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APPENDIX A: ADDITIONAL FIGURE

FIGURE 4.—The standard deviation of the sales-share weighted average of log net entry as a function of
σ with intensive margin shocks only zwk . The cross-elasticity of substitution is chosen to match the observed
volatility of 1% reported by Broda and Weinstein (2010).
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APPENDIX B: PROOFS

For the proofs, the object vs, where v is a vector and s is a scalar, should be interpreted
as the vector v raised to the power of s element-wise.

LEMMA 4: Demand for the output of firm i in industry k is

y(k� i)= c(k� i)+
∑
l

∫ Ml

0
x(l� j�k� i)dj�

= βk

(
p(k� i)

pk

)−εk

M
−ϕkεk
k

(
pk

pc

)−σ

C

(
C

yk

)σ−1

+
∑
l

Mlωlk

(
p(k� i)

pk

)−εk

M
−ϕkεk
k

(
pk

λl

)−σ

y(l� j)

(
yl

yk

)σ−1

�

where λl is the marginal cost of the firms in industry l.

PROOF: Cost minimization by each firm implies firm j in industry l’s demand for inputs
from firm i in industry k is given by

x(l� j�k� i)=ωlk

(
p(k� i)

pk

)−εk

M
−ϕkεk
k

(
pk

λl

)−σ

y(l� j)

(
yl

yk

)σ−1

�

where λl is the marginal cost of firms in industry l,

λk = 1
yk

(
αkz

σ−1
k (lw)1−σ +

∑
l

ωkl(ylpl)
1−σ

) 1
1−σ

�

and pk is the price index for industry k,

pk =
(
M

−ϕkεk
k

∫ Mk

0
p(k� i)1−εk di

) 1
1−εk




Household demand for goods from firm i in industry k is

c(k� i)= βk

(
p(k� i)

pk

)−εk

M
−ϕkεk
k

(
pk

Pc

)−σ

C

(
C

yk

)σ−1




Adding the household and firms’ demands together gives the result, assuming the sym-
metric equilibrium. Q.E.D.

PROOF OF LEMMA 1: Part (a). By Lemma 4,

y(k� i)/y1−σ
k = βkM

−ϕkεk
k p(k� i)−εkp

εk−σ

k pσ
c C/C

1−σ

+
∑
l

MlωlkM
−ϕkεk
k p(k� i)−εkp

εk−σ

k λσ
l y(l� j)/y

1−σ
l 
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In equilibrium, we can substitute pk =M
1−ϕkεk

1−εk
k p(k� i) to get

M
1−ϕkεk
εk−1 εk−ϕkεkpσ

ky(k� i)/y
1−σ
k = βkp

σ
c C/C

1−σ +
∑
l

Mlλ
σ
l ωlky(l� j)/y

1−σ
l 
 (25)

Observe that, in equilibrium,

yk =
(
M

−ϕk
k

∫ Mk

0
y(k� i)

εk−1
εk di

) εk
εk−1

=M
1−ϕk
εk−1 εk

k y(k� i)


Furthermore,

1 −ϕkεk

εk − 1
ε+ϕkεk = 1 −ϕk

1 − εk

εk


Therefore, we can rewrite (25) as

pσ
kyk/y

1−σ
k = βkP

σ
c C/C

1−σ +
∑
l

Mlωlkλ
σ
l y(l� j)/y

1−σ
l 


Now substitute in

λl = μ−1
l p(l� i)= μ−1

l plM
1−ϕlεl
εl−1

l

to get

pσ
kyk/y

1−σ
k = βkP

σ
c C/C

1−σ +
∑

ωlkM
1+ 1−ϕlεl

εl−1 σ− 1−ϕlεl
εl

εl

l μ−σ
l pσ

l yl/y
1−σ
l 


Finally, note that

1 + 1 −ϕlεl

εl − 1
σ − 1 −ϕlεl

εl

εl = σ − 1
εl − 1

(1 −ϕlεl)


Recall that M̃ is defined to be the diagonal matrix whose kth diagonal element is M
1−ϕkεk
εk−1

k ,
and μ is the diagonal matrix whose kth element is industry k’s markup. So, denote sk =
pσ

kyk/y
1−σ
k . This means that we can write

s′ = β′Pσ
c C + s′M̃σ−1μ−σΩ


Rewrite this to get

s′ = β′(I − M̃σ−1μ−σΩ
)−1

Pσ
c C

= β̃′Pσ
c C


Part (b). By definition,

p(k� i)= μkλk�
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where λk is marginal cost for firms in industry k. Substituting this into the definition of
λk, we get

p(k� i)= μk

yk

(
αkz

σ−1
k (lw)1−σ +

∑
l

ωkl(ylpl)
1−σ

) 1
1−σ




Note that, in the symmetric equilibrium,

pk = μkM
1−ϕkεk

1−εk
k λk�

so

μσ−1
k M

1−ϕkεk
εk−1 (1−σ)

k (pkyk)
1−σ = αk

(
zw
k

)σ−1
(wl)1−σ +

∑
l

ωkl(plyl)
1−σ


Let P be the vector pkyk and let P1−σ represent element-wise exponentiation. Then

μσ−1M̃1−σP1−σ = (
α ◦ zσ−1

)
(wl)1−σ +ΩP1−σ 


Rearrange this to get

P1−σ = (
I −μ1−σM̃σ−1Ω

)−1
μ1−σM̃σ−1

(
α ◦ zσ−1

)
(wl)1−σ = α̃(wl)1−σ
 Q.E.D.

