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APPENDIX A: MATHEMATICAL APPENDIX: PROOFS OF LEMMAS AND THEOREMS

A.1. Proof of Lemma L-1

PROOF: Using the setup of (B.1) and (B.2), it is easy to see that the independence
relationship (εV � εY ) ⊥⊥ εZ implies the exclusion restriction (V �Y(t)) ⊥⊥ Z of Equa-
tion (6). Moreover, εY ⊥⊥ εZ|εV implies the matching (conditional independence) prop-
erty Y(t) ⊥⊥ T |V of Equation (7). The independence relationship, V ⊥⊥ Z, implies that
fS(V ) ⊥⊥ Z, hence S ⊥⊥ Z, as stated in item (ii) of the lemma. Equation (11), that is,
T = gT (S�Z), implies that T is deterministic conditional on S and Z. Thus, Y ⊥⊥ T |(S�Z)
holds as stated in item (iii) of the lemma.

From (V �Y(t))⊥⊥Z and the fact that S= fS(V ), we obtain (S�Y(t))⊥⊥Z. We can ap-
ply the Weak Union Property of conditional independence relationships of the Graphoid
axioms to obtain Y(t) ⊥⊥ Z|S.1 But T only depends on Z when conditioned on S (Equa-
tion (11)), thus we have that Y(t) ⊥⊥ fT (Z�S)|S which is equivalent to Y(t) ⊥⊥ T |S as
stated in item (i) of the lemma.

Independence relationship Y(t) ⊥⊥ Z|S implies that Y(t) ⊥⊥ (fT (Z�S)�Z)|S also
holds. This relationship is equivalent to Y(t) ⊥⊥ (T�Z)|S. By Weak Union and Decom-
position, we have that Y(t) ⊥⊥ Z|(S�T ) holds. In particular, Y(t) ⊥⊥ Z|(S�T = t) holds
for all t ∈ supp(T). From representation (4):(

Y(t) ⊥⊥ Z|(S�T = t)
) ⇒

( ∑
t′∈supp(T)

Y
(
t ′
) · 1

[
T = t ′

]⊥⊥Z|(S�T = t)

)
⇒ (

Y ⊥⊥ Z|(S�T = t)
) ∀t ∈ supp(T)�

which proves item (iv) of the lemma. Q.E.D.

James J. Heckman: jjh@uchicago.edu
Rodrigo Pinto: Rodrig@econ.ucla.edu
1The Graphoid axioms are a set of conditional independence relationships first presented by Dawid (1979):

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z�

Decomposition: X ⊥⊥ (W �Y)|Z ⇒X ⊥⊥ Y |Z�

Weak Union: X ⊥⊥ (W �Y)|Z ⇒ X ⊥⊥ W |(Y�Z)�

Contraction: X ⊥⊥ Y |Z and X ⊥⊥ W |(Y�Z)⇒ X ⊥⊥ (W �Y)|Z�

Intersection: X ⊥⊥ W |(Y�Z) and X ⊥⊥ Y |(W �Z) ⇒ X ⊥⊥ (W �Y)|Z�

Redundancy: X ⊥⊥ Y |X�

The intersection relationship is only valid for strictly positive probability distributions.
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A.2. Proof of Theorem T-1

PROOF: We make no assumption about the functional form of fY in the outcome equa-
tion Y = fY (T�V � εY ) in (2) except E(|Y |) < ∞. Without loss of generality, the outcome
equation can be replaced by Y = κ(fY (T�V � εY )). To prove the theorem, it suffices to
show that the following relationship holds for the expectation of Y :

E
(
Y · 1[T = t]|Z)=

∑
s∈supp(S)

E
(
Y · 1[T = t]|Z�S= s

)
P(S= s|Z)

=
∑

s∈supp(S)

P(T = t|Z�S= s)E(Y |T = t�Z�S= s)P(S= s|Z)

=
∑

s∈supp(S)

1[T = t|Z�S= s]E(Y |T = t�S= s)P(S= s)

=
∑

s∈supp(S)

1[T = t|Z�S= s]E(Y(t)|S = s
)

P(S= s)�

The first equality comes from the law of iterated expectations. The second equality comes
from Bayes’s theorem. The first term of the third equality comes from the fact that T is de-
terministic conditioned on Z and S. The second term in the expression comes from Y ⊥⊥
Z|(S�T ), a consequence of Lemma L-1. The third term comes from S⊥⊥ Z as established
in Lemma L-1. The fourth equality comes from conditional independence Y(t) ⊥⊥ T |S
of Lemma L-1, which implies that E(Y |T = t�S= s)= E(Y(t)|S= s). Q.E.D.

A.3. Proof of Theorem T-2

Restrictions on the response matrix R generate identification of mean counterfactu-
als defined on strata. We rely on Lemma L-2—stated below—to prove Theorem T-2.
Lemma L-2 states the general solution for a system of linear equations. We refer to
Magnus and Neudecker (1999) for a general discussion of linear systems.

LEMMA L-2: A general solution for x in the system of linear equations represented by
b =Bx⇒ x is given by

b =Bx ⇒ x=B+b+ (I −B+B
)
λ� (A.1)

where λ is an arbitrary real-valued |b|-dimension vector, I is an identity matrix of the same
dimension, and B+ is the Moore–Penrose pseudoinverse of matrix B.

PROOF: In this proof, we use the definition of the Moore–Penrose pseudoinverse B+

and the fact that the matrix B+ is unique for a real-valued matrix B. Matrix B+ has the
following properties: (1) BB+B =B; (2) B+BB+ =B+; (3) B+B= (B+B)′; and (4) BB+ =
(BB+)′. Properties (2)–(3) imply that Q = B+B is an orthogonal projection operator, so
Q2 = Q and Q′ =Q:

Q2 = B+BB+B= B+B =Q due to property (2)�

Q′ = (B+B
)′ =B+B=Q due to property (3)�
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Any vector x can be decomposed by a orthogonal Q projection as x = Qx + (I − Q)x.
In our case, we have that x = B+Bx+ (I −B+B)x. If vector x is a solution to the system
b =Bx, then it must be that

Bx = b ⇒ x=B+b+ (I −B+B
)
x

Moreover b = Bx ⇒ b =B
(
B+b+ (I −B+B

)
x
)

But: B
(
I −B+B

)= 0 due to property (4) of B+

Thus: B
(
I −B+B

)
λ = 0 for any real-valued λ

⇒ b =B
(
B+b+ (I −B+B

)
λ
)

∴ x̃ =B+b+ (I −B+B
)
λ is also a solution as b= Bx̃ holds.

Thus x̃=B+b+Kλ such that K = (I −B+B
)

is a general solution. Q.E.D.

We now use Lemma L-2 to prove Theorem T-2.

PROOF OF THEOREM T-2: We apply the general solution for the matrix form of a system
of linear equations to Equation (19) in the text. This generates PS = B+

TPZ + KTλ. By
hypothesis, ξ′KT = 0, and thus ξ′P S = ξ′B+

TPZ, which makes ξ′PS identified. We can apply
the same rationale to Equation (20) which identifies ξ′LS. By the same token, applying this
analysis to (18), QS(t)=B+

TQZ(t)+Ktλ. Thus ζ ′Kt = 0 implies that ζ ′QS(t)= ζ ′B+
TQZ(t)

is identified. Q.E.D.

A.4. Bounds for Response-Type Probabilities and Counterfactual Outcomes

Lemma L-3 below uses linear Equations (18)–(19) and Lemma L-2 to generate simple
bounds for response-type probabilities and counterfactual outcomes.

LEMMA L-3: For the IV model (1)–(3), bounds for response-type probabilities PS given a
response matrix R are given by

PS ∈
[
max

(
0NS

�B+
TPZ + min

λ∈RNS

(KTλ)
)
�min

(
ιNS

�B+
TPZ + max

λ∈RNS

(KTλ)
)]

� (A.2a)

where λ is an arbitrary real-valued vector of dimension NS. Bounds on λ come from the fact
that PS is a vector with probabilities defined on the unit simplex. Bounds for the expectation
of outcomes by strata are given by(

B+
t QZ(t)+ min

ξ∈RNS

(Ktξ)
)

≤QS(t)≤
(
B+

t QZ(t)+ max
ξ∈RNS

(Ktξ)
)
� 2 (A.2b)

where ξ is an arbitrary real-valued vector of dimension NS.

PROOF: Equations (A.2a) and (A.2b) follow directly from the application of the gen-
eral linear solution (A.1) of Lemma L-2 to the system of linear equations of Equa-
tions (19) and (18), respectively. The admissible ranges of λ in Equation (A.2a) come
from using the fact that {P z}z∈supp(z) are probabilities. Q.E.D.

2These bounds are not sharp because we do not use the full distribution of the data generating process in
constructing them.
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A.5. Proof of Corollary C-1

PROOF: According to Theorem T-2, vectors P S and LS are point-identified if and only if
ξ′KT = 0 for any ξ′. Thus it must be the case that KT = 0. Since KT = (INS

−B+
TBT ), KT =

0 if and only if INS
= B+

TBT , which holds if and only if rank(BT ) = NS, that is, BT has full
column-rank. From Theorem T-2, PS is identified from B+

TPZ if and only if rank(BT )= NS.
The second equation follows from the same rationale. Kt = 0 if and only if rank(Bt)= NS.
According to Theorem T-2, if Kt = 0, then QS(t)=B+

t QZ(t), and thereby E(κ(Y(t))) can
be expressed as

E
(
κ
(
Y(t)

))=
NS∑
n=1

E
(
κ
(
Y(t)

)|S = sn
)
P(S = sn)

= ι′
NS
QS(t)

= ι′
NS
B+

t QZ(t)�

where ιNS
is a NS-dimensional vector of 1’s. Q.E.D.

A.6. Proof of Theorem T-3

We first establish a series of lemmas and then turn to the main proof.3

A.6.1. Lemma L-4

LEMMA L-4: Every sub-matrix of a lonesum matrix is lonesum.

PROOF: Suppose that there is a binary matrix B whose sub-matrix B̃ is not lone-
sum. Thus B̃ cannot be uniquely recovered by its row and column sums. This fact is
not altered if all elements in B other than B̃ were known. In particular, B cannot be
lonesum. Q.E.D.

A.6.2. Lemma L-5

LEMMA L-5: If a binary matrix is lonesum, then no 2 × 2 sub-matrix takes the form of the
prohibited patterns (52), that is, [

1 0
0 1

]
nor

[
0 1
1 0

]
�

PROOF: We first prove that the prohibited patterns are not lonesum. Consider a 2 × 2
binary matrix B whose column-sums and row-sums are equal to 1. Matrix B can be equal
to either B1 or B2 (defined below). Indeed, the column-sums and row-sums of both B1

and B2 are equal to 1:

B1 =
[

1 0
0 1

]
and B2 =

[
0 1
1 0

]
�

3Lemmas L-4–L-8 provide simple proofs of the properties of binary matrices used in this paper. For an ex-
tensive discussion of binary matrices, see Ryser (1957), Brualdi (1980), Brualdi and Ryser (1991), and Sachnov
and Tarakanov (2002).
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As a consequence, any 2 × 2 binary matrix B whose column-sums and row-sums are equal
to 1 cannot be uniquely identified based only on its column and row sums, that is, B is not
lonesum. In particular, B1 and B2 are not lonesum. But B1 and B2 exhibit the prohibited
pattern (52). Thus the prohibited patterns B1 and B2 are not lonesum.

Now, according to Lemma L-4, all sub-matrices of a lonesum matrix are also lonesum.
But B1 and B2 are not lonesum. Thus no 2 × 2 sub-matrix of a lonesum matrix can be
equal to either of the prohibited patterns B1 or B2. Q.E.D.

A.6.3. Lemma L-6

LEMMA L-6: If no 2 × 2 sub-matrix of a binary matrix B takes the form of the prohibited
patterns (52), then B is equivalent to its maximal.

PROOF: The proof of the lemma is done by proving its contrapositive form, that is, if B
is not equivalent to its maximal, then prohibited patterns (52) must arise. Without loss of
generality, let the columns of B be ordered in decreasing column sum. Suppose B is not
maximal. Then there must exist a row i whose element of the jth column is 0 followed
by the element 1 in column j + 1. But the jth column sum is greater than or equal to
the column sum of j + 1. Thus, there must exist at least one row i′ whose jth column is
1 followed by the element 0 in column j + 1. This generates the prohibited pattern of
Lemma L-5. Q.E.D.

