SUPPLEMENT TO "ON THE EFFICIENCY OF SOCIAL LEARNING" (Econometrica, Vol. 87, No. 6, NOVEMBER 2019, 2141-2168)

Dinah Rosenberg
Economics and Decision Sciences, HEC Paris
Nicolas Vieille
Economics and Decision Sciences, HEC Paris

Abstract

This file contains the proofs of the statements of "on the efficiency of online learning," with the exception of Theorem 2, which is proven in the main paper.

S1. THE BENCHMARK: PROOF OF THEOREM 1

WE HERE PROVIDE THE MISSING ARGUMENTS in the analysis of the benchmark case.
Lemma S1: One has $\psi_{*}(0)>0$.
Proof: Recall that, for $\lambda \geq 0, \psi(\lambda)=\ln \mathbf{E}_{L}\left[\exp \left(\lambda \ln \frac{\tilde{q}}{1-\tilde{q}}\right)\right]$, which, by virtue of Claim 1 in the paper, is equal to

$$
\psi(\lambda)=\ln \mathbf{E}_{L}\left[\left(\frac{f_{H}}{f_{L}}(\tilde{q})\right)^{\lambda}\right]=\ln \int_{0}^{1} f_{H}^{\lambda}(q) f_{L}^{1-\lambda}(q) d q
$$

This readily yields $\psi(0)=\psi(1)=0$.
Since $t \mapsto e^{t x}$ is convex, the set $\Lambda:=\{\lambda \geq 0, \psi(\lambda)<+\infty\}$ is an interval. Since the private belief \tilde{q} is not a.s. constant, and since $t \mapsto e^{t x}$ is strictly convex whenever $x \neq 0, \psi$ is strictly convex on Λ. Since $\psi(0)=\psi(1)=0$, this implies that $\psi(\lambda)<0$ for each $\lambda \in(0,1)$ and $\psi(\lambda)>0$ for each $\lambda>1$. Thus,

$$
\psi_{*}(0)=\sup _{[0,1]}(-\psi)>0 .
$$

LEMMA S2: If $F(q)=q$ for each q, one has $\psi_{*}(0)=-\ln \frac{\pi}{4}$.
Proof: Recall from the proof of Lemma S1 that $\psi_{*}(0)=-\min _{[0,1]} \psi$. Since $F(q)=q$, one has $f_{H}(q)=f_{L}(1-q)=2 q$ for each $q \in[0,1]$, hence $\psi(\lambda)=\psi(1-\lambda)$ for each $\lambda \in[0,1]$. Since ψ is convex on [0, 1], this implies that

$$
\min _{[0,1]} \psi=\psi\left(\frac{1}{2}\right)
$$

[^0]and therefore,
$$
\psi_{*}(0)=-\psi\left(\frac{1}{2}\right)=-\ln \int_{0}^{1} 2 \sqrt{q(1-q)} d q=-\ln \frac{\pi}{4}
$$
where the last equality follows using routine computations.

S2. THE LAST-OBSERVED SETUP: PROOF OF THEOREM 3

In this section, we prove Theorem 3, following closely the outline in Section 3.1. We thus assume that $\phi_{n}\left(a_{1}, \ldots, a_{n-1}\right)=a_{n}$. The social belief at time n is given by $\pi_{n}=\mathbf{P}(\tilde{\theta}=$ $H \mid a_{n}$).

For $n \geq 1$, we denote by $x_{n}:=\mathbf{P}_{L}\left(a_{n}=h\right)$ the probability that agent n makes the wrong choice (given L). Under Assumptions A1 and A2, we show that

$$
\begin{equation*}
\sum_{n \geq 1} x_{n}<+\infty \quad \Leftrightarrow \quad \int_{0}^{1} \frac{q}{\int_{0}^{q} F(x) d x} d x<\infty \tag{S2.1}
\end{equation*}
$$

Since $\mathbf{E}_{L}[W]=\sum_{n=1}^{+\infty} x_{n}$, Theorem 3 will follow.
We start with some simple properties of the sequence $\left(x_{n}\right)$. The core of the argument is in Section S2.2.

S2.1. The Sequence (x_{n})

LEMMA S3: For all $n \geq 1$, one has $x_{n+1}-x_{n}=-2 \int_{0}^{x_{n}} F(q) d q$.
Proof: Fix $n \geq 1$. By Bayes's rule and for each $a \in\{l, h\}$, one has

$$
\begin{equation*}
\frac{\mathbf{P}\left(\tilde{\theta}=H \mid a_{n}=a\right)}{\mathbf{P}\left(\tilde{\theta}=L \mid a_{n}=a\right)}=\frac{\mathbf{P}_{H}\left(a_{n}=a\right)}{\mathbf{P}_{L}\left(a_{n}=a\right)} . \tag{S2.2}
\end{equation*}
$$

Since $a_{n+1}=h$ if and only if $q_{n+1}+\pi_{n+1} \geq 1$, it follows from (S2.2) that

$$
\begin{align*}
\mathbf{P}_{\theta}\left(a_{n+1}=h\right) & =\sum_{a \in\{l, h\}} \mathbf{P}_{\theta}\left(a_{n}=h\right) \mathbf{P}_{\theta}\left(q_{n+1}+\mathbf{P}_{\theta}\left(H \mid a_{n}=a\right) \geq 1\right) \\
& =\sum_{a \in\{l, h\}} \mathbf{P}_{\theta}\left(a_{n}=a\right) \mathbf{P}_{\theta}\left(q_{n+1} \geq 1-\frac{\mathbf{P}_{H}\left(a_{n}=a\right)}{\mathbf{P}_{L}\left(a_{n}=a\right)+\mathbf{P}_{H}\left(a_{n}=a\right)}\right) \tag{S2.3}
\end{align*}
$$

The symmetry Assumption A1 implies inductively that $\mathbf{P}_{H}\left(a_{n}=l\right)=\mathbf{P}_{L}\left(a_{n}=h\right)$ for each n or, equivalently, $\mathbf{P}_{L}\left(a_{n}=a\right)+\mathbf{P}_{H}\left(a_{n}=a\right)=1$ for each a and $n \in \mathbf{N}$. Equation (S2.3) thus yields

$$
\begin{aligned}
x_{n+1} & =\sum_{a \in\{l, h\}} \mathbf{P}_{L}\left(a_{n}=a\right) \times \mathbf{P}_{L}\left(q_{n+1} \geq \mathbf{P}_{L}\left(a_{n}=a\right)\right) \\
& =x_{n}\left(1-F_{L}\left(x_{n}\right)\right)+\left(1-x_{n}\right)\left(1-F_{L}\left(1-x_{n}\right)\right) .
\end{aligned}
$$

Substituting $F_{L}(q)=2(1-q) F(q)+2 \int_{0}^{q} F(x) d x$ (see Section A), elementary manipulations lead to the desired result.
Q.E.D.

Since F_{L} and F_{H} have the same support, the set of guesses that agent n makes with positive probability is independent of θ. By symmetry, both guesses are made with positive probability: $\mathbf{P}_{\theta}\left(a_{n}=a\right)>0$, for each a, θ, and n. Thus, $x_{n}>0$.

