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APPENDIX A
A.1. Mathematical Proofs
A.1.1. Increasing Trade-Cost Elasticity

WE DEMONSTRATE THAT PROPOSITION 1 HOLDS true for arbitrary constant-returns-to-
scale production technologies. With that in mind, let the sequential cost function associ-
ated with a path of production £ = {¢(1), £(2), ..., £(N)} be defined by

Py ) = 8o (Cems Pliniry (B Tenotyeeny)  forallne N, (A1)

where the stage- and country-specific cost functions gy, in equation (A.1) are assumed
to feature constant returns to scale and diminishing marginal products. The cost of the
first stage depends only on the local composite factor, so constant returns to scale implies
Piay () = g1, (cery) for all paths £, with the function g, ;, necessarily being linear in ¢, ).

Define pj,\(€) = pi, 1, (€)Tew-1yem to be the price paid in £(n) for the good finished up
to stage n — 1 in country £(n — 1), so that we can express the sequential unit cost function
as

Pl ) = &l (Ceimys 1521(;])(5))-

Define the elasticity of p(£) with respect to the trade costs that stage-n’s production
faces as

Jln p*(£)

- b
AN Tyyenin

n

with the convention that £(N + 1) = j so that Bf\, is the elasticity of pf (£) with respect
to the trade costs faced when shipping assembled goods to final consumers in j. Because
Temens1) INCTEASES P, (€) With a unit elasticity, the following recursion holds for all
n' > n:

gl pi L, (@) alnpjll, (8) dlnpy, (&)

AN Tyensry  In P, (€) 910 Teamyeqnsn

At the same time, the unit cost elasticity at stage n + 1 satisfies

dln pg(ttil)(z) . 0711117?&1“)(‘)
N Toenry 0 P, (8)
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2 P. ANTRAS AND A. DE GORTARI

Hence, the elasticity of finished-good prices can be decomposed as

= [] o2 (A2)
’ n'=n+1 dln ~Z(”1)(e)

invoking the convention ]_[f:]: v+1 f (7)) =1for any function f(-). Constant returns to scale
in production implies that the function gy, is homogeneous of degree 1. As a result, the
elasticity of unit costs with respect to input prices is always less than or equal to 1, so for
all n > 1 we have
dln pj . (£)
b <1,
dln pj, (£)
with strict inequality whenever a stage adds value to the product. From equation (A.2), it
is then clear that

1 2 N __
ijﬁjf"'fﬁj =

with strict inequality when value added is positive at all stages.

A.1.2. Fighting the Curse of Dimensionality: Dynamic and Linear Programming

When discussing the lead-firm problem in Section 2.2, we mentioned that there are
JY sequences that deliver distinct finished-good prices pf(£) in country j. Hence, solv-

ing for the optimal sequences £’ for all j by brute force requires J¥*! computations and
is infeasible to do when J and N are sufficiently large. However, we show below that
use of dynamic programming surmounts this problem by reducing the computation of all
sequences to only J x N x J computations. Furthermore, in the special case in which pro-
duction is Cobb—Douglas, the minimization problem can be modeled with zero-one linear
programming, for which very efficient algorithms exist.

A.1.3. Dynamic Programming

Define £/ € J" as the optimal sequence for delivering the good completed up to stage
n to producers in country j. This term can be found recursively for all n =1,..., N by
simply solving

¢/ = argminp} (£;_) 7y, (A3)

keg
since the optimal source of the good completed up to stage » is independent of the local
factor cost ¢; at stage n, of the specifics of the cost function g7, or of the future path of
the good. For this same reason, we have written the pricing function pj in terms of the

— 1-stage sequence £ _, since it does not depend on future stages of production (though
it should be clear that p} will also be a function of the production costs and technology
available for producers at that chosen location k). The convention at n =1 is that there
is no input sequence so that £ = @ for all k € J and the price depends only on the
composite factor cost: p; (8) = g; (cx)-

The formulation in (A.3) makes it clear that the optimal path to deliver the assembled
good to consumers in each country j, that is, £/ = £, can be solved recursively by compar-
ing J numbers for each location j € J at each stage n € N, for a total of only J x N x J
computations.
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FIGURE A.1.—Dynamic programming—an example with four countries and three stages.

To further understand this dynamic programming approach, Figure A.1 illustrates a
case with three stages and four countries. Instead of computing JV = 64 paths for each
of the four locations of consumption, it suffices to determine the optimal source of (im-
mediately) upstream inputs (which entails J x J = 16 computations at stages n = 2 and
n =3, and for consumption). In the example, the optimal production path to serve con-
sumers in A4, B, and C is A — B — B, while the optimal path to serve consumers in D is
C—D-—D.