A.6.4. Lemma L-7

LEMMA L-7: If a binary matrix B is equivalent to its maximal, then its maximal can be
generated by reordering its columns in decreasing column sum.

PROOF: The maximal of B is a matrix whose rows present a sequence of elements 1
followed by elements 0. Thereby, the maximal of B has decreasing column sums. Thus,
it suffices to prove that matrix B̃, generated by permuting the B-columns in decreasing
column sum, is unique. Suppose it is not; then there must exist two distinct columns, say
B[·� j] and B[·� j′] of same column sum. Then it must be the case that there exist two rows
i� i′ such that B[i� j] = 1�B[i� j′] = 0 and B[i′� j] = 0�B[i′� j′] = 1. This is the prohibited
pattern. Thus, there is no column permutation in which both rows i and i′ are formed by
a sequence of elements 1 followed by a sequence of elements 0. Q.E.D.

A.6.5. Lemma L-8

LEMMA L-8: If binary matrix B is equivalent to its maximal, then B is lonesum.

PROOF: Let matrix B̃ be generated by permuting the B-columns in decreasing column
sum. By Lemma L-7, B̃ is the maximal of B and is uniquely determined by its row sums.
But B̃ was generated using the column sums of B. Thus B is uniquely determined by its
row sums and column sums and thereby B is lonesum. Q.E.D.

REMARK A.1: The cyclical property of Lemmas L-5–L-8 implies that the following
statements are equivalent: (1) B is lonesum; (2) B has no 2 × 2 sub-matrix with the pro-
hibited patterns (52); (3) B is equivalent to its maximal. This fact is exploited in the next
lemma.
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A.6.6. Lemma L-9

LEMMA L-9: Let there be a binary matrix B where B[i� j]; i ∈ {1� � � � �Nr}� j ∈ {1� � � � �Nc}.
If B is lonesum, then items 1 and 2 below hold:
1. For any j� j′ ∈ {1� � � � �Nc}, we have that

B[i� j] ≤B
[
i� j′] for all i ∈ {1� � � � �Nr} or B[i� j] ≥ B

[
i� j′] for all i ∈ {1� � � � �Nr}�

2. For any i� i′ ∈ {1� � � � �Nr}, we have that

B[i� j] ≤B
[
i′� j
]

for all j ∈ {1� � � � �Nc} or B[i� j] ≥ B
[
i′� j
]

for all j ∈ {1� � � � �Nc}�

PROOF: We use proof by contradiction.
Suppose that Condition 1 does not hold. The negation of Condition 1 is that: For

some j� j′ ∈ {1� � � � �Nc}, there exist some i� i′ ∈ {1� � � � �Nr} such that B[i� j] > B[i� j′]
and B[i′� j] < B[i′� j′]. Thus it must be the case that B[i� j] = B[i′� j′] = 1 and B[i� j′] =
B[i′� j] = 0. Thus the 2 × 2 sub-matrix of B generated by rows i� i′ and columns j� j′ is
given by (

B[i� j] B
[
i� j′]

B
[
i′� j

]
B
[
i′� j′])=

(
1 0
0 1

)
�

which is a prohibited pattern and, according to Lemma L-5, B cannot be lonesum.
The proof of Condition 2 follows the same rationale of the proof of Condition 1.

Suppose that Condition 2 does not hold. The negation of Condition 2 states that: For
some i� i′ ∈ {1� � � � �Nr}, there exist some j� j′ ∈ {1� � � � �Nc} such that B[i� j] > B[i′� j] and
B[i� j′] <B[i′� j′].

Thus it must be the case that B[i� j] = B[i′� j′] = 1 and B[i� j′] = B[i′� j] = 0, which gen-
erates a prohibited pattern (see Item 1). Q.E.D.

A.6.7. Lemma L-10

LEMMA L-10: Consider a lonesum binary matrix B. Let B̃ be a matrix generated by or-
dering the rows of B in increasing row-sum and ordering the columns of B in decreasing
column-sum. Then B̃ is lower triangular and:

1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1 followed
by a sequence of elements 0.

2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0
followed by a sequence of elements 1.

PROOF: B is lonesum; then by Remark A.1, B is equivalent to its maximal. The maxi-
mal of B consists of the matrix B̃ of the same dimension as B whose rows share the same
sum of the rows in B and whose rows consist of a sequence of elements 1 followed by a
sequence of elements 0. Moreover, B̃ can be obtained by ordering the columns of B in
decreasing column-sum. Note also that if B is lonesum, its transpose, that is, B′, is also
lonesum and the maximal of B′ can be obtained by ordering the columns of B′ in decreas-
ing order. A consequence of this fact is that if the rows of B are ordered in increasing
row-sum, then each column consists of a sequence of elements 0 followed by a sequence
of elements 1. Q.E.D.
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A.6.8. Lemma L-11

LEMMA L-11: Let a binary matrix B̃ be lower triangular, that is,
1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1 followed

by a sequence of elements 0.
2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0

followed by a sequence of elements 1.
Also, let r(i) = ∑Nc

j=1 B̃[i� j] (row-sum) and c(j) = ∑Nr

i=1 B̃[i� j] (column-sum) where i ∈
{1� � � � �Nr} and j ∈ {1� � � � �Nc}. If B̃ has strictly positive column and row sums, then it must
be the case that

B̃[i� j] = 0 ⇔
(

Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])> r(i)�

B̃[i� j] = 1 ⇔
(

Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤ r(i)�

PROOF: For any given row i, there is a j̃ ∈ {1� � � � �Nc} such that r(i) = j̃. By the lower
triangular property of B̃, we must have that

c(1)≥ · · · ≥ c(j̃ − 1)≥ c(j̃) > c(j̃ + 1)≥ · · · ≥ c(Nc)�

Thus we can write r(i) as

r(i) = j̃ =
Nc∑
j′=1

1
[
c(j̃) ≤ c

(
j′)]� (A.3)

and it must be the case that the Inequalities (A.4)–(A.5) below hold:

r(i) = j̃ <

Nc∑
j′=1

1
[
c(j)≤ c

(
j′)]� for all j such that j > j̃� (A.4)

r(i) = j̃ ≥
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)]� for all j such that j ≤ j̃� (A.5)

Thus we have that

B̃[i� j] = 0 ⇔ j > j̃ ⇔
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)]> r(i) = j̃�

where the first implication comes from the row property of the lower triangular matrix B̃

and the definition of j̃. The second implication arises from Inequality (A.4).
Also,

B̃[i� j] = 1 ⇔ j ≤ j̃ ⇔
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)]≤ r(i) = j̃�
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where the first implication comes from the row property of the lower triangular matrix B̃

and the definition of j̃. The second implication arises from Inequality (A.5). Q.E.D.

A.6.9. Lemma L-12

Lemma L-12 gives a formula that characterizes each element B[i� j] of a lonesum matrix
in terms of its row-sum

∑Nc

j′=1 B[i� j′] and the column-sum
∑Nr

i′=1 B[i′� j′]; i′ ∈ {1� � � � �Nr},
j′ ∈ {1� � � � �Nc}.

LEMMA L-12: If a binary matrix B is lonesum with strictly positive row and column sums,
then each element B[i� j]; i ∈ {1� � � � �Nr}� j ∈ {1� � � � �Nc} can be expressed as

B[i� j] = 1

[ (
Nc∑
j′=1

1

[
Nr∑
i′=1

B
[
i′� j

]≤
Nr∑
i′=1

B
[
i′� j′]])

︸ ︷︷ ︸
Number of columns whose sum is bigger than column-sum of B[·� j]

≤
(

Nc∑
j′=1

B
[
i� j′])

︸ ︷︷ ︸
row-sum of Bt [i� ·]

]
� (A.6)

PROOF: Let B̃ be matrix generated by ordering the rows of B in increasing row-sum
and ordering the columns of B in decreasing column-sum. Thus by Lemma L-10, B̃ is
lower triangular such that:

1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1
followed by a sequence of elements 0.

2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0
followed by a sequence of elements 1.
Thus by Lemma L-11, it must be the case that the following inequalities hold:

B̃[i� j] = 0 ⇔
(

Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])> r(i)�

B̃[i� j] = 1 ⇔
(

Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤ r(i)�

Therefore, we can express B̃[i� j] by the following expression:

B̃[i� j] = 1

[(
Nc∑
j′=1

1
[
c(j) ≤ c

(
j′)])≤ (r(i))]� (A.7)

Equation (A.7) only depends on the column and row sums of B̃. But any row-permutation
of B̃ does not change its column sum. Moreover, any column-permutation of B̃ does not
change its row sum. Thus Equation (A.7) also holds for any row or column permutation
of B̃. In other words, Equation (A.7) holds for any matrix that is equivalent to B̃. In
particular, Equation (A.7) holds for B̃. The proof is completed by acknowledging that
Equation (A.7) is the same as Equation (A.6). Q.E.D.
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A.6.10. Lemma L-13

LEMMA L-13: Let B be a binary matrix where B[i� j]; i ∈ {1� � � � �Nr}� j ∈ {1� � � � �Nc} and
σ1� � � � �σNc be a sequence of strictly positive numbers. If B is lonesum, then

1

[(
Nc∑
j′=1

1

[
Nr∑
i′=1

B
[
i′� j
]≤

Nr∑
i′=1

B
[
i′� j′]])≤

(
Nc∑
j′=1

B
[
i� j′])]

(A.8)

= 1

[(
Nc∑
j′=1

σj′ · 1

[
Nr∑
i′=1

B
[
i′� j

]≤
Nr∑
i′=1

B
[
i′� j′]])≤

(
Nc∑
j′=1

σj′ ·B
[
i� j′])]�

for any (i� j) ∈ {1� � � � �Nr} × {1� � � � �Nc}.
PROOF: By Lemma L-9, we have that, for any columns j� j′ ∈ {1� � � � �Nc}, B[i′� j] ≤

B[i′� j′] or B[i′� j] ≥B[i′� j′] for all rows i′ ∈ {1� � � � �Nr}. As a shorthand notation, let c(j) =∑Nr

i=1 B[i� j] be the column sum. In this notation, Equation (A.8) can be rewritten as

1

[(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

B
[
i� j′])]

= 1

[(
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

σj′B
[
i� j′])]�

We want to prove that

1

[(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

B
[
i� j′])]= 1

⇒ 1

[(
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

σj′B
[
i� j′])]= 1

and

1

[(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

B
[
i� j′])]= 0

⇒ 1

[(
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

σj′B
[
i� j′])]= 0�

Consider the first case:

1

[(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

B
[
i� j′])]= 1 ⇒B[i� j] = 1 by Lemma L-12.

Then, 1
[
c(j)≤ c

(
j′)]= 1 ⇒ B

[
i′� j
]≤B

[
i′� j′] ∀i′ ∈ {1� � � � �Nr}�
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But, B[i� j] = 1; therefore, it must be that B
[
i� j′]= 1�

Thus, 1
[
c(j)≤ c

(
j′)]= 1 ⇒B

[
i� j′]= 1

⇒ 1
[
c(j)≤ c

(
j′)]≤B

[
i� j′] ∀j′ ∈ {1� � � � �Nc}

⇒ σj′1
[
c(j)≤ c

(
j′)]≤ σj′B

[
i� j′] ∀j′ ∈ {1� � � � �Nc}

⇒ 1

[
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)]≤

Nc∑
j′=1

σj′B
[
i� j′]]= 1�

Consider the second case:

1

[(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])≤

(
Nc∑
j′=1

B
[
i� j′])]= 0 ⇒B[i� j] = 0 by Lemma L-12�

But if B
[
i� j′]= 1 and B[i� j] = 0� then B

[
i′� j
]≤B

[
i′� j′] ∀i′ ∈ {1� � � � �Nr}�

Thus, B
[
i� j′]= 1 ⇒ 1

[
c(j) ≤ c

(
j′)]= 1

⇒ 1
[
c(j)≤ c

(
j′)]≥B

[
i� j′] ∀j′ ∈ {1� � � � �Nc}

⇒ σj′1
[
c(j)≤ c

(
j′)]≥ σj′B

[
i� j′] ∀j′ ∈ {1� � � � �Nc}�

But

(
Nc∑
j′=1

1
[
c(j)≤ c

(
j′)])>

(
Nc∑
j′=1

B
[
i� j′])�

So ∃j′ such that 1
[
c(j)≤ c

(
j′)]>B

[
i� j′]

⇒
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)]> Nc∑

j′=1

σj′B
[
i� j′]

⇒ 1

[
Nc∑
j′=1

σj′1
[
c(j)≤ c

(
j′)]≤

Nc∑
j′=1

σj′B
[
i� j′]]= 0�

Q.E.D.

