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S.0. EXTENSIONS AND OTHER APPLICATIONS

HERE, WE APPLY the notion of credibility to an auction setting with affiliated values, multi-
item auctions with matroid constraints, as well as a simple public good setting.

S.1. AFFILIATED VALUES

Here, we use a discrete model of single-object auctions, as in Section 3.2. As is well-
known, relaxing the independence assumption even slightly results in auctions that ex-
tract all bidder surplus (Cremer and McLean (1988)). The standard (static) mechanisms
for full surplus extraction make each bidder’s payment depend on the other bidders’ types.
The auctioneer can increase revenue by misrepresenting the other bidders’ types, so these
mechanisms are not credible. Even using extensive forms does not generally permit cred-
ible full surplus extraction.

DEFINITION S.1: (G�SN) extracts full surplus if it is BIC, has voluntary participation,
and π(G�SN)= EθN [max{0�maxi∈N θi}].

PROPOSITION S.1: The Cremer and McLean (1988) conditions are not sufficient for the
existence of a credible protocol that extracts full surplus.

PROOF: There are two bidders i and j, each with two possible values 0 < θi < θ′
i < θj <

θ′
j . The joint distribution of types is fN(θi� θj)= fN(θ

′
i� θ

′
j)= 1/3, fN(θi� θ

′
j)= fN(θ

′
i� θj) =

1/6, which satisfies the full rank condition of Cremer and McLean (1988, Theorem 2).
For a given protocol (G�SN), consider the induced allocation rule ỹ and transfer rule

t̃N . Suppose (G�SN) is credible and extracts full surplus. By Propositions 1 and 2, it is
without loss of generality to restrict (G�SN) so that after j is called to play once, he is
never called to play again.

Take any information set Ij at which j is called to play. Since (G�SN) is credible, for each
action that j takes at Ij , there is a unique transfer from j if j wins (Proposition 5). Since
(G�SN) extracts full surplus, j wins no matter whether he plays Sj(Ij� θj) or Sj(Ij� θ

′
j).

Since (G�SN) is BIC, j’s transfer after playing Sj(Ij� θj) is the same as j’s transfer after
playing Sj(Ij� θ

′
j).

This argument applies to every information set at which j is called to play, so j’s transfer
does not depend on his own type; t̃j(θi� θj)= t̃j(θi� θ

′
j) and t̃j(θ

′
i� θj)= t̃j(θ

′
i� θ

′
j).
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Since j always wins the object, the auctioneer can safely deviate to communicate with
j as though i’s type is θi or as though i’s type is θ′

i. Since (G�SN) is credible, j’s transfer
does not depend on i’s type; t̃j(θi� θj) = t̃j(θ

′
i� θj). Thus, j’s transfer is some constant tj

across all type profiles. θj − tj = 0, so θ′
j − tj > 0, and (G�SN) does not extract full surplus,

a contradiction. Q.E.D.

Optimal auctions with correlation are better-behaved if we additionally require ex post
incentive compatibility and ex post individual rationality.1 The virtual values machinery
generalizes, and a modified ascending auction is optimal under some standard assump-
tions (Roughgarden and Talgam-Cohen (2013)). That modified ascending auction is cred-
ible. We now make the claim precisely.

Consider some probability mass function fN : ΘN → [0�1]. We assume symmetric type
spaces, Ki = Kj = K and θk

i = θk
j for all i, j, k, as well as affiliated types (Milgrom and

Weber (1982)).

DEFINITION S.2: fN is symmetric if its value is equal under any permutation of its ar-
guments. fN is affiliated if, for all θN , θ′

N ,

fN
(
θN ∨ θ′

N

)
fN

(
θN ∧ θ′

N

) ≥ fN(θN)fN
(
θ′
N

)
� (S.1)

where ∨ is the component-wise maximum and ∧ the component-wise minimum.

For a protocol (G�SN), let ỹG�SN
i (θN) be an indicator variable equal to 1 if i wins the ob-

ject at θN and 0 otherwise. (We suppress the independence on (G�SN) to ease notation.)

