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APPENDIX A

A.1. Mathematical Proofs

A.1.1. Increasing Trade-Cost Elasticity

WE DEMONSTRATE THAT PROPOSITION 1 HOLDS true for arbitrary constant-returns-to-
scale production technologies. With that in mind, let the sequential cost function associ-
ated with a path of production �= {�(1)� �(2)� � � � � �(N)} be defined by

pn
�(n)(�)= gn

�(n)

(
c�(n)�p

n−1
�(n−1)(�)τ�(n−1)�(n)

)
for all n ∈N � (A.1)

where the stage- and country-specific cost functions gn
�(n) in equation (A.1) are assumed

to feature constant returns to scale and diminishing marginal products. The cost of the
first stage depends only on the local composite factor, so constant returns to scale implies
p1

�(1)(�)= g1
�(1)(c�(1)) for all paths �, with the function g1

�(1) necessarily being linear in c�(1).
Define p̃n−1

�(n)(�)= pn−1
�(n−1)(�)τ�(n−1)�(n) to be the price paid in �(n) for the good finished up

to stage n− 1 in country �(n− 1), so that we can express the sequential unit cost function
as

pn
�(n)(�)= gn

�(n)

(
c�(n)� p̃

n−1
�(n)(�)

)
�

Define the elasticity of pF
j (�) with respect to the trade costs that stage-n’s production

faces as

βj
n = ∂ lnpF

j (�)

∂ lnτ�(n)�(n+1)
�

with the convention that �(N + 1) = j so that βj
N is the elasticity of pF

j (�) with respect
to the trade costs faced when shipping assembled goods to final consumers in j. Because
τ�(n)�(n+1) increases p̃n

�(n+1)(�) with a unit elasticity, the following recursion holds for all
n′ > n:

∂ lnpn′+1
�(n′+1)(�)

∂ lnτ�(n)�(n+1)
= ∂ lnpn′+1

�(n′+1)(�)

∂ ln p̃n′
�(n′+1)(�)

∂ lnpn′
�(n′)(�)

∂ lnτ�(n)�(n+1)
�

At the same time, the unit cost elasticity at stage n+ 1 satisfies

∂ lnpn+1
�(n+1)(�)

∂ lnτ�(n)�(n+1)
= ∂ lnpn+1

�(n+1)(�)

∂ ln p̃n
�(n+1)(�)

�
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Hence, the elasticity of finished-good prices can be decomposed as

βj
n =

N∏
n′=n+1

∂ lnpn′
�(n′)(�)

∂ ln p̃n′−1
�(n′)(�)

� (A.2)

invoking the convention
∏N

n′=N+1 f (n
′)= 1 for any function f (·). Constant returns to scale

in production implies that the function gn
�(n) is homogeneous of degree 1. As a result, the

elasticity of unit costs with respect to input prices is always less than or equal to 1, so for
all n > 1 we have

∂ lnpn
�(n)(�)

∂ ln p̃n−1
�(n)(�)

≤ 1�

with strict inequality whenever a stage adds value to the product. From equation (A.2), it
is then clear that

β1
j ≤ β2

j ≤ · · · ≤ βN
j = 1�

with strict inequality when value added is positive at all stages.

A.1.2. Fighting the Curse of Dimensionality: Dynamic and Linear Programming

When discussing the lead-firm problem in Section 2.2, we mentioned that there are
JN sequences that deliver distinct finished-good prices pF

j (�) in country j. Hence, solv-
ing for the optimal sequences �j for all j by brute force requires JN+1 computations and
is infeasible to do when J and N are sufficiently large. However, we show below that
use of dynamic programming surmounts this problem by reducing the computation of all
sequences to only J ×N × J computations. Furthermore, in the special case in which pro-
duction is Cobb–Douglas, the minimization problem can be modeled with zero-one linear
programming, for which very efficient algorithms exist.

A.1.3. Dynamic Programming

Define �jn ∈ J n as the optimal sequence for delivering the good completed up to stage
n to producers in country j. This term can be found recursively for all n = 1� � � � �N by
simply solving

�jn = arg min
k∈J

pn
k

(
�kn−1

)
τkj� (A.3)

since the optimal source of the good completed up to stage n is independent of the local
factor cost cj at stage n, of the specifics of the cost function gn

j , or of the future path of
the good. For this same reason, we have written the pricing function pn

k in terms of the
n−1-stage sequence �kn−1 since it does not depend on future stages of production (though
it should be clear that pn

k will also be a function of the production costs and technology
available for producers at that chosen location k). The convention at n = 1 is that there
is no input sequence so that �k0 = ∅ for all k ∈ J and the price depends only on the
composite factor cost: p1

k(∅)= g1
k(ck).

The formulation in (A.3) makes it clear that the optimal path to deliver the assembled
good to consumers in each country j, that is, �j = �

j
N , can be solved recursively by compar-

ing J numbers for each location j ∈ J at each stage n ∈ N , for a total of only J × N × J
computations.
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FIGURE A.1.—Dynamic programming—an example with four countries and three stages.

To further understand this dynamic programming approach, Figure A.1 illustrates a
case with three stages and four countries. Instead of computing JN = 64 paths for each
of the four locations of consumption, it suffices to determine the optimal source of (im-
mediately) upstream inputs (which entails J × J = 16 computations at stages n = 2 and
n = 3, and for consumption). In the example, the optimal production path to serve con-
sumers in A, B, and C is A → B → B, while the optimal path to serve consumers in D is
C → D→ D.

A.1.4. Linear Programming

In the special case in which production is Cobb–Douglas, the optimal sourcing sequence
can be written as a log-linear minimization problem:

�j = arg min
�∈JN

N−1∑
n=1

βn lnτ�(n)�(n+1) + lnτ�(N)j +
N∑
n=1

αnβn ln
(
an
�(n)c�(n)

)
�

This can in turn be reformulated as the following zero-one integer linear programming
problem:

�j = arg min
N−1∑
n=1

βn

∑
k∈J

∑
k′∈J

ζn
kk′

(
lnτkk′ + αna

n
kck

) +
∑
k∈J

ζN
k

(
lnτkj + αNa

N
k ck

)
s.t.