A.6.11. Lemma L-14

LEMMA L-14: Suppose B is a binary matrix where B[i� j]; i ∈ {1� � � � �Nr}� j ∈ {1� � � � �Nc}.
Define a sequence of strictly positive numbers ζ1� � � � � ζNr . If B is lonesum, then

1

[
Nr∑
i′=1

B
[
i′� j
]≤

Nr∑
i′=1

B
[
i′� j′]]= 1

[
Nr∑
i′=1

ζi′B
[
i′� j
]≤

Nr∑
i′=1

ζi′B
[
i′� j′]]� (A.9)

PROOF: By Lemma L-9, we have that, for any columns j� j′ ∈ {1� � � � �Nc}, B[i′� j] ≤
B[i′� j′] or B[i′� j] ≥B[i′� j′] for all rows i′ ∈ {1� � � � �Nr}. Thus,

Suppose 1

[
Nr∑
i′=1

B
[
i′� j

]≤
Nr∑
i′=1

B
[
i′� j′]]= 1

⇒B
[
i′� j
]≤B

[
i′� j′] for all i′ ∈ {1� � � � �Nc}
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⇒ ζi′B
[
i′� j
]≤ ζi′B

[
i′� j′] for all i′ ∈ {1� � � � �Nc}

⇒ 1

[
Nr∑
i′=1

ζi′B
[
i′� j

]≤
Nr∑
i′=1

ζi′B
[
i′� j′]]= 1�

Now suppose 1

[
Nr∑
i′=1

B
[
i′� j

]≤
Nr∑
i′=1

B
[
i′� j′]]= 0

⇒B
[
i′� j

]≥ B
[
i′� j′] for all i′ ∈ {1� � � � �Nc} and ∃i;B[i� j]>B

[
i� j′]

⇒ ζi′B
[
i′� j
]≥ ζi′B

[
i′� j′] for all i′ ∈ {1� � � � �Nc} and ∃i;ζiB[i� j]> ζiB

[
i� j′]

⇒ 1

[
Nr∑
i′=1

ζi′B
[
i′� j

]≤
Nr∑
i′=1

ζi′B
[
i′� j′]]= 0�

Q.E.D.

A.6.12. Proof of Theorem T-3

PROOF: The equivalence proof of Theorem T-3 must show that items (i)–(iv) cyclically
imply each other. We use Lemmas L-4–L-14 to do so. We divide the proof into a few
steps:

1. The first step explores the lonesum properties of the binary matrices Bt generated
by the response matrix R. We use Lemmas L-5–L-8 to show that (i) ⇔ (ii).

2. We use Lemma L-9 to prove (i) ⇒ (iii) ⇒ (ii).
3. We use Lemmas L-12–L-14 to prove (i) ⇒ (iv).
4. The last step of our proof is to show that (iv) ⇒ (ii).

The proof strategy can be represented by the graph shown in Figure S1.

FIGURE S1.—Schematics of the Proof of Theorem T-3.

(i) ⇔ (ii): The direct implication is a consequence of Lemma L-5. If each Bt is lonesum,
then no 2 × 2 sub-matrix of Bt takes the form of the forbidden patterns (52). This means
that no 2 × 2 sub-matrix of Bt takes the form[

1 0
0 1

]
nor

[
0 1
1 0

]
�

But Bt = 1[R= t]. Thus no 2 × 2 sub-matrix of R takes the forms(
t t ′

t ′′ t

)
or

(
t ′ t
t t ′′

)
� where t ′ �= t and t ′′ �= t. (A.10)
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The reverse implication is a consequence of the equivalence between lonesum matri-
ces and the forbidden patterns that was proved by the cyclical implication of Lemmas
L-5 ⇒ L-6 ⇒ L-8 ⇒ L-5. Specifically, if (A.10) holds, then no 2 × 2 sub-matrices of
Bt; t ∈ supp(T) take the form of the forbidden patterns (52). Thus each Bt; t ∈ supp(T)
is lonesum.

(i) ⇒ (iii) ⇒ (ii): If each Bt; t ∈ supp(T) is lonesum, then, according to Lemma L-9,
any two row-indexes i� i′ of Bt must satisfy

Bt[i� j] ≤Bt

[
i′� j
]

or Bt[i� j] ≥Bt

[
i′� j

]
for all column-indexes j� (A.11)

But Bt = 1[R= t]. Rewriting Equation (A.11) in terms of the response matrix R generates

1[T = t|Z = zi�S= sj] ≤ 1[T = t|Z = zi′�S= sj] or (A.12)

1[T = t|Z = zi�S= sj] ≥ 1[T = t|Z = zi′�S= sj] occurs (A.13)

for ∀sj ∈ supp(S) and any zi� zi′ ∈ supp(Z)�

Since S is a balancing score for V , for every v ∈ supp(V ), there exists a unique sj ∈
supp(S) such that fS(v) = sj (see Section 3.1). Thereby, for any zi ∈ supp(Z) and
t ∈ supp(T), we have that

1[T = t|Z = zi�V = v] = 1
[
T = t|Z = zi�S= fS(v)

]
(A.14)

= 1[T = t|Z = zi�S= sj] = Bt[i� j]�
Using Equation (A.14) in (A.12) and (A.13) allows us to write that, for any zi� zi′ ∈
supp(Z), it must be the case that

1[T = t|Z = zi�V = v]
(A.15)

≤ 1[T = t|Z = zi′�V = v] for all values v ∈ supp(V ) or

1[T = t|Z = zi�V = v]
(A.16)

≥ 1[T = t|Z = zi′�V = v] for all values v ∈ supp(V )�

For each agent ω ∈ Ω, that is a unique value v ∈ supp(V ) such that V ω = v. Therefore,
we can express the indicator function for the choice conditional on V and Z, that is,
1[T = t|V = v�Z = z], as the indicator function of the counterfactual choice 1[Tω(z)= t]
for V ω = v. Thus we can restate Equations (A.15)–(A.16) as (A.17)–(A.18) below:

1
[
Tω(zi)= t

]≤ 1
[
Tω(zi′)= t

]
for all ω ∈Ω� (A.17)

or

1
[
Tω(zi)= t

]≥ 1
[
Tω(zi′)= t

]
for all ω ∈ Ω� (A.18)

Now suppose that for z� z′ ∈ supp(Z) and t� t ′ ∈ supp(T) such that t �= t ′, there exists
some ω ∈ Ω such that Tω(z

′) = t ′ and Tω(z) = t. Thus, as the instrument changes from
z′ to z, agent ω is induced to choose t. If (A.17)–(A.18) hold, then it cannot be the case
that there exists an agent w′ ∈ Ω that is induced to choose t as the instrument change
from z to z′. In other words, it cannot be the case that Tω′(z) = t ′′ and Tω′(z) = t, such
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that t �= t ′′ ∈ supp(T). Let ω be associated with response-type s and ω′ with s′. Thus the
following pattern cannot occur:[

(T |Z = z�S= s)
(
T |Z = z�S= s′)(

T |Z = z′�S= s
) (

T |Z = z′�S= s′)]=
[
t t ′′

t ′ t

]
� (A.19)

where t ′ �= t and t ′′ �= t.
Equation (A.19) implies item (ii).
(i) ⇒ (iv): If Bt; t ∈ supp(T) is lonesum, then, by Lemma L-12, each element of Bt[i� j]

can be expressed as

Bt[i� j] = 1

[(
NS∑
j′=1

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])≤

(
NS∑
j′=1

Bt

[
i� j′])]

(A.20)
for all t ∈ supp(T)�

But P(S = sj) > 0 for all j ∈ {1� � � � �NS}. Thus, by Lemma L-13, the following equality
also holds:

1

[(
NS∑
j′=1

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])

≤
[

NS∑
j′=1

Bt

[
i� j′]]]

= 1

[(
NS∑
j′=1

P(S= sj′) · 1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])

≤
(

NS∑
j′=1

P(S = sj′) ·Bt

[
i� j′])]�

(A.21)

Since P(Z = zi) > 0 for all i ∈ {1� � � � �NZ}, by Lemma L-14, the following equality also
holds:

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]]

= 1

[
NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j
]≤

NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j′]]�

(A.22)

Note that Equations (15) and (17) can be represented in terms of Bt as

P(T = t|Z = zi)=
NS∑
j=1

P(S= sj)Bt[i� j]� (A.23)

P(T = t|S= sj)=
NZ∑
i=1

P(Z = zi)Bt[i� j]� (A.24)
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If we substitute Equation (A.24) into (A.22), we obtain

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]]

(A.25)
= 1

[
P(T = t|S= sj)≤ P(T = t|S= sj′)

]
�

If we substitute Equation (A.23) into (A.21), we can rewrite (A.20) as

Bt[i� j] = 1

[
NS∑
j′=1

P(S= sj′)

(A.26)

× 1
[
P(T = t|S= sj)≤ P(T = t|S= sj′)

]≤ P(T = t|Z = zi)

]
�

Thus, if we define

τ(zi� t)= P(T = t|Z = zi)�

ϕ(sj� t)= −
NS∑
j′=1

P(S= sj′) · 1
[
P(T = t|S= sj)≤ P(T = t|S= sj′)

]
�

and use the fact that Bt[i� j] = 1[T = t|Z = zi�S= sj], we can rewrite Equation (A.26) as

1[T = t|Z = zi�S= sj] = 1
[
ϕ(sj� t)+ τ(zi� t)≥ 0

]
� (A.27)

Item (iv) of Theorem T-3 is obtained using the fact that S is a balancing score for V .
(iv) ⇒ (ii): It suffices to show that if Equation (A.27) characterizes choice, then the

prohibited pattern of Condition (iii) cannot arise. Select an arbitrary 2 × 2 sub-matrix of
the response-matrix:

R =
(
(T |S= s�Z = z)

(
T |S = s′�Z = z

)(
T |S= s�Z = z′) (

T |S= s′�Z = z′))
(A.28)

=
⎛⎝argmax

t∈supp(T)

(
ϕ(s� t)+ τ(z� t)

)
argmax
t∈supp(T)

(
ϕ
(
s′� t

)+ τ(z� t)
)

argmax
t∈supp(T)

(
ϕ(s� t)+ τ

(
z′� t

))
argmax
t∈supp(T)

(
ϕ
(
s′� t

)+ τ
(
z′� t

))⎞⎠ �

In this notation, we must prove that if 1[T = t|S= s�Z = z] = 1[T = t|S= s′�Z = z′] = 1,
then it must be the case the case that 1[T = t|S = s�Z = z′] = 1 or 1[T = t|S = s′�Z =
z] = 1:

1[T = t|S= s�Z = z] = 1

⇒ ϕ(s� t)+ τ(z� t)≥ 0 and ϕ
(
s� t ′

)+ τ
(
z� t ′

)
< 0� ∀t ′ ∈ supp(T) \ {t}�

1
[
T = t|S= s′�Z = z′]= 1

⇒ ϕ
(
s′� t

)+ τ
(
z′� t

)≥ 0 and ϕ
(
s′� t ′

)+ τ
(
z′� t ′

)
< 0� ∀t ′ ∈ supp(T) \ {t}
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⇒ ϕ(s� t)+ τ
(
z′� t

)≥ 0 or ϕ
(
s′� t ′

)+ τ(z� t)≥ 0

⇒ 1
[
T = t|S= s�Z = z′]= 1 or 1

[
T = t|S= s′�Z = z

]= 1�4 Q.E.D.

