional on T = t across realizations of UA—has mean and variance of

μUP
(t)= t(1 + r)�

σ2
UP

= β2
UA

σ2
UA

=
(
λlσ2

2

)2

λ2lσ2
2 + σ2

B

�

In the normal specification, the principal and agent had equal mean utilities conditional
on test score T . But now the coefficients on T differ if the quality factors are correlated
(r = 0) and the agent has a systematic bias (λ = 1). The coefficient on T for the principal
is 1 + r, compared to the agent’s 1 + λr. When there is positive correlation between the
two quality factors (r > 0), the mean as a function of test score will have a steeper slope
for an advocate agent than for the principal, and a flatter slope for a cynic.

E.2. Contracting With Known Agent Type

Under common knowledge of agent type, we can solve for the optimal policy exactly as
in the normal specification and two-factor model. The upper bound acceptance rule sets a
cutoff utility uc

P and accepts all applicants with UP ≥ uc
P . This is implemented by a normal

CDF acceptance rate, α(T)=�(γTT −γ0), at some appropriate steepness γT = γcomb
T . We

can solve for this optimal coefficient from the equations for the distribution of UP(t�UA)
as

γcomb
T = 1 + r

σUP

=
(1 + r)

√
λ2lσ2

2 + σ2
B

λlσ2
2

� (39)

The acceptance rate is increasing in the test score (positive γcomb
T ) even if βT is negative,

as long as r ≥ −1. This holds because higher quality applicants tend to have higher test
scores, so the principal wants to accept more of them. If there is a sufficiently strong
negative correlation between quality factors that r < −1, then higher quality applicants
tend to have lower test scores (they are lower on the first quality factor), and γcomb

T is
negative.45

As with the normal specification analyzed in Section 3.3, the linearity of UP(T�UA)
in both T and UA, the policy could also be implemented by giving a (binding) floor the
average test score of hired workers at some level κcomb, for which I do not provide a
formula. Gathering together these observations, we have the following:

PROPOSITION 9: Under the combined model with common knowledge of the agent’s type,
the optimal contract can be implemented in either of the following ways. The agent is allowed
to hire any set of k applicants, subject to:

1. an acceptance rate function of α(t)= �(γcomb
T T − γ0); or,

2. an average test score of accepted applicants, E[T |Hired = 1], at or above some value
κcomb. In this case, the agent will choose applicants so that E[T |Hired = 1] = κcomb.

45While we might expect T to be normally distributed, as it would be under the normal prior/normal signal
microfoundation of footnote 43, this result did not impose any assumptions on the distribution of T . The
distribution of T affects which γ0 will set the aggregate share of acceptances to k, but does not affect the
coefficient γT on test scores in the acceptance rate function.
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E.3. Contracting With Unknown Agent Type

With uncertainty over the agent’s type θ = (l�λ�σ2
B), we can replicate much of the

analysis of Section 4 in solving for the optimal policy. Say that θ follows distribu-
tion function G. Going forward, I write μUA

, σUA
, and σUP

as functions of θ. For
this analysis, assume that the unconditional distribution of test scores T is normally
distributed, with mean normalized to 0 and variance of VarT , as motivated in foot-
note 43.

As in the main text, define Z as an agent utility z-score for a given applicant, and τ and
ζ as the average test score and average z-score for a pool of accepted applicants:

Z ≡ UA −μUA
(T ;θ)

σUA
(θ)

�

τ ≡ E[T |Hired = 1]�
ζ ≡ E[Z|Hired = 1]�

The outcome space in terms of (τ� ζ) is exactly as in Lemma 3, with RZ = R(k) =
1
k
φ(�−1(1 − k)) and RT =

√
σ2

Q + σ2
TR(k). As before, let τ̄(ζ) ≡ RT ·

√
1 − ζ2

R2
Z

be the
maximum possible τ for a given ζ ∈ [−RZ�RZ].

When the agent is of type θ, hiring an applicant with test score T and utility z-score Z
gives expected utilities to the agent and principal of

UA = μUA
(T ;θ)+ σUA

(θ)Z = (1 + λr)T + σUA
(θ)Z�

UP(T�UA)= μUP
(T)+ σUP

(θ)Z = (1 + r)T + σUP
(θ)Z�

In terms of τ and ζ, agent and principal payoffs for hiring a pool of applicants are

A: VA = σUA
(θ)ζ + (1 + λr)τ�

P: VP = σUP
(θ)ζ + (1 + r)τ�

We see that the agent’s behavior depends only on the ratio of σUA
(θ) to (1 + λr); her

problem is equivalent to maximizing
σUA

(θ)

1+λr
ζ+τ, or to maximizing σUA

(θ) 1+r
1+λr

ζ+ (1+ r)τ.
Define ρ as this coefficient on ζ:

ρ(θ) ≡ σUA
(θ)

1 + r

1 + λr
=
√
λ2lσ2

2 + σ2
B

1 + r

1 + λr
�

The coefficient ρ(θ) is a one-dimensional sufficient statistic for the agent’s preferences.
For any ρ̃, all agent types θ with ρ(θ) = ρ̃ act identically. Let the distribution of ρ(θ)
induced by θ ∼G be given by the cdf H.

Because the principal can never distinguish agents with the same ρ(θ), it is convenient
to define the principal’s average value of σUP

across all agent types with ρ(θ) = ρ̃ as
σ̂UP

(ρ̃):

σ̂UP
(ρ̃)≡ Eθ∼G

[
σUP

(θ)|ρ(θ) = ρ̃
]
�
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Now rewrite the principal and agent maximization problems as

Agent: max
(
ρ(θ) · ζ + (1 + r)τ̄(ζ)

)− δ� (40)

Principal: maxEρ(θ)∼H

[(
σ̂UP

(
ρ(θ)

) · ζ + (1 + r)τ̄(ζ)
)− δ

]
(41)

for δ ≡ (1 + r)
(
τ̄(ζ)− τ

)
� (42)

Once again, δ represents “money burning” due to taking τ below its maximum possible
value. The contract induces a menu of (ζ�δ) from which the agent may select, given her
observation of ρ(θ).

We can now give the analog of Proposition 5.

PROPOSITION 10: In the combined model, let the distribution H have continuous pdf h
over its support, with the support a bounded interval in R+, and let σ̂UP

(·) be continuous over
the support. If H(ρ̃) + (ρ̃ − σ̂UP

(ρ̃))h(ρ̃) is nondecreasing in ρ̃, then the optimal contract
takes the same form as in Proposition 5.

This result embeds Proposition 5—up to some changes of notation—when there is no
systematic bias, that is, λ = 1. In that case, the projection of the agent’s type ρ(θ) =
σUA

(θ) 1+r
1+λr

is exactly just σUA
(θ). But we also now have a generalization of the conditions

under which the simple contract forms from the body of the paper remain optimal even
when agents have a commonly known systematic bias λ = 1, or when there is a distribution
of the systematic bias λ across agents.

APPENDIX F: INFERENCE FROM PERFORMANCE DATA

Consider the normal specification, and take σ2
Q and σ2

T to be commonly known while
the agent’s type, (σ2

S �σ
2
B), is not known. (Below, I address how one might also infer σ2

Q

and σ2
T if those were unknown.) I proceed here in a prior-free manner and thus do not

specify the principal’s prior beliefs over the agent’s type.
Let there be two periods over which the agent’s type is persistent. In the first period,

the principal gives the agent a Full Discretion contract in which she chooses k applicants.
For each applicant that is hired, the principal observes the public test result T and also
the quality Q—the realized performance. Then, in the second period, the principal uses
the first-period data to choose a contract that will select another k applicants.

Assume that the agent selects applicants myopically, that is, her behavior in the first
period maximizes her first-period payoff. That is, she has no dynamic consideration for
how her behavior affects the contract she will be offered in the future.