A.1.4. Linear Programming

In the special case in which production is Cobb—Douglas, the optimal sourcing sequence
can be written as a log-linear minimization problem:

N-1 N
e] — arg min Z Bn ln To(n)e(n+1) —+ ln TZ(N)]' + Z a,,B,, ln(a?(n)Cg(n)).
eegN n=1

This can in turn be reformulated as the following zero-one integer linear programming
problem:

N-1
0= argmin Z B Z Z C (ln Tie + a,,a’,jck) + Z §,i"(ln Tij + aNachk)

n=1 keJ k'eT keg
st. Y =Y i VkeJ,n=1,...,N-2

k'eg kK'eg

St =4 vkeTg

k'eg

S =14, & €{0,1).

keg

A.1.5. Proof of Proposition 3

If there is free trade or 7 is constant across all country-pairs (including domestically),
then all countries source each variety from the same sequence of countries with m,; = m,
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for all j € J. Analogously, price indices are the same in all markets so that P; = P for all
J € J. The probability of sourcing a variety through a given sequence is thus

l_[ (T (n>wz(zz?)l/N

neN

—'yé' 1/N*
2 [1(Twils)

' egN neN

Ty =

We will now prove that wages are equalized across countries. Note that the total prob-
ability of any country being in a given stage n is the same regardless of the destination
country and equals

[T @)™ [T @)™
ZPI(A?) = Z Z neN 5 _ Z 7)/9 UN neN\n 5

ieg €T LeAl} ieg

Now, suppose that wages are common across countries with w; = w for all j € J. Since
the probability of any country being at a given stage n needs to equal 1, this implies that

[T @)™ [T @)™

n\ /N n'eN\n n'eN\n 1
2= 2 e T

ieg

where the second line uses our assumption that the geometric mean of 7" across countries
is constant across stages of production. Let us now plug this into the right-hand side of
the general equilibrium equation together with our guess that wages are equalized across
countries:

1 ()" IT (@)™
ZZ—xPrA”,')xwzzﬁx ;igfg x Jw

where the third line uses the previous result and where the fourth line uses our assumption
that the geometric mean of 7" across stages of production is constant across countries.
Hence, guessing that wages are equalized across countries delivers a fixed point in those
wages. Since the equilibrium is unique, this is the only set of wages satisfying the general-
equilibrium equation.

To derive the share of goods produced in a domestic supply chain under free trade,
rewrite O as

N
0= HZ Tn 1/N_(J VN (]x NZ(Tjn)l/N) ,

neN ieg neN
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for any j € J. Inserting this into the domestic expenditure share finalizes the proof

( GeometricMean,[(T7) I/N] )N
T =
T\ x ArithmeticMean, [(T7)"]

A.1.6. Proof of Proposition 4
If all countries are symmetric, wages are equalized and the domestic expenditure share
is
1

mi = B
o T Tremean) ™

egN neN

The denominator can be rewritten as

Z Z H(TE(M)Z(nJrI))_GBn

Lheg UN)ET neN

- —0BN_ —
= Z Z (Teey) P10 x - x Z (Tev—nyeny)”PV1 x (Tenyj) BN

UDeJ e2)eT UN)eT
= > (14U =D ) x 1+ T =Dr P x ...
UN)eT

X (1 =+ (J — 1)T_BN’16) X (T[(N)j)_eﬁN
N

=1+ 0 =17 ).
n=1

Substituting this in the domestic share finishes the proof.

A.1.7. Proof of Proposition 5

Let (7;)~% = p;p,. In such a case, the probability of country j sourcing through £ reduces
to

N
1_[ (Tl(m) (Coomy ),9)05,,, pm (p[(m))ﬁm—ﬁﬁm

m=1

N
Z H(Tl(m)(ce(m))ie)amﬁm (pl(m))ﬁm—ﬁﬁm

LeT m=1

7ng=

and is thus independent of the destination country j. The aggregate probability of observ-
ing country i in location # can thus be expressed as

N
Z l_[ (T‘f(m) (Cl(m))ig)amﬁm (pz(m) )Bm—1+Bm

LeA} m=1

Pr(A?) = E Ty = .
R ST T ———
vy (Com) )" (Peimy)

kel ZGAz m=1

(A4)
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But note that we can decompose this as

(Y’i(ci)—())anﬁn (pi)Bn—H’Bn X Z l—[ (Té(m) (Cg(m))_e)aMﬁm (pg(m))Bm*]_HSm
Le At m#n
Pr(A}) = : ’ - (AS)
Z(Tk(ck)ie) . (pk)B"ilJan x Z 1_[ (Tl(m)(cé(m))ie) o (pl(m))ﬁmil+8m

ke leA;{' m#n
_ (’Ti(ci)_e)anﬁn(pi)ﬁn—l‘*'ﬁn
Z(Tk(ck)“’)a"ﬁ" (pi)Pn-1+h ’

keg

(A.6)

where the second line follows from the fact that, for GVCs in the sets A? and A7, the set
of all possible paths excluding the location of stage n are necessarily identical (and inde-
pendent of the country where n takes place), and thus the second terms in the numerator
and denominator of the first line cancel out.