A.7. Proof of Theorem T-4

PROOF: It suffices to show that the assumptions of Theorem T-4 imply any of the con-
ditions of the Equivalence Theorem T-3. We show that the separability of Theorem T-
3 implies Condition (iii) of Theorem T-3. S is a balancing score for V ; thus, for any
v ∈ supp(V ), there is a unique s ∈ supp(S) such that s = fS(v). Without loss of gener-
ality, we can rewrite the separability condition of Theorem T-4 as

u(s� t)+ h(z� t)=
(
Ψ(t� z� s)− max

t′∈supp(T)\{t}
Ψ
(
t ′� z� s

))
∀v ∈ supp(V )� z ∈ supp(Z)� s ∈ supp(S)�

Let s ∈ supp(S)� z ∈ supp(Z), and t ∈ supp(T) such that t = argmaxt′∈supp(T) u(s� t
′) +

h(z� t ′). Then it must be the case that t = argmaxt′∈supp(T) Ψ(t� z� s). Thus, assuming
no ties in utility outcomes, Ψ(t� z� s) > Ψ(t ′� z� s) ∀t ′ ∈ supp(T) \ {t} and therefore
u(s� t)+ h(z� t) > 0 and u(s� t ′)+ h(z� t ′)≤ 0 ∀t ′ ∈ supp(T) \ {t}. Thus we obtain

t = argmax
t′∈supp(T)

u
(
s� t ′

)+ h
(
z� t ′

) ⇔ u(s� t)+ h(z� t) > 0� (A.29)

Now, for Condition (iii) of Theorem T-3 to hold, we need to prove the following state-
ment:

Let s� s′ ∈ supp(S)� z� z′ ∈ supp(Z)� and t ∈ supp(T)�

If t = argmax
t′∈supp(T)

u
(
s� t ′

)+ h
(
z� t ′

)
and t = argmax

t′∈supp(T)
u
(
s′� t ′

)+ h
(
z′� t ′

)
� (A.30)

then t = argmax
t′∈supp(T)

u
(
s� t ′

)+ h
(
z′� t ′

)
or t = argmax

t′∈supp(T)
u
(
s′� t ′

)+ h
(
z� t ′

)
� (A.31)

But, according to Equation (A.29), Equation (A.30) implies that u(s� t)+h(z� t) > 0 and
u(s′� t) + h(z′� t) > 0. This implies that u(s� t) + h(z′� t) > 0 or u(s′� t) + h(z� t) > 0 or
both. Therefore, according to Equation (A.29), it must be the case that

t = argmax
t′∈supp(T)

u
(
s� t ′

)+ h
(
z′� t ′

)
or t = argmax

t′∈supp(T)
u
(
s′� t ′

)+ h
(
z� t ′

)
�

as desired. Q.E.D.

A.8. Proof of Theorem T-5

The proof of Theorem T-5 is based on Lemma L-15 stated below.

A.8.1. Lemma L-15

LEMMA L-15: Binary matrix B is lonesum ⇔ ι′
c((B

′(ιrι′
c −B))
 (B′(ιrι′

c −B))′)ιc = 0,
where ιc and ιr are vectors of elements 1 of column and row dimension of B, respectively.

4To see this, suppose that ϕ(s� t)+ τ(z′� t) < 0 and ϕ(s′� t)+ τ(z� t) < 0; then ϕ(s� t)+ τ(z� t)+ ϕ(s′� t)+
τ(z′� t) < 0, which contradicts the hypothesis.
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PROOF: From Remark A.1, B is lonesum if and only if no 2 × 2 sub-matrix is equal to
the prohibited patterns (52). Each row i of any two columns j� j′ of B, say (B[i� j]�B[i� j′]),
must be of the following four types: {(0�0)� (0�1)� (1�0)� (1�1)}. But B[i� j]·(1−B[i� j′])=
1 if and only if (B[i� j]�B[i� j′]) = (1�0) and (1 − B[i� j]) · B[i� j′] = 1 if and only if
(B[i� j]�B[i� j′])= (0�1). This fact is illustrated in the table below:

Row Any Columns j� j′ (B[i� j]�B[i� j′]) = (1�0) (B[i� j]�B[i� j′]) = (0�1)

Type B[i� j] B[i� j′] B[i� j] · (1 −B[i� j′]) (1 −B[i� j]) ·B[i� j′]
Type 1 0 0 0 0
Type 2 0 1 0 1
Type 3 1 0 1 0
Type 4 1 1 0 0

Thus, the vector multiplication ξ(0�1)(j� j
′) = (ιc − B[·� j]) · B[·� j′] gives the number of

rows equal to (0�1) in the sub-matrix of B that consists of columns j and j′. In the same
fashion, ξ(1�0)(j� j

′)= (ιc −B[·� j′]) ·B[·� j] gives the number of rows equal to (1�0) in the
sub-matrix of B that consists of columns j and j′. If ξ(1�0)(j� j

′) > 0 and ξ(0�1)(j� j
′) > 0,

then there exists at least one (0�1)-row and at least one (1�0)-row in the sub-matrix of B
that consists of columns j and j′. This would show the presence of a prohibited pattern
in B. Thus, B is lonesum if and only if ξ(0�1)(j� j

′) · ξ(1�0)(j� j
′) = 0 for all pairs (j� j′) ∈

{1� � � � � c} × {1� � � � � c}. Stated otherwise,

B is lonesum ⇔
c∑

j=1

c∑
j′=1

ξ(1�0)

(
j� j′) · ξ(0�1)

(
j� j′)= 0� (A.32)

The lemma is obtained by rewriting Equation (A.32) in matrix form. Q.E.D.

A.8.2. Proof of Theorem T-5

PROOF: We first prove that if each binary matrix Bt; t ∈ supp(T) is lonesum, then M
is also lonesum. According to Lemma L-5, it suffices to show that the prohibited pat-
terns (52) cannot arise in any 2 × 2 sub-matrix in M . Recall that from definition (57), we
have that:

For each tj ∈ supp(T)= {t1� � � � � tNT
}�

let M tj = [1NZ�NS
� � � � �1NZ�NS︸ ︷︷ ︸
j − 1 times

�Btj �0NZ�NS
� � � � �0NZ�NS︸ ︷︷ ︸

NT − j times

]�

then M = [M ′
t1
� � � � �M ′

tNT

]′
�

Let a generic 2 × 2 sub-matrix of M above be represented by matrix (A.33):(
b11 b12

b21 b22

)
� (A.33)

We investigate all possible configurations that matrix (A.33) may take:
1. If all elements b11� b12� b21� b22 of matrix (A.33) belong to some Bt , then the prohib-

ited pattern does not arise because each Bt is lonesum.
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2. If none of the elements b11� b12� b21� b22 of matrix (A.33) belong to any of the binary
matrices in Bt , then matrix (A.33) takes one of the four possibilities below:(

b11 b12

b21 b22

)
∈
{(

0 0
0 0

)
�

(
1 0
1 0

)
�

(
0 0
1 1

)
�

(
1 1
1 1

)}
�

3. If b11� b12 of matrix (A.33) belong to some Bt but b21� b22 do not belong to any of the
Bt; t ∈ supp(T), then it must be the case that b21 = b22 = 1, which prevents the prohibited
pattern from arising. On the other hand, if b21� b22 belong to some Bt but b11� b12 do not,
then it must be the case that b11 = b12 = 0, which prevents the prohibited pattern.

4. If b11� b21 of matrix (A.33) belongs to some Bt but b12� b22 do not belong to any of the
Bt; t ∈ supp(T), then it must be the case that b12 = b22 = 0, which prevents the prohibited
pattern from arising. On the other hand, if b12� b22 belong to some Bt but b11� b21 do not,
then it must be the case that b11 = b21 = 1, which prevents the prohibited pattern.

5. If b11 or b21 of matrix (A.33) belong to one or two matrices Bt; t ∈ supp(T) and
b12� b21 do not belong to any of the matrices Bt; t ∈ supp(T), then it must be the case that
b12 = 0 and b21 = 1, which prevents the prohibited pattern from arising.
There are no other possibilities besides the ones listed above. Thus we can conclude that
no 2 × 2 sub-matrix in M takes the prohibited pattern (52) and, by Lemma L-5, M is
lonesum. According to Lemma L-15, M is lonesum if and only if ι′

c((M
′(ιrι′

c − M)) 

(M ′(ιrι′

c − M))′)ιc = 0, where ιc and ιr are vectors of elements 1 of column and row
dimension of M , respectively, which completes the proof. Q.E.D.

A.9. Proof of Theorem T-6

We generate the expressions that identify P(S ∈ Σt(i)) and E(κ(Y(t))|S ∈ Σt(i)).
Those parameters can be rewritten in the following matrix form using the notation of
Section 4:

P
(
S ∈ Σt(i)

)= bt(i)PS and (A.34)

E
(
κ
(
Y(t)

)|S ∈ Σt(i)
)= bt(i)QS(t)

bt(i)PS

� (A.35)

Thus, the theorem requires us to identify the terms bt(i)PS and bt(i)QS(t). In other words,
we aim to show that the terms bt(i)PS and bt(i)QS(t) can be expressed in terms of ob-
servables. To do so, we can rely on Equations (18)–(19) and the generalized solution of
linear system described in Lemma L-2:

PZ(t) = BtPS ⇒ bt(i)PS = bt(i)
(
B+

t PZ(t)+ (I −B+
t Bt

)
λP

)
� (A.36)

QZ(t) = BtQS(t)⇒ bt(i)QS(t)= bt(i)
(
B+

t QZ(t)+ (I −B+
t Bt

)
λQ

)
� (A.37)

where λQ�λP are arbitrary real-valued vectors of NS dimension. Equation (A.36) shows
that bt(i)PS can be expressed by the sum of two terms:

1. term bt(i)B
+
t PZ(t), which can be determined by the data and is identified;

2. term bt(i)(I − B+
t Bt)λP is a source of non-identification as λP is unknown and can

take any value in R
NS .

Thus, a necessary and sufficient condition for bt(i)PS to be identified is that bt(i)(I −
B+

t Bt) be equal to a vector of zeros. The same requirement applies to the identifica-
tion of bt(i)QS(t). Thus, to prove the theorem, it suffices to demonstrate that bt(i)(I −
B+

t Bt) = 0. Otherwise stated, we need to show that bt(i)B
+
t Bt = bt(i). We prove this
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condition in several steps. We first prove two lemmas that are useful to prove that
bt(i)B

+
t Bt = bt(i).

LEMMA L-16: Let Bt be the binary matrix associated with a response matrix R for which
unordered monotonicity Condition A-3 holds. If vectors Bt[·� s] and Bt[·� s′] associated with
response-types s� s′ ∈ supp(S) have the same sum, then these vectors must be identical.

PROOF: Suppose Bt[·� s] and Bt[·� s′] have the same sum but are not identical. Then
there must be at least two row indexes j� j′ such that Bt[j� s] = 1, Bt[j� s′] = 0 and
Bt[j′� s] = 0, Bt[j′� s′] = 1. Then the 2 × 2 sub-matrix generated by rows j� j′ and columns
s� s′ of Bt constitute a prohibited pattern of Remark 6.3 and therefore Bt is not lone-
sum, which contradicts unordered monotonicity Condition A-3 according to item (i) of
Theorem T-3. Q.E.D.

REMARK A.2: Lemma L-16 can be equivalently stated as: if unordered monotonicity
Condition A-3 holds and s� s′ ∈ Σt(i), then Bt[·� s] = Bt[·� s′].
Now recall that Σt(i); i ∈ {1� � � � �NZ} is the set of response-types s ∈ supp(S) whose sum
of the associated vector Bt[·� s] is n. According to Lemma L-16, each response-type s ∈
Σt(i) has the same binary vector Bt[·� s] in Bt .

Let Ct(i) = Bt[·� s]; s ∈ Σt(i) denote this vector. We now define two matrices that are
useful for our analysis. Let Ct = [Ct(1)� � � � �Ct(nZ)] be the matrix that consists of all
unique nonzero vectors in Bt . Thus, columns in matrix Ct have different sums that may
range from 1 to NZ . As a consequence, Ct has at most NZ columns and its row dimension
is also NZ . Moreover, Bt is lonesum, which implies that Ct is also lonesum. Thus Ct is
equivalent to a maximal matrix under permutation of its columns and rows. This implies
that Ct has full column rank, thereby C′

tCt has full rank and the inverse (C′
tCt)

−1 exists.
Let Dt be the matrix that stacks the nonzero row-vectors bt(1)� � � � � bt(NZ), namely

Dt = [bt(1)′� � � � � bt(NZ)
′]′. Dt has NS columns and has at most NZ rows. The sum of each

column in Dt is equal to 1 or zero. The sum of each row in Dt is equal to or bigger than
1 and its rows are orthogonal, that is, bt(i) · bt(i

′) = 0 for any i� i′ ∈ {1� � � � �NZ}. As a
consequence, Dt has full row-rank and thereby the inverse (D′

tDt)
−1 exists.