DEFINITION S.3: (G�SN) is optimal among ex post auctions if it maximizes expected
revenue subject to the constraints:

1. Ex post incentive compatibility. For all i, θi, θ′
i, θ−i:

θiỹi(θi� θ−i)− t̃i(θi� θ−i)≥ θiỹi
(
θ′
i� θ−i

) − t̃i
(
θ′
i� θ−i

)
� (S.2)

2. Ex post individual rationality. For all i, θi, θ−i:

θiỹi(θi� θ−i)− t̃i(θi� θ−i)≥ 0� (S.3)

DEFINITION S.4: The conditional virtual value of θk
i given θ−i is

ηi

(
θk
i | θ−i

) ≡ θk
i − 1 − Fi

(
θk
i | θ−i

)
fi

(
θk
i | θ−i

) (
θk+1
i − θk

i

)
� (S.4)

where fi(· | θ−i) is the conditional distribution of θi given θ−i and Fi(· | θ−i) is the con-
ditional cumulative distribution. fN is regular if, for all i and θ−i, ηi(θi | θ−i) is strictly
increasing in θi.

1Ex post incentive compatibility and ex post individual rationality are implied by strategy-proofness and vol-
untary participation (Definition 5). For extensive forms, ex post incentive compatibility and strategy-proofness
are not equivalent. An opponent strategy profile S−i consists of complete contingent plans of action. Ex post
incentive compatibility in effect considers only plans ‘consistent with’ some opponent type profile θ−i .
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We now define a modified ascending auction. When there is only one bidder left, the
auctioneer sets a reserve so that she only sells to types with a positive conditional virtual
value.2 That reserve depends on the final bids from the bidders who quit.

DEFINITION S.5: (G�SN) is a quirky ascending auction if:
1. All bidders start as active, with initial bids (bi)i∈N := (θ1

i )i∈N .
2. Whenever there is more than one active bidder, some active bidder i is called to

play, where bi ≤ maxj 
=i bj .
(a) i chooses between two actions; he can either raise bi by one increment3 or quit.
(b) If i quits, then he is no longer active.
3. When there is exactly one active bidder i, if ηi(bi | b−i) ≤ 0, i chooses to either raise

his bid to minb′
i | ηi(b

′
i | b−i) > 0 or quit. Otherwise i wins and pays bi.

4. Inactive bidders do not win the object, and have zero transfers.
5. Si specifies that i bids bi if and only if θi ≥ bi.

PROPOSITION S.2: Assume fN is symmetric, affiliated, and regular. If (G�SN) is a quirky
ascending auction, then it is optimal among ex post auctions and is credible.

PROOF: Define ν(θi� θ−i)= θiỹi(θi� θ−i)− t̃i(θi� θ−i).
We can use the same method as in Elkind (2007) to derive an upper bound on ν(θi� θ−i)

under ex post incentive compatibility and ex post individual rationality, namely,

ν
(
θk
i � θ−i

) ≥
k∑
l=2

ỹi
(
θl−1
i � θ−i

)(
θl
i − θl−1

i

)
� (S.5)

This implies a bound on i’s expected utility conditional on θ−i, namely,

Eθi

[
ν
(
θk
i � θ−i

) | θ−i

] ≥
K∑

k=2

fi
(
θk
i

) k∑
l=1

ỹi
(
θl−1
i � θ−i

)(
θl
i − θl−1

i

)

=
K∑

k=1

fi
(
θk
i | θ−i

)1 − Fi

(
θk
i | θ−i

)
fi

(
θk
i | θ−i

) (
θk+1
i − θk

i

)
ỹi

(
θk
i � θ−i

)
� (S.6)

which gives an upper bound on expected revenue

π(G�SN)=
∑
i∈N

EθN

[
θiỹi(θN)− ν(θi� θ−i)

]

=
∑
i∈N

Eθ−i

[
Eθi

[
θiỹi(θN)− ν(θi� θ−i) | θ−i

]]

≤
∑
i∈N

Eθ−i

[
Eθi

[
ηi(θi | θ−i)ỹi(θN) | θ−i

]] = EθN

[∑
i∈N

ηi(θi | θ−i)ỹi(θN)

]
� (S.7)

2This definition is due to Roughgarden and Talgam-Cohen (2013), and differs only in that our construction
is for finite type spaces to allow the use of extensive game forms.