LEMMA S4: The sequence $\left(x_{n}\right)$ is nonincreasing, with $\lim x_{n}=0$ if and only if $q_{\min }=0$.
PROOF: Denote by $l \geq 0$ the limit of the nonnegative, nonincreasing sequence (x_{n}), and observe that l solves $\int_{0}^{l} F(t) d t=0$. If $q_{\min }=0$, one has $F(q)>0$ for all $q>0$; therefore, $l=0$. If $q_{\min }>0$, either $x_{n}>q_{\min }$ for all n and $l \geq q_{\min }$ or $x_{\bar{n}} \leq q_{\min }$ for some \bar{n}, in which case $x_{n}=x_{\bar{n}}$ for all $n \geq \bar{n}$ and, thus, $l=x_{\bar{n}}>0$.
Q.E.D.

Lemma S4 allows us to dispose of the case where $q_{\text {min }}>0$. In that case, the sequence $\left(x_{n}\right)$ is bounded away from zero; therefore, $\sum_{n} x_{n}=+\infty$: learning is inefficient and the equivalence (S2.1) holds.

In the rest of the proof, we assume that $F(q)>0$ for all $q>0$, and we set $G(x):=$ $2 \int_{0}^{x} F(t) d t$.

S2.2. The Continuous-Time Approximation

We use a time-change technique to assess the convergence of $\sum x_{n}$. Fix $a>0$ such that $a \alpha>1$, where $\alpha>0$ is given by Assumption A2, and for $k \geq 1$, set

$$
\omega_{k}:=\inf \left\{n: x_{n}<\frac{1}{k^{a}}\right\} \quad(\text { with } \inf \emptyset=+\infty) .
$$

Note that $\omega_{k+1} \geq \omega_{k}$ and that $\omega_{k}<+\infty$ for each k since $\left(x_{n}\right) \rightarrow 0$.
Heuristically, the derivation of the continuous-time approximation is sufficiently simple. For $\omega_{k} \leq n<\omega_{k+1}, x_{n}$ is of the order of $1 / k^{a}$ and $x_{n}-x_{n+1}$ is of the order of $G\left(1 / k^{a}\right)$. Therefore, $\omega_{k+1}-\omega_{k}$ is approximately equal to $\frac{\frac{1}{k^{a}}-\frac{1}{(k+1)^{a}}}{G\left(1 / k^{a}\right)}$, which is of the order of $\frac{1}{k^{a+1} G\left(1 / k^{a}\right)}$. Thus, $\sum_{n=1}^{+\infty} x_{n}=\sum_{k=1}^{+\infty} \sum_{\omega_{k}}^{\omega_{k+1}-1} x_{n}$ is of the order of $\sum_{k=1}^{+\infty} \frac{1}{k^{2 a+1}} \frac{1}{G\left(\frac{1}{k^{a}}\right)}$ (Lemmas S6, S7, and S8). We then conclude with a simple series-integral comparison argument. The details are, however, somewhat cumbersome.

Lemma S5 is the only place in the proof where Assumption A2 is used.
LEMMA S5: The sequence $\left(\omega_{k}\right)$ is eventually strictly increasing.
Proof: When integrating Assumption A2, one obtains $G(x) \leq \frac{2 C}{\alpha+1} x^{\alpha+1}$ for x sufficiently close to 0 . In particular, $G\left(\frac{1}{k^{a}}\right) \leq \frac{2 C}{\alpha+1}\left(\frac{1}{k}\right)^{a+a \alpha}$ for k large; thus,

$$
G\left(\frac{1}{k^{a}}\right)=o\left(\frac{1}{k^{a+1}}\right) \quad \text { as } k \rightarrow+\infty
$$

since $a \alpha>1$.
Since $\frac{1}{k^{a}}-\frac{1}{(k+1)^{a}} \sim \frac{a}{k^{a+1}}$ as $k \rightarrow+\infty$, this implies the existence of $K_{0} \in \mathbf{N}$ such that

$$
G\left(\frac{1}{k^{a}}\right)<\frac{1}{k^{a}}-\frac{1}{(k+1)^{a}} \quad \text { for each } k \geq K_{0}
$$

On the other hand, let \bar{q} be the median of $F: F(\bar{q})=\frac{1}{2}$. Since $1-G^{\prime}(x)=1-2 F(x)$, the map $x \mapsto x-G(x)$ is nondecreasing on $[0, \bar{q}]$. Let N be such that $x_{n}<\bar{q}$ for each $n \geq N$ and K_{1} be such that $\omega_{K_{1}}>N+1$. Finally, set $K_{*}:=\max \left(K_{0}, K_{1}\right)$. We will prove that $\omega_{k+1}>\omega_{k}$ for each $k \geq K_{*}$.

Let $k \geq K_{*}$ be arbitrary and set $n:=\omega_{k}-1$. Since $k \geq K_{1}$, one has $n>N$, so

$$
\frac{1}{k^{a}} \leq x_{\omega_{k}-1}=x_{n}<\bar{q} .
$$

Thus,

$$
x_{n+1}=x_{n}-G\left(x_{n}\right) \geq \frac{1}{k^{a}}-G\left(\frac{1}{k^{a}}\right)>\frac{1}{(k+1)^{a}},
$$

where the first inequality holds since G is nondecreasing on $[0, \bar{q}]$ and the second holds since $k \geq K_{0}$. Since $n+1=\omega_{k}$, we have thus proven that $x_{\omega_{k}}>\frac{1}{(k+1)^{a}}$, which implies $\omega_{k+1}>\omega_{k}$.
Q.E.D.

Lemma S6: One has

$$
x_{\omega_{k}}-x_{\omega_{k+1}} \sim \frac{a}{k^{a+1}}, \quad \text { as } k \rightarrow+\infty .
$$

Proof: We let K_{*} be defined as in the proof of Lemma S5. For $k \geq K_{*}$, one has

$$
\begin{equation*}
\frac{1}{k^{a}} \geq x_{\omega_{k}}=x_{\omega_{k}-1}-G\left(x_{\omega_{k}-1}\right) \geq \frac{1}{k^{a}}-G\left(\frac{1}{k^{a}}\right) \tag{S2.4}
\end{equation*}
$$

where the first inequality holds by definition of ω_{k} and the second holds since $x_{\omega_{k}-1} \in$ $\left[\frac{1}{k^{a}}, \bar{q}\right]$ and since $x \mapsto x-G(x)$ is nonincreasing on $[0, \bar{q}]$.

For the same reason,

$$
\begin{equation*}
\frac{1}{(k+1)^{a}} \geq x_{\omega_{k+1}} \geq \frac{1}{(k+1)^{a}}-G\left(\frac{1}{(k+1)^{a}}\right) . \tag{S2.5}
\end{equation*}
$$

By combining (S2.4) and (S2.5), one obtains

$$
\frac{1}{k^{a}}-\frac{1}{(k+1)^{a}}-G\left(\frac{1}{k^{a}}\right) \leq x_{\omega_{k}}-x_{\omega_{k+1}} \leq \frac{1}{k^{a}}-\frac{1}{(k+1)^{a}}+G\left(\frac{1}{(k+1)^{a}}\right) .
$$

Since $\frac{1}{k^{a}}-\frac{1}{(k+1)^{a}} \sim \frac{a}{k^{a+1}}$ and $G\left(\frac{1}{k^{a}}\right)=o\left(\frac{1}{k^{a+1}}\right)$ as $k \rightarrow+\infty$ (see the proof of Lemma S5), the result follows.
Q.E.D.