In the second period, the principal has access to the acceptance rate as a function of
test results, plus the entire distribution of realized qualities for the accepted applicants
at each score. I will find that these data are sufficient for the principal to perfectly infer
the agent’s type, and therefore to set the optimal contract in the second period given the
knowledge of her type. Indeed, the principal only needs to look at two moments of the
data. Let τ1 be the average test score of the applicants accepted in the first period, and let
ξ1 be the average realized quality. The principal can calculate the optimal second-period
contract from τ1 and ξ1. As in Proposition 3 part 2, the contract can be summed up as a
requirement that the average test score of accepted applicants in the second period, τ2,
must equal some level κ∗.
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LEMMA 5: Given τ1 and ξ1, the principal’s period-2 optimal contract allows the agent to
accept any k applicants with average test score τ2 equal to κ∗, with

κ∗ =
R(k)σ2

Q

√
σ2

Q + σ2
T√√√√σ2

Q +
(
ξ1

(
σ2

Q + σ2
T

)− σ2
Qτ1

)2(
σ2

Q + σ2
T

)((
σ2

Q + σ2
T

)
R(k)2 − τ2

1

)
(43)

and R(·) given by (22). Moreover, over the domain of possible ξ1 and τ1, it holds that κ∗

decreases in ξ1 and increases in τ1.

That is, for any fixed average test score in the Full Discretion first period, better ex
post performance of the hired applicants ξ1 leads to a lower required average test score
(a flatter contract, one closer to the agent’s preferred outcome) in the second period. On
the other hand, an agent who picks a higher average test score τ1 (steeper contract) in the
first period is required to pick a higher average test score (steeper contract) in the second
period.

Inferring σ2
Q and σ2

T .

What if the principal fundamentals σ2
Q and σ2

T will be the same from period 1 to period
2, but the values are not known in advance? In fact, these two parameters can also be
inferred from the period-1 Full Discretion data. Their imputed values can then be plugged
into the formulas above.

To see this, first define VarT as the empirical variance of the test score distribution
across all applicants. This empirical variance is directly observable in period 1. Under the
predictions of the model, VarT will be equal to σ2

Q + σ2
T .

Next, let q̄1(t) indicate the average realized period-1 quality of accepted applicants at
test score t. Suppose that, under full discretion, a share α(t) of applicants are accepted at
this test score. Then the model predicts that

q̄1(t)= σ2
Q

σ2
Q + σ2

T

t + σUP
(θ)R

(
α(t)

)= σ2
Q

VarT
t + σUP

(θ)R
(
α(t)

)
�

The value of σUP
(θ) can be inferred from performance data, with the formula given in

(55) in the proof of Lemma 5. Plugging in that formula, and replacing all occurrences of
σ2

Q + σ2
T with VarT , we get

q̄1(t)= σ2
Q

VarT
t +
(

ξ1 VarT −σ2
Qτ1√

VarT
(
VarT R(k)2 − τ2

1

)
)
R
(
α(t)

)
�

Solving this equation for σ2
Q gives a separate estimate of σ2

Q at each test score t:

σ2
Q =

q̄1(t)
√

VarT
(
R(k)2 VarT −τ2

1

)−R
(
α(t)

)
VarT ξ1

t
√(

R(k)2 − τ2
1

)
/VarT −R

(
α(t)

)
τ1

� (44)
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Of course, under the theoretical model, the estimate should be identical at every t. With
actual performance data, one would presumably want to take an average or a weighted
average of these estimates across all of the test scores. At any rate, given an estimate of
σ2

Q from (44), we have σ2
T = VarT −σ2

Q.

APPENDIX G: PROOFS

G.1. Proofs for Sections 2 and 3

PROOF OF LEMMA 1: Consider two independent random variables X and Y , for which
Y has a log-concave distribution. I seek to show that E[X|X + Y = z] is weakly in-
creasing in z. Conditioning on T = t and interpreting X as E[Q|S�T ], Y as B, and z
as uA will then yield the desired conclusion that UP(t�uA) is increasing in uA. Specifically,
these substitutions give us X + Y = E[Q|S�T ] + B = UA, and E[X|X + Y = z�T = t] =
E[E[Q|S�T ]|UA = uA�T = t] = E[Q|UA = uA�T = t] = UP(t�uA), where the second-to-
last equality holds by the law of iterated expectations.

To show that E[X|X+Y = z] is weakly increasing in z (for any prior over X), it suffices
to show that the distribution of X + Y |X = x satisfies the monotone likelihood ratio
property in x, and thus that higher realizations of X +Y indicate higher posteriors on X .
By independence of X and Y , it holds that X+Y |X = x follows the distribution of Y +x.
In other words, it suffices to show that Y + x has monotone likelihood ratio in x. Indeed,
log-concavity of Y implies that Y +x has monotone likelihood ratio in x; see, for example,
Marshall and Olkin (2007, Example 2.A.15).

To give some intuition for that final step, indicate the pdf of Y by fY and the pdf of
Y + x by fY+x, where fY+x(z) = fY (z − x). The random variable Y + x has monotone
likelihood ratio in x if (ignoring zeroes in the denominator) it holds that, for all z > z and
x > x,

fY+x(z)

fY+x(z)
≥ fY+x(z)

fY+x(z)
� that is,

fY (z − x)

fY (z − x)
≥ fY (z − x)

fY (z − x)
�

And log-concavity of Y is equivalent to fY (z−x)fY (z−x)≥ f (z−x)f (z−x) for all z >
z, x > x (Marshall and Olkin, 2007, Proposition 21.B.8), yielding the expression above.

Q.E.D.

PROOF OF PROPOSITION 1: Follows from arguments in the text. Under this contract,
at each T = t the agent monotonically selects the applicants with UA|T = t in the top
αUBAR(t) share of the distribution. By the assumed monotonicity of UBAR, these are the
same applicants selected by UBAR. Q.E.D.

PROOF OF PROPOSITION 2: Given a monotonic upper bound acceptance rule χUBAR,
take some agent utility cutoff function uc

A(t) consistent with χUBAR and take a corre-
sponding score function C(t) = a0 − a1u

c
A(t) for a1 > 0. Rearranging, uc

A(t) = a0
a1

− C(t)

a1
.

Assume that the expectation of C(T) exists and is equal to κ, which implies that C(·) and
uc
A(·) are almost everywhere finite-valued.
The agent chooses an acceptance rule χ, a map from test results and agent utilities to

acceptance probabilities. Her problem is to choose χ to maximize her objective

1
k
E
[
χ(T�UA) ·UA

]
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subject to the two constraints of accepting k applicants and of setting the average score
of hired applicants to at least κ:

E
[
χ(T�UA)

]= k� (45)

1
k
E
[
χ(T�UA) ·C(T)

]≥ κ� (46)

I claim that this problem is solved by χ = χUBAR. Note that χ = χUBAR satisfies constraint
(45), and by construction satisfies constraint (46) with equality.

Define the Lagrangian function L (with constraint (45) scaled by 1/k) as

L(χ;λ0�λ1)

≡ 1
k
E
[
χ(T�UA) ·UA

]− λ0

(
1
k
E
[
χ(T�UA)

]− 1
)

+ λ1

(
1
k
E
[
χ(T�UA) ·C(T)

]− κ

)

= E

[
1
k
χ(T�UA) · (UA − λ0 + λ1

(
a0 − a1u

c
A(T)

))+ λ0 − λ1κ

]
�

By standard Lagrangian logic, in order to show that the problem is solved by χ = χUBAR,
it suffices to find λ∗

0 ∈ R and λ∗
1 ∈R+ such that

max
χ

L
(
χ;λ∗

0�λ
∗
1

)=L
(
χUBAR;λ∗

0�λ
∗
1

)
�46

I claim that this holds for λ∗
0 = a0/a1 and λ∗

1 = 1/a1, where λ∗
1 > 0 because a1 > 0.