3That is, from θk
i to θk+1

i , where we set θK+1
i > θK

i .



4 M. AKBARPOUR AND S. LI

Moreover, the above equation holds with equality if the local downward incentive con-
straints bind and the participation constraints bind for the lowest type, where these con-
straints are conditional on θ−i.

We now apply the argument in Roughgarden and Talgam-Cohen (2013), which is writ-
ten for continuous densities but works also for the discrete case. For the reader’s conve-
nience, we repeat it here.

LEMMA S.1: If fN is affiliated and θj < θ′
j , then ηi(θi | θj� θN\{i�j})≥ ηi(θi | θ′

j� θN\{i�j}).

By affiliation, Fi(θi | θ′
j� θN\{i�j}) dominates Fi(θi | θj� θN\{i�j}) in terms of hazard rate

(Krishna (2010, Appendix D)), that is,

1 − Fi(θi | θj� θN\{i�j})
fi(θi | θj� θN\{i�j})

≤ 1 − Fi

(
θi | θ′

j� θN\{i�j}
)

fi
(
θi | θ′

j� θN\{i�j}
) � (S.8)

which implies ηi(θi | θj� θN\{i�j}) ≥ ηi(θi | θ′
j� θN\{i�j}). This proves Lemma S.1.

LEMMA S.2: Assume fN is symmetric, regular, and affiliated. For all θN\{i�j}, if k≥ k′, then
ηi(θ

k
i | θN\{i�j}� θk′

j ) ≥ ηj(θ
k′
j | θN\{i�j}� θk

i ).

PROOF:

ηi

(
θk
i | θN\{i�j}� θk′

j

) ≥ θk′
i − 1 − Fi

(
θk′
i | θN\{i�j}� θk′

j

)
fi

(
θk′
i | θN\{i�j}� θk′

j

) (
θk′+1
i − θk′

i

)

≥ θk′
i − 1 − Fi

(
θk′
i | θN\{i�j}� θk

j

)
fi

(
θk′
i | θN\{i�j}� θk

j

) (
θk′+1
i − θk′

i

)

= ηj

(
θk′
j | θN\{i�j}� θk

i

)
� (S.9)

where the first inequality follows from regularity, the second inequality follows from
Lemma S.1, and the equality follows from symmetry. This proves Lemma S.2. Q.E.D.

By Lemma S.2, the right-hand side of Equation (S.7) is maximized by, at each θN , selling
to some bidder in arg maxi θi if maxi ηi(θi | θ−i) > 0, and keeping the object otherwise. The
quirky ascending auction does this, and additionally the local incentive constraints bind
downward and the participation constraint of the lowest type binds, so the left-hand side
of Equation (S.7) is equal to the right-hand side. Thus, any quirky ascending auction is
optimal among ex post mechanisms.

It remains to prove that the quirky ascending auction is credible. Once more, note that
Si is a best response to any safe deviation by the auctioneer. Under any safe deviation,
if bi ≤ θi, then bidder i’s utility is non-negative if he continues bidding according to Si,
and zero if he quits now. If bi > θi, then bidder i’s utility is non-positive if he continues
bidding, and zero if he quits now. Thus, Si is a best response to any safe deviation by
the auctioneer, regardless of θ−i. For any safe deviation S′

0, the corresponding protocol
(G′� SN) is ex post incentive-compatible and ex post individually rational. Suppose that S′

0
is profitable, so (G′� SN) yields strictly more expected revenue than (G�SN). Since (G�SN)
is optimal among ex post mechanisms, we have the desired contradiction. Q.E.D.
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S.2. AUCTIONS WITH MATROID CONSTRAINTS

So far we have assumed that, in each feasible allocation, there is at most one winner.
Suppose instead that multiple bidders can be satisfied at once; that is, the feasible sets of
winners are a family F ⊆ 2N . Each bidder’s type is independently distributed according
to fi :Θi → (0�1], where i’s utility at allocation Y ∈F is θi1i∈Y − ti. Each bidder observes
whether or not he is in the allocation, and his own transfer.