PROOF OF LEMMA 2: Note that the profits of firm i in industry k are

π(k� i)= p(k� i)y(k� i)− λky(k� i)−wfk


This is equivalent to

π(k� i)= p(k� i)y(k� i)− 1
μk

p(k� i)y(k� i)−wfk

= μk − 1
μk

p(k� i)y(k� i)−wfk


Since all active firms in industry k are identical, this is

π(k� i)= μk − 1
μk

1
Mk

pkyk −wfk


By Lemma 1,

pkyk = pσ
kykp

1−σ = β̃kα̃kP
σ
c Cw1−σ�

and so

π(k� i) = μk − 1
μk

1
Mk

β̃kα̃kP
σ
c Cw1−σ −wfk
 Q.E.D.

PROPOSITION 4: Consider two industries k and l such that

ωjk =ωjl (j = 1� 
 
 
 �N)� βk = βl� μk = μl� Mk =Ml;
then β̃k = β̃l. In other words, if two industries have the same immediate customer base, their
supplier-centralities are the same.
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PROOF: Let A = μ−σM̃1−σΩ. Note that, by assumption, Ajk = Ajl for every j. Let A(n)
ji

denote the jith entry of An. We wish to show, by induction, that

A(n)
jk =A(n)

jl

(
n ∈ {1�2� 
 
 
})


To that end, fix n ∈ N and assume that

A(n−1)
jk = A(n−1)

jl 


Then, it follows that

A(n)
jk =

∑
i

AjiA
(n−1)
ik �

=
∑
i

AjiA
(n−1)
il

= A(n)
jl 


Since the induction assumption holds for n = 1 by assumption, it follows that

A(n)
jk =A(n)

jl

(
n ∈ {1�2� 
 
 
})


Finally, observe that

β̃k =
∞∑
n=0

βjA
(n)
jk

= βk +
∞∑
n=1

βjA
(n)
jk �

which we have shown is equal to

= βk +
∞∑
n=1

βjA
(n)
jl �

which, since βk = βl, equals

=
∞∑
n=0

βjA
(n)
jl

= β̃l
 Q.E.D.

PROPOSITION 5: Consider two industries k and l such that

ωkj =ωlj (j = 1� 
 
 
 �N)� αk = αl� μk = μl� Mk = Ml;
then α̃k = α̃l. In other words, if two industries have the same immediate supplier base, their
consumer-centralities are the same.

PROOF: Similar to the proof of Proposition 4. Q.E.D.
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LEMMA 5: Let ek denote the kth standard basis vector. Then, in equilibrium, we have(
d log(M1)
d log

(
zm
k

) )
= (I −Λ)−1

(
ek − 1

dPσ
c C/dzm

k

Pσ
c C

)



PROOF: To cut down on notation, I take derivatives with respect to overhead costs f
rather than management productivity zm; since they are reciprocals of one another, the
elasticity with respect to one is negative the elasticity with respect to the other. Observe
that, with the Dixit–Stiglitz structure,

log(M1)= log(β̃)+ log(α̃)+ log
(
Pσ
c C

)
1 − log(f )− log(ε)


Hence,

d log(M1)
d log(fi)

= Λ
d log(M1)
d log(fi)

+ d log
(
Pσ
c C

)
d log(fi)

1 − ei


Rearrange this to get

d log(M1)
d log(fi)

= (I −Λ)−1

(
d log

(
Pσ
c C

)
d log(fi)

1 − ei

)

 Q.E.D.

PROOF OF PROPOSITION 1: Recall that

log(C) = (
β′α̃

) 1
σ−1 �

whence, by Lemma 5,

d log(C)

d log(fi)
= 1

σ − 1
1

β′α̃
β′ dα̃

d log(M1)
d log(M1)
d log(fi)




Since

d log
(
Pσ
c C

)
d log(fi)

= −(σ − 1)
d log(C)

d log(fi)
�

we can write

d log(C)

d log(fi)
= 1

σ − 1
1

β′α̃
β′Ψ2(I −Λ)−1

(
d log

(
Pσ
c C

)
d log(fi)

1 − ei

)

= − 1
σ − 1

1
β′α̃

β′Ψ2(I −Λ)−1

(
ei + (1 − σ)

d log(C)

d log(fi)
1
)

= − 1

1 + 1
β′α̃

β′Ψ2(I −Λ)−11

1
σ − 1

1
β′α̃

β′Ψ2(I −Λ)−1ei


Q.E.D.