To show maxχL(χ;a0/a1�1/a1)=L(χUBAR;a0/a1�1/a1), observe that

L
(
χ; a0

a1
�

1
a1

)
= E

[
1
k
χ(T�UA) ·

(
UA − a0

a1
+ 1

a1

(
a0 − a1u

c
A(T)

))+ a0

a1
− 1

a1
κ

]

= E

[
1
k
χ(T�UA) · (UA − uc

A(T)
)+ a0

a1
− κ

a1

]
�

We see that this expression is indeed pointwise maximized over acceptance rules χ by
χ = χUBAR, since χUBAR(T�UA) is equal to the minimum possible value of 0 when UA −
uc
A(T) < 0 and the maximum possible value of 1 when UA − uc

A(T) > 0. Q.E.D.

Before I address the proofs of the formally stated results of Section 3.3, let me work
out the derivations of formulas (8)–(11) in the text of that section. These will follow from
standard updating rules of normal distributions. First, take a multivariate normal random
vector X that can be decomposed as X = (X1�X2) with mean (μ1�μ2) and covariance
matrix

[ Σ11 Σ12
Σ21 Σ22

]
. The conditional distribution of X1 given X2 = x2 is given by

X1|X2 = x2 ∼N
(
μ1 +Σ12Σ

−1
22 (x2 −μ2)�Σ11 −Σ12Σ

−1
22 Σ21

)
� (47)

46To see why this condition is sufficient, suppose for the sake of contradiction that χ′ satisfies (45) and (46)
and yields a higher agent objective than χUBAR. Then L(χ′;λ∗

0�λ
∗
1) > L(χUBAR;λ∗

0�λ
∗
1).
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LEMMA 6: The variables (Q�T�UA) are joint normally distributed, with means of 0 and
covariance matrix of⎡

⎢⎢⎢⎢⎢⎢⎣

σ2
Q σ2

Q

σ4
Q

(
σ2

T + σ2
S

)
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

σ2
Q σ2

Q + σ2
T σ2

Q

σ4
Q

(
σ2

T + σ2
S

)
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

σ2
Q

σ4
Q

(
σ2

T + σ2
S

)
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

+ σ2
B

⎤
⎥⎥⎥⎥⎥⎥⎦
�

Given Lemma 6, we can apply (47) to calculate UP(T�UA), defined as the expectation
of Q conditional on T and UA, by taking Q as X1 and (T�UA) as X2. Working out the
algebra yields Equations (8)–(11).

PROOF OF PROPOSITION 3: 1. Utilities are aligned up to distinguishability, and so
we can apply Proposition 1 to find one implementation of the optimal contract. To
show the desired result, then, it suffices to show that for any fixed principal utility
cutoff uc

P , as we vary t, the share of applicants with UP(t�UA) ≥ uc
P takes the form

�(γ∗
T t − γ0) for γ∗

T as in (12) and for some γ0.
The first step is to calculate the conditional distribution of UA given T . Applying

Lemma 6 and (47), taking T as X1 and UA as X2, we find that

UA|T ∼N
(
μUA

(T)�σ2
UA

)
� for (13)

μUA
(t)= σ2

Q

σ2
Q + σ2

T

t� (14)

σ2
UA

= η+ σ2
B� (15)

(These equations appear in the body of the paper as well, in Section 4.2.)
Restating (13), for any t,

UA −μUA
(t)

σUA

∣∣∣T = t ∼N (0�1)� (48)

For any t and any uc
P , we can now calculate the acceptance rate under UBAR. An

applicant with T = t is accepted under UBAR if

βT t +βUA
UA ≥ uc

P

⇐⇒ UA −μUA
(t)

σUA

≥
uc
P −βT t

βUA

−μUA
(t)

σUA

�

Conditional on T = t, the LHS of the last line is distributed according to a stan-
dard normal. Plugging in μUA

(t) from (14) on the RHS and collecting terms, the
acceptance condition can be rewritten as

UA −μUA
(t)

σUA

≥ γ0 − γ∗
T t�



SELECTING APPLICANTS 21

for γ0 = ucP
βUA

σUA

and

γ∗
T = βT

βUA
σUA

+ σ2
Q(

σ2
Q + σ2

T

)
σUA

�

So the share of applicants with UP(t�UA) ≥ uc
P at test score T = t is 1 − �(γ0 −

γ∗
T t)=�(γ∗

T t − γ0).
As stated in the text, I will not explicitly calculate the optimal value of γ0 as a

function of primitives, as uc
P is itself a function of k. But plugging (9), (10), and (15)

into the above expression for γ∗
T and simplifying yields the expression (12) for γ∗

T .
2. From Proposition 2, it suffices to derive the formula for a cutoff indifference curve,

uc
A(t), and set C(t) as any negative affine transformation. Solving for uc

A(t) as the
solution to UP(t�u

c
A(t))= uc

P for a given uc
P :

UP

(
t� uc

A(t)
)= uc

P

Eq. (8)=⇒ βT t +βUA
uc
A(t)= uc

P

=⇒ uc
A(t)= uc

P −βT t

βUA

�

C(t) = t is a negative affine transformation of uc
A(t), a linear function of t with a

negative slope. Q.E.D.

PROOF OF PROPOSITION 4: Restating (11) and (12),

γ∗
T = σ2

Q

√
η+ σ2

B

η
(
σ2

Q + σ2
T

)
for η= σ4

Qσ
4
T(

σ2
Q + σ2

T

)(
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

) �
1. The parameter σ2

S appears in γ∗
T only through η. Routine differentiation shows that

∂γ∗
T

∂η
< 0 and dη

dσ2
S

< 0, and so by the chain rule dγ∗
T

dσ2
S

> 0.
Taking limits,

lim
σ2
S→0

γ∗
T = 1

σ2
T

√√√√ σ2
Tσ

2
Q

σ2
Q + σ2

T

+ σ2
B� because lim

σ2
S→0

η= σ2
Tσ

2
Q

σ2
Q + σ2

T

�

lim
σ2
S→∞

γ∗
T = ∞� because lim

σ2
S→∞

η= 0�

2. The value η remains constant as we vary σ2
B. Taking the derivative of γ∗

T with respect
to σ2

B gives

σ2
Q

2η
(
σ2

Q + σ2
T

)√
η+ σ2

B

> 0�



22 ALEX FRANKEL

Taking limits,

lim
σ2
B→0

γ∗
T = σ2

Q(
σ2

Q + σ2
T

)√
η
�

lim
σ2
B→∞

γ∗
T = ∞�

Q.E.D.

G.2. Proofs for Section 4

PROOF OF LEMMA 2: Rewriting (15), (18), and (11),

σUA
(θ)=

√
η+ σ2

B�

σUP
(θ)= η√

η+ σ2
B

for η = σ4
Qσ

4
T(

σ2
Q + σ2

T

)(
σ2

Tσ
2
Q + σ2

Sσ
2
T + σ2

Sσ
2
Q

) �
1. Observe that η decreases in σ2

S . Fixing σ2
B, both σUA

and σUP
increase in η.

2. The term η is constant in σ2
B. Fixing σ2

S , σUA
increases in σ2

B while σUP
decreases in

σ2
B.