For the special symmetric case with «,8, = 1/N and «,, = 1/n, we obtain that

2n—1

(Ti(e) ™)™ (p) 5
Z(Tk(ck)_g) v (px) A

keTg

Pr(A7) =

Now consider our definition of upstreamness

N n
U()=) (N—n+1)x _Prdy) (A7)

N

2 Pr(47)
n'=1

This is equivalent to the expected distance from final-good demand at which a country
will contribute to global value chains. The expectation is defined over a country-specific
probability distribution over stages, f;(n) = Pr(A?)/ Zzzl Pr(A;”).

Finally, note that for two countries with p; > p; and two inputs with n’ > n, we neces-
sarily have

f()1f ) _ (&)W_"”N .1
fi(m)/fim) — \pi

As a result, the probability functions f(n) and f;(n) satisfy the monotone likelihood ra-

tio property in n. As is well known, this is a sufficient condition for f;(n) to first-order

stochastically dominate f;(n) when p; > p;. But then it is immediate that E;, [n] > E,[n],

and thus the expected value in (A.7), which is simply N + 1 — E.[n], will be lower for

country i’ than for country { when p; > p;. This completes the proof of Proposition 5.

We can finally consider the case with a general path of «,, but common technology
T; = T across countries. From equation (A.6), we have

(ci)*gﬂnﬁn (pi)Bn—l+Bn
Z(Ck)—ganﬁn (pk)Bn—l+B/1

keT

Pr(A7. j) =
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‘We then have

w _ (Ci )“anﬁn/dnﬁn) <&)Bn’l+3n’ﬁn—lﬁn

Pr(A7)/Pr(A7)  \¢ p;

Take n’ =n+ 1. Then

Pr(Aln’)/Pr(A;l’) B (ﬁ)9(an+13n+1anﬁrx)<pi)ﬁn+lBn—l

Pj

Pr(A2)/Pr(A7) — \g
Let us inspect the exponents more closely. Note 8, 1 = (1 — «,) B,,, 50 @, 8, = B, — Bu_1
and
Pr(A})/Pr(AY) ¢\ "\ P 2Bt Bunt £ o N Buvi =B
Pr(A7)/Pr(A7) ((c_) ) (F) '
But

BnJrl - Zﬂn + ﬁnfl < ﬁn+1 - anl

because B,_; < B,. This can be iterated starting for n” = n’ + 1. This result implies that a
sufficient condition for

Pe(Af)/Pr(ay) _
Pr(A)/ Pr(4)

for n’ > n and p, > p; is that (¢;)?p; is larger for more central countries. Unfortunately,
the general-equilibrium conditions of the model are too complex for us to be able to
formally establish that this is indeed the case for all possible parameter values. But, as
stated in the main text, we have run millions of simulations and have not found a single
case contradicting the claim.

A.2. General Equilibrium Under Decentralized Approaches

This appendix demonstrates the isomorphism between the general-equilibrium condi-
tions derived under the lead-firm (chain-productivity) formulation in the main text, and
the two alternative decentralized approaches outlined in Section 3.2.

A.2.1. Incomplete Information Approach

We begin with the first approach with stage-specific Fréchet distributions and incom-
plete information. On the technology side, we now assume that 1/a?(z) is drawn indepen-
dently (across goods and stages) from a Fréchet distribution satisfying

Pr(al(z)*"" > a) = exp{—a’(T))*"*"}. (A.8)

To build intuition, we begin by sketching why and how the approach works for the
simple case with only two stages, input production (stage 1) and assembly (stage 2). Later,
we will show how the approach naturally generalizes to the case N > 2.

With N = 2, input producers of a given good z in a given country £(1) € J observe
their productivity 1/a;,(z), and simply hire labor and buy materials to minimize unit
production costs, which results in p;,(z) = a;,(z)ceq). Assemblers of good z in any
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country £(2) € J observe their own productivity 1/ aﬁ(z)(z), as well as that of all potential
input producers worldwide, and solve

2 . 2 ay 1 1-ap
pm)(z)=ég1)1enj{(az(2)(z)cz(2)) (ar0y (@D Teaw) )

Independently of the values of @}, (2), ¢i2), and a,, the solution of this problem simply
entails procuring the input from the location £*(1) satisfying £*(1) = arg min{(a}(l)(z) X
CoyTene) 2. As is well known, the Fréchet assumption in (A.8) will make character-
izing this problem fairly straightforward. Consider finally the problem of retailers in each
country j seeking to procure a final good z to local consumers at a minimum cost. These
retailers observe the productivity 1/a;, (z) of all assemblers worldwide, but not the pro-
ductivity of input producers, and thus seek to solve