LEMMA S7: One has $\sum_{n=1}^{+\infty} x_{n}<+\infty \Leftrightarrow \sum_{k=1}^{+\infty} \frac{\omega_{k+1}-\omega_{k}}{k^{a}}<+\infty$.
PROOF: Since $\frac{1}{(k+1)^{a}}<x_{n} \leq \frac{1}{k^{a}}$ when $\omega_{k} \leq n<\omega_{k+1}$, one has

$$
\sum_{k=1}^{+\infty} \frac{\omega_{k+1}-\omega_{k}}{(k+1)^{a}}<\sum_{n=\omega_{1}}^{+\infty} x_{n} \leq \sum_{k=K_{*}}^{+\infty} \frac{\omega_{k+1}-\omega_{k}}{k^{a}}
$$

Since $\frac{1}{k^{a}} \sim \frac{1}{(k+1)^{a}}$ as $k \rightarrow+\infty$, the result follows.
Q.E.D.

LEMMA S8: One has $\sum_{n=1}^{+\infty} x_{n}<+\infty \Leftrightarrow \sum_{k=1}^{+\infty} \frac{1}{k^{2 a+1}} \frac{1}{G\left(\frac{1}{k^{a}}\right)}<+\infty$.
PROOF: For each k and n such that $\omega_{k} \leq n<\omega_{k+1}$,

$$
G\left(\frac{1}{(k+1)^{a}}\right) \leq x_{n}-x_{n+1} \leq G\left(\frac{1}{k^{a}}\right)
$$

hence, by summing over n,

$$
\begin{equation*}
\left(\omega_{k+1}-\omega_{k}\right) G\left(\frac{1}{(k+1)^{a}}\right) \leq x_{\omega_{k}}-x_{\omega_{k+1}} \leq\left(\omega_{k+1}-\omega_{k}\right) G\left(\frac{1}{k^{a}}\right) \tag{S2.6}
\end{equation*}
$$

We note that without further information about F, it is unclear whether $G\left(\frac{1}{(k+1)^{a}}\right) \sim G\left(\frac{1}{k^{a}}\right)$ as $k \rightarrow+\infty$. Hence, it is not possible to derive from (S2.6) an asymptotic equivalent for $\omega_{k+1}-\omega_{k}$; more work is needed.

If $\sum_{n} x_{n}<+\infty$, then $\sum_{k} \frac{\omega_{k+1}-\omega_{k}}{k^{a}}<+\infty$ by Lemma S7; hence, $\sum_{k} \frac{x_{\omega_{k}}-x_{\omega_{k}+1}}{k^{a} G\left(\frac{1}{k^{a}}\right)}<+\infty$ by (S2.6), which by Lemma S6 implies $\sum_{k} \frac{1}{k^{2 a+1} G\left(1 / k^{a}\right)}<+\infty$.

Conversely, if $\sum_{k} \frac{1}{k^{2 a+1} G\left(1 / k^{a}\right)}<+\infty$, then $\sum_{k} \frac{1}{(k-1)^{2 a+1} G\left(1 / k^{a}\right)}<+\infty$ since $\frac{1}{(k-1)^{2 a+1}} \sim \frac{1}{k^{a}}$ as $k \rightarrow+\infty$, hence $\sum_{k} \frac{1}{k^{2 a+1} G\left(1 /(k+1)^{a}\right)}<+\infty$, which by Lemma S6 implies $\sum_{k} \frac{x_{\omega_{k}}-x_{\omega_{k+1}}}{k^{a} G\left(1 /(k+1)^{a}\right)}<$ $+\infty$ and, therefore, $\sum_{k} \frac{\omega_{k+1}-\omega_{k}}{k^{a}}<+\infty$ by (S2.6), which yields $\sum_{n} x_{n}<+\infty$ by Lemma S7.
Q.E.D.

To simplify the following statement, we introduce

$$
a(t):=\frac{1}{t^{2 a+1}} \quad \text { and } \quad b(t):=G\left(\frac{1}{k^{a}}\right) \quad(t>0)
$$

Lemma S9: One has $\sum_{k=1}^{+\infty} \frac{a(k)}{b(k)}<+\infty \Leftrightarrow \int_{1}^{+\infty} \frac{a(t)}{b(t)}<+\infty$.
PROOF: Since $a(\cdot)$ and $b(\cdot)$ are decreasing on $[1,+\infty)$,

$$
\frac{a(k+1)}{b(k)} \leq \int_{k}^{k+1} \frac{a(t)}{b(t)} d t \leq \frac{a(k)}{b(k+1)}
$$

for each k and, therefore,

$$
\begin{equation*}
\sum_{k=1}^{+\infty} \frac{a(k+1)}{b(k)} \leq \int_{1}^{+\infty} \frac{a(t)}{b(t)} d t \leq \sum_{k=1}^{+\infty} \frac{a(k)}{b(k+1)} \tag{S2.7}
\end{equation*}
$$

Since $a(k) \sim a(k+1)$ as $k \rightarrow+\infty$, the three series $\sum \frac{a(k+1)}{b(k)}, \sum \frac{a(k)}{b(k+1)}$, and $\sum \frac{a(k)}{b(k)}$ are simultaneously convergent or divergent; hence, the result follows from (S2.7).
Q.E.D.

Observe now that $\int_{1}^{+\infty} \frac{a(t)}{b(t)} d t=\int_{0}^{1} \frac{q}{G(q)} d q$, using the change of variables $q=1 / t^{a}$. We have thus proven that $\sum x_{n}<+\infty$ if and only if $\int_{0}^{1} \frac{q}{G(q)}<+\infty$. This concludes the proof of Theorem 3.

S3. ILLUSTRATIONS: PROOFS OF PROPOSITIONS 1 AND 2

Denote by Φ the cdf of the standard normal distribution. We start with the proof of Proposition 1. Assume w.l.o.g. that $\Delta \mu:=\mu_{H}-\mu_{L}>0$, and denote by g_{θ} the conditional density of s_{n} given $\tilde{\theta}=\theta$. Following a signal realization \tilde{s} and by Bayes's rule, the private belief \tilde{q} is given by

$$
\ln \frac{\tilde{q}}{1-\tilde{q}}=\ln \frac{g_{H}(\tilde{s})}{g_{L}(\tilde{s})}=\frac{\Delta \mu}{\sigma^{2}}\left(\tilde{s}-\frac{\mu_{H}+\mu_{L}}{2}\right)
$$

and is therefore increasing in \tilde{s}. Thus, for $q \in(0,1)$, one has

$$
F_{L}(q)=\mathbf{P}_{L}(\tilde{q} \leq q)=\mathbf{P}_{L}\left(\ln \frac{\tilde{q}}{1-\tilde{q}} \leq \ln \frac{q}{1-q}\right)=\mathbf{P}_{L}\left(\tilde{s} \leq \frac{\mu_{H}+\mu_{L}}{2}+\frac{\sigma^{2}}{\Delta \mu} \ln \frac{q}{1-q}\right)
$$