3. Fixing σUA
(θ) = σ̃UA

> 0, the range of possible σUP
is an open interval in R+. One

can achieve the minimum of this interval by taking σB → σ̃UA
and σS → ∞, implying

σUP
→ 0. It remains to show that the supremum of σUP

(θ) given σUA
(θ) = σ̃UA

is

min{σ̃UA
�

σ2
Qσ2

T

σ2
Q+σ2

T

1
σ̃UA

}, or equivalently that this supremum is σ̃UA
for σ̃UA

≤ σQσT√
σ2
Q+σ2

T

and is
σ2
Qσ2

T

σ2
Q+σ2

T

1
σ̃UA

for σ̃UA
>

σQσT√
σ2
Q+σ2

T

.

The term η is independent of σ2
B, and decreases from

σ2
Qσ2

T

σ2
Q+σ2

T

to zero as σ2
S increases

from zero to infinity. From parts 1 and 2, we maximize σUP
(θ) given σUA

(θ) = σ̃UA

over θ = (σ2
S �σ

2
B) by finding the mixture of the lowest σ2

S (most information) and the
lowest σ2

B (least bias) consistent with σUA
(θ)= σ̃UA

.
For σ̃UA

≤ σQσT√
σ2
Q+σ2

T

, we achieve a supremum for σUP
of σ̃UA

by taking σ2
B → 0 and

setting σ2
S so that η= σ̃2

UA
, implying σUA

(θ)= σ̃UA
.

For σ̃UA
>

σQσT√
σ2
Q+σ2

T

, take σ2
S → 0, which implies η → σ2

Qσ2
T

σ2
Q+σ2

T

; and set σ2
B = σ̃2

UA
− η

to get σUA
(θ) = σ̃UA

. Plugging η → σ2
Qσ2

T

σ2
Q+σ2

T

into the identity σUP
(θ) = η/σUA

(θ) =
η/σ̃UA

then gives σUP
→ σ2

Qσ2
T

σ2
Q+σ2

T

1
σ̃UA

. Q.E.D.

PROOF OF LEMMA 3: Step 1. Fixing k, let us start by deriving the “upper-right fron-
tier” of (τ� ζ), the pairs that maximize pτ+(1−p)ζ for some p ∈ [0�1]. One maximizes
pτ + (1 −p)ζ by selecting the k applicants with the highest values of pT + (1 −p)Z.
(For p ∈ (0�1), these are exactly the applicants above a downward sloping line in
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(T�UA)-space—accepting such applicants induces a normal CDF acceptance rate.) In
the population, T and Z are independently normally distributed with means of 0, and
respective variances of σ2

Q + σ2
T and 1. Therefore, pT + (1 − p)Z has mean 0 and

variance σ2
comb, for σcomb ≡

√
p2(σ2

Q + σ2
T )+ (1 −p)2. The applicants with the k highest

values of pT + (1 − p)Z are those with pT+(1−p)Z

σcomb
≥ r∗, for r∗ satisfying �(r∗) = 1 − k.

I seek to calculate the expected value of T and of Z conditional on pT+(1−p)Z

σcomb
≥ r∗.

We have the following joint normal distribution among the three random variables T ,
Z, and pT+(1−p)Z

σcomb
:

⎡
⎢⎣

T
Z

pT + (1 −p)Z

σcomb

⎤
⎥⎦∼N

⎛
⎜⎜⎜⎜⎜⎜⎝
⎡
⎣0

0
0

⎤
⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
Q + σ2

T 0
p

σcomb

(
σ2

Q + σ2
T

)
0 1

1 −p

σcomb

p

σcomb

(
σ2

Q + σ2
T

) 1 −p

σcomb
1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
�

As in expression (47) of Appendix G.1, we can calculate conditional means of T and Z
conditional on any realization pT+(1−p)Z

σcomb
= r:

E

[
T
∣∣∣pT + (1 −p)Z

σcomb
= r

]
= p

(
σ2

Q + σ2
T

)
σcomb

r�

E

[
Z
∣∣∣pT + (1 −p)Z

σcomb
= r

]
= 1 −p

σcomb
r�

This holds for every realization r. Therefore, for every r,

E

[
T
∣∣∣pT + (1 −p)Z

σcomb
≥ r

]
= p

(
σ2

Q + σ2
T

)
σcomb

E

[
pT + (1 −p)Z

σcomb

∣∣∣pT + (1 −p)Z

σcomb
≥ r

]
�

E

[
Z
∣∣∣pT + (1 −p)Z

σcomb
≥ r

]
= 1 −p

σcomb
E

[
pT + (1 −p)Z

σcomb

∣∣∣pT + (1 −p)Z

σcomb
≥ r

]
�

And given that pT+(1−p)Z

σcomb
follows a standard normal, the truncated mean E[pT+(1−p)Z

σcomb
|

pT+(1−p)Z

σcomb
≥ r] is equal to φ(r)

1−�(r)
. Evaluating the above expressions at r = r∗:

τ = E

[
T
∣∣∣pT + (1 −p)Z

σcomb
≥ r∗

]
= p

(
σ2

Q + σ2
T

)
σcomb

φ
(
r∗)

1 −�
(
r∗)

= p
(
σ2

Q + σ2
T

)
√
p2
(
σ2

Q + σ2
T

)+ (1 −p)2
R(k)�

ζ = E

[
Z
∣∣∣pT + (1 −p)Z

σcomb
≥ r∗

]
= 1 −p

σcomb

φ
(
r∗)

1 −�
(
r∗) = 1 −p√

p2
(
σ2

Q + σ2
T

)+ (1 −p)2
R(k)�
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As p goes from 0 to 1, τ goes from 0 to RT =
√
σ2

Q + σ2
TR(k) and ζ goes from RZ =

R(k) to 0. For any p ∈ [0�1],
τ2

R2
T

+ ζ2

R2
Z

= 1
σ2

Q + σ2
T

p2
(
σ2

Q + σ2
T

)2

p2
(
σ2

Q + σ2
T

)+ (1 −p)2 + (1 −p)2

p2
(
σ2

Q + σ2
T

)+ (1 −p)2

= p2
(
σ2

Q + σ2
T

)+ (1 −p)2

p2
(
σ2

Q + σ2
T

)+ (1 −p)2 = 1�

So we see that varying p ∈ [0�1] traces out the upper-right boundary of the ellipse W .
Step 2. We can proceed similarly to show that we trace out the entire boundary of the

ellipse as we maximize the four combinations of ±pτ± (1 −p)ζ for p ∈ [0�1]. In other
words, every (τ� ζ) that is a boundary point of W is achieved by some set of k applicants.
Moreover, no set of k applicants achieves a pair (τ� ζ) that is outside the boundaries of
this ellipse, the interior of which is convex—otherwise this point would yield a higher
value of an appropriately signed ±pτ ± (1 −p)ζ than any value on the boundary.

Step 3. Finally, the set of achievable (τ� ζ) across applicant pools is convex: choosing a
convex combination of applicants from the two pools yields the same convex combina-
tion of the average test score and average z-score (τ� ζ). So all points in the interior of
W are achievable as well. Q.E.D.

PROOF OF PROPOSITION 5: I will show this result as an application of the one-
dimensional delegation results in Amador, Bagwell, and Frankel (2018), an extension
of Amador and Bagwell (2013). Specifically, Lemma 2 of Amador, Bagwell, and Frankel
(2018) provides sufficiency conditions for the optimality of an action ceiling. As a delega-
tion problem in the framework of those two papers, let the “state” σUA

(θ) be distributed
according to H, let ζ ∈ [0�RZ] be the contractible “action,” and let the level of joint
“money burning” be δ ∈ R+.47 Those papers take a contract to be an arbitrary set of al-
lowed actions ζ and an arbitrary function from allowed actions to nonnegative money
burning; in my problem, money burning is restricted, bounded at δ ≤ 2τ̄(ζ) under ac-
tion ζ. However, under the conditions of Lemma 2 in Amador, Bagwell, and Frankel
(2018), money burning will be identically zero in the optimal delegation contract; any
upper bound on money burning will therefore not be binding.48

Following the notation of those other papers, the agent’s payoff over the state and
action, prior to money burning, can be written as

σUA
(θ) · ζ + b(ζ) for b(ζ) ≡ σ2

Q

σ2
Q + σ2

T

RT ·
√

1 − ζ2

R2
Z

� (49)

47The notation of Amador and Bagwell (2013) and Amador, Bagwell, and Frankel (2018) has state γ dis-
tributed according to cdf F , with pdf f ; action π; and money burning t. They used πf (γ) for the function
describing the agent’s ideal action, what I will call ζf (σUA

(θ)); and the latter paper used π∗ for the principal’s
ex ante optimal action, what I will call ζ∗. I follow these papers in using b(·) as the component of the agent’s
payoff function that depends on the action, despite my previous use of b as the bias realization for a given
applicant; there should be no confusion between the two distinct terms.