PROOF OF PROPOSITION 2: Differentiate the zero profit condition to get

d log(M)

d log
(
zw

) = ∂ log(β̃)
∂ log(M)

d log(M)

d log
(
zw

) + ∂ log(α̃)
∂ log(M)

d log(M)

d log
(
zw

) + ∂ log(α̃)
∂ log

(
zw

) + d log
(
Pσ
c C

)
d log

(
zw

) 
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Rearrange this as

d log(M)

d log
(
zw
i

)
= (I −Λ)−1

(
(σ − 1)diag(α̃)−1Ψdeiαi

(
zw
i

)σ−1 − (σ − 1)d log(C)/d log
(
zw
i

))



(26)

This shows that when σ = 1, intensive margin shocks have no effect on the equilibrium
mass of products:

d log(C)

d log
(
zw
i

) = 1
σ − 1

d log
(
β′α̃

)
d log

(
zw
i

)
= 1

σ − 1
1

β′α̃
β′

(
∂α̃

∂ logM
d log(M)

d log
(
zw
i

) + ∂α̃

∂ log
(
zw
i

))
;

use (26) to get

= 1
σ − 1

1
β′α̃

β′(Ψ2(I −Λ)−1
(
(σ − 1)diag(α̃)−1Ψdeiαi

(
zw
i

)σ−1

− (σ − 1)d log(C)/d log
(
zw
i

)) +Ψdeiαi

(
zw
i

)σ−1
(σ − 1)

)



Rearrange this to get the desired result. Q.E.D.

PROOF OF LEMMA 3: First, start with β̃. Recall that

β̃′ = β′(I − SΩ)−1�

where S is a diagonal matrix. So

∂β̃′

∂Mi

= −β′Ψs

∂(I − SΩ)

∂Mi

Ψs

= β′Ψs

∂S

∂Mi

S−1SΩΨs

= β′Ψs

∂ logS
∂Mi

(Ψs − I)

= β̃′ ∂ logS
∂Mi

(Ψs − I)


So

dβ̃k

dMi

= β̃i

∂ logSi

dMi

(
Ψs

ik − 1(i = k)
)



Assuming the Dixit–Stiglitz structure, so that S = M̃σ−1μ−σ , means

β̃′ = β′(I − M̃σ−1μ−σΩ
)−1
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So

∂β̃′

∂ log(Mi)
= Mi

∂β̃′

∂Mi

= −Miβ
′Ψs

∂
(
I − M̃σ−1μ−σΩ

)
∂Mi

Ψs

= Miβ
′Ψs

∂M̃σ−1

∂Mi

μ−σΩΨs

= Miβ
′Ψs

∂M̃σ−1

∂Mi

M̃σ−1M̃1−σμ−σΩΨs

= Miβ
′Ψs

∂M̃σ−1

∂Mi

M̃σ−1(Ψs − I)


The kth element of this vector is

∂β̃k

∂ log(Mi)
= σ − 1

εi − 1
β̃i(Ψs − I)ek


Putting this all into a matrix gives

∂β̃′

∂ log(M1)
= diag(β̃)diag

(
σ − 1
ε− 1

)
(Ψs − I)


Now, we turn to α̃. Observe that we can write α̃ as

α̃= (I −DΩ)−1Dα

for some diagonal matrix D. So

∂α̃

∂Mi

= (I −DΩ)−1 ∂D

∂Mi

Ω(I −DΩ)−1Dα+ (I −DΩ)−1 ∂D

∂Mi

α

= (I −DΩ)−1DD−1 ∂D

∂Mi

D−1DΩ(I −DΩ)−1Dα+ (I −DΩ)−1 ∂D

∂Mi

α

=ΨdD
−1 ∂D

∂Mi

D−1
(
ΨdD

−1I
)
Dα+ΨdD

−1 ∂D

∂Mi

α

=Ψd

∂ logD
∂Mi

D−1α̃


So
∂α̃k

∂Mi

= α̃i

∂ logDi

∂Mi

Ψd
ki

1
Di




Assuming the Dixit–Stiglitz structure, so that D= M̃σ−1μ−σ , means

α̃= (
I − M̃σ−1μ1−σΩ

)−1
M̃σ−1μ1−σα
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To simplify the notation, for this proof, let

B = (
I − M̃σ−1μ1−σΩ

)−1



So

1
Mi

∂α̃

∂ log(Mi)
= ∂α̃

∂Mi

= B
∂M̃σ−1

∂Mi

μ1−σα+B
∂
(
M̃σ−1

)
∂Mi

(
M̃σ−1

)−1(
M̃σ−1

)
μ1−σΩB

(
M̃σ−1

)
μ1−σα

= B
∂M̃σ−1

∂Mi

μ1−σα+B
∂
(
M̃σ−1

)
∂Mi

(
M̃σ−1

)−1
(B − I)