—ay

. a 1
pf(Z) = min {(a?(z)(Z)Cg(z)) ZE[aE*(l)(Z)cl*(l)Tl*(l)Z(Z)] Tg(z)]‘}. (A.g)

t2)eTg
If retailers could observe the particular realizations of input producers, the expectation
in (A.9) would be replaced by the realization of aé(l)(z)cm)n(l)z(z) in all £(1) € J, and
characterizing the optimal choice would be complicated because it would depend on the
product of the distributions a, (z) and a,,,(z), which is not Fréchet under (A.8). Given
our incomplete information assumption, however, the expectation in (A.9) does not de-
pend on the particular realizations of upstream productivity draws, and this allows us to
apply the well-know properties of the univariate Fréchet distribution in (A.8) to charac-
terize the problem of retailers.

To see this, take two countries £(1) and £(2) and consider the probability m,; of a GVC
flowing through ¢(1) and ¢(2) before reaching consumers in j. This probability is sim-
ply the product of (i) the probability of £(1) being the cost-minimizing location of input
production conditional on assembly happening in £(2), and (ii) the probability of £(2) be-
ing the cost-minimizing location of assembly for GVC serving consumers in j. Denoting
Eiy = E[T@*(l)m)a;(l)(z)cml)]lfaz, and using the properties of the Fréchet distribution, it
is easy to verify that we can write m; as

1- —0(1— -0 -
_(Té(l)) “(Cony Tene) (1me2) % (Tz(z))az((Cz(Z))azTM)j) (&)

YT ) Y (T () () (E)

keg iegJ

(A.10)

4

Pr(zf.(l)w(z)) Pr(l(Z))

A bit less trivially, but also exploiting well-known properties of the Fréchet distribution,
it can be shown that

~1/0
1 l—ay 1- —6(1—
&(2) = E[Tz*(w(z)al*(l)(Z)Cz*a)] = S‘(Z(Tk) “2(CkTre)) ( az)) s

keg

for some scalar ¢ > 0. This allows us to reduce (A.10) to

1— —6(1— —0
_(Tl(l)) “2(ConyTeye) ( az)(Tz(Z))az((Cuz))azTe(z)j)

Ty =
S (T ) (T () (7))

keJ ieT

(A.11)
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It should be clear that this expression is identical to (8)—plugging in (9)—for the special
case N = 2. It is also straightforward to verify that the distribution of final-good prices
Pl (£, z) paid by consumers in j is independent of the actual path of production £ and is

again characterized, as in equation (7), by Pr(p; fe,z) < p)=1—exp{— @] p’}, where @
is the denominator in (A.11), and is the analog of ©®;in (9) when N =2.

In sum, this alternative specification of the stochastic nature of technology delivers the
exact same distribution of GVCs and of consumer prices as the one in which the overall
GVC unit cost is distributed Fréchet.

We next generalize this result to an environment with more than two stages. It should be
clear that the input sourcing decisions for the two most upstream stages work in the same
way as outlined above. Let ¢/(n) be the tier-one sourcing decision of a firm producing
good z at stage n + 1 in j. Generalizing the notation above, define for any s > 0 the
expectation

g;z[s]: [( P )(Z)Tl](n)j)s]’

where we have written the expectation with an » subscript indicating that the expectation
takes that unit costs (and prices) from stages 1, ..., n as unobserved. To be fully clear, a
firm at n + 2 observes the productivity draws from stage n + 1 but does not know previous
sourcing decisions. Hence, it must form an expectation over the location from which its
stage-n suppliers source, ¢/(n), and use this to calculate the expected input prices £ Ls1.
As will become clear in the next paragraph, denoting the expectations for a general s > 0
is useful since downstream firms between n+2, ..., N and final consumers will all use the
information on expected input prices at n but in different ways depending on the objective
function they seek to minimize.
Substituting in the Cobb—Douglas production process in (1), we can write

g]n[s] = [( [/( )(Z)Cl](n))ans 5["}(1)[(1 - O(n)S] X (Tlé(n)j)s]'
The crucial observation is that, to determine expected input prices from stage n, a firm
must also incorporate expected input prices from stage n — 1, and so on until input prices
from all upstream stages have been incorporated. Note that productivity draws across
stages of production are independent, but even more importantly, sourcing decisions
across stages of production are also independent. Hence, one can use the law of iterated
expectations to compute expected input prices from n — 1, 5["}2-*(;)[-], in the computation of

expected prices at n in £'[-]. The latter expectation is over £/(n), but once we condition
on a specific value for ¢/(n), the expectation £ K”j‘(l)[-] is a constant. Finally, note also that
z(n
this recursion starts at n = 1 with Ef[s] = 1 since only labor and materials are used in that
initial stage.
Let us next illustrate why these definitions are useful. Consider the optimal sourcing

strategies related to procuring the good finished up to stage n < N. Given the sequential
cost function in (1), the problem faced by a stage-n + 1 producer in j can be written as

i . ap(l—ay41) 1 1—
¢.(n) =arg min {(a},(2)cen) " x iy [(1 = @) (1= @] X (7n) ™1}

where the 1 — «,,,; superscript comes from the stage-n + 1 producer wanting to minimize
its own expected input price and in which the stage-» input price enters its own unit cost
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to this power. Meanwhile, final consumers (or local retailers on their behalf) source their
goods by solving