48A delegation contract takes a delegation set of allowed actions and a money burning function as direct
objects of choice, whereas these are induced objects—expectations over a selected applicant pool—in the
problem of the current paper. Hence, even if a delegation contract satisfies the necessary condition of δ ≤
2τ̄(ζ) at each ζ, I still need to show how to find a contract in my setting that implements this delegation
outcome.
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The principal’s payoff prior to money burning can be written as w(σUA
(θ)� ζ), with

w(σ̃UA
� ζ)≡ σ̂UP

(σ̃UA
) · ζ + b(ζ)� (50)

Money burning of δ reduces both payoffs by that same amount. These payoffs are not just
of the general form considered in Amador and Bagwell (2013), but of the form in Equa-
tion (6) of Amador, Bagwell, and Frankel (2018): w(σUA

(θ)� ζ) =A[b(ζ)+B(σUA
(θ))+

C(σUA
(θ))ζ] for A = 1, B(σUA

(θ)) = 0, and C(σUA
(θ)) = σ̂UP

(σUA
(θ)).

Denote the agent’s interim optimal action at state σUA
(θ)—her “flexible” action—as

ζf (σUA
(θ)). Taking the first-order condition of (49),

ζf
(
σUA

(θ)
)= σUA

(θ)RZ√√√√σUA
(θ)2 + σ4

Q(
σ2

Q + σ2
T

)2

R2
T

R2
Z

� (51)

Denote the principal’s ex ante optimal action by ζ∗, the arg max over ζ of the expecta-
tion of (50):

ζ∗ = arg max
ζ∈[0�RZ ]

EσUA
(θ)∼H

[
σ̂UP

(
σUA

(θ)
)]
ζ + b(ζ)� (52)

Because σ̂UP
(σUA

(θ)) ∈ (0�σUA
(θ)), and because the proposition assumes that σUA

(θ)
has bounded support, it holds that EσUA

(θ)∼H[σ̂UP
(σUA

(θ))] is finite and strictly positive.
Moreover, the derivative of b(ζ) is 0 as ζ → 0 and minus infinity as ζ → RZ . Therefore, ζ∗

is interior, contained in (0�RZ); we have now verified Assumption 2 of Amador, Bagwell,
and Frankel (2018).

We can now verify the regularity conditions of Assumption 1 of Amador, Bagwell, and
Frankel (2018). Going through the list, (i) w is continuous; (ii) w(σ̃UA

� ·) is concave and
twice differentiable for every σ̃UA

; (iii) b(·) is strictly concave and twice differentiable;
(iv) ζf (·) is twice differentiable and strictly increasing; and (v) the function wζ , the deriva-
tive of w with respect to ζ, is continuous.

Next, let us evaluate wζ at the agent’s ideal point from (51). Putting together
wζ(σ̃UA

� ζ) = σ̂UP
(σ̃UA

) + b′(ζ) with the fact that the agent’s ideal point ζf (σUA
(θ)) is

derived from the first-order condition b′(ζf (σ̃UA
))= −σ̃UA

, it holds that

wζ

(
σ̃UA

� ζf (σ̃UA
)
)= σ̂UP

(σ̃UA
)− σ̃UA

� (53)

From (53) combined with σ̂UP
(σ̃UA

) ∈ (0� σ̃UA
), we see that wζ(σ̃UA

� ζf (σ̃UA
)) is strictly

negative at each σ̃UA
> 0, and is equal to zero in the limit as σ̃UA

→ 0 (if this limit is in
the support of H); in economic terms, the agent’s bias is always towards higher ζ. There-
fore, wζ(σ̃UA

� ζf (σ̃UA
)) satisfies the sign restrictions of Lemma 2 of Amador, Bagwell, and

Frankel (2018) for σ̃UA
at the lower and upper bounds of the support.

To apply that Lemma 2, it remains only to check condition (Gc1) of Amador, Bagwell,
and Frankel (2018). The parameter κ appearing in (Gc1) is equal to 1 because—as men-
tioned above—the payoffs are of the form in Equation (6) of that paper, with A = 1.
Plugging in κ = 1 and wζ(σ̃UA

� ζf (σ̃UA
)) = σ̂UP

(σ̃UA
) − σ̃UA

, condition (Gc1) states that
H(σ̃UA

)+ (σ̃UA
− σ̂UP

(σ̃UA
))h(σ̃UA

) is nondecreasing over σ̃UA
in the support of H. This

condition is exactly what is assumed in the statement of the proposition.
We have now confirmed all of the hypotheses of Lemma 2 of that paper. We can there-

fore conclude that in the delegation problem with money burning allowed, the optimal
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delegation set is of the form of a ceiling on ζ—possibly everywhere binding, implying a
one-point delegation set of ζ = ζ∗—with money burning δ identically equal to 0.

Finally, as discussed in the body of the paper and illustrated in Figure 5, a ceiling on ζ
and no money burning corresponds to an applicant selection contract that takes the form
of a floor on the average test score τ. Furthermore, as in Section 3.3, each average test
score that the agent may choose is equivalent to a normal CDF acceptance rate function,
with higher test scores mapping to steeper normal CDFs. Q.E.D.

PROOF OF PROPOSITION 6: Follows immediately from Proposition 11, below. Q.E.D.

PROPOSITION 11: Under the normal specification, suppose that supσ̃UA
∈SuppH σ̂UP

(σ̃UA
) ≤

infσ̃UA
∈SuppH σ̃UA

. Then the optimal contract takes the same form as in Proposition 5. Under
either implementation of the optimal contract, the agent will choose applicants so that the
floor constraint (γT ≥ � or τ ≥ κ) binds with equality.

PROOF OF PROPOSITION 11: Step 1. Take σ̃ l
UA

< σ̃h
UA

, and take points (τl� ζl) and
(τh� ζh) in W . Suppose an agent with σUA

(θ) = σ̃ l
UA

weakly prefers (τl� ζl) to (τh� ζh),
and an agent with σUA

(θ) = σ̃h
UA

weakly prefers (τh� ζh) to (τl� ζl). I claim that if
σ̂UP

(σ̃UA
) ≤ σ̃ l

UA
, then, conditional on σUA

(θ) = σ̃UA
, the principal weakly prefers (τl� ζl)

to (τh� ζh).
This claim follows as a straightforward single-crossing argument from (26) and (27).