(
M̃σ−1

)
μ1−σα

= B
∂
(
M̃σ−1

)
∂Mi

(
M̃σ−1

)−1
B

(
M̃σ−1

)
μ1−σα

= B
∂
(
M̃σ−1

)
∂Mi

(
M̃σ−1

)−1
α̃

= Ψd(M̃)1−σμσ−1 ∂
(
M̃σ−1

)
∂Mi

(
M̃σ−1

)−1
α̃


The kth element of this vector is

∂α̃k

∂ log(Mi)
=

(
σ − 1
εi − 1

)(
εi

εi − 1

)σ−1

e′
kΨdeiα̃i

1

M̃σi−1



Putting this all into a matrix gives

∂α̃

∂ log(M1)
=Ψddiag(α̃)μσ−1M̃1−σdiag

(
σ − 1
ε− 1

)

 Q.E.D.

PROOF OF EXAMPLE 1: Using the zero profit condition and Lemma 2, we have that

M1 = 1
3
M̃σ−1

1 μ1−σ
1 M̃σ−1

3 μ1−σ
3

f1ε1
Pσ
c C� (27)

M3 = 1
3

(
M̃σ−1

1 μ−σ
1 + 1

)
M̃σ−1

3 μ1−σ
3

f3ε3
Pσ
c C
 (28)

The sales of industry 2 are given by

p2y2 = 1
3
M̃σ−1

3 μ1−σ
3 Pσ

c C = 1
3
M̃σ−1

3 μ1−σ
3 C1−σ


This implies that

d log(p2y2)

d log(f1)
= (σ − 1)

(
1

1 − ε3

d log(M3)

d log(f1)
− d logC

d log(f1)

)
�
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so the sales of A2 are negatively affected, if

1
ε3 − 1

d log(M3)

d log(f1)
<

d logC
d log(f1)




Note that

d log(M1)

d log(f1)
= σ − 1

ε1 − 1
d log(M1)

d log(f1)
+ σ − 1

ε3 − 1
d log(M3)

d log(f1)
+ (1 − σ)

d log(C)

d log(f1)
− 1�

d log(M3)

d log(f1)
= 1

3β̃3

μ−σM̃σ−1
1

σ − 1
ε1 − 1

d log(M1)

d log(f1)
+ σ − 1

ε3 − 1
d log(M3)

d log(f1)
+ (1 − σ)

d log(C)

d log(f1)
�

and

d log(C)

d log(f1)
= 1

β′α̃
1
3

[
1

ε3 − 1
M̃σ−1

3 μ1−σ
3

(
1 + M̃σ−1

1 μ1−σ
1

)d log(M3)

d log(f1)

+ M̃σ−1
1 μ1−σ

1 M̃σ−1
3 μ1−σ

3

d log(M1)

d log(f1)

]



These three equations are collectively a linear system, so denote

X =

⎡
⎢⎢⎢⎢⎢⎣

d log(M1)

d log(f1)
d log(M3)

d log(f1)
d log(C)

d log(f1)

⎤
⎥⎥⎥⎥⎥⎦ �

and write

X =AX − e1�

where e1 is the first column of the identity matrix and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ − 1
ε1 − 1

σ − 1
ε3 − 1

1 − σ

σ − 1
ε1 − 1

1

3β̃3

μ1−σM̃σ−1
1

σ − 1
ε3 − 1

1 − σ

α̃1

3β′α̃(ε1 − 1)
α̃1 + α̃3

3β′α̃(ε3 − 1)
1

⎤
⎥⎥⎥⎥⎥⎥⎦



Then we can write

X = −(I −A)−1e1
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In order to solve this, we only need to know the first column of (I − A)−1, which can be
solved for by hand. So,

X = 1
detA

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε3 − σ

ε3 − 1
+ (σ − 1)

α̃1 + α̃3

3β′α̃(ε3 − 1)
σ − 1
ε1 − 1

(
μ1−σ

1 M̃σ−1
1

3β̃3

− α̃1

3βα̃

)
σ − 1
ε1 − 1

μ1−σ
1 M̃σ−1

1

3β̃3

α̃1 + α̃3

3βα̃(ε3 − 1)
+ ε3 − σ

ε3 − 1
α̃1

3β′α̃(ε1 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

where we know that detA< 0, because d log(M1)/d log(f1) < 0. Finally, note that

d log(p2y2)

d log(f1)
= (σ − 1)

(
1

1 − ε3

d log(M3)

d log(f1)
− d logC

d log(f1)

)
�

which is a linear combination of the values of X . So, d log(p2y2)

d log(f1)
< 0 if and only if

1
ε3 − 1

d log(M3)

d log(f1)
<

d log(C)

d log(f1)