U(N)= arge(r]rvl)igj{(aZN)(z)ce(N))“N x Eqy 11— ay] X Ty}

The probability of sourcing inputs from a specific location i at any stage »n can be deter-
mined by invoking the properties of the Fréchet distribution, given that 1/a’(z) is drawn
independently (across goods and stages) from a Fréchet distribution satisfying

Pr(a’(z)*F" > a) = exp{—a’(T))*"}.

In particular, we obtain

(T ((e)™ ) )" & [ = a1 = )]
> (T (o™ my) )& A = a) @ = ay)]

leJ

Pr(¢(n)=i)=

These probabilities can now be leveraged in order to compute expected input prices.
_Bn
Define a; = (¢ EM( — a,)s](7;)* so that 1/(ai"a;) ~ Fréchet(Ti“"B"Zzij s 0, %0)
(note that the above distribution is the special case in which s = 1 — «,,,1). Then, using the
moment generating formula for the Fréchet distribution, it can be verified that

n QApn n"_ﬁTne _ﬁ B"
Sj[s]zq[ZTl P, ] F(1+79>,

leJ

where I' is the gamma function. From this equation, it should also be clear why we are
denoting El[s] as a function of s, since, as we move down the value chain, we need to
compute the upstream expectations at different “moments.”

We are now ready to determine the equilibrium variables: (1) material prices P;, and
(2) the distribution of GVCs. Material prices can be derived recursively using our expec-
tations:

P= (€1 -0)

_ _ 6 *% 1—
=[S @mmy e a-ana- o] | (14 257)

leg

- -}
- |:Z n((Tu”))an (Cceam)™ Tz(n>e(n+1>)_9)ﬁni| ,

LeJ n=1

where s =[]\_, T(1 + ]B*T‘;)ﬁ. This expression is identical to (10) up to a scalar (which is
irrelevant for all equilibrium conditions and that could be “neutralized” by an appropriate
rescaling of the stage-specific Fréchet distributions).
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Finally, since input decisions from » are independent from the decisions that firms at
n — 1 made, then

i =Pr(€L(N) = ¢(N)[£XY (N — 1) = £(N — 1))
N-1
X ]—[ Pr(¢X"V(n) =em)|t{"(n— 1) =t(n— 1)) x Pr(¢£?(1) = £(1))

n=2

N
=Pr(¢/(N) =(N)) x [ [Pr(£""(n) = £(n))
n=1
N-1 .
H((Té(n))an((Cl(n))anTl(n)l(n+1))_ )Bn X (o)™ ((Cen)) ™ Tewyj)
— ';V:_ll , (A12)
Z n((T[/(n))“" ((Ce/(n))a" Tz’(n)é’(nﬂ))ig)ﬁn X (Tony)™ ((CMN))aN TW(N)/‘)70

teg n=1

0

which is identical to equation (8) in the main text obtained in the “randomness-in-the-
chain” formulation of technology.

A.2.2. Oberfield Approach

We next turn to the second decentralized approach inspired by work of Oberfield
(2018). To ease the notation, let us define

i = (“Zm))iﬂn’

so that we can write equation (1) as

p?(n) = ZT(Cl(n))an (P?(;,l,l)ﬁ(nfl)e(n))l o

en)

A key conceptual difference with this approach is that the efficiency level Zj, is now as-
sumed to be buyer-seller-specific (or match-specific). In particular, a firm producing stage
n in location £(n) meets a certain number of potential sellers of stage n — 1 in each loca-
tion £(n — 1), with each of these potential sellers being associated with a distinct “match”
productivity of combining the good completed up to stage n — 1 with the labor and mate-
rials at stage n. This buyer-seller-specific productivity is drawn from a Pareto distribution
with shape parameter 6 and lower bound Zj,, . Below, we will focus on the limiting case
in which Zj,, — 0. Given all the available match-specific productivities and production
costs, each stage-n producer (or buyer) chooses the supplier offering the lowest cost for
the good produced at stage n — 1. The number of available potential suppliers in each
sourcing country £(n — 1) varies across producers, and the precise number my,,_, ., of
potential suppliers based in country £(n — 1) available to a given firm producing stage 7 in
country £(n) is assumed to follow a Poisson distribution with arrival rate (7,,)* ( ZZ(,,) )~°,
For n =1, and for the time being, we assume that productivity in location £(1) is fixed at
Z,, = (T,1))"?, though we will relax this assumption below.
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We now derive the distribution of final-good prices in country j when sourcing goods
through an arbitrary supply chain £. To build intuition, let us first study the case with two
stages (N = 2). Consider the distribution of prices that a stage-2 producer in country £(2)
can offer to consumers in country j if stage-1 output is bought from country £(1) and the
highest matched-pair productivity with suppliers in that country is Z7, . This distribution
is given by