Since the r.v. $\frac{\tilde{s}-\mu_{L}}{\sigma}$ follows a standard normal distribution conditional on $\tilde{\theta}=L$, this yields $F_{L}(q)=\Phi(x(q))$ for each q, where

$$
x(q):=\frac{\Delta \mu}{2 \sigma}+\frac{\sigma}{\Delta \mu} \ln \frac{q}{1-q}
$$

We will use the inequality $\Phi(x) \leq e^{-x^{2} / 2}$, which holds for all $x<0$ such that $|x|$ is large enough. Since

$$
x(q)^{2}=\left(\frac{\Delta \mu}{2 \sigma}\right)^{2}+\ln \frac{q}{1-q}+\left(\frac{\sigma}{\Delta \mu}\right)^{2}\left(\ln \frac{q}{1-q}\right)^{2} \geq \ln q+\frac{\sigma^{2}}{(\Delta \mu)^{2}}\left(\ln \frac{q}{1-q}\right)^{2}
$$

one obtains

$$
\begin{equation*}
F_{L}(q) \leq e^{-(x(q))^{2} / 2} \leq \frac{1}{\sqrt{q}} \exp \left\{-\frac{\sigma^{2}}{2(\Delta \mu)^{2}}\left(\ln \frac{q}{1-q}\right)^{2}\right\} \tag{S3.1}
\end{equation*}
$$

for all q close enough to zero. The right-hand side of (S3.1) is equivalent to $\frac{1}{\sqrt{q}} \exp \left(-\frac{\sigma^{2}}{2(\Delta \mu)^{2}}(\ln q)^{2}\right)$ in the neighborhood of zero, ${ }^{1}$ which around zero is negligible relative to any polynomial function of q. Proposition 1 follows.

We turn to the proof of Proposition 2, which is similar. We assume w.l.o.g. that $\mu_{H}=$ $\mu_{L}=0$. Following a signal realization \tilde{s} and by Bayes's rule, the private belief \tilde{q} is given by

$$
\frac{\tilde{q}}{1-\tilde{q}}=\frac{\sigma_{L}}{\sigma_{H}} e^{-\frac{\tilde{j}^{2}}{2 \delta}},
$$

[^1]with $\frac{1}{\delta}=\frac{1}{\sigma_{H}^{2}}-\frac{1}{\sigma_{L}^{2}}>0$. Since the likelihood ratio $\frac{\tilde{q}}{1-\tilde{q}}$ does not exceed $\frac{\sigma_{L}}{\sigma_{H}}$, the private belief \tilde{q} cannot possibly exceed $q_{\text {max }}:=\frac{\sigma_{L}}{\sigma_{L}+\sigma_{H}}<1$. For $q \in\left(0, q_{\max }\right]$, one has
\[

$$
\begin{aligned}
F_{L}(q) & =\mathbf{P}_{L}\left(\frac{\sigma_{L}}{\sigma_{H}} e^{-\frac{\tilde{j}^{2}}{2 \delta}} \leq \frac{q}{1-q}\right) \\
& =\mathbf{P}_{L}\left(\tilde{s}^{2} \geq 2 \delta \ln \frac{1-q}{q}+2 \delta \ln \frac{\sigma_{L}}{\sigma_{H}}\right) \\
& =2 \mathbf{P}_{L}\left(\frac{\tilde{s}}{\sigma_{L}} \geq \frac{1}{\sigma_{L}} \sqrt{2 \delta \ln \left(\frac{1-q}{q} \times \frac{\sigma_{L}}{\sigma_{H}}\right)}\right) .
\end{aligned}
$$
\]

Since the r.v. $\frac{\tilde{s}}{\sigma_{L}}$ follows a standard normal distribution, one has

$$
F_{L}(q)=2(1-\Phi(z(q))),
$$

with $z(q):=\frac{1}{\sigma_{L}} \sqrt{2 \delta \ln \left(\frac{1-q}{q} \times \frac{\sigma_{L}}{\sigma_{H}}\right)}$. Recall from Section A that $F_{L}(q) \sim_{0} 2 F(q)$ as $q \rightarrow 0$. Using the inequalities

$$
\frac{z}{z^{2}+1} e^{-z^{2} / 2} \leq 1-\Phi(z) \leq \frac{1}{z} e^{-z^{2} / 2} \quad \text { for } z>0
$$

see, for example, Revuz and Yor (1999, p. 30), it follows that $F(q) \sim \frac{1}{z(q)} e^{-z(q)^{2} / 2}$ as $q \rightarrow 0$, and thus, that $\int_{0}^{1} \frac{1}{F(q)} d q<+\infty$ is equivalent to $\int_{0}^{1} z(q) e^{z(q)^{2} / 2} d q<+\infty$.

Next, observe that $z(q) \sim \frac{\sqrt{2 \delta}}{\sigma_{L}} \sqrt{|\ln q|}$ as $q \rightarrow 0$, and that

$$
e^{z(q)^{2} / 2}=\exp \left(\frac{\delta}{\sigma_{L}^{2}} \ln \left(\frac{1-q}{q} \times \frac{\sigma_{L}}{\sigma_{H}}\right)\right)=\left(\frac{1-q}{q}\right)^{\delta / \sigma_{L}^{2}}\left(\frac{\sigma_{L}}{\sigma_{H}}\right)^{\delta / \sigma_{L}^{2}}
$$

hence

$$
z(q) e^{z(q)^{2} / 2} \sim C_{2} \frac{\sqrt{|\ln q|}}{q^{\delta / \sigma_{L}^{2}}}
$$

as $q \rightarrow 0$, for some constant $C_{2}>0$. It follows that the integral $\int_{0}^{1} z(q) e^{z(q)^{2} / 2} d p$ is finite if and only if $\delta / \sigma_{L}^{2}<1$, or equivalently, $\sigma_{L}^{2}>2 \sigma_{H}^{2}$, as desired.

S4. RATES OF CONVERGENCE: PROOF OF THEOREM 4

The proof of Lemma 1 relies on Lemma S10 below, which is a classical result on asymptotic expansions of sequences. An equivalent statement appears in Francinou, Gianella, and Nicolas (2013, in French). Related analysis may be found in De Bruijn (1961).

LEMMA S10: Let $g: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$, and (u_{n}) a sequence be given, such that $u_{n+1}=g\left(u_{n}\right)$ for each n. Assume that $\lim u_{n}=0$ and that $g(x)=x-a x^{\beta}+o\left(x^{\beta}\right)$ in the neighborhood of zero, with $a>0$ and $\beta>1$. Then

$$
u_{n} \sim\left(\frac{1}{a(\beta-1)} \frac{1}{n}\right)^{1 /(\beta-1)} \text { as } n \rightarrow+\infty
$$

Proof: We follow the proof in Francinou, Gianella, and Nicolas (2013). For $x>0$,

$$
\begin{aligned}
g(x)^{1-\beta}-x^{1-\beta} & =\left(x-a x^{\beta}+o\left(x^{\beta}\right)\right)^{1-\beta}-x^{1-\beta} \\
& =x^{1-\beta}\left(\left(1-a x^{\beta-1}+o\left(x^{\beta-1}\right)\right)^{1-\beta}-1\right) \\
& =x^{1-\beta}\left(-a(1-\beta) x^{\beta-1}+o\left(x^{\beta-1}\right)\right)=a(\beta-1)+o(1)
\end{aligned}
$$

hence $\lim _{x \rightarrow 0}\left(g(x)^{1-\beta}-x^{1-\beta}\right)=a(\beta-1)$. Since $\lim u_{n}=0$ and $u_{n+1}=g\left(u_{n}\right)$, this implies $\lim \left(u_{n+1}^{1-\beta}-u_{n}^{1-\beta}\right)=a(\beta-1)$. By Cesaro Theorem, one has therefore $\lim \frac{u_{n}^{1-\beta}}{n}=a(\beta-1)$ as well, hence $u_{n} \sim(a(\beta-1) n)^{1 /(1-\beta)}$ as $n \rightarrow+\infty$, as desired. Q.E.D.