DEFINITION S.6: F is a matroid if:
1. ∅ ∈F .
2. If Y ′ ⊂ Y and Y ∈F , then Y ′ ∈F .
3. For any Y�Y ′ ∈F , if |Y | > |Y ′|, then there exists i ∈ Y \Y ′ such that Y ′ ∪ {i} ∈F .

Here are some examples of matroids:
1. The auctioneer can sell at most k items; that is, Y ∈F if and only if |Y | ≤ k.
2. There are incumbent bidders and new entrants. The auctioneer sells k licenses, and

at most l licenses can be sold to incumbents.
3. The auctioneer is selling the edges of a graph. Each edge is demanded by exactly one

bidder, and the auctioneer can sell any set of edges that is acyclic.
4. There are bands of spectrum {1� � � � �K}, and each band k is acceptable to a subset

of bidders Nk. Each bidder is indifferent between bands that he finds acceptable. At most
one bidder can be assigned to each band.

PROPOSITION S.3: If F is a matroid, then there exists a credible strategy-proof optimal
protocol.

We describe this protocol informally, since the fine details parallel Definition 17, and
our construction draws heavily on Bikhchandani, De Vries, Schummer, and Vohra (2011)
and Milgrom and Segal (2017). Each bidder’s starting bid is equal to his lowest possible
type. We score bids according to their ironed virtual values, and keep track of a set of
active bidders N̂ .

Bidder i is essential at N̂ if, for all Y ⊆ N̂ , if Y ∈ F , then Y ∪ {i} ∈ F . At each step,
we choose an active bidder i whose score is minimal in N̂ . If i’s score is positive and i is
essential at N̂ , then we guarantee that i is in the allocation and charge him his current
bid, removing him from N̂ . Otherwise, i chooses to either raise his bid until his score is
positive and no longer minimal, or quit (in which case he is also removed from N̂). The
auction ends when N̂ = ∅.

The above protocol outputs the same allocation as a greedy algorithm that starts with
the empty set and at each step adds a bidder with the highest ironed virtual value among
those that can be feasibly added, until no bidders with positive ironed virtual values can be
added (we prove this in the Appendix). By a standard result in combinatorial optimiza-
tion (Hartline (2016, p. 134)), this greedy algorithm maximizes the ironed virtual value
when F is a matroid. Given that the relevant participation constraints and incentive con-
straints bind, maximizing ironed virtual values implies that the protocol is optimal (Elkind
(2007)).

The auction we described is credible, for the same reasons as before: Since truthful bid-
ding is best response to any safe deviation, if the auctioneer could improve revenue by a
safe deviation, she could have committed from the beginning to an alternative mechanism
and increased revenue. Since the original protocol was optimal, we have a contradiction.
The formal proof of Proposition S.3 follows.
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PROOF: Suppose we construct ironed virtual values for discrete type spaces as in Elkind
(2007). Let the protocol break ties according to some fixed order on N , when two bids
have the same ironed virtual value.

Fix some type profile θN . Let us label bidders in decreasing order of ironed virtual
values, {1�2� � � � � n}, breaking ties according to the fixed order. Let {i1� i2� � � � � iJ} be the
set picked by the greedy algorithm, in order of selection (where the algorithm breaks ties
using the same fixed order). We must show that the protocol described in Section S.2
results in the same allocation.

Take the greedy algorithm’s jth pick, ij = k. We will show that k is essential with respect
to the set of active bidders N̂ before k is asked to place a bid strictly above his type.
Consider any step of the algorithm at which k, if not essential, would be asked to place a
bid strictly above his type. At this step, N̂ ⊆ {1�2� � � � �k}, since bidders with lower ironed
virtual values have either been put in the allocation or quit (and similarly bidders with
equal ironed virtual values but who lose ties to k).