∑
k′∈J

ζn
k′k =

∑
k′∈J

ζn+1
kk′ �∀k ∈J � n = 1� � � � �N − 2

∑
k′∈J

ζN−1
k′k = ζN

k �∀k ∈J

∑
k∈J

ζN
k = 1;ζn

kk′� ζN
k ∈ {0�1}�

A.1.5. Proof of Proposition 3

If there is free trade or τ is constant across all country-pairs (including domestically),
then all countries source each variety from the same sequence of countries with π�j = π�
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for all j ∈ J . Analogously, price indices are the same in all markets so that Pj = P for all
j ∈J . The probability of sourcing a variety through a given sequence is thus

π� =

∏
n∈N

(
Tn
�(n)w

−γθ
�(n)

)1/N

∑
�′∈JN

∏
n∈N

(
Tn
�′(n)w

−γθ
�′(n)

)1/N �

We will now prove that wages are equalized across countries. Note that the total prob-
ability of any country being in a given stage n is the same regardless of the destination
country and equals

∑
i∈J

Pr
(
Λn

i

) =
∑
i∈J

∑
�∈Λn

i

∏
n′∈N

(
Tn′
�(n′)w

−γθ
�(n′)

)1/N

Θ
=

∑
i∈J

(
Tn
i w

−γθ
i

)1/N ×

∏
n′∈N\n

(
Tn′
�(n′)w

−γθ
�(n′)

)1/N

Θ
�

Now, suppose that wages are common across countries with wj = w for all j ∈ J . Since
the probability of any country being at a given stage n needs to equal 1, this implies that

∑
i∈J

(
Tn
i

)1/N ×

∏
n′∈N\n

(
Tn′
�(n′)

)1/N

wγθΘ
= 1 ⇒

∏
n′∈N\n

(
Tn′
�(n′)

)1/N

wγθΘ
= 1

JT
�

where the second line uses our assumption that the geometric mean of Tn
i across countries

is constant across stages of production. Let us now plug this into the right-hand side of
the general equilibrium equation together with our guess that wages are equalized across
countries:

wi =
∑
j∈J

∑
n∈N

1
N

× Pr
(
Λn

i � j
) ×w =

∑
n∈N

1
N

×

(
Tn
i

)1/N ×
∏

n′∈N\n

(
Tn′
�(n′)

)1/N

wγθΘ
× Jw

=
∑
n∈N

1
N

×
(
Tn
i

)1/N

JT
× Jw = 1

N
× NT

JT
× Jw =w�

where the third line uses the previous result and where the fourth line uses our assumption
that the geometric mean of Tn

i across stages of production is constant across countries.
Hence, guessing that wages are equalized across countries delivers a fixed point in those
wages. Since the equilibrium is unique, this is the only set of wages satisfying the general-
equilibrium equation.

To derive the share of goods produced in a domestic supply chain under free trade,
rewrite Θ as

Θ =
∏
n∈N

∑
i∈J

(
Tn
i

)1/N = (J × T)N =
(
J × 1

N

∑
n∈N

(
Tn
j

)1/N
)N

�
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for any j ∈J . Inserting this into the domestic expenditure share finalizes the proof

πj =
( GeometricMeann

[(
Tn
j

)1/N]
J × ArithmeticMeann

[(
Tn
j

)1/N])N

�

A.1.6. Proof of Proposition 4

If all countries are symmetric, wages are equalized and the domestic expenditure share
is

πj = 1∑
�′∈JN

∏
n∈N

(τ�(n)�(n+1))
−θβn

�

The denominator can be rewritten as∑
�(1)∈J

· · ·
∑

�(N)∈J

∏
n∈N

(τ�(n)�(n+1))
−θβn

=
∑

�(1)∈J

∑
�(2)∈J

(τ�(1)�(2))
−β1θ × · · · ×

∑
�(N)∈J

(τ�(N−1)�(N))
−θβN−1 × (τ�(N)j)

−θβN

=
∑

�(N)∈J

(
1 + (J − 1)τ−β1θ

) × (
1 + (J − 1)τ−β2θ

) × · · ·

× (
1 + (J − 1)τ−βN−1θ

) × (τ�(N)j)
−θβN

=
N∏
n=1

(
1 + (J − 1)τ−βnθ

)
�

Substituting this in the domestic share finishes the proof.

A.1.7. Proof of Proposition 5

Let (τij)−θ = ρiρj . In such a case, the probability of country j sourcing through � reduces
to

π�j =

N∏
m=1

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

∑
�∈J

N∏
m=1

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

and is thus independent of the destination country j. The aggregate probability of observ-
ing country i in location n can thus be expressed as

Pr
(
Λn

i

) =
∑
�∈Λn

i

π�j =

∑
�∈Λn

i

N∏
m=1

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

∑
k∈J

∑
�∈Λn

k

N∏
m=1

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

� (A.4)
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But note that we can decompose this as

Pr
(
Λn

i

) =

(
Ti(ci)

−θ
)αnβn

(ρi)
βn−1+βn ×

∑
�∈Λn

i

∏
m 	=n

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

∑
k∈J

(
Tk(ck)

−θ
)αnβn

(ρk)
βn−1+βn ×

∑
�∈Λn

k

∏
m 	=n

(
T�(m)(c�(m))

−θ
)αmβm

(ρ�(m))
βm−1+βm

(A.5)

=
(
Ti(ci)

−θ
)αnβn

(ρi)
βn−1+βn∑

k∈J

(
Tk(ck)

−θ
)αnβn

(ρk)
βn−1+βn

� (A.6)

where the second line follows from the fact that, for GVCs in the sets Λn
i and Λn

k, the set
of all possible paths excluding the location of stage n are necessarily identical (and inde-
pendent of the country where n takes place), and thus the second terms in the numerator
and denominator of the first line cancel out.