Proof of Lemma 1: We assume first that all choices are public, and recall that $\mathbf{P}_{L}(\tau>$ $n) \sim\left(1-\pi_{n}^{*}\right) \mathbf{P}_{H}\left(a_{m}=h\right.$ for all $\left.m\right)$ as $n \rightarrow+\infty$, using the notations of Section B.2. Set $u_{n}:=1-\pi_{n}^{*}$. From (B.6), one has

$$
\frac{u_{n+1}}{1-u_{n+1}}=\frac{u_{n}}{1-u_{n}} \times \frac{1-F_{L}\left(u_{n}\right)}{1-F_{H}\left(u_{n}\right)}
$$

or equivalently,

$$
\begin{equation*}
u_{n+1}=g\left(u_{n}\right):=\frac{u_{n}\left(1-F_{L}\left(u_{n}\right)\right)}{u_{n}\left(1-F_{L}\left(u_{n}\right)\right)+\left(1-u_{n}\right)\left(1-F_{H}\left(u_{n}\right)\right)} . \tag{S4.1}
\end{equation*}
$$

Under the assumption that $F(q)=a q^{\alpha}+o\left(q^{\alpha}\right)$ as $q \rightarrow 0$, Section A yields $F_{L}(q)=2 a q^{\alpha}+$ $o\left(q^{\alpha}\right)$ and $F_{H}(q)=o\left(q^{\alpha}\right)$ as $q \rightarrow 0$. Plugging into (S4.1), we obtain

$$
g(x)=x-2 a x^{\alpha+1}+o\left(x^{\alpha+1}\right) \quad \text { as } x \rightarrow 0 .
$$

The result then follows from Lemma S10.
Assume now that only the previous choice is observed. From Lemma 14, and the assumption on F, one has

$$
x_{n+1}=x_{n}-\int_{0}^{x_{n}} F(q) d q=x_{n}-\frac{2 a}{\alpha+1} x_{n}^{\alpha+1}+o\left(x_{n}^{\alpha+1}\right) \quad \text { as } n \rightarrow+\infty .
$$

The result again follows from Lemma S10.
PROOF OF THEOREM 4: We rely on the following elementary observation on divergent series. Let $\left(x_{n}\right)$ and $\left(u_{n}\right)$ be two bounded sequences such that $x_{n} \sim u_{n}$ as $n \rightarrow+\infty$. Assume that $u_{n}>0$ for each n and that the series $\sum u_{n}$ is divergent. Then $\sum_{k=1}^{n} x_{k} \sim \sum_{k=1}^{n} u_{k}$ as $n \rightarrow+\infty$, and $\sum_{k=1}^{+\infty} \delta^{k-1} x_{k} \sim \sum_{k=1}^{+\infty} \delta^{k-1} u_{k}$ as $\delta \rightarrow 1$.

Assume as stated that $F(q) \sim a q^{\alpha}$ as $q \rightarrow 0$, with $\alpha \geq 1$. In the all-observed setup, let $x_{n}:=\mathbf{P}_{L}(\tau>n)$ and $u_{n}:=c_{1} 1 / n^{1 / \alpha}$. Since $\sum u_{n}$ is divergent, and since $\mathbf{E}_{L}[\min (\tau, n)]=$ $1+\sum_{k=1}^{n-1} x_{k}$, one has

$$
\mathbf{E}_{L}[\min (\tau, n)] \sim c_{1} \sum_{k=1}^{n} \frac{1}{k^{1 / \alpha}} \quad \text { as } n \rightarrow+\infty
$$

Since $\alpha \geq 1$ and since $\sum 1 / k^{1 / \alpha}$ is divergent, a usual series-integral comparison argument yields $\sum_{k=1}^{n} \frac{1}{k^{1 / \alpha}} \sim \int_{1}^{n} \frac{1}{x^{1 / \alpha}} d x$ as $\rightarrow+\infty$, and the first claim follows.

In the last-observed setup, we let $x_{n}:=\mathbf{P}_{L}\left(a_{n}=h\right)$ and $u_{n}:=c_{2} 1 / n^{1 / \alpha}$. Since $\mathbf{E}_{L}\left[W_{n}\right]=$ $\sum_{k=1}^{n} x_{k}$, it follows as in the previous paragraph that

$$
\mathbf{E}_{L}\left[W_{n}\right] \sim c_{2} \int_{1}^{n} \frac{1}{x^{1 / \alpha}} d x \quad \text { as } n \rightarrow+\infty
$$

We are left with the estimate of $\mathbf{E}_{L}\left[W_{\delta}\right]$. Using the notations of the previous paragraph, one has

$$
\mathbf{E}_{L}\left[W_{\delta}\right]=\sum_{k=1}^{+\infty} \delta^{k-1} x_{k} \sim c_{2} \sum_{k=1}^{+\infty} \frac{\delta^{k-1}}{k^{1 / \alpha}}
$$

which in turn is equivalent to $c_{2} \sum_{k=1}^{+\infty} \frac{\delta^{k}}{k^{1 / \alpha}}$ as $\delta \rightarrow 1$.
Since

$$
\frac{\delta^{k+1}}{(k+1)^{1 / \alpha}} \leq \int_{k}^{k+1} \frac{\delta^{x}}{x^{1 / \alpha}} d x \leq \frac{\delta^{k}}{k^{1 / \alpha}} \quad \text { for each } k \geq 1
$$

one gets, by summation over k,

$$
\sum_{k=2}^{+\infty} \frac{\delta^{k}}{k^{1 / \alpha}} \leq \int_{1}^{+\infty} \frac{\delta^{x}}{x^{1 / \alpha}} d x \leq \sum_{k=1}^{+\infty} \frac{\delta^{k}}{k^{1 / \alpha}}
$$

and therefore, $\sum_{k=1}^{+\infty} \frac{\delta^{k}}{k^{1 / \alpha}} \sim \int_{1}^{+\infty} \frac{\delta^{x}}{x^{1 / \alpha}} d x$ as $\delta \rightarrow 1$, since $\lim _{\delta \rightarrow 1} \int_{1}^{+\infty} \frac{\delta^{x}}{x^{1 / \alpha}} d x=+\infty$.
Using the change of variable $y=-x \ln \delta$, the latter integral is equal to

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\delta^{x}}{x^{1 / \alpha}} d x=(-\ln \delta)^{1 / \alpha-1} \times \int_{-\ln \delta}^{+\infty} e^{-y} y^{-1 / \alpha} d y \tag{S4.2}
\end{equation*}
$$

If $\alpha>1$, the desired estimate follows from equation (S4.2) since $-\ln (\delta) \sim(1-\delta)$ and since $\int_{-\ln \delta}^{+\infty} e^{-y} y^{-1 / \alpha} d y$ converges to $\int_{0}^{+\infty} e^{-y} y^{-1 / \alpha} d y=\Gamma(1-1 / \alpha)$ as $\delta \rightarrow 1$.