1 « 1—a
Gf«(plfi(l),ﬂ(2))=Pr< _22 Z(Pé(lﬂ'm)z(z)) 27’((2),‘),

£(2)

= Pr(Zéz(z) < Z(p)),

where Z(p) = (i) (cery(To1y) ™ Tocye) ™2 o)/ p-

Now remember that the stage-2 producer has various potential suppliers in each coun-
try £(1), so for the price to be higher than p, or for max,_; mew(z){Z@(z)} Zl?(z) <Z(p),
we need Zf(’g; < Z(p) for all the draws u associated with all the potential suppliers n,.1,.,
that a specific firm has. Since both the number of suppliers and productivity of each set
of suppliers are stochastic, we can obtain the overall distribution of prices invoking the
formula for the Poisson probability density function and also plugging in the cumulative
density function for the Pareto distribution:

G,(ple(1), £(2))

= Z nPr(Zf(’g) < Z(p)) X Pr(myye) = m)

m=0 u=1
=ilﬂ[< <_l(2)>9> ((Te2™ (_m)) 9) exp{—(To2)™(Z l<2>) 6}
bt Z(p) m
= exp{—p"(Tun e, 7&?)((2))]7% (To€is) T} (A-13)

This is the same expression we obtain in the “Fréchet-in-the-chain” formulation in the
main text.

Now let us extend these results to the case with N =3, and consider the problem of
producers of the final assembly stage n = 3 in country £(3). For such a producer, the
distribution of prices it can offer to consumers in j when stage-2 inputs are bought from
country £(2) is more involved than before because it now depends on the product of the
distribution of buyer-seller productivity draws Z;;, and the upstream input prices p;,,
that each input seller itself sells at (i.e., influenced by the buyer-seller productivity that
the stage-2 seller has with its own input suppliers). However, note that the buyer-seller
productivity draws at stage 3 are independent of the upstream productivity draws. Instead,
what is crucial to take into account is the fact that stage-3 producers that get more stage-2
matches will get, on average, both a better buyer-seller productivity draw but also a better
stage-2 input price. Thus, we can split the problem into two parts. We first obtain the
expected price distribution conditional on a buyer-seller relationship and then we obtain
the price distribution by characterizing the distribution of optimal matches.
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Define the distribution of stage-3 prices in j from a given supply chain £ = {£(1), £(2),
£(3)} conditional on a specific buyer-seller relationship characterized by Z} 5, as

a -«
Fi(plt, Z}5) =Pr (P < ——(c3)(Pio) (O Teon) 37'@(3)/)

03

7 0/(1-a3)
= CXP{—@z(w(z)(%> >

71(2)1(%)Cl(3)745<3)/

where Oy = (To) € o) ™2 (Tua)Cy5))* and where we have invoked our above
distribution (A.13). Asin the N = 2-stage case, with N = 3 the distribution of prices along
chain £ will be determined by the fact that each producer at the assembly stage chooses
the upstream supplier that offers the best combination of buyer-seller productivity and
input prices. That is,

G;(ple(1), €(2), £(3))

= Z ]_[ / J(ple, Z35)Pr(Zok = Z) dZ x Pr(myay, = m)

m=0 p=1 71/6)

=t(3)

where we used the fact that Zf(g*) is a Pareto random variable with lower bound Zz 3, and
shape parameter 6. Now, define x( p) such that F;(p|¢, Z} (3)) =exp{—x(p)(Z; (3))"/(1 @)}
and solve the above integral by taking the limit when Z —e<3> — 0 and using a change of
variable {(p) = x(p)Z%1-9 to obtain

0o 1-a3
| Eie 2 az =22 / exp{—L(p) ) () dL(p)
0 — a3 Jo
1-a3
~ Xl(LF(%),
.

where I'(-) is the gamma function. Plugging this back in (and remember that we took the
limit Z} ;) — 0), we obtain that