For the special symmetric case with αnβn = 1/N and αn = 1/n, we obtain that

Pr
(
Λn

i

) =
(
Ti(ci)

−θ
) 1
N (ρi)

2n−1
N∑

k∈J

(
Tk(ck)

−θ
) 1
N (ρk)

2n−1
N

�

Now consider our definition of upstreamness

U(i) =
N∑
n=1

(N − n+ 1)× Pr
(
Λn

i

)
N∑

n′=1

Pr
(
Λn′

i

) � (A.7)

This is equivalent to the expected distance from final-good demand at which a country
will contribute to global value chains. The expectation is defined over a country-specific
probability distribution over stages, fi(n)= Pr(Λn

i )/
∑N

n′=1 Pr(Λn′
i ).

Finally, note that for two countries with ρi′ > ρi and two inputs with n′ > n, we neces-
sarily have

fi′
(
n′)/fi′(n)

fi
(
n′)/fi(n) =

(
ρi′

ρi

)2(n′−n)/N

> 1�

As a result, the probability functions fi′(n) and fi(n) satisfy the monotone likelihood ra-
tio property in n. As is well known, this is a sufficient condition for fi′(n) to first-order
stochastically dominate fi(n) when ρi′ > ρi. But then it is immediate that Efi′ [n] > Efi [n],
and thus the expected value in (A.7), which is simply N + 1 − Efi [n], will be lower for
country i′ than for country i when ρi′ > ρi. This completes the proof of Proposition 5.

We can finally consider the case with a general path of αn, but common technology
Ti = T across countries. From equation (A.6), we have

Pr
(
Λn

i � j
) = (ci)

−θαnβn(ρi)
βn−1+βn∑

k∈J
(ck)

−θαnβn(ρk)
βn−1+βn

�



ON THE GEOGRAPHY OF GLOBAL VALUE CHAINS 7

We then have

Pr
(
Λn′

i

)
/Pr

(
Λn′

j

)
Pr

(
Λn

i

)
/Pr

(
Λn

j

) =
(
ci

cj

)−(αn′βn′ −αnβn)(ρi

ρj

)βn′−1+βn′ −βn−1−βn

�

Take n′ = n+ 1. Then

Pr
(
Λn′

i

)
/Pr

(
Λn′

j

)
Pr

(
Λn

i

)
/Pr

(
Λn

j

) =
(
ci

cj

)−θ(αn+1βn+1−αnβn)(ρi

ρj

)βn+1−βn−1

�

Let us inspect the exponents more closely. Note βn−1 = (1 − αn)βn, so αnβn = βn − βn−1

and

Pr
(
Λn′

i

)
/Pr

(
Λn′

j

)
Pr

(
Λn

i

)
/Pr

(
Λn

j

) =
((

ci

cj

)−θ)βn+1−2βn+βn−1
(
ρi

ρj

)βn+1−βn−1

�

But

βn+1 − 2βn +βn−1 <βn+1 −βn−1

because βn−1 <βn. This can be iterated starting for n′′ = n′ + 1. This result implies that a
sufficient condition for

Pr
(
Λn′

i

)
/Pr

(
Λn′

j

)
Pr

(
Λn

i

)
/Pr

(
Λn

j

) > 1

for n′ > n and ρi > ρj is that (ci)−θρi is larger for more central countries. Unfortunately,
the general-equilibrium conditions of the model are too complex for us to be able to
formally establish that this is indeed the case for all possible parameter values. But, as
stated in the main text, we have run millions of simulations and have not found a single
case contradicting the claim.

A.2. General Equilibrium Under Decentralized Approaches

This appendix demonstrates the isomorphism between the general-equilibrium condi-
tions derived under the lead-firm (chain-productivity) formulation in the main text, and
the two alternative decentralized approaches outlined in Section 3.2.

A.2.1. Incomplete Information Approach

We begin with the first approach with stage-specific Fréchet distributions and incom-
plete information. On the technology side, we now assume that 1/an

i (z) is drawn indepen-
dently (across goods and stages) from a Fréchet distribution satisfying

Pr
(
an
i (z)

αnβn ≥ a
) = exp

{−aθ(Ti)
αnβn

}
� (A.8)

To build intuition, we begin by sketching why and how the approach works for the
simple case with only two stages, input production (stage 1) and assembly (stage 2). Later,
we will show how the approach naturally generalizes to the case N > 2.

With N = 2, input producers of a given good z in a given country �(1) ∈ J observe
their productivity 1/a1

�(1)(z), and simply hire labor and buy materials to minimize unit
production costs, which results in p1

�(1)(z) = a1
�(1)(z)c�(1). Assemblers of good z in any
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country �(2) ∈ J observe their own productivity 1/a2
�(2)(z), as well as that of all potential

input producers worldwide, and solve

p2
�(2)(z) = min

�(1)∈J
{(
a2
�(2)(z)c�(2)

)α2
(
a1
�(1)(z)c�(1)τ�(1)�(2)

)1−α2
}
�

Independently of the values of a2
�(2)(z), c�(2), and α2, the solution of this problem simply

entails procuring the input from the location �∗(1) satisfying �∗(1) = arg min{(a1
�(1)(z)×

c�(1)τ�(1)�(2))
1−α2}. As is well known, the Fréchet assumption in (A.8) will make character-

izing this problem fairly straightforward. Consider finally the problem of retailers in each
country j seeking to procure a final good z to local consumers at a minimum cost. These
retailers observe the productivity 1/a2