If $\alpha=1$, the integral $\int_{0}^{+\infty} e^{-y} y^{-1 / \alpha} d y$ is infinite. Since $e^{-y} / y \sim 1 / y$ as $y \rightarrow 0$, routine arguments show that

$$
\int_{-\ln \delta}^{+\infty} \frac{e^{-y}}{y} d y \sim \int_{-\ln \delta}^{1} \frac{1}{y} d y=-\ln \ln \frac{1}{\delta}
$$

and the result also follows from equation (S4.2).

For completeness, we give a quick proof that the constants c_{1} and c_{2} in Lemma 1 are equal to $\frac{1}{\pi}$ and to 1 , when private beliefs are uniformly distributed.

When all guesses are public, one has $u_{n}:=\mathbf{P}_{L}(\tau>n)=\prod_{k=1}^{n}\left(1-F_{L}\left(1-\pi_{k}\right)\right)$. With $F(p)=p$, one has $F_{L}(p)=p(2-p)$ and $F_{H}(p)=p^{2}$, hence $u_{n}=\prod_{k=1}^{n} \pi_{k}^{2}$ and the belief updating equation (3.6) reduces to $\frac{\pi_{n+1}}{1-\pi_{n+1}}=\frac{2-\pi_{n}}{1-\pi_{n}}$, from which it follows that $\left(\frac{1}{1-\pi_{n}}\right)_{n}$ is an arithmetic sequence, and $\pi_{n}=1-\frac{1}{2 n}$ for each $n \geq 1$.

Consequently,

$$
u_{n}=\left(\prod_{k=1}^{n}\left(1-\frac{1}{2 k}\right)\right)^{2}=\left(\frac{(2 n)!}{2^{2 n}(n!)^{2}}\right)^{2}
$$

Using the Stirling formula, it follows that $u_{n} \sim \frac{1}{\pi n}$ as $n \rightarrow+\infty$.
When only the previous guess is observed, the probability $x_{n}:=\mathbf{P}_{L}\left(a_{n}=h\right)$ of a wrong guess is given by $x_{n+1}-x_{n}=-2 \int_{0}^{x_{n}} F(p) d p$, which reduces to a discrete-time logistic equation

$$
\begin{equation*}
x_{n+1}=x_{n}\left(1-x_{n}\right) . \tag{S4.3}
\end{equation*}
$$

Since $x_{1} \in(0,1)$, it is obvious from (S4.3) that $\left(x_{n}\right)$ is decreasing and must converge to zero. An easy induction shows that $x_{n}<\frac{1}{n+1}$ for all $n \geq 2$. Set now $y_{n}:=n x_{n}$, and observe that

$$
\begin{equation*}
y_{n+1}-y_{n}=x_{n}\left(1-(n+1) x_{n}\right) \geq 0 \tag{S4.4}
\end{equation*}
$$

The sequence $\left(y_{n}\right)$ being nondecreasing with $y_{n} \leq 1$, it has a positive limit, which we denote by $l>0$.

Equation (S4.4) also yields

$$
y_{n+1}-y_{n}=\frac{y_{n}\left(1-y_{n}\right)}{n}-\frac{y_{n}^{2}}{n^{2}} .
$$

Since the sequence $\left(y_{n}\right)$ converges, the series $\sum\left(y_{n+1}-y_{n}\right)$ converges as well, hence $l=1 .{ }^{2}$ We have thus shown that $x_{n} \sim \frac{1}{n}$ as $n \rightarrow+\infty$.

The latter estimate implies that $\mathbf{E}_{L}^{n}[\tau]<+\infty$, and therefore, that the two efficiency criteria $\mathbf{E}_{L}[W]<+\infty$ and $\mathbf{E}_{L}[\tau]<+\infty$ are not equivalent when only the previous action is observed. One indeed has, for each $n, \mathbf{P}\left(\tilde{\theta}=H \mid a_{n}=h\right)=\mathbf{P}_{H}\left(a_{n}=h\right)=1-x_{n}$, which implies

$$
\begin{aligned}
\mathbf{P}_{L}(\tau>n+1 \mid \tau>n) & =\mathbf{P}_{L}\left(a_{n+1}=h \mid a_{n}=h\right) \\
& =1-F_{L}\left(x_{n}\right)=\left(1-x_{n}\right)^{2} .
\end{aligned}
$$

The sequence $\left(\mathbf{P}_{L}(\tau>n)\right)_{n}$ satisfies

$$
\frac{\mathbf{P}_{L}(\tau>n+1)}{\mathbf{P}_{L}(\tau>n)}=\left(1-x_{n}\right)^{2}=1-\frac{2}{n}+o\left(\frac{1}{n}\right)
$$

This implies that the series $\sum \mathbf{P}_{L}(\tau>n)$ is convergent, using the Raabe-Duhamel rule, and therefore, $\mathbf{E}_{L}[\tau]<+\infty$.

S5. INEFFICIENCY OF RANDOM SAMPLING: PROOF OF THEOREM 5

The proof of Theorem 5 follows closely the proof of Theorem 3 and we refer to Section C for notations. In addition, we will denote by $\bar{x}_{n}:=\frac{1}{n} \sum_{k=1}^{n} x_{n}$ the expected proportion of wrong choices among the first n agents, and by α_{n} the random action observed by agent $n+1$. Thus, the social belief is here equal to $\pi_{n}=\mathbf{P}\left(\tilde{\theta}=H \mid \alpha_{n-1}\right)$.

[^2]LEMMA S11: For each $n \geq 1$, one has $\bar{x}_{n+1}-\bar{x}_{n}=-\frac{2}{n+1} \int_{0}^{\bar{x}_{n}} F(q) d q$.

Proof: Since agent $n+1$ samples uniformly among all previous agents, one has

$$
\mathbf{P}_{\theta}\left(\alpha_{n}=a\right)=\frac{1}{n} \sum_{k=1}^{n} \mathbf{P}_{\theta}\left(a_{k}=a\right) \quad \text { for each } \theta \text { and } a .
$$

On the event $\alpha_{n}=a$, Bayes's rule leads to $\frac{\pi_{n+1}}{1-\pi_{n+1}}=\frac{\pi_{n}}{1-\pi_{n}} \times \frac{\mathbf{P}_{H}\left(\alpha_{n}=a\right)}{\mathbf{P}_{L}\left(\alpha_{n}=a\right)}$. Using $\mathbf{P}_{\theta}\left(a_{n+1}=h\right)=$ $\mathbf{P}_{\theta}\left(q_{n+1} \geq 1-\pi_{n+1}\right)$ and the symmetry Assumption A1, elementary manipulations similar to those in the proof of Lemma 14 lead to

$$
\begin{aligned}
x_{n+1} & =\bar{x}_{n}\left(1-F_{L}\left(\bar{x}_{n}\right)\right)+\left(1-\bar{x}_{n}\right)\left(1-F_{L}\left(1-\bar{x}_{n}\right)\right) \\
& =\bar{x}_{n}-2 \int_{0}^{\bar{x}_{n}} F(q) d q .
\end{aligned}
$$