REMARK A.3: The binary matrix Bt can be conveniently decomposed by the matrix
multiplication Bt = Ct ·Dt .

The example below illustrates the decomposition.

EXAMPLE E-1: Consider binary matrix Bta of Table VII that is associated with choice ta
of the response matrix R in Table III. The decomposition Bta = Cta ·Dta is given by

Bta =
⎡⎣1 1 1 0 0 0 0

1 1 1 1 0 1 0
1 0 0 0 0 0 0

⎤⎦⇒Bta =Cta ·Dta �

where Cta = [Cta(1)�Cta(2)�Cta(3)
]=

⎡⎣0 1 1
1 1 1
0 0 1

⎤⎦ �

and Dta =
⎡⎣bta(1)
bta(2)
bta(3)

⎤⎦=
⎡⎣0 0 0 1 0 1 0

0 1 1 0 0 0 0
1 0 0 0 0 0 0

⎤⎦ �
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The next lemma expresses the pseudo inverse matrix B+
t in terms of Ct and Dt .

LEMMA L-17: Let Bt be the binary matrix associated with a response matrix R for which
unordered monotonicity Condition A-3 holds. Then the Moore–Penrose pseudo inverse B+

t is
given by

B+
t = D′

t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t �

PROOF: Matrix B+ is defined by four properties: (1) BB+B = B; (2) B+BB+ = B+;
(3) B+B is symmetric, and (4) BB+ is symmetric. Matrix B+ is also unique. Thus it suffices
to show that B+

t = D′
t(DtD

′
t)

−1(C′
tCt)

−1C′
t , where Bt =CtDt satisfies the properties above.

(1) Bt ·B+
t ·Bt =CtDt ·D′

t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t ·CtDt

= CtDt = Bt �

(2) B+
t ·Bt ·B+

t =D′
t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t ·CtDt ·D′
t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t

=D′
t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t =B+
t �

(3) B+
t ·Bt =D′

t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t ·CtDt

=D′
t

(
DtD

′
t

)−1
Dt which is symmetric,

(4) Bt ·B+
t =CtDt ·D′

t

(
DtD

′
t

)−1(
C′

tCt

)−1
Ct

=Ct

(
C′

tCt

)−1
Ct which is symmetric. Q.E.D.

We are now equipped to prove Theorem T-6 and show that bt(i)B
+
t Bt = bt(i).

PROOF: First note that bt(i) consists of a row in the matrix Dt ; thus bt(i) can be ex-
pressed in terms of matrix Dt as bt(i) = eDt , where e is a vector that has the element 1 in
the position that the row bt(i) takes in the matrix Dt and zeros in the remaining elements.
Thus, we have to show that eDtB

+
t Bt = eDt . We prove the more general statement that

DtB
+
t Bt =Dt :

Dt ·B+
t ·Bt =Dt ·D′

t

(
DtD

′
t

)−1(
C′

tCt

)−1
C′

t ·CtDt =Dt � (A.38)

where the first equality in (A.38) relies on the result of Lemma L-17 and Remark A.3.
Equation (A.38) implies that bt(i)B

+
t Bt = bt(i). The fact that bt(i)B

+
t Bt = bt(i) implies

that bt(i)PS and bt(i)QS(t) can be identified by

bt(i)PS = bt(i)B
+
t PZ(t)� (A.39)

bt(i)QS(t)= bt(i)B
+
t QZ(t)� (A.40)

We now use the equations above to express Equations (A.34)–(A.35) of the beginning of
this proof as identified quantities:

P
(
S ∈ Σt(i)

)= bt(i)PS = bt(i)B
+
t PZ(t) by (A.39) and

E
(
κ
(
Y(t)

)|S ∈ Σt(i)
)= bt(i)QS(t)

bt(i)PS

= bt(i)B
+
t QZ(t)

bt(i)B
+
t PZ(t)

by (A.39) and (A.40). Q.E.D.
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A.10. Applying Theorem T-6 to Response Matrix of Table III in the text

Table III presents the following response matrix:

R =
⎡⎣ta ta ta tb tb tc tc
ta ta ta ta tb ta tc
ta tb tc tb tb tc tc

⎤⎦ �

According to Theorem T-6, we have that

E
(
Y(ta)|S ∈ {s4� s6}

)= E
(
Y(ta)|S ∈ Σta(1)

)
(A.41)

= bta(1)B
+
t QZ(ta)

bta(1)B
+
t PZ(ta)

; bta(1)= [0�0�0�1�0�1�0]�

E
(
Y(ta)|S ∈ {s2� s3}

)= E
(
Y(ta)|S ∈ Σta(2)

)
(A.42)

= bta(2)B
+
t QZ(ta)

bta(2)B
+
t PZ(ta)

; bta(2)= [0�1�1�0�0�0�0]�

E
(
Y(ta)|S = s1

)= E
(
Y(ta)|S ∈ Σta(3)

)
(A.43)

= bta(3)B
+
t QZ(ta)

bta(3)B
+
t PZ(ta)

; bta(3)= [1�0�0�0�0�0�0]�

The observed parameters are

QZ(ta) = [
E
(
Y · 1[T = t1]|Z = zno

)
�E
(
Y · 1[T = t1]|Z = za

)
�

(A.44)
E
(
Y · 1[T = t1]|Z = zbc

)]
�

PZ(ta) = [
E
(
1[T = t1]|Z = zno

)
�E
(
1[T = t1]|Z = za

)
�

(A.45)
E
(
1[T = t1]|Z = zbc

)]
�

The binary matrix Bta = 1[R = t1] is displayed in Table VII in the text. This binary matrix
generates the following generalized inverse matrix:

Bta =
⎡⎣1 1 1 0 0 0 0

1 1 1 1 0 1 0
1 0 0 0 0 0 0

⎤⎦⇒ B+
ta

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
1/2 0 −1/2
1/2 0 −1/2

−1/2 1/2 0
0 0 0

−1/2 1/2 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

Matrix B+
ta

multiplied by bta(i); i = 1�2�3 is given by

bta(1) ·B+
ta

= [−1�1�0]�
bta(2) ·B+

ta
= [1�0�−1]�

bta(3) ·B+
ta

= [0�0�1]�
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Matrix B+
ta

applied to Equations (A.41)–(A.43) generates the following identifying equa-
tions

E
(
Y(ta)|S ∈ {s4� s6}

)= E
(
Y · 1[T = ta]|Z = za

)−E
(
Y · 1[T = ta]|Z = zno

)
P(T = ta|Z = za)− P(T = ta|Z = zno)

�

E
(
Y(ta)|S ∈ {s2� s3}

)= E
(
Y · 1[T = ta]|Z = zno

)−E
(
Y · 1[T = ta]|Z = zbc

)
P(T = ta|Z = zno)− P(T = ta|Z = zbc)

�

E
(
Y(ta)|S= s1

)= E
(
Y · 1[T = ta]|Z = zbc

)
P(T = ta|Z = zbc)

�

A.11. Proof of Corollary C-2

PROOF: The set of t-Always-takers is denoted by Σt(NZ) and consists of a single
response-type in R whose elements are all t. From Theorem T-6, P(S ∈ Σt(NZ)) =
bt(NZ)B

+
t PZ(t). The response-type set t-Switchers is given by t-Switchers ∈⋃NZ−1

i=1 Σt(i);
thus,

P

(
S ∈

NZ−1⋃
i=1

Σt(i)

)
=

NZ−1∑
i=1

P
(
S = Σt(i)

)

=
NZ−1∑
i=1

bt(i)B
+
t PZ(t) by Theorem T-6

=
(

NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)�

The response variable support supp(S) can be partitioned as:
supp(S) = t-Always-takers ∪ t-Switchers ∪ t-Never-takers. Thus,

1 = P
(
S ∈ supp(S)

)
= P(S ∈ t-Always-takers ∪ t-Switchers ∪ t-Never-takers)

= P(S ∈ t-Always-takers)+ P(S ∈ t-Switchers)+ P(S ∈ t-Never-takers)� Q.E.D.

A.12. Proof of Corollary C-3

PROOF: The equation for E(Y(t)|t-Always-takers) is a direct application of Theo-
rem T-6 to the response-type set t-Always-takers = Σt(NZ). Applying Theorem T-6 to
E(Y(t)|t-Switchers), we obtain

E
(
Y(t)|t-Switchers

)=
NZ−1∑
i=1

E
(
Y(t)|S ∈ Σt(i)

) · P
(
S ∈ Σt(i)

)
P

(
S ∈

NZ−1⋃
i=1

Σt(i)

) �
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E
(
Y(t)|t-Switchers

)=
NZ−1∑
i=1

(
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

)
bt(i)B

+
t PZ(t)(

NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

=
NZ−1∑
i=1

bt(i)B
+
t QZ(t)(

NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

=

(
NZ−1∑
i=1

bt(i)

)
B+

t QZ(t)(
NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

�

Q.E.D.

A.13. Proof of Theorem T-7

PROOF: Let the support of T be {t1� � � � � tNT
} and the support of Z be supp(Z) =

{z1� � � � � zNZ
}. Let the response matrix be given by R, which has NZ rows. Indicator matrix

Bt = 1[R = t]; t ∈ supp(T) has the same row and column dimensions of R. Its elements
are equal to 1 if the associated element in R is t and 0 otherwise.

Indicator matrix BT is generated by stacking matrices Bt; t ∈ supp(T), that is,

BT =
⎡⎢⎣ Bt1

���
BtNT

⎤⎥⎦ �

Thus, BT consists of NT binary sub-matrices Bt , each of them having NZ rows. Our goal
is to determine the maximum of rank of (BT ) in terms of NZ and NT . The rank of BT is
given by the number of linearly independent rows or columns in BT . Thus, rank(BT ) must
be less than or equal to its row dimension, that is, NTNZ . We can reduce this number
further.

First, consider the case where P(T = t|Z = z) > 0 for all z ∈ supp(Z) and t ∈ supp(T).
Thus, each possible value t ∈ supp(T) of the treatment choice must appear at least once
in each row of R.

We investigate the sub-matrix of BT generated by the first row of each matrix Bt for
t ∈ {t1� � � � � tNT

}, namely, ⎡⎢⎢⎢⎣
Bt1[1� ·]
Bt2[1� ·]

���
BtNT

[1� ·]

⎤⎥⎥⎥⎦ � (A.46)

Sub-matrix (A.46) is generated from the first row of R, that is, R[1� ·]. Each element of
the row R[1� ·] takes a value in {t1� � � � � tNT

}. Thus, each column of sub-matrix (A.46) has
one and only one element that is equal to 1, while all other elements are zero. Thus, since
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each treatment value in {t1� � � � � tNT
} appears at least once in row R[1� ·], then the sub-

matrix (A.46) has NT linearly independent rows. Moreover, we have that the sum of each
column in sub-matrix (A.46) is 1; thus,

[1� � � � �1] =
NT∑
j=1

Btj [1� ·]� (A.47)

Note that Equation (A.47) would also hold even if some rows of sub-matrix (A.46) were
all zeros. However, all zero rows are ruled out by the assumption P(T = t|Z = z) > 0.