In other words, we need

σ − 1
ε1 − 1

(
μ1−σ

1 M̃σ−1
1

3β̃3

− α̃1

3βα̃

)
>

σ − 1
ε1 − 1

μ1−σ
1 M̃σ−1

1

3β̃3

α̃1 + α̃3

3βα̃
+ (ε3 − σ)

α̃1

3β′α̃(ε1 − 1)



Rearrange this to get

ε3 < (σ − 1)
(
μ1−σ

1 M̃σ−1
1 β′α̃

β̃3α̃1

− 1
)

− μ1−σ
1 M̃σ−1 + 1

β̃3

(σ − 1)+ σ


Simplify this to get

ε3 < (σ − 1)
(
μ1−σ

1 M̃σ−1
1

β̃3

(
β′α̃
α̃1

− 1
)

− 1
)

+ σ = ε∗
3
 Q.E.D.

PROOF OF PROPOSITION 3: The sales of industry l are given by

plyl = β̃l × α̃l × (w/Pc)
1−σ × PcC


By our normalization, PcC = 1. Therefore,

d log(plyl)

d log
(
zw
k

) = d log(α̃l)

d log
(
zw
k

) + (1 − σ)
d log(w/Pc)

d log
(
zw
k

) 


And,

d log(α̃l)

d log
(
zw
k

) = d
d log

(
zw
k

)(
e′
lΨd

(
α ◦ zσ−1

))
= (σ − 1)e′

lΨde
′
kαk

(
zw
k

)σ−1

 Q.E.D.
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LEMMA 6: When the elasticity of substitution is equal to 1, and markups are constant,

log
(
C

(
zw� zm

)) = β′(I −Ω)−1

(
α ◦ log

(
zw

) + 1
ε− 1

◦ log
(
zm

)) + const�

so that

ṽ = β′(I −Ω)−1 ◦ 1
ε− 1




Furthermore, the equilibrium mass of entrants is given by

Mk = β̃kz
m
k

fkεk




PROOF: Note that real GDP can be written as

C = PcC

Pc

= wl +π

Pc

�

where π is total profits. By free entry, profits are zero in equilibrium. Normalize w = 1.
Then

log(C)= − log(Pc)


The marginal costs of firms in industry k are given by

λk =
(
αkz

w
k

w

)−αk ∏
l

(
ωkl

pl

)−ωkl




Substitute

λk =M
1

εk−1

k

εk − 1
εk

pk�

and let P denote the vector of industry prices. Then, in equilibrium,

log(P) = (I −Ω)−1
(−α ◦ log

(
zw

) + log(μ1)− log(M̃1)
)



Free entry implies that

M̃k =
(
β̃kPcCzm

k

fkεk

) 1
εk−1




Substitute this into the previous expression and combine it with the fact that

log(Pc)= β′ log(P)�

to get

log(C)= − log(Pc)= β′(I −Ω)−1

(
α ◦ log

(
zw

) + 1
ε− 1

◦ log
(
zm

)) + const�
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where

const = −β′(I −Ω)−1

(
log(μ1)− 1

ε− 1
◦ [

log(β̃)− log(f )− log(ε)
])




In the above expression, 1/(ε− 1) is the vector of 1/(εk − 1). Q.E.D.

PROOF OF EXAMPLE 2: Apply Lemma 6, since in the vertical economy σ can be set to
1 without loss of generality. The formula then follows from the fact that

β′(I −Ω)−1 = 1


On the other hand, sales share is given by

β̃= β′(I −μ−1Ω
)−1

ek =
k−1∏
i=1

μ−1
i 


Q.E.D.

PROPOSITION 6: d logC/d logzm
k goes to zero as the kth industry becomes perfectly com-

petitive:

ṽk → 0 as εk → ∞


PROOF: We simply take a limit of the expression in Proposition 1. Namely,

ṽk = 1

1 + 1
β′α̃

β′Ψ2(I −Λ)−11

σ − 1
β′α̃

β′Ψ2(I −Λ)−1ek


Proceed in steps. First, we show that (I−Λ)−1ek → ek. Lemma 3 implies that, in the limit,
Ψ2ek = Ψ1ek = 0. This means that Λek = 0 in the limit. This means

ek =Λek + ek�

whence (I −Λ)−1ek = ek. Substituting this into the formula for ṽk gives

ṽk = 1

1 + 1
β′α̃

β′Ψ2(I −Λ)−11

σ − 1
β′α̃

β′Ψ2ek


Since Ψ2ek = 0, we have that ṽk = 0 in the limit. Q.E.D.

APPENDIX C: VARIABLE MARKUPS

There are different ways to get variable markups in this context. The simplest is to as-
sume Cournot or oligopolistic competition with a finite number of firms in each industry,
but ignore the integer constraints on entry so that we can take derivatives. Alternatively,
one can suppose that each industry contains atomistic incumbents, with an infinitesimal
periphery on the margin. As more firms enter, the large firms lose market power, and
therefore industry-level markups decline continuously as a function of entry. Finally, one
could model within-industry demand as having variable elasticity of substitution so that
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the elasticity of substitution is increasing in the mass of products, but maintain constant
elasticity of substitution across industries. This would give rise to declining markups due
to demand-side pricing complementarities as in Krugman (1979) and Zhelobodko et al.
(2012).