�(2)(z) of all assemblers worldwide, but not the pro-
ductivity of input producers, and thus seek to solve

pF
j (z) = min

�(2)∈J
{(
a2
�(2)(z)c�(2)

)α2
E
[
a1
�∗(1)(z)c�∗(1)τ�∗(1)�(2)

]1−α2τ�(2)j
}
� (A.9)

If retailers could observe the particular realizations of input producers, the expectation
in (A.9) would be replaced by the realization of a1

�(1)(z)c�(1)τ�(1)�(2) in all �(1) ∈ J , and
characterizing the optimal choice would be complicated because it would depend on the
product of the distributions a2

�(2)(z) and a1
�(1)(z), which is not Fréchet under (A.8). Given

our incomplete information assumption, however, the expectation in (A.9) does not de-
pend on the particular realizations of upstream productivity draws, and this allows us to
apply the well-know properties of the univariate Fréchet distribution in (A.8) to charac-
terize the problem of retailers.

To see this, take two countries �(1) and �(2) and consider the probability π�j of a GVC
flowing through �(1) and �(2) before reaching consumers in j. This probability is sim-
ply the product of (i) the probability of �(1) being the cost-minimizing location of input
production conditional on assembly happening in �(2), and (ii) the probability of �(2) be-
ing the cost-minimizing location of assembly for GVC serving consumers in j. Denoting
E�(2) = E[τ�∗(1)�(2)a1

�∗(1)(z)c�∗(1)]1−α2 , and using the properties of the Fréchet distribution, it
is easy to verify that we can write π�j as

π�j = (T�(1))
1−α2(c�(1)τ�(1)�(2))

−θ(1−α2)∑
k∈J

(Tk)
1−α2(ckτk�(2))

−θ(1−α2)

︸ ︷︷ ︸
Pr
(
�(1)|�(2)

)
× (T�(2))

α2
(
(c�(2))

α2τ�(2)j
)−θ

(E�(2))
−θ∑

i∈J
(Ti)

α2
(
(ci)

α2(τij)
)−θ

(Ei)
−θ

︸ ︷︷ ︸
Pr
(
�(2)

)
� (A.10)

A bit less trivially, but also exploiting well-known properties of the Fréchet distribution,
it can be shown that

E�(2) = E
[
τ�∗(1)�(2)a

1
�∗(1)(z)c�∗(1)

]1−α2 = ς

(∑
k∈J

(Tk)
1−α2(ckτk�(2))

−θ(1−α2)

)−1/θ

�

for some scalar ς > 0. This allows us to reduce (A.10) to

π�j = (T�(1))
1−α2(c�(1)τ�(1)�(2))

−θ(1−α2)(T�(2))
α2

(
(c�(2))

α2τ�(2)j
)−θ∑

k∈J

∑
i∈J

(Tk)
1−α2(ckτki)

−θ(1−α2)(Ti)
α2

(
(ci)

α2(τij)
)−θ

� (A.11)
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It should be clear that this expression is identical to (8)—plugging in (9)—for the special
case N = 2. It is also straightforward to verify that the distribution of final-good prices
pF

j (�� z) paid by consumers in j is independent of the actual path of production � and is
again characterized, as in equation (7), by Pr(pF

j (�� z) ≤ p) = 1 − exp{−Θ̃jp
θ}, where Θ̃j

is the denominator in (A.11), and is the analog of Θj in (9) when N = 2.
In sum, this alternative specification of the stochastic nature of technology delivers the

exact same distribution of GVCs and of consumer prices as the one in which the overall
GVC unit cost is distributed Fréchet.

We next generalize this result to an environment with more than two stages. It should be
clear that the input sourcing decisions for the two most upstream stages work in the same
way as outlined above. Let �jz(n) be the tier-one sourcing decision of a firm producing
good z at stage n + 1 in j. Generalizing the notation above, define for any s > 0 the
expectation

En
j [s] = En

[(
pn

�
j
z(n)

(z)τ
�
j
z(n)j

)s]
�

where we have written the expectation with an n subscript indicating that the expectation
takes that unit costs (and prices) from stages 1� � � � � n as unobserved. To be fully clear, a
firm at n+ 2 observes the productivity draws from stage n+ 1 but does not know previous
sourcing decisions. Hence, it must form an expectation over the location from which its
stage-n suppliers source, �jz(n), and use this to calculate the expected input prices En

j [s].
As will become clear in the next paragraph, denoting the expectations for a general s > 0
is useful since downstream firms between n+2� � � � �N and final consumers will all use the
information on expected input prices at n but in different ways depending on the objective
function they seek to minimize.

Substituting in the Cobb–Douglas production process in (1), we can write

En
j [s] = En

[(
an

�
j
z(n)

(z)c
�
j
z(n)

)αns × En−1

�
j
z(n)

[
(1 − αn)s

] × (τ
�
j
z(n)j

)s
]
�

The crucial observation is that, to determine expected input prices from stage n, a firm
must also incorporate expected input prices from stage n− 1, and so on until input prices
from all upstream stages have been incorporated. Note that productivity draws across
stages of production are independent, but even more importantly, sourcing decisions
across stages of production are also independent. Hence, one can use the law of iterated
expectations to compute expected input prices from n− 1, En−1

�
j
z(n)

[·], in the computation of

expected prices at n in En
j [·]. The latter expectation is over �jz(n), but once we condition

on a specific value for �jz(n), the expectation En−1

�
j
z(n)

[·] is a constant. Finally, note also that

this recursion starts at n= 1 with E 0
j [s] = 1 since only labor and materials are used in that

initial stage.
Let us next illustrate why these definitions are useful. Consider the optimal sourcing

strategies related to procuring the good finished up to stage n <N . Given the sequential
cost function in (1), the problem faced by a stage-n+ 1 producer in j can be written as

�jz(n)= arg min
�(n)∈J

{(
an
�(n)(z)c�(n)