Now consider the sub-matrix of BT , generated by the second row of each matrix Bt for
t ∈ {t1� � � � � tNT

}: ⎡⎢⎢⎢⎣
Bt1[2� ·]
Bt2[2� ·]

���
BtNT

[2� ·]

⎤⎥⎥⎥⎦ � (A.48)

Sub-matrix (A.48) is generated by NT linearly independent rows since each value of the
treatment choice, that is, {t1� � � � � tNT

}, appears at least once in the second row of R. More-
over, we also have that

[1� � � � �1] =
NT∑
j=1

Btj [2� ·]� (A.49)

Equation (A.49) would hold even if some rows of sub-matrix (A.48) were all zeros.
We can use Equation (A.47) to express, for example, the last row of sub-matrix (A.48)

as a linear combination of rows in sub-matrix (A.46) and the remaining rows of sub-
matrix (A.48):

[1� � � � �1] =
NT∑
j=1

Btj [2� ·]

⇒BtNT
[2� ·] = [1� � � � �1] −

NT −1∑
j=1

Btj [2� ·] (A.50)

⇒BtNT
[2� ·] =

NT∑
j=1

Btj [1� ·] −
NT −1∑
j=1

Btj [2� ·]�

We can iterate this approach for each ith row of {Bt1� � � � �BtNT
}. We can then express

the ith row of BtNT
, such that i > 1, as a linear combination of the first rows Bt[1� ·]; t ∈

{t1� � � � � tNT
} and the ith rows of {Bt1� � � � �BtNT −1}. Thus, there are NZ − 1 rows in BtNT

that are not linearly independent of the remaining rows of BT . As a consequence, the
number of linearly independent rows in BT is at most NZNT − (NZ − 1) and therefore
rank(BT )≤NZNT − (NZ − 1)= 1 +NZ(NT − 1).
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Now suppose that P(T = t1|Z = z) = 0 for some z ∈ supp(Z). Equation (A.47) still
holds. But these rows are linearly dependent; thereby, we have that

rank(BT )≤ 1 +NZ(NT − 1)−
NZ∑
i=1

1
[
P(T = t1|Z = zi)= 0

]
�

Now suppose that P(T = tj̃|Z = z2) = 0 for some j̃ ∈ {1� � � � �NT }. We must have
that P(T = tj′ |Z = z2) > 0 for some j′ ∈ {1� � � � �NT }. Therefore, we can rewrite Equa-
tion (A.50) associated with the second rows of each Bt; t ∈ supp(T) as

⇒Btj′ [2� ·] =
NT∑
j=1

Btj [1� ·] −
∑

j∈{1�����NT }\{j′}
Btj [2� ·]

=
NT∑
j=1

Btj [1� ·] −
∑

j∈{1�����NT }\{j′�ĩ}
Btj [2� ·]�

But Bt
ĩ
[2� ·] is a row of zeros and is linearly dependent. Therefore, it reduces the maximum

rank of rank(BT ). We can apply this analysis for all z ∈ {z2� � � � � zNZ
} and for all rows of

zeros in Bt; t ∈ supp(T). This generates the following restriction:

rank(BT ) ≤ 1 +NZ(NT − 1)−
NT∑
j=1

NZ∑
i=1

1
[
P(T = tj|Z = zi)= 0

]
�

Q.E.D.

A.14. Additional Identification Results for Strata Probabilities

In this appendix, we present additional results on identification that do not appear in
the main text of the paper.

One desirable property of a monotone response matrix is that it consists of all potential
response-types that are consistent with a monotone property. We term matrix R complete
if R is an unordered monotone response matrix such that the inclusion of any additional
response-type to R would violate monotonicity. As demonstrated in Appendix D, the
selection of possible response-types is not unique. A range of possible complete response-
types exist for any given NZ and NT . Completeness does not necessarily imply that the
number of response-types is 1 + (NT − 1)NZ . The number of response-types in complete
response matrices may be bigger. The next theorem demonstrates how to exploit this
completeness criterion to identify response-type probabilities.

THEOREM T-8: Consider the IV model (1)–(3), where Z takes values in {z1� � � � � zNT
} and

T takes values in {t1� � � � � tNT
}. Let R be a complete unordered monotone response matrix

and let z ∈ supp(Z) and t ∈ supp(T) such that P(T = t ′|Z = z) ≥ P(T = t ′|Z = z′) for
z′ ∈ supp(Z) \ {z} and t ′ ∈ supp(T) \ {t}; then:

Response-type probabilities P(S= s) for all s ∈ supp(S) are identified�

and the response matrix R has the following properties:
1. R is uniquely determined.
2. R consists of 1 + (NT − 1)NZ response-types.
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3. R generates BT such that rank(BT )= 1 + (NT − 1)NZ .

PROOF: Our proof exploits the properties of complete matrices. To do so, it is helpful
to define some useful notation. We denote the set of possible response-types by Φ, which
consists of all NNZ

T possible NZ-dimensional response-type vectors defined as

Φ = {[τ1� � � � � τNZ
]′ with elements τi such that τi ∈ {t1� � � � � tNT

}
(A.51)

for all i ∈ {1� � � � �NZ}}�
The support of the response variable S is a subset of Φ and can be represented as
supp(S) = {s ∈Φ;P(S= s) > 0}. Φ represents all possible response-types. S are the ones
generated the data. Example E-2 gives an example of set Φ for the case of binary instru-
ments with binary treatment choices.

EXAMPLE E-2: Let treatment choice T take only binary values in supp(T) = {t0� t1}.
Z ∈ {z0� z1} so the cardinality of the support of Z is NZ = | supp(Z)| = 2. Then set Φ is
defined by

Φ = {[τ1� τ2]′ with elements τi such that τi ∈ {t0� t1} for i ∈ {1�2}}�
Elements of the set Φ are the two-dimensional vectors [τ1� τ2]′, such that τ1, the first
element of the vector, can take one of the only two (scalar) values, t1 or t0. The second
element of the vector [τ1� τ2]′ is τ2, which also takes one of the only two (scalar) values, t1
or t0. Thus, we can list the elements of set Φ as follows:

Φ =
{[

t0
t0

]
�

[
t0
t1

]
�

[
t1
t0

]
�

[
t1
t1

]}
�

We can associate the first element (first row) of each vector in Φ to the counterfactual
choice of an agent ω when the instrument is set to z0, that is, Tω(z0), and the second
element (second row) of each vector in Φ to the counterfactual choice of an agent ω
when the instrument is set to z1, that is, Tω(z1). If we assume the standard LATE mono-
tonicity relationship that 1[T(z1)= t1] ≥ 1[T(z0)= t1], we can generate the support of the
response variable S as a subset of set Φ that eliminates the response-type [t1� t0]′, that is,

supp(S) =
{[

t0
t0

]
�

[
t0
t1

]
�

[
t1
t1

]}
⊂Φ�

A.14.1. Definition of Complete Response Matrices

The response matrix R consists of the matrix that includes all of the response-types in
supp(S). Response matrix R is complete if:

1. response matrix R is unordered monotone;
2. the matrix R̃ = [R� s] is not an unordered monotone response for each s ∈ Φ \

supp(S).
We term a response-type s ∈ Φ admissible relative to an unordered monotone response
R if:

1. response-type s is not in R, that is, s /∈ supp(S);
2. the matrix R̃= [R� s] is still an unordered monotone response.

Thus, a response matrix R is complete if no response-type s in Φ \ supp(S) is admissible.
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A.14.2. Number of Treatment Values in Each Row of the Response Matrix

Let r(i� t) be the number of elements t in the ith row of R. Thus the number r(i� t) can
be obtained by the sum of the binary element in the ith row of matrix Bt across columns
j ∈ {1� � � � �NS}:

r(i� t) =
NS∑
j=1

Bt[i� j]�

where Bt denotes the indicator matrix Bt = 1[R= t].
We use m(t) to denote the row-index i in R whose number of elements t is maximum,

that is,

m(t)= argmax
i∈{1�����NZ }

r(i� t)� (A.52)

Thus, m(t) ∈ {1� � � � �NZ} for all t ∈ supp(T) and more than one treatment can have its
maximum sum at the same row, that is, m(t) = m(t ′); t� t ′ ∈ supp(T). Nevertheless, it
cannot be that all treatment values t ∈ supp(T) have their maximum sum at the same row
in R (see Lemma L-20 below).

Let s(i) denotes the treatment status in the ith row of a response-type s ∈ Φ.

A.14.3. Overview of the Properties of Unordered Monotone and Complete Matrices

In order to prove Theorem T-8, we rely on properties of unordered monotone re-
sponses and also complete response matrices. Specifically, Lemmas L-18–L-21 investigate
properties of unordered monotone response matrices, while Lemmas L-22–L-24 focus on
properties of unordered monotone response matrices that are complete. We list the asso-
ciated lemmas and their consequences to facilitate the understanding of the theorem.

• Properties of unordered monotone response matrices:
1. Lemma L-18 connects the row-sums of treatment values with the possible values that

elements of unordered monotone response matrices can take.
2. Lemma L-19 states a property of response-types of unordered monotone response

matrices when the same row gives the maximum sum of treatment values for more than
one treatment status.

3. Lemma L-20 states a condition of row-sums of treatment values across response-
types.

4. Lemma L-21 is an auxiliary lemma used in the main proof.
• Properties of complete unordered monotone response matrices:

1. Lemma L-22 states that if R is complete, then R must have NT response-types whose
elements within a response-type are the same for each value t in the support of T .

2. Lemma L-23 characterizes the nonzero binary vectors in Bt; t ∈ supp(T) for com-
plete response matrices R.

3. Lemma L-24 states that the nonzero binary vectors in each Bt; t ∈ supp(T) have full
rank if R is complete.

A.14.4. Comments on the Use of Lemmas and our Main Proof

Our main proof is constructive and relies on each of the Lemmas L-18–L-21. Lemma L-
22 is used as a starting point in the construction of the response matrix that complies
with the assumptions of Theorem T-8. The most important property of complete matrices
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exploited in our main proof is stated in Lemma L-23, namely, if R is complete, then each
Bt; t ∈ supp(T) must have NZ distinct nonzero binary vectors.

We use Lemma L-19 to characterize an essential property of unordered monotone re-
sponse matrices. The purpose of Lemma L-21 is used to justify a simplified notation that
facilitates our exposition of the proof. Lemma L-24 gives a rank condition of complete
matrices. We use this condition to generate the rank condition of Corollary C-1, which
identifies response-type probabilities.

Lemma L-18 is a restriction of unordered response matrices within response-types.
Lemma L-20 is a restriction of unordered response matrices across response-types.
Both restrictions are useful tools for proofs based on contradictions. Lemma L-18 and
Lemma L-20 are used throughout our analysis.

A.14.5. Lemma L-18

Lemmas L-18–L-20 describe useful properties of unordered monotone response matri-
ces that are helpful in proving the main theorem.

LEMMA L-18: If response matrix R is unordered monotone, and s is a response-type that
belongs to R, and if s(i) = t, and r(i′� t) ≥ r(i� t), then s(i′) = t for all i′ ∈ {1� � � � �NZ}. In
particular, if s(i)= t, for some i ∈ {1� � � � �NZ}, then s(m(t))= t.

PROOF: Suppose that s(i) = t, r(i′� t) ≥ r(i� t), but s(i′) �= t. Then there must be a col-
umn j in Bt such that Bt[i� j] = 0 and Bt[i′� j] = 1. Let j′ be the column that represents
response-type s, that is, s = R[·� j′]. But s(i) = t implies that Bt[i� j′] = 1 and s(i′) �= t im-
plies that Bt[i′� j′] = 0. Now consider the 2 × 2 sub-matrix in R defined by rows i� i′ and
columns j� j′: (

Bt

[
i� j′] Bt[i� j]

Bt

[
i′� j′] Bt

[
i′� j
])=

(
1 0
0 1

)
�

which takes the forbidden patterns of Equation (52). Therefore Bt cannot be lonesum.
As a consequence, R cannot be an unordered monotone response, which contradicts the
statement of the lemma. In particular, if s(i)= t, for some i ∈ {1� � � � �NZ}, then s(m(t)) =
t because m(t) is the row-index that provides the maximum sum of elements t among all
r(i′� t); i′ ∈ {1� � � � �NZ}. Q.E.D.

A.14.6. Lemma L-19

LEMMA L-19: If response matrix R is unordered monotone and m(t) = m(t ′) for some
t� t ′ ∈ supp(T) such that t �= t ′, then no response-type can take both values t and t ′. Namely,
there is no column j ∈ {1� � � � �NS} such that R[i� j] = t and R[i′� j] = t ′ for any two rows
i� i′ ∈ {1� � � � �NZ}.

PROOF: Suppose there exists a column j ∈ {1� � � � �NS} such that R[i� j] = t and
R[i′� j] = t ′ for some rows i� i′ ∈ {1� � � � �NZ}. Then, by Lemma L-18, we must have that
R[m(t)� j] = t and R[m(t ′)� j] = t ′, which is impossible since, by hypothesis, m(t ′) =
m(t). Q.E.D.