Two simple examples, when we ignore the integer constraints on Mk, are
(a) Oligopolistic Competition: Each firm chooses its price to maximize its profit, taking

as given the economy-wide price levels and demand;
(b) Cournot in Quantities: Each firm chooses its quantity to maximize its profit, taking

as given the economy-wide price levels and demand, and there is no product differentia-
tion.
Under condition (a), the markup function μ is given by

μk = εkMk − (εk − σ)

(εk − 1)Mk − (εk − σ)



Under condition (b), the markup function μ is given by

μk = σMk

σMk − 1



APPENDIX D: DETAILS OF CALIBRATION

This appendix was written with help from my research assistant Tiancheng Sun.

D.1. Introduction

To calibrate the production system, we use Input Output Table (Commodity by Indus-
try) from BEA to give us the industry level expenditure shares W , labor shares a, and
profit shares π. The profit of each industry (gross of entry costs) is set to be value-added
minus compensation of employees, net taxes, and a depreciation rate of 10%. If this yields
a negative number, it is instead taken to be zero. Expenditures on production workers is
taken to be value-added minus π. We also need Use Table before Redefinitions (Com-
modity by Industry) from BEA to provide information about final expenditure shares b of
the whole economy. Finally, the across-industry substitutability σ is assumed to be some
known constant.

In calibration, we normalize TFP of firms, industry level price p, wage w, total labor
force l + f ′ diag(Ml)1, mass of variety M , and aggregate price level pc all to be 1, and
assume that [W�a�π�b] we observed in data correspond to steady-state equilibrium. We
are now ready to calibrate the production system.

First, we can use profit shares to back out markup: μl = εl
εl−1 , εl = 1

πl
, where μl is markup

of firm in industry l, and εl is the within-industry elasticity. The distribution of εl is win-
sorized at the the first percentile.

The production functions of firms are given by matrix Ωfirm, which governs the expendi-
ture share table in equilibrium, and vector αfirm, which governs labor shares in equilibrium.
Using cost minimization condition in equilibrium, we have:

Ωfirm = diag
(
μσ−1

l

)
W� αfirm = diag

(
μσ−1

l

)
a


The utility function of the representative agent is given by vector β = b, which reflects
the utility maximization condition in equilibrium.
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The gross output vector in calibration can be given by y ′ = b′(I − diag(μ−1
l )W )−1c,

where c is real GDP and is 1 in calibration, because in our model c equals total labor
force times real wage. The logic behind the above equation is similar to the use of Leontief
inverse to back gross output once net output is known.

Finally, we use free-entry condition in equilibrium to calibrate fixed costs of each in-
dustry:

f = y − diag
(
μ−1

l

)
y


In sum, we can use [W�a�π�b�σ] to calibrate parameters [Ωfirm�αfirm�μ�β� f ].
In the following, Section D.2 talks about data cleaning, and Section D.3 provides the

proofs of the equations used in calibration by solving cost minimization problem for firms.

D.2. The Input-Output Data and the Use Table Data

From BEA, we can find input-output data. The data has a format like below.

The column of the table describes the direct expenditure shares on each industry in order
to produce a certain commodity. The sum is always equal to 1.

Several things need to be adjusted before we can use the input-output table to do the
calibration.

First, there are a total of 389 industry NAICS codes from 1111A0 to S00203; however,
four industries that do show up at the output side do not show up at the input side and
should therefore be deleted from the column data. These four industries are 331314,
S00101, S00201, and S00202.

Second, 814000, which represents private households sector, can also be deleted both
from the column data and from the row data, as no industry requires 814000 as its input
and all the direct requirements of 814000 go to “Compensation of employees”.

Third, S00401 “Scrap,” S00402 “Used and Second hand goods,” and S00900 “Rest of
the world adjustment” shall be deleted from the row data as they do not belong to those
389 industry codes and are quantitatively ignorable.

Fourth, S00300 “Noncomparable Imports” is important but does not belong to those
389 industry codes. In addition, we are looking at a closed economy. Thus, it is deleted
from the row data.

Fifth, the sum of V00200 “Taxes on production and imports,” V00300 “Gross operating
surplus,” and V00100 “Compensation of employees” is value-added. To get the profit
share, we subtract net taxes, compensation of employees, and 10% depreciation, replacing
negative numbers by zero. Value-added minus the profit share is the gross labor share of
production workers.



16 DAVID REZZA BAQAEE

After the above adjustment, the table we now have contains 385 rows which include
384 industries and gross labor share, and 384 columns which are those 384 industries. We
renormalize the matrix to make the sum of the column to be 1 to back out the expenditure
shares on intermediary inputs and labor.