From the two preference orderings, it must be that τl ≥ τh and ζl ≤ ζh. Now, writing out
the agent’s choice given σUA

(θ) = σ̃ l
UA

, it holds that

σ2
Q

σ2
Q + σ2

T

· τl + σ̃ l
UA

· ζl ≥ σ2
Q

σ2
Q + σ2

T

· τh + σ̃ l
UA

· ζh�

Because ζl ≤ ζh, the same inequality holds when σ̃ l
UA

is replaced by σ̂UP
(σ̃UA

)≤ σ̃ l
UA

.
Step 2. By the claim in Step 1, under any contract, the principal prefers the (τ� ζ) pair

chosen by the agent with σUA
(θ) equal to the minimum of the support of H to that chosen

by any other agent type. So the contract is weakly improved by one which requires the
agent to always choose that value (τ� ζ). This new contract, in turn, can be improved by
one that specifies that the agent always chooses the principal’s ex ante preferred (τ� ζ):
the value on the payoff frontier which maximizes

σ2
Q

σ2
Q + σ2

T

· τ +Eσ̃UA
∼H

[
σ̂UP

(σ̃UA
)
] · ζ�

This can be implemented by setting an appropriately chosen binding floor on the average
test score, or a binding floor on the steepness of a normal CDF acceptance rate function.

Q.E.D.

PROOF OF LEMMA 4: It is sufficient to confirm that σ̂UP
(σ̃UA

) is differentiable over
the support when the bias is commonly known (and is therefore continuous), and that
σ̂ ′

UP
(σ̃UA

) ≤ 2. In that case, Lemma 7 below implies the result: for σ̂UP
differentiable,

condition (iii) of Lemma 7 amounts to σ̂ ′
UP
(σ̃UA

)≤ 2.
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From (15) and (18),

σ̂UP
(σ̃UA

) = σ̃2
UA

− σ2
B

σ̃UA

= σ̃UA
− σ2

B

σ̃UA

�

Taking the derivative, σ̂ ′
UP
(σ̃UA

)= 1 + σ2
B

σ̃2
UA

. To show that σ̂ ′
UP
(σ̃UA

)≤ 2, it suffices to show

that σ̃2
UA

> σ2
B; and this follows directly from (15), which states that, for any agent type

θ = (σ2
S �σ

2
B), it holds that σ2

UA
(θ) = η+ σ2

B, with η> 0. Q.E.D.

LEMMA 7: Suppose that (i) the distribution H has pdf h, (ii) h(σ̃UA
) is nondecreasing in

σ̃UA
over the support of the distribution, and (iii) (2σ̃UA

− σ̂UP
(σ̃UA

)) is nondecreasing in
σ̃UA

. Then H(σ̃UA
)+ (σ̃UA

− σ̂UP
(σ̃UA

))h(σ̃UA
) is nondecreasing in σ̃UA

.

PROOF OF LEMMA 7: Let �(σ̃UA
) ≡ σ̃UA

− σ̂UP
(σ̃UA

). It holds that �(σ̃UA
) > 0. As-

sumption (iii), that 2σ̃UA
− σ̂UP

(σ̃UA
) is nondecreasing, can be equivalently stated as

�(σ̄)+ σ̄ ≥ �(σ)+σ for any σ̄ > σ in the support of σ̃UA
. In other words, (iii) is equiva-

lent to (iii′):

�(σ̄)−�(σ)≥ σ − σ̄ for any σ̄ > σ� (iii′)

I seek to prove that for any σ̄ > σ ,(
H(σ̄)+�(σ̄)h(σ̄)

)− (H(σ)+�(σ)h(σ)
)≥ 0�

Rewriting the LHS,(
H(σ̄)+�(σ̄)h(σ̄)

)− (H(σ)+�(σ)h(σ)
)

=H(σ̄)−H(σ)+�(σ̄)h(σ̄)−�(σ)h(σ)+ [�(σ̄)h(σ)−�(σ̄)h(σ)
]

= [�(σ̄)(h(σ̄)− h(σ)
)]+ [H(σ̄)−H(σ)

]+ [h(σ)(�(σ̄)−�(σ)
]

≥ [�(σ̄)(h(σ̄)− h(σ)
)]+ [h(σ)(σ̄ − σ)

]+ [h(σ)(�(σ̄)−�(σ)
)]

by (ii)

≥ [�(σ̄)(h(σ̄)− h(σ)
)]+ [h(σ)(σ̄ − σ)

]+ [h(σ)(σ − σ̄)
]

by (iii′)

= �(σ̄)
(
h(σ̄)− h(σ)

)≥ 0 by (ii)� Q.E.D.

G.3. Additional Appendix Proofs

PROOF OF PROPOSITION 7: Restating (11) and (12),⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ∗
T = σ2

Q

√
η+ σ2

B

η
(
σ2

Q + σ2
T

) �
γ∗
T

√
σ2

Q + σ2
T = σ2

Q

√
η+ σ2

B

η
√
σ2

Q + σ2
T

�

for η= σ4
Qσ

4
T(

σ2
Q + σ2

T

)(
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

) �
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1. The parameter k does not appear in the formula for γ∗
T .

2. Taking γ∗
T = σ2

Q

√
η+σ2

B

η(σ2
Q+σ2

T )
as a function of σ2

Q, σ2
B, σ2

T , and η, we can write dγ∗
T

dσ2
T

as ∂γ∗
T

∂σ2
T

+
∂γ∗

T

∂η

dη

dσ2
T

. It is easy to confirm by routine differentiation that ∂γ∗
T

∂σ2
T

< 0, ∂γ∗
T

∂η
< 0, and

dη

dσ2
T

> 0. Therefore, dγ∗
T

dσ2
T

< 0.

Taking γ∗
T

√
σ2

Q + σ2
T = σ2

Q

√
η+σ2

B

η
√
σ2
Q+σ2

T

as a function of σ2
Q, σ2

B, σ2
T , and η, we can write

d(γ∗
T

√
σ2
Q+σ2

T )

dσ2
T

as
∂(γ∗

T

√
σ2
Q+σ2

T )

∂σ2
T

+ ∂(γ∗
T

√
σ2
Q+σ2

T )

∂η

dη

dσ2
T

. Once again,
∂(γ∗

T

√
σ2
Q+σ2

T )

∂σ2
T

< 0,
∂(γ∗

T

√
σ2
Q+σ2

T )

∂η
<

0, and ∂η

∂σ2
T

> 0. Therefore,
d(γ∗

T

√
σ2
Q+σ2

T )

dσ2
T

< 0.
Taking limits,

lim
σ2
T →0

γ∗
T = lim

σ2
T →0

γ∗
T

√
σ2

Q + σ2
T = ∞� because lim

σ2
T →0

η= 0�

lim
σ2
T →∞

γ∗
T = lim

σ2
T →∞

γ∗
T

√
σ2

Q + σ2
T = 0� because lim

σ2
T →∞

η = σ4
Q

σ2
Q + σ2

S

�

3. Numerical examples (not shown) verify that, depending on parameters, both γ∗
T and

γ∗
T

√
σ2

Q + σ2
T can either be locally increasing or decreasing in σ2

Q.

It is easy to verify that limσ2
Q→0

σ2
T σ

2
Q

σB
γ∗
T → 1. Therefore, limσ2

Q→0 γ
∗
T = limσ2

Q→0 γ
∗
T ×√

σ2
Q + σ2

T = ∞. Taking σ2
Q → ∞, we get limσ2

Q→∞ η = σ4
T

σ2
T +σ2

S

and so

lim
σ2
Q→∞

γ∗
T =

(
σ2

T + σ2
S

)√ σ4
T

σ2
T + σ2

S

+ σ2
B

σ4
T

�

lim
σ2
Q→∞

γ∗
T

√
σ2

Q + σ2
T = ∞�

Q.E.D.