A.14.7. Lemma L-20

LEMMA L-20: If response matrix R is unordered monotone, then for any two rows i� i′ ∈
{1� � � � �NZ}, it cannot be the case that r(i′� t) ≥ r(i� t) for all t ∈ supp(T). In particular, it
cannot be the case that m(t) is equal to some i ∈ {1� � � � �NZ} for all t ∈ supp(T).
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PROOF: R is a response matrix, so columns and rows must differ in at least one element.
According to Lemma L-18, if r(i′� t) ≥ r(i� t) and s(i) = t, then s(i′) = t. But the number
of elements in a row is NS. Thus if r(i′� t) ≥ r(i� t) for all t ∈ supp(T), it must be the case
that r(i′� t)= r(i� t) for all t ∈ supp(T). But for the rows to differ, it must be the case that
there exist some columns j� j′ ∈ {1� � � � �NS} such that(

Bt

[
i� j′] Bt[i� j]

Bt

[
i′� j′] Bt

[
i′� j

])=
(

1 0
0 1

)
�

for at least one treatment t ∈ supp(T), which characterizes the forbidden pattern of Equa-
tion (52) and violates the assumed monotonicity of R. Q.E.D.

A.14.8. Lemma L-21

LEMMA L-21: Let R be an unordered monotone response matrix, such that supp(T) =
{t1� t2� � � � � tNT

} and supp(Z) = {z1� z2� � � � � zNZ
}. Let the first row of R be the row where the

sum of elements t1 is maximum, that is, m(t1) = 1. Also let the last row of R be the row that
generates the largest row-sum of treatment values t2� � � � � tNT

, that is, m(t2) = m(t3) = · · · =
m(tNT

) = NZ . Then the last row of R is also the row that generates the minimum sum of
elements t1.

PROOF: Suppose not. So it must be the case that the row-index that gives the minimum
row-sum of elements t1 is i such that i < NZ . Thus we have that r(i� t1) ≤ r(NZ� t1). Now
take the sub-matrix of R generated by rows i and NZ which is also an unordered monotone
matrix. But in this case we would have that r(NZ� t) would take the maximum value for
all t ∈ supp(T), which is impossible due to Lemma L-20. Q.E.D.

A.14.9. Lemma L-22

Lemmas L-22–L-24 describe useful properties of unordered monotone response matri-
ces that are complete.

LEMMA L-22: If an unordered monotone response matrix R is complete, then each NZ-
dimensional vector of elements t ∈ supp(T), that is, ιNZ

· t, belongs to R.

PROOF: According to Condition (iii) of Theorem T-3, R is an unordered response if
and only if the following forbidden 2 × 2 sub-matrices do not belong to R:(

t t ′

t ′′ t

)
or

(
t ′ t
t t ′′

)
where t ′ �= t and t ′′ �= t.

Treatment status varies within vectors of both forbidden sub-matrices. But the treatment
status does not vary in response-type ιNZ

· t. Thus, if R is an unordered response matrix
and ιNZ

· t does not belong to R, then ιNZ
· t is admissible. But R is complete and does

not allow any further admissible response-types. Thereby, it must be the case that ιNZ
· t

already belongs to R. Q.E.D.

A.14.10. Lemma L-23

Recall that Σ(t) is the set of nonzero vectors in Bt of R. We can state the following
property of Σ(t) for complete matrices:
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LEMMA L-23: Let R be a complete unordered monotone response matrix. Then each
set Σ(t); t ∈ supp(T) has NZ distinct nonzero binary vectors of dimension NZ . Moreover,
let Ct be the matrix generated by the binary vectors in Σ(t). Then Ct is a lonesum matrix
that is equivalent to a NZ-dimensional square lower triangular matrix. In particular, each set
Σ(t); t ∈ supp(T) has NZ distinct nonzero binary vectors of dimension NZ whose column-
sum is 1�2� � � � �NZ .

PROOF: Without loss of generality, suppose that the rows {1� � � � �NZ} of R are ordered
in increasing values of the sum of the treatment statuses t in supp(T), that is,

r(1� t)≤ r(2� t)≤ · · · ≤ r(NZ� t)� (A.53)

Response matrix R is unordered monotone, so Bt is lonesum. According to Lemma L-4,
any selection of vectors in Bt is lonesum. In particular, Ct is the selection of all unique
nonzero vectors in Bt . Therefore, Ct is lonesum.

According to Lemma L-18, for any s ∈ supp(S), if r(i′� t) ≥ r(i� t) and s(i) = t, then
s(i′)= t. This implies that if r(i′� t)≥ r(i� t),

Bt[i� j] = 1 ⇒Bt

[
i′� j
]= 1 for any j ∈ {1� � � � �NS}� (A.54)

But Ct is a sub-matrix of Bt ; thus, implication (A.54) also holds for elements in that sub-
matrix. Moreover, under the ranking of row-sums (A.53), Ct is a lower triangular matrix.

To finish the lemma, we need to prove that if R is complete, then Ct has NZ binary
vectors. Suppose not. Specifically, suppose that the binary vector that takes values 1 for
rows-indexes equal to or greater than i and zero otherwise does not belong to Ct . This
condition on Ct translates to the following assertion on response matrix R:

For row-index i ∈ {1� � � � �NZ}, there is no response-type s of R that satisfies:
(A.55)

(1) s(i)= t� and (2) s
(
i′
)= t for all i′ > i� and (3) s

(
i′
) �= t for all i′ < i�

Our goal is to show that the condition in (A.55) cannot occur when R is complete. If R
is complete, then it has to be the case that the response-type described in (A.55) is not
admissible. Then it must be the case that response-type s defined in (A.55) generates the
forbidden pattern (52). But s cannot generate a forbidden pattern in Bt . Indeed s(i) = t
and s(i′)= t for all i′ > i, in accordance with Lemma L-18.

So it must be the case that the inclusion of a response-type s generates a forbidden
pattern for each treatment t ′ that differs from t. In particular, the response-type s that
takes value s(i′) = t ′ for i′ < i and s(i′′) = t for i′′ ≥ i is not admissible. Thus, there must
exist a column j such that the following forbidden pattern occurs:(

1
[
R
[
i′� j
]= t ′

]
1
[
s
(
i′
)= t ′

]
1
[
R
[
i′′� j

]= t ′
]

1
[
s
(
i′′
)= t ′

])=
(

0 1
1 0

)
� (A.56)

But, according to Lemma L-22, if R is complete, then treatment t ′ must appear at least
once in each row. In particular, t ′ must appear at row i′. Thus there must be a column j′

such that R[i′� j′] = t ′. But R is a monotone response, so Bt′ is lonesum and therefore we
must have that (

1
[
R
[
i′� j
]= t ′

]
1
[
R
[
i′� j′]= t ′

]
1
[
R
[
i′′� j

]= t ′
]

1
[
R
[
i′′� j′]= t ′

])=
(

0 1
1 1

)
� (A.57)
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where we apply Lemma L-22 to get the upper right-hand element and Lemma L-18 to get
the lower right-hand element.

Equation (A.57) implies that r(i′� t ′) < r(i� t ′). This condition holds for each t ′ ∈
supp(T) \ {t}. But we also have that r(i′� t) ≤ r(i� t). Thus the ith row-sum is less than
or equal to the ith row-sum for all treatment statuses. This condition is impossible due to
Lemma L-20. Q.E.D.

Lemma L-22 is a particular consequence of Lemma L-23 above. Nevertheless, we have
stated and proved Lemma L-22 because it is used in Lemma L-23. Lemma L-22 allows us
to use the fact that if R is complete, then each treatment choice t ∈ supp(T) must appear
at least once in each row of response matrix R.

A.14.11. Lemma L-24

LEMMA L-24: Let R be a complete unordered monotone response matrix. Then it follows
that rank(Bt)= NZ for all t ∈ supp(T).

PROOF: By Lemma L-23, Ct is equivalent to a lower triangular NZ ×NZ squared matrix
whose column sums are 1�2� � � � �NZ . Thus, Ct must have full rank, that is, rank(Ct) =
NZ . Since Bt includes the columns of Ct , then rank(Bt) ≥ rank(Ct) = NZ . But the row-
dimension of Bt is NZ and thereby rank(Bt)≤NZ . Therefore, rank(Bt)=NZ . Q.E.D.

A.14.12. The Proof of Theorem T-8

PROOF: We employ the notation used throughout this paper, which defines the sup-
port of treatment choice T and instrumental variable Z as supp(T)= {t1� t2� � � � � tNT

} and
supp(Z) = {z1� z2� � � � � zNZ

}. The theorem assumes that there is z ∈ supp(Z) such that
P(T = t ′|Z = z) ≥ P(T = t ′|Z = z′) for z′ ∈ supp(Z) \ {z}. But R is unordered monotone.
Thus, the row in R associated with the value z of instrumental variable Z is also the row
that gives the maximum sum of elements t ′. But P(T = t ′|Z = z) ≥ P(T = t ′|Z = z′) for
all t ′ ∈ supp(T) \ {t}. Thus we have that m(t ′) = m(t ′′) for all t ′� t ′′ ∈ supp(T) \ {t}. By
Lemma L-20, it must be the case that m(t) �= m(t ′).

Without loss of generality, we introduce the following useful notation:
(a) m(t2)=m(t3)= · · · =m(tNT

) =NZ ;
(b) m(t1)= 1;
(c) r(1� t1)≥ r(2� t1)≥ · · · ≥ r(NZ� t1).

Item (a) specifies that the value z of the instrumental variable Z stated in the premise of
the theorem is placed as the last row of R. Item (a) complies with the theorem’s assump-
tion, stating that the last row has the maximum sum of treatment status t2� � � � � tNT

. Item
(b) states that the treatment choice t1 is the one that does not takes the maximum sum in
row NZ , in compliance with Lemma L-20. Instead t1 has its maximum sum at the first row
of R. Item (c) states that the rows of R are ordered by decreasing sum of elements t1. For
this to happen, it is necessary that the last row of R must be the row whose sum of ele-
ments t1 is minimum, which holds according to Lemma L-21. This specification facilitates
the proof of our claim and is assumed without loss of generality.

Our proof is constructive and is based on the following steps:
1. Lemma L-22 implies that the vector ιNZ

· t1 belongs to R. Our count of response-
types in R is now 1.

2. Lemma L-22 also implies that the vector ιNZ
· t� t ∈ {t2� � � � � tNT

} must also belong
to R. Our count of response-types in R is now 1 + (NT − 1).
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3. According to Lemma L-19, there is no response-type s in R that takes two values of
treatment choices in {t2� � � � � tNZ

}. Thus any response-type that takes more than one value
of treatment choices in supp(T) must take only two values, one being t1 and another being
some t ′ ∈ {t2� � � � � tNZ

}.
4. According to Lemma L-18, and the previous remark, if a response-type of an un-

ordered response matrix R takes more than one value of the treatment choice, then it
must be the case that the response-type is of the type described below:

s= [t1� t1� � � � � t1� t ′� � � � � t ′]′ where t ′ ∈ {t2� � � � � tNT
}�

5. But according to Lemma L-23, each Σ(t ′); t ′ ∈ {t2� � � � � tNT
} has NZ distinct nonzero

binary vectors of dimension NZ whose column sum is 1�2� � � � �NZ . In particular, each
Σ(t ′); t ′ ∈ {t2� � � � � tNT

} must have a binary vector ξ ∈ Σ(t ′); t ′ ∈ {t2� � � � � tNT
} whose sum

is 1. According to item 3 above, the response-type that generates this binary vector must
be

s = [t1� t1� � � � � t1� t ′]′ where t ′ ∈ {t2� � � � � tNT
}�

This adds NT − 1 additional response-types to R. Our total count is 1 + 2 · (NT − 1).
6. Each Σ(t ′); t ′ ∈ {t2� � � � � tNT

} must have a binary vector ξ ∈ Σ(t ′); t ′ ∈ {t2� � � � � tNT
}

whose column sum is 2. According to item 3 above, the response-type that generates this
binary vector must be

s = [t1� t1� � � � � t1� t ′� t ′]′ where t ′ ∈ {t2� � � � � tNT
}�

This adds NT − 1 additional response-types to R. Our total count is 1 + 3(NT − 1).
7. If we iterate the process, we have that the total number of response-types in R is

NS = 1 + NZ(NT − 1). In addition, we have that Σ(t1) is the square upper triangular
binary matrix as required by Lemma L-23.