Finally, we transpose the renormalized matrix to get [W�a], where W = [wli] is a square
matrix with wli denoting industry l’s expenditure share on industry i; and a is a vector with
al denoting industry l’s expenditure share on labor.

For the Use Table Data, we look at the sector “total final uses” only to get the vector b.
We have relevant data from F01000 to F10N00. However, we ignore investment in inven-
tories, exports, and imports to avoid negative numbers. This is also consistent with our
model assumption which looks only at a closed economy and views the data as in steady-
state equilibrium. The NAICS codes in Use Table Data also need to be cleaned to match
the above cleaned Input-Output data. Only 384 industries shall be kept.

D.3. Calibration of CES Production Function With TFP Normalized to 1

PROPOSITION 6: If the following conditions hold:
(1) The CES production function is

y =
(

n∑
i=1

ω
1
σ
i x

σ−1
σ

i

) σ
σ−1




(2) The firm who operates with this production function is a price taker in the input markets
where the prices for inputs are strictly positive ∀i : pi > 0,
then we have the following conclusions:

(1) The marginal cost is λ= (
∑n

i=1 ωip
1−σ
i )

1
1−σ .

(2) The expenditure share of industry i in equilibrium is

∀i : wi = ωip
1−σ
i

n∑
i=1

ωip
1−σ
i




(3) The distribution parameters can be calibrated by

∀i :ωi =wσ
i

(
xi

y

)1−σ




PROOF: We solve the cost minimization problem for the firm:

min :
n∑

i=1

pixi

s.t.

(
n∑

i=1

ω
1
σ
i x

σ−1
σ

i

) σ
σ−1

≥ y
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The first-order condition gives

∀i : pi = λω
1
σ
i

(
y

xi

) 1
σ

�

y =
(

n∑
i=1

ω
1
σ
i x

σ−1
σ

i

) σ
σ−1




Because the production function is constant return to scale, we have that the marginal
cost λ is given by

λy =
n∑

i=1

pixi�

λy =
n∑

i=1

pi

(
λ

pi

)σ

ωiy�

λ1−σ =
n∑

i=1

ωip
1−σ
i �

λ=
(

n∑
i=1

ωip
1−σ
i

) 1
1−σ




Let the expenditure share of factor i be defined as wi � pixi∑n
i=1 pixi

= pixi
λy

; then

ω
1
σ
i = pi

λ

(
xi

y

) 1
σ

=
(
pixi

λy

)(
xi

y

) 1−σ
σ

=wi

(
xi

y

) 1−σ
σ




Thus,

ωi =wσ
i

(
xi

y

)1−σ




Equivalently, we can write

ω
1
σ
i = pi

λ

(
xi

y

) 1
σ

=
(
pi

λ

) σ−1
σ

(
pixi

λy

) 1
σ

=
(
pi

λ

) σ−1
σ

w
1
σ
i �

ωi =
(
pi

λ

)σ−1

wi�

∀i : wi = ωip
1−σ
i

n∑
i=1

ωip
1−σ
i




Q.E.D.

PROPOSITION 7: If each firm in the economy has a CES production function of the form
stated in Proposition 1, and the assumptions in Proposition 1 hold; in addition:
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(1) Each firm in the same industry is identical with the same production function and
market power.

(2) Goods and services within industry l can be aggregated by

xl =
(
M

−ϕl
l

Nl∑
j=1

xl(j)
εl−1
εl �l

) εl
εl−1




(3) Industry level prices are all normalized to 1: ∀l : pl = 1.
then:

(1) The distribution parameters of the production function of firm f in industry l can be
calibrated by

∀i : ωl�f
i =wl

i

(
μlM

1−ϕlεl
1−εl

l

)σ−1



(2) The distribution parameters of the aggregate industry production function in industry l
can be calibrated by

∀i :ωl
i =wl

iμ
σ−1
l 


PROOF: Consider firm f in industry l. As every firm in the industry is assumed to be

identical, we have w
l�f
i ≡ wl

i in equilibrium and pl�f = plM
1−ϕlεl
εl−1

l . The marginal cost shall
be related to the firm level price by the markup μl:

λl�fμl = pl�f = plM
1−ϕlεl
εl−1

l 


In addition, ∀l : pl = 1:

ω
l�f
i = (

w
l�f
i

)σ(x
l�f
i

yl�f

)1−σ

= (
wl

i

)σ( pix
l�f
i

λl�f yl�f

)1−σ(
λl�f

)1−σ

=wl
i

(
λl�f

)1−σ

=wl
i

(
μlM

1−ϕlεl
1−εl

l

)σ−1



The industry level distribution parameter can be shown by the same argument to be
given by

ωl
i =wl

i

(
λl

)1−σ



λl is related to λl�f in the following way:

λl =M
εl−ϕlεl

1−εl
l λl�fMl = μ−1

l pl = μ−1
l 


This is because to produce 1 unit of aggregate industry good requires M
εl−ϕlεl

1−εl
l units of

goods produced by each firm in the industry, and there are Ml firms each of which has a
marginal cost of λl�f .
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Therefore, ωl
i can further be written as

ωl
i =wl

i

(
μ−1

l

)1−σ =wl
iμ

σ−1
l 
 Q.E.D.