Gj(ple(1), £(2), £(3))
1-a3
=exp{ (Tz<3>)ﬂ3&F( 3)}
0 : iy anPBn = 08 —0 F(Otg)
=ExXpy—p X H(c[(n)Tl(n)) X l_[(Tl(n)l(n+1)) "X (Te3;) T X T—a |’
n=1 n=1

where notation is such that 8, = ]_[f;':n +1(1 —a,,) and a; = 1. This last expression is the

exact same expression we obtain in the main text for Pr( pf (£,z) > p) in the N =3 case
except for the last scalar term involving the gamma function term. Nevertheless, this scalar
term is irrelevant for the main equilibrium conditions in the model.
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We have derived this result for stages n =3 and n = 2, but it should be clear that the
above derivations would work for any two stages n and n — 1, as long as the distribution of
production costs in upstream stage n — 1 is Fréchet distributed. This has two implications.
First, our assumption above that, for n = 1, productivity in location £(1) is fixed at Z}( =
(Ty1))"? can be relaxed and we can instead assume that Z, ,, is Fréchet distributed with
shape parameter 6 and scale parameter 7;;,. Second, one can use induction to conclude
from our results above that, for a general N, we obtain

N N-1
_ anﬁn — — ~
Pr(pj (€, 2) = p) = exp{—p" x [ T(eam Tem) ™™ x [ T(Temeans1) ™" x (ran) ™" x &1,

n=1 n=1

where § is a positive scalar that is irrelevant for all equilibrium conditions and that can
be “neutralized” by an appropriate rescaling of the stage-specific Poisson distributions. It
should be apparent that this expression coincides with equation (7) in the main text, up
to this immaterial scalar §.

Finally, it remains to be shown that this decentralized solution not only delivers the
same distribution of final-good prices, but also the same GVC trade shares as in expres-
sion (8) in the main text. But this is implied by our previous derivations related to the
decentralized approach with incomplete information. In particular, fixing a downstream
stage n, the distribution of upstream costs at n — 1 is again Fréchet distributed, so applying
the law of total probability in the same manner as in (A.12) above, it is straightforward
to re-derive equation (8) in the main text. And, to reiterate, the scalar ¢ is irrelevant for
these equilibrium conditions.

A.3. Introducing Trade Deficits

Let D; be country j’s aggregate deficit in dollars, where ), D; = 0 holds since global
trade is balanced. The only difference in the model’s equations is that the general-
equilibrium equation is given by

lwiLi = Zzanﬁn X PI'(A?,]) X (1 — ijij +w,-Lj —Dj),
Yi Y.

JET neN ]

]

where w;L; — D; is aggregate final-good consumption in country j.
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A.4. Graphical Description of Multi-Stage Production

final consumers

FIGURE A.2.—Multi-stage production with separate intermediate-input and final-good supply chains.

final consumers

FIGURE A.3.—Multi-stage production with common intermediate-input and final-good supply chains.
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o>
@

final consumers

FIGURE A.4.—Single-stage production with separate intermediate-input and final-good technology
(Alexander (2017)).

>

final consumers

FIGURE A.5.—Single-stage production with common intermediate-input and final-good technology (Eaton
and Kortum (2002)).
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A.5. Estimation Results