Since $\bar{x}_{n+1}=\frac{n}{n+1} \bar{x}_{n}+\frac{1}{n+1} x_{n+1}$, the result follows.
LEMMA S12: One has $\sum_{n=1}^{+\infty} x_{n}<+\infty \Leftrightarrow \sum_{n=1}^{+\infty} \bar{x}_{n}<+\infty$.
PROOF: The argument that $x_{n}>0$ applies without change, and yields $\bar{x}_{n}>0$ for each n. The proof of Lemma 15 requires minor changes. Set $l:=\lim \bar{x}_{n}$. Since $\left(x_{n}\right)$ is nonincreasing, one has $\lim x_{n}=l$ as well. As in the proof of Lemma 15, and if $q_{\min }>0$, either $\bar{x}_{n}>q_{\text {min }}$ for all n, and then $l \geq q_{\min }$, or $\bar{x}_{n_{1}} \leq q_{\min }$ for some n_{1}, in which case $\bar{x}_{n}=\bar{x}_{n_{1}}$ for all $n \geq n_{1}$, and thus $l=\bar{x}_{n_{1}}>0$. In that case, both $\sum x_{n}$ and $\sum \bar{x}_{n}$ are divergent.

In the rest of the proof, we may thus assume that $F(q)>0$ for each $q>0$. We claim that $l=0$. Otherwise, indeed, one would have $\bar{x}_{n+1}-\bar{x}_{n} \sim-\frac{1}{n} \times \int_{0}^{l} F(q) d q$ as $n \rightarrow+\infty$. Since the series $\sum \frac{1}{n}$ is divergent, this would imply $\lim \bar{x}_{n}=-\infty$, a contradiction. Hence $l=0$, as claimed.

Using again Lemma S11, $\left|x_{n+1}-\bar{x}_{n}\right| \leq 2 \bar{x}_{n} F\left(\bar{x}_{n}\right)$, hence $x_{n+1} \sim \bar{x}_{n}$ as $n \rightarrow+\infty$ since $\lim F\left(\bar{x}_{n}\right)=0$. Hence, the convergence of the series $\sum x_{n}$ is equivalent to that of $\sum \bar{x}_{n}$. Q.E.D.

By Assumption A2 (and when possibly lowering α), one has $F(q) \leq \frac{1}{2}(\alpha+1) q^{\alpha}$ in a neighborhood of zero. Using Lemma S11, there is $N_{0} \in \mathbf{N}$ s.t.

$$
\begin{equation*}
\bar{x}_{n+1} \geq \bar{x}_{n}-\frac{1}{n+1} \bar{x}_{n}^{1+\alpha} \quad \text { for all } n \geq N_{0} \tag{S5.1}
\end{equation*}
$$

On the other hand, the map $y \mapsto y-y^{1+\alpha}$ is increasing over the interval $\left[0, \frac{1}{(\alpha+1)^{1 / \alpha}}\right]$. Choose N_{1} s.t. $\bar{x}_{n} \in\left[0, \frac{1}{(\alpha+1)^{1 / \alpha}}\right]$ for each $n \geq N_{1}$, and set $N:=\max \left(N_{0}, N_{1}\right)$.

Introduce now a sequence $\left(y_{n}\right)$ s.t. $y_{N}=x_{N}$ and $y_{n+1}-y_{n}=-\frac{1}{n+1} y_{n}^{1+\alpha}$ for each $n \geq N$. From the choice of N, it follows by induction that $\bar{x}_{n} \geq y_{n}$ for all $n \geq N$. It is thus sufficient to prove that the series $\sum y_{n}$ is divergent.

Obviously, the sequence $\left(y_{n}\right)$ is positive, decreasing, with $\lim y_{n}=0 .{ }^{3}$ Hence

$$
\frac{y_{n+1}}{y_{n}}=1-\frac{1}{n} y_{n}^{\alpha}=1+o\left(\frac{1}{n}\right)
$$

It follows from the Raabe-Duhamel criterion that $\sum y_{n}$ is divergent.

S6. ALTERNATIVE SETUP: PROOF OF THEOREM 5

Since $F(q)=q$ satisfies Assumption A1, $\mathbf{E}_{\theta}[\tau]$ is independent of θ. We choose $\theta=L$ for concreteness.

Let C_{2} be an upper bound for the sequence $\left(d_{k+1} / d_{k}\right)$. For $k \geq 1$, denote by $\Delta_{k}:=$ $d_{1}+\cdots+d_{k}$ the cumulative size of the first k generations, with $\Delta_{0}=1$. We will prove that $\sum_{k=1}^{+\infty} d_{k} \mathbf{P}_{L}\left(\tau>\Delta_{k}\right)=+\infty$. Since

$$
\mathbf{E}_{L}[\tau]=\sum_{k=1}^{+\infty} \sum_{n=\Delta_{k-1}+1}^{\Delta_{k}} \mathbf{P}_{L}(\tau \geq n) \geq \sum_{k=1}^{+\infty} d_{k} \mathbf{P}_{L}\left(\tau>\Delta_{k}\right)
$$

the result will follow.
Since $F(q)=q$, one has $F_{H}(q)=q^{2}$ and $F_{L}(q)=q(2-q)$ for each q (see Section A), and thus $1-F_{L}(1-\rho)=\rho^{2}$ for each ρ. For $k \geq 1$, we denote by

$$
\rho_{k}:=\mathbf{P}_{L}\left(\tilde{\theta}=H \mid a_{1}=\cdots=a_{\Delta_{k-1}}=h\right)
$$

the (common) social belief of agents from the k th generation, in the event $\tau>\Delta_{k-1}$ where all agents from all previous generations have chosen h.

Conditional on $\tau>\Delta_{k-1}$, agent n from the k th generation chooses $a_{n}=h$ if and only if $q_{n} \geq 1-\rho_{k}$, which occurs with probability $1-F_{L}\left(1-\rho_{k}\right)=\rho_{k}^{2}$ in state L. Since there are d_{k} such agents, $\mathbf{P}_{L}\left(\tau>\Delta_{k} \mid \tau>\Delta_{k-1}\right)=\rho_{k}^{2 d_{k}}$ and thus,

$$
\begin{equation*}
\mathbf{P}_{L}\left(\tau>\Delta_{k}\right)=\prod_{i=1}^{k} \rho_{i}^{2 d_{i}} \tag{S6.1}
\end{equation*}
$$

On the other hand, Bayes's rule leads to the belief updating formula

$$
\begin{equation*}
\frac{\rho_{k+1}}{1-\rho_{k+1}}=\frac{\rho_{k}}{1-\rho_{k}} \times\left(\frac{1-F_{H}\left(1-\rho_{k}\right)}{1-F_{L}\left(1-\rho_{k}\right)}\right)^{d_{k}}=\frac{\rho_{k}}{1-\rho_{k}} \times\left(\frac{2-\rho_{k}}{\rho_{k}}\right)^{d_{k}} \tag{S6.2}
\end{equation*}
$$

Setting $u_{k}:=\frac{1}{2} \frac{\rho_{k}}{1-\rho_{k}}$, we have $\rho_{k}=1-\frac{1}{1+2 u_{k}}$, and (S6.2) rewrites

$$
\begin{equation*}
u_{k+1}=u_{k}\left(1+\frac{1}{u_{k}}\right)^{d_{k}} \tag{S6.3}
\end{equation*}
$$

We proceed with a series of claims.