)αn(1−αn+1) × En−1
�(n)

[
(1 − αn)(1 − αn+1)

] × (τ�(n)j)
1−αn+1

}
�

where the 1 −αn+1 superscript comes from the stage-n+ 1 producer wanting to minimize
its own expected input price and in which the stage-n input price enters its own unit cost
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to this power. Meanwhile, final consumers (or local retailers on their behalf) source their
goods by solving

�jz(N) = arg min
�(N)∈J

{(
aN
�(N)(z)c�(N)

)αN × EN−1
�(N) [1 − αN] × τ�(N)j

}
�

The probability of sourcing inputs from a specific location i at any stage n can be deter-
mined by invoking the properties of the Fréchet distribution, given that 1/an

i (z) is drawn
independently (across goods and stages) from a Fréchet distribution satisfying

Pr
(
an
j (z)

αnβn ≥ a
) = exp

{−aθ(Tj)
αnβn

}
�

In particular, we obtain

Pr
(
�jz(n)= i

) =
(
(Ti)

αn
(
(ci)

αnτij
)−θ)βnEn−1

i

[
(1 − αn)(1 − αn+1)

]−βn+1θ∑
l∈J

(
(Tl)

αn
(
(cl)

αnτlj
)−θ)βnEn−1

l

[
(1 − αn)(1 − αn+1)

]−βn+1θ
�

These probabilities can now be leveraged in order to compute expected input prices.

Define ãij = (ci)
αnsEn−1

i [(1 − αn)s](τij)s so that 1/(aαns
i ãij) ∼ Fréchet(T αnβn

i ã
− βn

s θ

ij � βn

s
θ)

(note that the above distribution is the special case in which s = 1−αn+1). Then, using the
moment generating formula for the Fréchet distribution, it can be verified that

En
j [s] = q

[∑
l∈J

T αnβn

l ã
− βn

s θ

lj

]− s
βnθ

�

(
1 + βn

s
θ

)
�

where � is the gamma function. From this equation, it should also be clear why we are
denoting En

j [s] as a function of s, since, as we move down the value chain, we need to
compute the upstream expectations at different “moments.”

We are now ready to determine the equilibrium variables: (1) material prices Pj , and
(2) the distribution of GVCs. Material prices can be derived recursively using our expec-
tations:

Pj = (
EN
j [1 − σ]) 1

1−σ

=
[∑

l∈J
(Tl)

αN
(
(cl)

αN τlj
)−θEN−1

l

[
(1 − αN)(1 − σ)

]− θ
1−σ

]− 1
θ

�

(
1 + 1 − σ

θ

)

= ς

[∑
�∈J

N∏
n=1

(
(T�(n))

αn
(
(c�(n))

αnτ�(n)�(n+1)

)−θ)βn

]− 1
θ

�

where ς = ∏N

n=1 �(1 + 1−σ
βnθ

)
1

1−σ . This expression is identical to (10) up to a scalar (which is
irrelevant for all equilibrium conditions and that could be “neutralized” by an appropriate
rescaling of the stage-specific Fréchet distributions).
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Finally, since input decisions from n are independent from the decisions that firms at
n− 1 made, then

π�j = Pr
(
�jz(N) = �(N)|��(N)

z (N − 1)= �(N − 1)
)

×
N−1∏
n=2

Pr
(
��(n+1)
z (n)= �(n)|��(n)z (n− 1)= �(n− 1)

) × Pr
(
��(2)z (1)= �(1)

)

= Pr
(
�jz(N) = �(N)

) ×
N∏
n=1

Pr
(
��(n+1)
z (n)= �(n)

)

=

N−1∏
n=1

(
(T�(n))

αn
(
(c�(n))

αnτ�(n)�(n+1)

)−θ)βn × (T�(N))
αN

(
(c�(N))

αN τ�(N)j

)−θ

∑
�′∈J

N−1∏
n=1

(
(T�′(n))

αn
(
(c�′(n))

αnτ�′(n)�′(n+1)

)−θ)βn × (T�′(N))
αN

(
(c�′(N))

αN τ�′(N)j

)−θ

� (A.12)

which is identical to equation (8) in the main text obtained in the “randomness-in-the-
chain” formulation of technology.

A.2.2. Oberfield Approach

We next turn to the second decentralized approach inspired by work of Oberfield
(2018). To ease the notation, let us define

Zn
�(n) = (

an
�(n)

)−αn
�

so that we can write equation (1) as

pn
�(n) = 1

Zn
�(n)

(c�(n))
αn

(
pn−1

�(n−1)τ�(n−1)�(n)

)1−αn
�

A key conceptual difference with this approach is that the efficiency level Zn
�(n) is now as-

sumed to be buyer-seller-specific (or match-specific). In particular, a firm producing stage
n in location �(n) meets a certain number of potential sellers of stage n− 1 in each loca-
tion �(n− 1), with each of these potential sellers being associated with a distinct “match”
productivity of combining the good completed up to stage n− 1 with the labor and mate-
rials at stage n. This buyer-seller-specific productivity is drawn from a Pareto distribution
with shape parameter θ and lower bound Zn

�(n). Below, we will focus on the limiting case
in which Zn

�(n) → 0. Given all the available match-specific productivities and production
costs, each stage-n producer (or buyer) chooses the supplier offering the lowest cost for
the good produced at stage n − 1. The number of available potential suppliers in each
sourcing country �(n − 1) varies across producers, and the precise number mn

�(n−1)�(n) of
potential suppliers based in country �(n−1) available to a given firm producing stage n in
country �(n) is assumed to follow a Poisson distribution with arrival rate (T�(n))

αn(Zn
�(n))

−θ.
For n = 1, and for the time being, we assume that productivity in location �(1) is fixed at
Z1

�(1) = (T�(1))
1/θ, though we will relax this assumption below.
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We now derive the distribution of final-good prices in country j when sourcing goods
through an arbitrary supply chain �. To build intuition, let us first study the case with two
stages (N = 2). Consider the distribution of prices that a stage-2 producer in country �(2)
can offer to consumers in country j if stage-1 output is bought from country �(1) and the
highest matched-pair productivity with suppliers in that country is Ẑ2

�(2). This distribution
is given by

G2
j

(
p|�(1)� �(2)) = Pr

(
p≤ 1

Ẑ2
�(2)

(c�(2))
α2

(
p1

�(1)τ�(1)�(2)
)1−α2τ�(2)j

)
�

= Pr
(
Ẑ2

�(2) ≤ Z̃(p)
)
�

where Z̃(p) = (c�(2))
α2(c�(1)(T�(1))

−1/θτ�(1)�(2))
1−α2τ�(2)j/p.