Take any Y ⊆ {1�2� � � � �k} such that Y ∈F . We assert that Y ∪ {k} ∈F . There are two
cases: either |Y | ≥ j or |Y | < j.

Suppose |Y | ≥ j > |{i1� � � � � ij−1}|. Since F is a matroid, there exists l ∈ Y \ {i1� � � � � ij−1}
such that {i1� � � � � ij−1} ∪ {l} ∈ F . If Y ∪ {k} /∈ F , then k /∈ Y , so k 
= l. Thus, ij = k is not
the greedy algorithm’s jth pick, a contradiction.

If |Y | < j = |{i1� � � � � ij}|, then since F is a matroid, there exists l ∈ {i1� � � � � ij} \ Y such
that Y ∪ {l} ∈ F and Y ∪ {l} ⊆ {1� � � � �k}. Thus, we can find Y ′ ⊃ Y such that |Y ′| = j,
Y ′ ⊆ {1� � � � �k}, and Y ′ ∈F . From the argument in the previous paragraph, Y ′ ∪ {k} ∈F ,
and, since F is a matroid, Y ∪ {k} ∈F .

We have now established that, since N̂ ⊆ {1�2� � � � �k}, k is essential with respect to N̂ .
Thus, the jth pick of the greedy algorithm is in the allocation produced by the protocol.
This argument holds for all j, so the protocol’s allocation is a superset of {i1� � � � � iJ}. But
the protocol only sells to bidders with positive ironed virtual values, so its allocation is
exactly {i1� � � � � iJ}, and the protocol is optimal.

Finally, note that for any safe deviation, each bidder’s ‘truth-telling’ strategy is a best
response. That is, each bidder should keep bidding so long as the price he faces is weakly
below his value, and quit otherwise. Thus, if the auctioneer has a profitable safe deviation,
then the original protocol is not optimal, a contradiction. Q.E.D.

REFERENCES

BIKHCHANDANI, S., S. DE VRIES, J. SCHUMMER, AND R. V. VOHRA (2011): “An Ascending Vickrey Auction
for Selling Bases of a Matroid,” Operations Research, 59, 400–413. [5]

CREMER, J., AND R. P. MCLEAN (1988): “Full Extraction of the Surplus in Bayesian and Dominant Strategy
Auctions,” Econometrica: Journal of the Econometric Society, 1247–1257. [1]

ELKIND, E. (2007): “Designing and Learning Optimal Finite Support Auctions,” in Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathemat-
ics, 736–745. [3,5,6]

HARTLINE, J. D. (2016): “Mechanism Design and Approximation,”, Book draft, 122. [5]
KRISHNA, V. (2010): Auction Theory. San Diego, USA: Academic Press. [4]
MILGROM, P., AND I. SEGAL (2017): “Deferred-Acceptance Auctions and Radio Spectrum Reallocation,” Tech.

Rep., Working Paper. [5]
MILGROM, P. R., AND R. J. WEBER (1982): “A Theory of Auctions and Competitive Bidding,” Econometrica:

Journal of the Econometric Society, 1089–1122. [2]
ROUGHGARDEN, T., AND I. TALGAM-COHEN (2013): “Optimal and Near-Optimal Mechanism Design With

Interdependent Values,” in Proceedings of the Fourteenth ACM Conference on Electronic Commerce. ACM,
767–784. [2-4]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/bikhchandani2011ascending&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/CM1998&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/elkind2007&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/MW1982&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/bikhchandani2011ascending&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/CM1998&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/elkind2007&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/elkind2007&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/MW1982&rfe_id=urn:sici%2F0012-9682%282020%2988%3A2%2B%3C1%3ASTCAAT%3E2.0.CO%3B2-C


CREDIBLE AUCTIONS: A TRILEMMA 7

Co-editor Dirk Bergemann handled this manuscript.

Manuscript received 9 December, 2017; final version accepted 11 November, 2019; available online 4 December,
2019.


	Extensions and Other Applications
	Afﬁliated Values
	Auctions With Matroid Constraints
	References