PROOF OF PROPOSITION 8: Restating (11) and (32),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γFD
T = σ2

Q(
σ2

Q + σ2
T

)√
σ2

B +η
�

γFD
T

√
σ2

Q + σ2
T = σ2

Q√
σ2

Q + σ2
T

√
σ2

B +η
�

for η = σ4
Qσ

4
T(

σ2
Q + σ2

T

)(
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

) �
1. The parameter σ2

S appears only in γFD
T through η. Routine differentiation shows that

dγFD
T

dη
< 0 and dη

dσ2
S

< 0, and so by the chain rule, dγFD
T

dσ2
S

> 0.
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Taking limits,

lim
σ2
S→0

γFD
T = σ2

Q

(
σ2

Q + σ2
T

)√√√√ σ2
Qσ

2
T

σ2
Q + σ2

T

+ σ2
B

� because lim
σ2
S→0

η = σ2
Qσ

2
T

σ2
Q + σ2

T

�

lim
σ2
S→∞

γFD
T = σ2

Q

σB

(
σ2

Q + σ2
T

) � because lim
σ2
S→∞

η = 0�

From the proof of Proposition 4, limσ2
S→0 γ

∗
T = 1

σ2
T

√
σ2
Qσ2

T

σ2
Q+σ2

T

+ σ2
B. On the other hand,

limσ2
S→0 γ

FD
T can be written as

lim
σ2
S→0

γFD
T = σ2

Q

σ2
Q + σ2

T

(
σ2

B + σ2
Qσ

2
T

σ2
Q + σ2

T

)
√√√√ σ2

Qσ
2
T

σ2
Q + σ2

T

+ σ2
B�

Observing that
σ2
Q

σ2
Q+σ2

T (σ
2
B+

σ2
Q
σ2
T

σ2
Q

+σ2
T

)

= 1

σ2
T + σ2

B
σ2
Q

(σ2
Q+σ2

T )

< 1
σ2
T

, we see that γFD
T < γ∗

T .

2. The value η remains constant as we vary σ2
B. Taking the derivative of γFD

T with respect
to σ2

B gives

− σ2
Q

2
(
σ2

Q + σ2
T

)(
η+ σ2

B

) 3
2

< 0�

Taking limits,

lim
σ2
B→0

γ∗
FD = σ2

Q(
σ2

Q + σ2
T

)√
η
�

lim
σ2
B→∞

γFD
T = 0�

From the proof of Proposition 4, we see that limσ2
B→0 γ

∗
FD = limσ2

B→0 γ
∗
T .

3. The parameter k does not appear in the formula for γFD
T .

4. Taking γFD
T = σ2

Q

(σ2
Q+σ2

T )
√

σ2
B+η

as a function of σ2
Q, σ2

B, σ2
T , and η, we can write dγFD

T

dσ2
T

as

∂γFD
T

∂σ2
T

+ ∂γFD
T

∂η

dη

dσ2
T

. It is easy to confirm that ∂γFD
T

∂σ2
T

< 0, ∂γFD
T

∂η
< 0, and dη

dσ2
T

> 0. Therefore,
dγFD

T

dσ2
T

< 0.

Taking γFD
T

√
σ2

Q + σ2
T = σ2

Q√
σ2
Q+σ2

T

√
σ2
B+η

as a function of σ2
Q, σ2

B, σ2
T , and η, we can

write
d(γFD

T

√
σ2
Q+σ2

T )

dσ2
T

as
∂(γFD

T

√
σ2
Q+σ2

T )

∂σ2
T

+ ∂(γFD
T

√
σ2
Q+σ2

T )

∂η

dη

dσ2
T

. Once again,
∂(γFD

T

√
σ2
Q+σ2

T )

∂σ2
T

< 0,
∂(γFD

T

√
σ2
Q+σ2

T )

∂η
< 0, and ∂η

∂σ2
T

> 0. Therefore,
d(γFD

T

√
σ2
Q+σ2

T )

dσ2
T

< 0.
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Taking limits,

lim
σ2
T →0

γFD
T = 1

σB

� because lim
σ2
T →0

η = 0�

lim
σ2
T →∞

γFD
T = 0� because lim

σ2
T →∞

η = σ4
Q

σ2
Q + σ2

S

�

lim
σ2
T →0

γFD
T

√
σ2

Q + σ2
T = σQ

σB

� because lim
σ2
T →0

η = 0�

lim
σ2
T →∞

γFD
T

√
σ2

Q + σ2
T = 0� because lim

σ2
T →∞

η = σ4
Q

σ2
Q + σ2

S

�

5. Taking γFD
T = σ2

Q

(σ2
Q+σ2

T )
√

σ2
B+η

as a function of σ2
Q, σ2

B, σ2
T , and η, we can write dγFD

T

dσ2
Q

as

dγFD
T

dσ2
Q

= ∂γFD
Q

∂σ2
Q

+ ∂γFD
T

∂η
· dη

dσ2
Q

= σ2
T(

σ2
Q + σ2

T

)2
√
σ2

B +η

− σ2
Q

2
(
σ2

Q + σ2
T

)(
σ2

B +η
) 3

2

· σ2
Qσ

6
T

(
2σ2

Qσ
2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T

)
(
σ2

Q + σ2
T

)2(
σ2

Qσ
2
S + σ2

Qσ
2
T + σ2

Sσ
2
T

)
= σ2

T(
σ2

Q + σ2
T

)2
√
σ2

B +η

− σ2
Q

2
(
σ2

Q + σ2
T

)(
σ2

B +η
) 3

2

· ησ2
T

(
2σ2

Qσ
2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T

)
σ2

Q

(
σ2

Q + σ2
T

)(
σ2

Qσ
2
S + σ2

Qσ
2
T + σ2

Sσ
2
T

)

= σ2
T(

σ2
Qσ

2
T

)2(
σ2

B +η
) 3

2

(
σ2

B +η−η · 2σ2
Qσ

2
S + σ2

Qσ
2
T + 2σ2

Sσ
2
T

2
(
σ2

Qσ
2
S + σ2

Qσ
2
T + σ2

Sσ
2
T

))> 0�

And without doing more algebra, if γFD
T is positive and increasing in σ2

Q, and if√
σ2

Q + σ2
T is positive and increasing in σ2

Q, then clearly their product γFD
T

√
σ2

Q + σ2
T

is increasing in σ2
Q.

Taking limits, as σ2
Q → 0 it is easy to see from the above formulas that

limσ2
Q→0 γ

FD
T = limσ2

Q→0 γ
FD
T

√
σ2

Q + σ2
T = 0. As σ2

Q → ∞, we have η → σ4
T

σ2
T +σ2

S

and
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so

lim
σ2
Q→∞

γFD
T = 1√

σ2
B + σ4

T

σ2
T + σ2

S

�

lim
σ2
Q→∞

γFD
T

√
σ2

Q + σ2
T = ∞�

We can rewrite limσ2
Q→∞ γFD

T as
(σ2

Q+σ2
T )

√
σ2
B+ σ4

T
σ2
T

+σ2
S

σ4
T +σ2

B(σ
2
T +σ2

S )
, which is less than limσ2

Q→∞ γ∗
T =

(σ2
T +σ2

S )

√
σ2
B+ σ4

T
σ2
T

+σ2
S

σ4
T

from the proof of Proposition 4 part 3. Q.E.D.

PROOF OF PROPOSITION 9: Follows from arguments in the text. Q.E.D.

PROOF OF PROPOSITION 10: Given the notation that has been introduced, all of the
arguments follow exactly as in Section 4 and Proposition 5. Q.E.D.

PROOF OF LEMMA 5: 1. The optimal period-2 contract under common knowledge
of the agent’s type sets the average test score to some value κ∗. I first show how to
derive κ∗ in terms of the period-1 outcome.