[^3]CLAIM S1: One has $u_{k+1} \geq \Delta_{k}+1$ for all k.
PROOF: The inequality $(1+x)^{\alpha} \geq 1+\alpha x$ (valid for $\left.\alpha>1, x>0\right)$ yields $u_{n+1} \geq u_{n}+d_{n}$. The result then follows by induction.
Q.E.D.

CLAIM S2: The series $\sum \frac{d_{k}}{\left(u_{k}\right)^{2}}$ is convergent.
Proof: Thanks to Claim S1, since $u_{1}=\frac{1}{2}$ and since $\Delta_{k}=\Delta_{k-1}+d_{k} \leq \Delta_{k-1}\left(1+C_{2}\right)$, one has

$$
\sum_{k=1}^{\infty} \frac{d_{k}}{\left(u_{k}\right)^{2}} \leq 4 d_{1}+\sum_{k=2}^{\infty} \frac{d_{k}}{\left(\Delta_{k-1}\right)^{2}} \leq 4 d_{1}+\left(1+C_{2}\right)^{2} \sum_{k=1}^{+\infty} \frac{d_{k}}{\left(\Delta_{k}\right)^{2}}
$$

Observe finally that the series $\sum \frac{d_{k}}{\left(\Delta_{k}\right)^{2}}$ is convergent, since

$$
\sum_{k=2}^{+\infty} \frac{d_{k}}{\left(\Delta_{k}\right)^{2}}=\sum_{k=2}^{+\infty} \frac{\Delta_{k}-\Delta_{k-1}}{\left(\Delta_{k}\right)^{2}} \leq \sum_{k=2}^{+\infty} \int_{\Delta_{k-1}}^{\Delta_{k}} \frac{1}{x^{2}} d x=\int_{d_{1}}^{+\infty} \frac{1}{x^{2}} d x
$$

Claim S3: The series $\sum \frac{d_{k}}{u_{k}}$ is divergent.
Proof: Observe that $\frac{u_{k+1}}{u_{k}}=\left(1+\frac{1}{u_{k}}\right)^{d_{k}} \leq e^{d_{k} / u_{k}}($ since $\ln (1+x) \leq x$ for $x>0)$. Taking products over k, this implies

$$
\frac{1}{2} u_{n+1} \leq \exp \left(\sum_{k=1}^{n} \frac{d_{k}}{u_{k}}\right)
$$

The result follows, since $\lim u_{n}=\infty$ by Claim S1.
CLAIM S4: The series $\sum d_{n} e^{-\sum_{k=1}^{n} d_{k} / u_{k}}$ is divergent.
PROOF: Since $\ln (1+x) \geq x-x^{2}$ for $x \geq 0$, one has $\frac{u_{k+1}}{u_{k}}=\left(1+\frac{1}{u_{k}}\right)^{d_{k}} \geq \exp \left(\frac{d_{k}}{u_{k}}-\frac{d_{k}}{u_{k}^{2}}\right)$, or equivalently,

$$
\exp \left(-\frac{d_{k}}{u_{k}}\right) \geq \frac{u_{k}}{u_{k+1}} \times \exp \left(-\frac{d_{k}}{u_{k}^{2}}\right)
$$

Taking products over k, and multiplying by d_{n}, one obtains

$$
\begin{equation*}
d_{n} \exp \left\{-\sum_{k=1}^{n} \frac{d_{k}}{u_{k}}\right\} \geq \frac{d_{n}}{2 u_{n}} \exp \left\{-\sum_{k=1}^{+\infty} \frac{d_{k}}{\left(u_{k}\right)^{2}}\right\} . \tag{S6.4}
\end{equation*}
$$

The result follows from Claims S2 and S3.
Q.E.D.

We now conclude. Since $\lim \rho_{k}=1$ and $\ln (1+x) \geq x-x^{2}$ for $x>-\frac{1}{2}$, one has

$$
\begin{equation*}
\ln \rho_{k} \geq \rho_{k}-1-\left(\rho_{k}-1\right)^{2}=-\frac{1}{1+2 u_{k}}-\left(\frac{1}{1+2 u_{k}}\right)^{2} \geq-\frac{1}{2 u_{k}}-\frac{1}{\left(2 u_{k}\right)^{2}} \tag{S6.5}
\end{equation*}
$$

for all i large enough. Plugging into (S6.1), one gets

$$
\mathbf{P}_{L}\left(\tau>\Delta_{k}\right)=\prod_{i=1}^{k} \rho^{i} 2 d_{i}=\exp \left(\sum_{i=1}^{k} 2 d_{i} \ln \rho_{i}\right) \geq \exp \left\{-\sum_{i=1}^{k-1} \frac{d_{i}}{u_{i}}\right\} \times \exp \left\{-\frac{1}{2} \sum_{i=1}^{k-1} \frac{d_{i}}{\left(u_{i}\right)^{2}}\right\}
$$

for some $C_{3}>0$ and all $k \geq 1 .{ }^{4}$ From Claims S2 and S4, it follows that the series $\sum d_{k} \mathbf{P}_{L}\left(\tau>\Delta_{k}\right)$ is divergent, as desired.

REFERENCES

De Bruijn, N. G. (1961): Asymptotic Methods in Analysis. North-Holland. [7]
Francinou, S., H. Gianella, and S. Nicolas (2013): Exercices de Mathématiques. Analyse, tome 1. Editions Cassini. [7,8]
Revuz, D., AND M. Yor (1999): Continous Martingales and Brownian Motion (Third Ed.). Springer-Verlag. [7]

Co-editor Dirk Bergemann handled this manuscript.

Manuscript received 9 November, 2017; final version accepted 20 April, 2019; available online 3 May, 2019.

[^4]
[^0]: Dinah Rosenberg: rosenberg@hec.fr
 Nicolas Vieille: vieille@hec.fr
 Vieille gratefully acknowledges the support of the HEC Foundation and of Investissements d'Avenir ANR-11-IDEX-0003 / Labex ECODEC No. ANR-11-LABX-0047.

[^1]: ${ }^{1}$ Indeed, the ratio of these two quantities is given by $\exp \left(\frac{1}{2 a^{2}} \ln (1-q) \ln \frac{2 q}{1-q}\right)$. Around zero, the expression within the exponential is equivalent to $-\frac{1}{2 a^{2}} \times q \ln q$, which converges to zero as $q \rightarrow 0$.

[^2]: ${ }^{2}$ Otherwise, $y_{n+1}-y_{n}$ would be equivalent to $l(1-l) / n$.

[^3]: ${ }^{3}$ If $\left(y_{n}\right)$ instead had a positive limit l, we would have $y_{n+1}-y_{n} \leq-\frac{l^{\alpha}}{n}$ for each n, which by summation would imply $\lim y_{n}=-\infty$.

[^4]: ${ }^{4}$ The additional C_{3} accounts for the first values of i where (S6.5) need not hold.