Now remember that the stage-2 producer has various potential suppliers in each coun-
try �(1), so for the price to be higher than p, or for maxμ=1�����m�(1)�(2){Z2�μ

�(2)} = Ẑ2
�(2) < Z̃(p),

we need Z2�m
�(2) < Z̃(p) for all the draws μ associated with all the potential suppliers m�(1)�(2)

that a specific firm has. Since both the number of suppliers and productivity of each set
of suppliers are stochastic, we can obtain the overall distribution of prices invoking the
formula for the Poisson probability density function and also plugging in the cumulative
density function for the Pareto distribution:

Gj

(
p|�(1)� �(2))

=
∞∑

m=0

m∏
μ=1

Pr
(
Z2�μ

�(2) ≤ Z̃(p)
) × Pr(m�(1)�(2) = m)

=
∞∑

m=0

m∏
μ=1

(
1 −

(
Z2

�(2)

Z̃(p)

)θ)
×

(
(T�(2))

α2
(
Z2

�(2)

)−θ)m
exp

{−(T�(2))
α2

(
Z2

�(2)

)−θ}
m!

= exp
{−pθ

(
T�(1)c

−θ
�(1)τ

−θ
�(1)�(2)

)1−α2
(
T�(2)c

−θ
�(2)

)α2τ−θ
�(2)j

}
� (A.13)

This is the same expression we obtain in the “Fréchet-in-the-chain” formulation in the
main text.

Now let us extend these results to the case with N = 3, and consider the problem of
producers of the final assembly stage n = 3 in country �(3). For such a producer, the
distribution of prices it can offer to consumers in j when stage-2 inputs are bought from
country �(2) is more involved than before because it now depends on the product of the
distribution of buyer-seller productivity draws Z3

�(3) and the upstream input prices p2
�(2)

that each input seller itself sells at (i.e., influenced by the buyer-seller productivity that
the stage-2 seller has with its own input suppliers). However, note that the buyer-seller
productivity draws at stage 3 are independent of the upstream productivity draws. Instead,
what is crucial to take into account is the fact that stage-3 producers that get more stage-2
matches will get, on average, both a better buyer-seller productivity draw but also a better
stage-2 input price. Thus, we can split the problem into two parts. We first obtain the
expected price distribution conditional on a buyer-seller relationship and then we obtain
the price distribution by characterizing the distribution of optimal matches.
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Define the distribution of stage-3 prices in j from a given supply chain � = {�(1)� �(2)�
�(3)} conditional on a specific buyer-seller relationship characterized by Z3

�(3) as

Fj

(
p|��Z3

�(3)

) = Pr
(
p≤ 1

Z3
�(3)

(c�(3))
α3

(
p2

�(2)(�)τ�(2)�(3)
)1−α3τ�(3)j

)

= exp
{
−Θ�(1)�(2)

(
pZ3

�(3)

τ
1−α3
�(2)�(3)c

α3
�(3)τ�(3)j

)θ/(1−α3)
}
�

where Θ�(1)�(2) = (T�(1)c
−θ
�(1)τ

−θ
�(1)�(2))

1−α2(T�(2)c
−θ
�(2))

α2 and where we have invoked our above
distribution (A.13). As in the N = 2-stage case, with N = 3 the distribution of prices along
chain � will be determined by the fact that each producer at the assembly stage chooses
the upstream supplier that offers the best combination of buyer-seller productivity and
input prices. That is,

Gj

(
p|�(1)� �(2)� �(3))

=
∞∑

m=0

m∏
μ=1

∫ ∞

Z3
�(3)

Fj

(
p|��Z3�μ

�(3)

)
Pr

(
Z3�μ

�(3) =Z
)
dZ × Pr(m�(2)�(3) =m)

= exp
{
−(T�(3))

α3

(
Z3

�(3) −
∫ ∞

Z3
�(3)

Fj(p|��Z)
θ

Zθ+1 dZ

)}
�

where we used the fact that Z3�μ
�(3) is a Pareto random variable with lower bound Z3

�(3) and
shape parameter θ. Now, define χ(p) such that Fj(p|��Z3

�(3)) = exp{−χ(p)(Z3
�(3))

θ/(1−α3)},
and solve the above integral by taking the limit when Z3

�(3) → 0 and using a change of
variable ζ(p)= χ(p)Zθ/(1−α3) to obtain∫ ∞

0
Fj(p|��Z)

θ

Zθ+1 dZ = χ(p)1−α3

1 − α3

∫ ∞

0
exp

{−ζ(p)
}
ζ(p)α3−1 dζ(p)

= χ(p)1−α3

1 − α3
�(α3)�

where �(·) is the gamma function. Plugging this back in (and remember that we took the
limit Z3

�(3) → 0), we obtain that

Gj

(
p|�(1)� �(2)� �(3))

= exp
{
−(T�(3))

α3
χ(p)1−α3

1 − α3
�(α3)

}

= exp

{
−pθ ×

3∏
n=1

(
c−θ
�(n)T�(n)