TABLE A.I
ESTIMATION RESULTS—ASYMMETRIC PARAMETERIZATIONS

17

. X
Yj T/—

J

N 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

AUS 054 0.65 0.74 079 083 796 797 8.03 813 829 352 488 501 496 4.86
AUT 053 0.63 073 078 083 142 104 072 055 043 264 207 1.74 153 1.40
BEL 053 0.62 0.72 079 084 167 095 0.65 048 036 201 164 145 133 1.26
BGR 036 048 058 0.65 0.70 002 0.01 0.00 0.00 0.00 0.03 002 001 0.00 0.00
BRA 056 0.68 076 0.81 0.84 0.10 0.08 0.04 0.03 0.02 037 012 0.06 0.04 0.03
CAN 058 068 0.77 083 087 628 535 459 423 4.03 344 340 325 3.08 294
CHE 053 062 0.72 0.78 0.82 921 800 785 746 692 109 124 145 16,5 175
CHN 033 045 055 062 067 016 0.13 007 005 0.04 035 012 0.08 0.05 0.04
CZE 044 053 0.64 071 076 0.15 0.06 0.03 0.01 0.01 022 0.13 0.08 0.05 0.04
DEU 054 065 074 080 0.83 3.10 3.16 240 198 1.66 5.57 495 469 447 4.29
DNK 057 064 073 079 083 3.01 155 1.14 086 066 539 508 4.42 4.03 3.76
ESP 0.52 0.63 0.72 0.77 080 057 044 027 020 0.16 125 0.78 056 044 0.38
FIN 051 0.60 0.69 074 0.78 129 070 051 039 032 199 208 1.61 135 1.19
FRA 055 066 074 079 082 1.87 193 139 1.12 094 407 3.07 259 228 207
GBR 056 067 0.75 080 084 349 329 259 223 201 332 313 281 257 239
GRC 058 066 0.74 0.78 0.81 0.08 0.03 001 001 0.01 024 014 0.07 0.05 0.03
HRV 046 057 068 0.74 0.78 0.02 0.01 0.00 0.00 0.00 0.03 0.03 001 0.01 0.00
HUN 052 059 070 0.78 0.83 0.05 0.01 0.00 0.00 000 009 0.05 0.03 0.01 0.01
IDN 053 0.65 073 079 0.82 0.00 000 0.00 0.00 000 0.02 0.00 0.00 0.00 0.00
IND 053 0.65 0.73 0.77 080 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
IRL 062 0.67 0.79 088 095 3.03 093 056 033 019 297 229 220 222 231
ITA 051 0.62 0.71 076 080 091 082 056 045 038 1.82 128 1.01 085 0.75
JPN 052 064 072 077 080 132 188 139 1.16 1.02 656 3.66 3.11 273 247
KOR 042 053 063 069 074 055 050 034 026 021 172 093 0.76 0.64 0.56
LTU 046 0.57 0.69 076 0.81 0.03 001 0.00 0.00 000 0.02 0.04 0.02 001 0.01
LUX 032 051 067 079 088 096 265 389 476 519 018 1.61 280 4.28 5.90
MEX 059 0.70 0.77 0.81 0.84 0.05 0.03 0.01 001 001 038 0.11 0.06 0.04 0.03
NLD 0.60 0.69 080 088 092 595 374 318 285 262 289 283 283 281 280
NOR 0.62 0.73 083 0.88 091 31.8 325 401 437 46.1 143 212 225 232 232
POL 048 059 068 074 0.78 020 0.10 0.05 003 002 032 0.18 0.11 0.08 0.06
PRT 054 0.63 071 077 080 0.13 006 0.03 0.02 001 027 015 0.08 0.05 0.04
ROU 049 059 068 074 0.78 0.04 0.02 0.01 0.00 000 007 0.03 0.02 0.01 0.01
ROW 044 057 067 0.73 0.77 006 0.03 0.01 001 000 0.06 0.02 001 0.01 0.00
RUS 055 069 079 085 089 0.63 045 029 023 020 006 0.04 0.03 0.02 0.02
SVK 044 052 064 072 077 0.12 004 0.02 0.01 000 020 0.15 0.08 0.06 0.04
SVN 038 053 065 073 0.79 0.05 0.03 0.01 0.00 000 006 0.08 0.04 0.02 0.02
SWE 055 065 074 080 083 364 243 198 166 141 430 439 398 371 3.52
TUR 053 063 071 076 080 0.09 0.04 0.02 001 001 015 0.08 0.04 0.03 0.02
TWN 055 064 075 083 088 079 035 022 017 014 031 024 0.17 0.13 0.11
USA 0.57 0.69 0.77 0.82 085 915 187 170 16.6 16.6 178 16,5 16.7 164 159
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TABLE A.II
ESTIMATION RESULTS—SYMMETRIC PARAMETERIZATIONS

Y T

N 1 2 1 2

AUS 0.52 0.88 4.79 3.48
AUT 0.55 0.87 2.14 0.57
BEL 0.54 0.83 1.92 0.45
BGR 0.61 0.95 0.10 0.00
BRA 0.57 0.99 0.15 0.01
CAN 0.55 0.92 343 1.65
CHE 0.52 0.81 9.44 6.35
CHN 0.33 0.57 0.18 0.03
CZE 0.48 0.73 0.23 0.02
DEU 0.55 0.87 3.90 1.65
DNK 0.59 0.92 5.04 1.83
ESP 0.54 0.88 0.77 0.14
FIN 0.54 0.87 2.01 0.59
FRA 0.56 0.93 2.58 0.93
GBR 0.55 0.91 2.95 1.24
GRC 0.63 1.00 0.16 0.01
HRV 0.70 1.00 0.22 0.01
HUN 0.61 0.91 0.14 0.01
IDN 0.55 0.93 0.01 0.00
IND 0.56 0.97 0.00 0.00
IRL 0.63 0.92 3.89 0.94
ITA 0.51 0.85 1.15 0.29
JPN 0.54 0.93 2.43 1.08
KOR 0.44 0.71 0.79 0.21
LTU 0.71 1.00 0.58 0.10
LUX 0.45 0.81 8.02 425
MEX 0.64 1.00 0.11 0.00
NLD 0.56 0.86 2.83 0.81
NOR 0.61 0.98 223 17.8
POL 0.50 0.79 0.24 0.02
PRT 0.57 0.93 0.22 0.01
ROU 0.53 0.84 0.06 0.00
ROW 0.43 0.72 0.05 0.00
RUS 0.50 0.84 0.22 0.02
SVK 0.56 0.85 0.47 0.05
SVN 0.62 1.00 0.68 0.25
SWE 0.56 0.88 4.04 1.50
TUR 0.54 0.88 0.11 0.01
TWN 0.51 0.80 0.43 0.06
USA 0.58 1.00 112 15.3
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