PROPOSITION 8: For a system of CES production functions with identical firms in each
industry which satisfy the assumptions in Proposition 7, and the representative consumer has
a CES preference,

U =
(

n∑
i=1

β
1
σ
i x

σ−1
σ

i

) σ
σ−1

�

we have:
(1)

y ′ diag
(
pσ

l

) = β′pσ
c c + y ′

firm diag
(
Mlλ

σ
l�f

)
Ωfirm

= β′pσ
c c + y ′ diag

(
M

1−ϕlεl
1−εl

l λσ
l�f

)
Ωfirm

= β′pσ
c c + y ′ diag

(
M

1−ϕlεl
1−εl

l

(
μ−1

l plM
1−ϕlεl
εl−1

l

)σ)
Ωfirm

= β′pσ
c c + y ′ diag

(
pσ

l

)
diag

((
M

1−ϕlεl
1−εl

l

)1−σ
μ−σ

l

)
Ωfirm


(2)

y ′ diag
(
pσ

l

) = β′pσ
c c + y ′ diag

(
λσ
l

)
Ω= β′pσ

c c + y ′ diag
(
pσ

l

)
diag

(
μ−σ

l

)
Ω


(3)

λ1−σ
firm = Ωfirmp

1−σ + αfirmw
1−σ = diag

(
μlM

1−ϕlεl
1−εl

l

)σ−1
p1−σ;

thus

p1−σ = diag
(
μlM

1−ϕlεl
1−εl

l

)1−σ
Ωfirmp

1−σ + diag
(
μlM

1−ϕlεl
1−εl

l

)1−σ
αfirmw

1−σ 


(4)

λ1−σ = Ωp1−σ + αw1−σ = diag(μl)
σ−1p1−σ;

thus

p1−σ = diag(μl)
1−σΩp1−σ + diag(μl)

1−σαw1−σ


(5)

β̃′ = β′(I − diag
((
M

1−ϕlεl
1−εl

l

)1−σ
μ−σ

l

)
Ωfirm

)−1



(6)

β̃′ = β′(I − diag
(
μ−σ

l

)
Ω

)−1
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(7)

α̃= (
I − diag

(
μlM

1−ϕlεl
1−εl

l

)1−σ
Ωfirm

)−1
diag

(
μlM

1−ϕlεl
1−εl

l

)1−σ
αfirm


(8)

α̃= (
I − diag(μl)

1−σΩ
)−1

diag(μl)
1−σα


(9)

β̃′pσ
c cα̃= p′y


(10)

pcc = wl +p′ diag
(
1 −μ−1

l

)
y

= wl +wf ′ diag(Ml)1 (free entry and resource constraint)


PROPOSITION 9: If we normalize industry level price p, wage w, total labor force l +
f ′ diag(Ml)1, mass of variety M , and aggregate price level pc all to be 1, then in calibra-
tion where we assume that our observations of various expenditure shares and income shares
correspond to steady-state equilibrium of the model:

(1)

Ωfirm = diag
((
μlM

1−ϕlεl
1−εl

l

)σ−1)
W = diag

(
μσ−1

l

)
W =Ω�

αfirm = diag
((
μlM

1−ϕlεl
1−εl

l

)σ−1)
a= diag

(
μσ−1

l

)
a= α


(2)

β= b (final expenditure shares)


(3)

y ′ = b′c + y ′ diag
(
μ−1

l

)
W ;

or

y ′ = b′(I − diag
(
μ−1

l

)
W

)−1
c (Gross Output Vector)


(4)

1 =W 1 + a


(5)

diag(Ml)f = f = y − diag
(
μ−1

l

)
y (fixed cost)


(6)

c = pcc = wl +wf ′ diag(Ml)1 = 1 (real GDP)
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(7)

y ′1 = p′y = β̃′pσ
c cα̃

= β̃′α̃

= b′(I − diag
(
μ−1

l

)
W

)−1
(I −W )−1a

= b′(I − diag
(
μ−1

l

)
W

)−1
1 (Gross Output)


(8)

α̃= (I −W )−1a= 1


(9)

β̃′ = b′(I − diag
(
μ−1

l

)
W

)−1 = y ′

or

b′ = y ′(I − diag
(
μ−1

l

)
W

)



(10)

f ′ diag(Ml)1

= y ′(I − diag
(
μ−1

l

))
1

= b′(I − diag
(
μ−1

l

)
W

)−1(
I − diag

(
μ−1

l

))
1 (Labor Used as a Fixed Factor)


(11)

μl = εl

εl − 1
� εl = 1

πl

�

πl is the profit share observed in industry l.
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