)αnβn ×
2∏

n=1

(τ�(n)�(n+1))
−θβn × (τ�(3)j)

−θ × �(α3)

1 − α3

}
�

where notation is such that βn ≡ ∏N

m=n+1(1 − αm) and α1 = 1. This last expression is the
exact same expression we obtain in the main text for Pr(pF

j (�� z) ≥ p) in the N = 3 case
except for the last scalar term involving the gamma function term. Nevertheless, this scalar
term is irrelevant for the main equilibrium conditions in the model.
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We have derived this result for stages n = 3 and n = 2, but it should be clear that the
above derivations would work for any two stages n and n−1, as long as the distribution of
production costs in upstream stage n− 1 is Fréchet distributed. This has two implications.
First, our assumption above that, for n= 1, productivity in location �(1) is fixed at Z1

�(1) =
(T�(1))

1/θ can be relaxed and we can instead assume that Z1
�(1) is Fréchet distributed with

shape parameter θ and scale parameter T�(1). Second, one can use induction to conclude
from our results above that, for a general N , we obtain

Pr
(
pF

j (�� z)≥ p
) = exp

{
−pθ ×

N∏
n=1

(
c−θ
�(n)T�(n)

)αnβn ×
N−1∏
n=1

(τ�(n)�(n+1))
−θβn × (τ�(N)j)

−θ × ς̃

}
�

where ς̃ is a positive scalar that is irrelevant for all equilibrium conditions and that can
be “neutralized” by an appropriate rescaling of the stage-specific Poisson distributions. It
should be apparent that this expression coincides with equation (7) in the main text, up
to this immaterial scalar ς̃.

Finally, it remains to be shown that this decentralized solution not only delivers the
same distribution of final-good prices, but also the same GVC trade shares as in expres-
sion (8) in the main text. But this is implied by our previous derivations related to the
decentralized approach with incomplete information. In particular, fixing a downstream
stage n, the distribution of upstream costs at n−1 is again Fréchet distributed, so applying
the law of total probability in the same manner as in (A.12) above, it is straightforward
to re-derive equation (8) in the main text. And, to reiterate, the scalar ς̃ is irrelevant for
these equilibrium conditions.

A.3. Introducing Trade Deficits

Let Dj be country j’s aggregate deficit in dollars, where
∑

j Dj = 0 holds since global
trade is balanced. The only difference in the model’s equations is that the general-
equilibrium equation is given by

1
γi

wiLi =
∑
j∈J

∑
n∈N

αnβn × Pr
(
Λn

i � j
) ×

(
1 − γj

γj

wjLj +wjLj −Dj

)
�

where wjLj −Dj is aggregate final-good consumption in country j.
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A.4. Graphical Description of Multi-Stage Production

FIGURE A.2.—Multi-stage production with separate intermediate-input and final-good supply chains.

FIGURE A.3.—Multi-stage production with common intermediate-input and final-good supply chains.
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FIGURE A.4.—Single-stage production with separate intermediate-input and final-good technology
(Alexander (2017)).

FIGURE A.5.—Single-stage production with common intermediate-input and final-good technology (Eaton
and Kortum (2002)).
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A.5. Estimation Results