As a preliminary step, recall that in the notation of Section 4.2, conditional on
any agent type, the payoffs from any set of accepted applicants are determined by
the average test score τ and the average z-score ζ. Since the agent accepts k ap-
plicants, and applicant test scores have an unconditional distribution that is nor-
mal with mean 0 and variance σ2

Q + σ2
T , the range of possible τ is [−RT�RT ], for

RT =
√
σ2

Q + σ2
TR(k), as in (22) and (24). Now let ζ̄(τ) be the highest possible ζ at

an average test score τ, from Lemma 3, plugging in RT and RZ in terms of R(k):

ζ̄(τ)≡
√
R(k)2 − τ2(

σ2
Q + σ2

T

) �
Now suppose that the agent is given full discretion to hire her favorite set of ap-

plicants in period 1 and she acts myopically. The average test score τ1 ∈ [−RT�RT ]
is observable to the principal. The average z-score is not directly observable, but the
principal can infer that—since the agent’s payoff increases in ζ—the average z-score
must have been the highest possible level consistent with τ1, that is, ζ1 = ζ̄(τ1).

If the principal knows the agent type θ, and therefore the induced quantity σUP
(θ),

then the principal’s preferences over (τ� ζ) are given by (21). The principal’s optimal
contract specifies that τ2 = κ∗, where κ∗ is the τ component of the pair (τ� ζ) that
optimizes (21). Hence, κ∗ solves

κ∗ = arg max
τ

σ2
Q

σ2
Q + σ2

T

τ + σUP
(θ)ζ̄(τ)
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⇒ 0 = σ2
Q

σ2
Q + σ2

T

+ σUP
(θ)ζ̄ ′(κ∗) (54)

⇒ κ∗ =
R(k)σ2

Q

√
σ2

Q + σ2
T√

σ2
Q + σ2

UP
(θ)

�

Of course, σUP
(θ) depends on the agent’s type, which the principal is trying to

learn from the data.49 But the principal knows his payoff from the first-period
choices—this is exactly the average quality level ξ1. So the principal can plug τ1

and ξ1 into (21) (with VP = ξ1 and ζ = ζ̄(τ1)) to infer σUP
(θ):

ξ1 = σ2
Q

σ2
Q + σ2

T

τ1 + σUP
(θ)ζ̄(τ1)

⇒ σUP
(θ) = ξ1

(
σ2

Q + σ2
T

)− σ2
Qτ1√(

σ2
Q + σ2

T

)((
σ2

Q + σ2
T

)
R(k)2 − τ2

1

) �
(55)

Now plug this value of σUP
(θ) into (54) to get (43), that is,

κ∗ =
R(k)σ2

Q

√
σ2

Q + σ2
T√√√√σ2

Q +
(
ξ1

(
σ2

Q + σ2
T

)− σ2
Qτ1

)2(
σ2

Q + σ2
T

)((
σ2

Q + σ2
T

)
R(k)2 − τ2

1

)
�

The optimal contract in the second period lets the agent accept any k applicants she
wants, subject to requiring the period-2 average test score to be κ∗ in (43).50

2. Now consider the comparative statics on κ∗ with respect to τ1 and ξ1.

We know that τ1 can be any value in [0�RT ], with RT =
√
σ2

Q + σ2
T ·R(k) for R(k)

in (22). Let us bound the range of ξ1 consistent with an observed τ1.

The principal’s payoff in the first period, ξ1, is equal to
σ2
Q

σ2
Q+σ2

T

τ1 + σUP
(θ)ζ̄(τ1)

from (21). And σUP
(θ) must be in the range (0�σUA

(θ)) from Lemma 2 part 3.51 So,
given τ1,

σ2
Q

σ2
Q + σ2

T

τ1 < ξ1 <
σ2

Q

σ2
Q + σ2

T

τ1 + σUA
(θ)ζ̄(τ1)�

Moreover, σUA
(θ) can be inferred from τ1: the model predicts that the agent has

chosen τ1 to maximize (20) over τ, with ζ = ζ̄(τ). Taking the first-order condition

49Note that one could also solve for the optimal contract even if the observable parameters (k, σ2
Q , σ2

T ) were
to change from period 1 to 2. But one would no longer plug in the period-1 value of σUP

(θ) into the period-2
payoff expression, since σUP

(θ) depends on σ2
T and σ2

Q.
50One could also solve for the optimal contract even if the observable parameters (k, σ2

Q , σ2
T ) were to change

from period 1 to 2. But one would not simply plug in the period-1 value of σUP
(θ) from (55) into the period-2

expression (54). The value of σUP
(θ) depends on σ2

T and σ2
Q , which might change from period to period.

51The upper bound here need not be tight, depending on parameters.
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and solving for σUA
(θ) gives

σUA
(θ) = σ2

Q

τ1

√
R(k)2 − τ2

1

σ2
Q + σ2

T

�

Plugging this value of σUA
(θ) along with ζ̄(τ1) into the above sequence of inequali-

ties, we get (after some simplification)

σ2
Q

σ2
Q + σ2

T

τ1 < ξ1 <
σ2

QR(k)

τ1
� (56)

Now, return to the comparative statics of κ∗ given by (43). The value κ∗ moves in

the opposite direction as the fraction
(ξ1(σ

2
Q+σ2

T )−σ2
Qτ1)

2

(σ2
Q+σ2

T )((σ
2
Q+σ2

T )R(k)
2−τ2

1)
as we vary ξ1 or τ1. And

it is immediate that the fraction is increasing in ξ1 as long as ξ1(σ
2
Q +σ2

T )−σ2
Qτ1 > 0,

which holds by the left inequality of (56). Next, differentiating, it is straightforward
to show that the sign of the derivative of the fraction with respect to τ1 is equal to
the sign of (ξ1(σ

2
Q + σ2

T ) − σ2
Qτ1)(τ1ξ1 − σ2

QR(k)
2). The first parenthetical term is

positive, as just described; the second parenthetical term is negative by the second
inequality in (56). So κ∗ decreases in ξ1 and increases in τ1. Q.E.D.

PROOF OF LEMMA 6: From the specified joint distributions of Q and T , it follows that
Var(Q) = σ2

Q, Var(T) = σ2
Q + σ2

T , and Cov(T�Q) = σ2
Q. It remains to calculate Var(UA),

Cov(T�UA), and Cov(Q�UA).
It will be helpful to note as well that Cov(S�Q) = σ2

Q, Cov(S�T) = σ2
Q, and Var(S) =

σ2
S + σ2

Q. The bias term B has variance σ2
B, and has 0 covariance with S, T , or Q.

From (7),

UA = E[Q|T�S] +B =
T

σ2
T

+ S

σ2
S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

+B�

Cov(q� ũA) is given by

Cov(Q�UA)=
Cov(Q�T)

σ2
T

+ Cov(Q�S)

σ2
S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

=
σ2

Q

σ2
T

+ σ2
Q

σ2
S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

= σ4
Q

(
σ2

S + σ2
T

)
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

�

Cov(T�UA) is given by

Cov(T�UA) =
Var(T)
σ2

T

+ Cov(T�S)
σ2

S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

=
σ2

Q + σ2
T

σ2
T

+ σ2
Q

σ2
S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

= σ2
Q

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

= σ2
Q�
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And finally, Var(UA) is given by

Var(UA)=
Var(T)
σ4

T

+ Var(S)
σ4

S

+ 2
Cov(T�S)

σ2
Tσ

2
S(

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

)2 + σ2
B =

σ2
Q + σ2

T

σ4
T

+ σ2
Q + σ2

S

σ4
S

+ 2
σ2

Q

σ2
Tσ

2
S(

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

)2 + σ2
B

= σ2
Q

(
1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

)(
1
σ2

T

+ 1
σ2

S

)
(

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

)2 + σ2
B = σ2

Q

1
σ2

T

+ 1
σ2

S

1
σ2

Q

+ 1
σ2

T

+ 1
σ2

S

+ σ2
B

= σ4
Q

(
σ2

S + σ2
T

)
σ2

Qσ
2
T + σ2

Qσ
2
S + σ2

Tσ
2
S

+ σ2
B� Q.E.D.
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