TABLE A.I

ESTIMATION RESULTS—ASYMMETRIC PARAMETERIZATIONS

γj TX
j TF

j

N 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

AUS 0.54 0.65 0.74 0.79 0.83 7.96 7.97 8.03 8.13 8.29 3.52 4.88 5.01 4.96 4.86
AUT 0.53 0.63 0.73 0.78 0.83 1.42 1.04 0.72 0.55 0.43 2.64 2.07 1.74 1.53 1.40
BEL 0.53 0.62 0.72 0.79 0.84 1.67 0.95 0.65 0.48 0.36 2.01 1.64 1.45 1.33 1.26
BGR 0.36 0.48 0.58 0.65 0.70 0.02 0.01 0.00 0.00 0.00 0.03 0.02 0.01 0.00 0.00
BRA 0.56 0.68 0.76 0.81 0.84 0.10 0.08 0.04 0.03 0.02 0.37 0.12 0.06 0.04 0.03
CAN 0.58 0.68 0.77 0.83 0.87 6.28 5.35 4.59 4.23 4.03 3.44 3.40 3.25 3.08 2.94
CHE 0.53 0.62 0.72 0.78 0.82 9.21 8.00 7.85 7.46 6.92 10.9 12.4 14.5 16.5 17.5
CHN 0.33 0.45 0.55 0.62 0.67 0.16 0.13 0.07 0.05 0.04 0.35 0.12 0.08 0.05 0.04
CZE 0.44 0.53 0.64 0.71 0.76 0.15 0.06 0.03 0.01 0.01 0.22 0.13 0.08 0.05 0.04
DEU 0.54 0.65 0.74 0.80 0.83 3.10 3.16 2.40 1.98 1.66 5.57 4.95 4.69 4.47 4.29
DNK 0.57 0.64 0.73 0.79 0.83 3.01 1.55 1.14 0.86 0.66 5.39 5.08 4.42 4.03 3.76
ESP 0.52 0.63 0.72 0.77 0.80 0.57 0.44 0.27 0.20 0.16 1.25 0.78 0.56 0.44 0.38
FIN 0.51 0.60 0.69 0.74 0.78 1.29 0.70 0.51 0.39 0.32 1.99 2.08 1.61 1.35 1.19
FRA 0.55 0.66 0.74 0.79 0.82 1.87 1.93 1.39 1.12 0.94 4.07 3.07 2.59 2.28 2.07
GBR 0.56 0.67 0.75 0.80 0.84 3.49 3.29 2.59 2.23 2.01 3.32 3.13 2.81 2.57 2.39
GRC 0.58 0.66 0.74 0.78 0.81 0.08 0.03 0.01 0.01 0.01 0.24 0.14 0.07 0.05 0.03
HRV 0.46 0.57 0.68 0.74 0.78 0.02 0.01 0.00 0.00 0.00 0.03 0.03 0.01 0.01 0.00
HUN 0.52 0.59 0.70 0.78 0.83 0.05 0.01 0.00 0.00 0.00 0.09 0.05 0.03 0.01 0.01
IDN 0.53 0.65 0.73 0.79 0.82 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
IND 0.53 0.65 0.73 0.77 0.80 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
IRL 0.62 0.67 0.79 0.88 0.95 3.03 0.93 0.56 0.33 0.19 2.97 2.29 2.20 2.22 2.31
ITA 0.51 0.62 0.71 0.76 0.80 0.91 0.82 0.56 0.45 0.38 1.82 1.28 1.01 0.85 0.75
JPN 0.52 0.64 0.72 0.77 0.80 1.32 1.88 1.39 1.16 1.02 6.56 3.66 3.11 2.73 2.47
KOR 0.42 0.53 0.63 0.69 0.74 0.55 0.50 0.34 0.26 0.21 1.72 0.93 0.76 0.64 0.56
LTU 0.46 0.57 0.69 0.76 0.81 0.03 0.01 0.00 0.00 0.00 0.02 0.04 0.02 0.01 0.01
LUX 0.32 0.51 0.67 0.79 0.88 0.96 2.65 3.89 4.76 5.19 0.18 1.61 2.80 4.28 5.90
MEX 0.59 0.70 0.77 0.81 0.84 0.05 0.03 0.01 0.01 0.01 0.38 0.11 0.06 0.04 0.03
NLD 0.60 0.69 0.80 0.88 0.92 5.95 3.74 3.18 2.85 2.62 2.89 2.83 2.83 2.81 2.80
NOR 0.62 0.73 0.83 0.88 0.91 31.8 32.5 40.1 43.7 46.1 14.3 21.2 22.5 23.2 23.2
POL 0.48 0.59 0.68 0.74 0.78 0.20 0.10 0.05 0.03 0.02 0.32 0.18 0.11 0.08 0.06
PRT 0.54 0.63 0.71 0.77 0.80 0.13 0.06 0.03 0.02 0.01 0.27 0.15 0.08 0.05 0.04
ROU 0.49 0.59 0.68 0.74 0.78 0.04 0.02 0.01 0.00 0.00 0.07 0.03 0.02 0.01 0.01
ROW 0.44 0.57 0.67 0.73 0.77 0.06 0.03 0.01 0.01 0.00 0.06 0.02 0.01 0.01 0.00
RUS 0.55 0.69 0.79 0.85 0.89 0.63 0.45 0.29 0.23 0.20 0.06 0.04 0.03 0.02 0.02
SVK 0.44 0.52 0.64 0.72 0.77 0.12 0.04 0.02 0.01 0.00 0.20 0.15 0.08 0.06 0.04
SVN 0.38 0.53 0.65 0.73 0.79 0.05 0.03 0.01 0.00 0.00 0.06 0.08 0.04 0.02 0.02
SWE 0.55 0.65 0.74 0.80 0.83 3.64 2.43 1.98 1.66 1.41 4.30 4.39 3.98 3.71 3.52
TUR 0.53 0.63 0.71 0.76 0.80 0.09 0.04 0.02 0.01 0.01 0.15 0.08 0.04 0.03 0.02
TWN 0.55 0.64 0.75 0.83 0.88 0.79 0.35 0.22 0.17 0.14 0.31 0.24 0.17 0.13 0.11
USA 0.57 0.69 0.77 0.82 0.85 9.15 18.7 17.0 16.6 16.6 17.8 16.5 16.7 16.4 15.9
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TABLE A.II

ESTIMATION RESULTS—SYMMETRIC PARAMETERIZATIONS

γj Tj

N 1 2 1 2

AUS 0.52 0.88 4.79 3.48
AUT 0.55 0.87 2.14 0.57
BEL 0.54 0.83 1.92 0.45
BGR 0.61 0.95 0.10 0.00
BRA 0.57 0.99 0.15 0.01
CAN 0.55 0.92 3.43 1.65
CHE 0.52 0.81 9.44 6.35
CHN 0.33 0.57 0.18 0.03
CZE 0.48 0.73 0.23 0.02
DEU 0.55 0.87 3.90 1.65
DNK 0.59 0.92 5.04 1.83
ESP 0.54 0.88 0.77 0.14
FIN 0.54 0.87 2.01 0.59
FRA 0.56 0.93 2.58 0.93
GBR 0.55 0.91 2.95 1.24
GRC 0.63 1.00 0.16 0.01
HRV 0.70 1.00 0.22 0.01
HUN 0.61 0.91 0.14 0.01
IDN 0.55 0.93 0.01 0.00
IND 0.56 0.97 0.00 0.00
IRL 0.63 0.92 3.89 0.94
ITA 0.51 0.85 1.15 0.29
JPN 0.54 0.93 2.43 1.08
KOR 0.44 0.71 0.79 0.21
LTU 0.71 1.00 0.58 0.10
LUX 0.45 0.81 8.02 42.5
MEX 0.64 1.00 0.11 0.00
NLD 0.56 0.86 2.83 0.81
NOR 0.61 0.98 22.3 17.8
POL 0.50 0.79 0.24 0.02
PRT 0.57 0.93 0.22 0.01
ROU 0.53 0.84 0.06 0.00
ROW 0.43 0.72 0.05 0.00
RUS 0.50 0.84 0.22 0.02
SVK 0.56 0.85 0.47 0.05
SVN 0.62 1.00 0.68 0.25
SWE 0.56 0.88 4.04 1.50
TUR 0.54 0.88 0.11 0.01
TWN 0.51 0.80 0.43 0.06
USA 0.58 1.00 11.2 15.3
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