8. R is complete as it exhausts all possible response-types of the sort described in item
3 above.

It remains to prove the rank of BT is equal to 1 + NZ(NT − 1). Binary matrix BT is
defined by stacked Bt matrices such that t ∈ {t1� � � � � tNZ

}. That is,

BT = [B′
t1
�B′

t2
� � � � �B′

tNT

]′
�

Consider the sub-matrix of BT defined by

B̃ =
⎡⎢⎣ Bt2

���
BtNT

⎤⎥⎦ � (A.58)

But each response-type s ∈ supp(S) of R is one of the types:

s= [t� t� � � � � t]′; t ∈ {t1� � � � � tNT
} or

s= [t1� t1� � � � � t1� t ′� � � � � t ′]′ where t ′ ∈ {t2� � � � � tNT
}�

Thus, by Lemma L-19, if Bt′ [i� j] = 1 for some column j ∈ {1� � � � �NS} and for some t ′ ∈
{t2� � � � � tNT

}, then we have that Bt′′ [i′� j] = 0 for any t ′′ ∈ {t2� � � � � tNT
} such that t ′′ �= t ′ and

for any i′ ∈ {1� � � � �NZ}. Thus rank(B̃)=∑NT
k=2 rank(Btk). But by Lemma L-24, the column
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rank of each Bt is equal to NZ . Thereby, rank(B̃) = (NT − 1)NZ . Now the column in B̃

associated with the response-type ιNZ
· t1 is zero. Thus rank(BT ) ≥ 1 + rank(B̃) = 1 +

(NT − 1)NZ . But, according to Theorem T-7 in the main paper, the rank of a matrix BT

cannot be bigger than 1 + (NT − 1)NZ . Thus, rank(BT )= 1 + (NT − 1)NZ . But 1 + (NT −
1)NZ is also the number of columns in R, so according to Corollary C-1, the response-type
probabilities are identified. Q.E.D.

A.15. An Alternative Form for Theorem T-8

Alternative conditions can be used to identify PS. We state one set of conditions as
Theorem T-8′.

THEOREM T-8′—Alt. Version of Theorem T-8: Let R be a complete unordered mono-
tone response matrix such that each value z ∈ {z1� � � � � zN} maximizes the propensity score
P(T = t|Z = z) for a single treatment choice t ∈ {t1� � � � � tN}. Now let t� t̃ ∈ supp(T) and
z′� z′′� z′′′ ∈ supp(T) such that

P
(
T = t|Z = z′)≥ P

(
T = t|Z = z′′) and

P
(
T = t̃|Z = z′′′)≥ P

(
T = t̃|Z = z′′)

⇒ P
(
T = t̃|Z = z′)≥ P

(
T = t̃|Z = z′′)�

Then we have that response-type probabilities P(S= s) for all s ∈ supp(S) are identified and
the response matrix R has the following properties:

1. R is uniquely determined.
2. R consists of 1 + (NT − 1) ·NZ response-types.
3. R is such that rank(BT ) is also equal to 1 + (NT − 1) ·NZ .

PROOF: See Heckman and Pinto (2015). Q.E.D.

A.16. Another Alternative Form of Theorem T-8

THEOREM T-8′′—Alt. Version of Theorem T-8: Consider the IV model (1)–(3) where
Z takes values in {z1� � � � � zNT

} and T takes values in {t1� � � � � tNT
}. Assume the following

conditions:
(i) Response matrix R is unordered monotone.
(ii) 1 >P(T = t|Z = z) > 0 for all z ∈ supp(Z)� t ∈ supp(T).
(iii) NS = 1 + (NT − 1)NZ .
(iv) Response matrix R is complete, that is, the inclusion of any additional response-type

to R would violate monotonicity.
If these four conditions hold, then response-type probabilities P(S= s); s ∈ supp(S) are iden-
tified.

PROOF: See Heckman and Pinto (2015). Q.E.D.

The condition requiring uniform directions of response to choices outside of t to vari-
ation in instruments is quite strong. The general lesson is that additional restrictions be-
yond the standard IV conditions and monotonicity Condition A-3 are required to identify
PS but not for mean counterfactuals. Q.E.D.
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A.17. Additional Identification Results for Counterfactual Outcomes (Theorem T-9,
Corollary C-5)

Let T ⊂ supp(T) be a subset of treatment choice values. We use E(Y(T )|S = s) to
denote the weighted average of counterfactual outcomes E(Y(t)|S= s) across t ∈ T :

E
(
Y(T )|S= s

)=
∑
t∈T

E
(
Y(t)|S= s

) P(T = t|S= s)

P(T ∈ T |S= s)
� (A.59)

where P(T ∈ T |S= s)=
∑
t∈T

P(T = t|S= s)� (A.60)

A subset of particular interest is t̄ = suppT \ {t}, which stands for the set of all treat-
ment choices except t. T ∈ t̄ stands for the event of not choosing t. Let S ⊂ suppS be
a subset of response-types. We use E(Y(T )|S ∈ S ) to denote the weighted average of
E(Y(T )|S = s) across the response-types s ∈ S :

E
(
Y(T )|S ∈ S

)=
∑
s∈S

E
(
Y(T )|S= s

) P(S= s)

P(S ∈ S )
� (A.61)

Response-type subsets of interest are t-Switchers for which Σt(i); i ∈ {1� � � � �NZ}. Under
this notation, we state the following identification result:

THEOREM T-9: Consider the IV model (1)–(3) in which unordered monotonicity Condi-
tion A-3 holds. Let t ∈ supp(T) and i ∈ {1� � � � �NZ − 1} such that if Σt(i) ∩ Σt′(i

′) �= ∅, for
some t ′ ∈ supp(T) \ t and i′ ∈ {1� � � � �NZ − 1}, then Σt′(i

′) ⊂ Σt(i). Under these conditions,
E(Y(t)−Y(t̄)|S ∈ Σt(i)) is identified by

E
(
Y(t)−Y(t̄)|S ∈ Σt(i)

)= bt(i)B
+
t QZ(t)

bt(i)B
+
t PZ(t)

−
bt(i)

∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

) �
where PrZ = [P(Z = z1)� � � � �P(Z = zNZ

)
]′
�

PROOF: See Section A.18 in this appendix. Q.E.D.

Theorem T-9 considers a response-type set Σt(i) such that n ∈ {1� � � � �NZ − 1}. This
implies that Σt(i) is a partition set of t-Switchers and each response-type in Σt(i) must
contain choice t but also choices other than t. Theorem T-9 elicits a coarse property of
the set Σt(i). If a set Σt′(i

′) for t ′ �= t shares any of the response-types in Σt(i), then Σt(i)
must contain Σt′(i

′). The set Σta(2) of the response matrix in Table III provides an example
of this condition because Σta(2) = Σtb(1) ∪ Σtc (1) where Σta(2) = {s2� s3}, Σtb(1) = {s2},
and Σtc (1) = {s3}. Theorem T-9 renders the following expression (see Appendix A.19 for
derivation):

E
(
Y(ta)|ta ∈ Σta(2)

)
= E

(
Y · 1[T = ta]|Z = zno

)−E
(
Y · 1[T = ta]|Z = zbc

)
P(T = ta|Z = zno)− P(T = ta|Z = zbc)

�
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E
(
Y(t̄a)|S ∈ Σta(2)

)
= (((E(Y · 1[T = tc]|Z = zbc

)−E
(
Y · 1[T = tc]|Z = zno

))
+ (E(Y · 1[T = tb]|Z = zbc

)−E
(
Y · 1[T = tb]|Z = zno

)))
/
((
P(T = tc|Z = zbc)− P(T = tc|Z = zno)

)
+ (P(T = tb|Z = zbc)− P(T = tb|Z = zno)

)))
also equivalent to

E
(
Y(t̄a)|S ∈ Σta(2)

)=
(
E
(
Y · 1[T �= ta]|Z = zbc

)−E
(
Y · 1[T �= ta]|Z = zno

))(
P(T �= ta|Z = zbc)− P(T �= ta|Z = zno)

) �

Corollary C-5 simply extends Theorem T-9 to each partition set Σt(i) of t-Switchers.

COROLLARY C-5: Consider the IV model (1)–(3) in which unordered monotonicity
Condition A-3 holds. Let t ∈ supp(T) such that for any t ′ ∈ supp(T) \ t, and for any
i′ ∈ {1� � � � �NZ − 1}, there exists i ∈ {0�1� � � � �NZ − 1} such that Σt′(i

′) ⊂ Σt(i); then
E(Y(t)−Y(t̄)|t-Switchers) is identified by the following equation:5

E
(
Y(t)−Y(t̄)|t-Switchers

)=
NZ−1∑
i=1

(
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

−
bt(i)

∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

))ζn�
where ζn = bt(i)B

+
t PZ(t)(

NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

�

PROOF: See Section A.20 in this appendix. Q.E.D.

See Appendix A.21 for calculations of E(Y(ta) − Y(t̄a)|ta-Switchers) associated with
the response matrix R of Table III.

A.18. Proof of Theorem T-9

The expression in Theorem T-9 can be disaggregated into two components given in
Equations (A.62) and (A.63):

E
(
Y(t)|S ∈ Σt(i)

)= bt(i)B
+
t QZ(t)

bt(i)B
+
t PZ(t)

� (A.62)

E
(
Y(t̄)|S ∈ Σt(i)

)=
bt(i)

∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

) � (A.63)

5Here we adopt κ(Y) = Y ; therefore, QZ(t) is given by QZ(t) = [E(Y |T = t�Z = z1)� � � � �E(Y |T = t�Z =
zNZ

)]′ 
 PZ(t).
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Theorem T-6 identifies E(Y(t)|S ∈ Σt(i)) of Equation (A.62). It suffices to demonstrate
that E(Y(t̄)|S ∈ Σt(i)) can be expressed as described in Equation (A.63).

We now revisit Equations (A.59)–(A.61) that define E(Y(t̄)|S ∈ Σt(i)) as

E
(
Y(t̄)|S ∈ Σt(i)

)=
∑

s∈Σt(i)

E
(
Y(t̄)|S = s

) P(S = s)

P
(
S ∈ Σt(i)

) � (A.64)

where

E
(
Y(t̄)|S= s

)=
∑
t′∈t̄

E
(
Y
(
t ′
)|S= s

)P(T = t ′|S= s
)

P(T ∈ t̄|S= s)
and t̄ ≡ supp(T) \ {t}� (A.65)

Equations (A.64) and (A.65) can be concatenated into the following equation:

E
(
Y(t̄)|S ∈ Σt(i)

)=

∑
s∈Σt(i)

(∑
t′∈t̄

E
(
Y
(
t ′
)|S= s

)P(T = t ′|S= s
)

P(T ∈ t̄|S= s)

)
P(S= s)

P
(
S ∈ Σt(i)

) � (A.66)

Thus, to prove the theorem, it suffices to show that the following equation holds:

∑
s∈Σt(i)

∑
t′∈t̄

E
(
Y
(
t ′
)|S= s

)
P
(
T = t ′|S= s

)
P(S = s)

P
(
S ∈ Σt(i)

)
P(T ∈ t̄|S= s)

(A.67)

=
[bt(i)

∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (B′

t′PrZ
)

bt(i)
∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

) ]�
The proof is divided into five steps. We first prove four lemmas (L-25–L-28) that will

then be used to demonstrate Equation (A.67).
Lemma L-25 below investigates probabilities P(T = t|S= s); s ∈ Σt(i):

LEMMA L-25: Consider the IV model (1)–(3) in which unordered monotonicity Con-
dition A-3 holds. Let t ∈ supp(T) and s� s′ ∈ supp(S) such that s� s′ ∈ Σt(i) for some
i ∈ {1� � � � �NZ − 1}; then the following equalities for probabilities P(T = t|S = s); s ∈ Σt(i)
hold:

P(T = t|S= s) = P
(
T = t|S= s′) for any s� s′ ∈ Σt(i)� (A.68)

P(T = t|S= s) = P
(
T = t|S ∈ Σt(i)

)
for all s ∈ Σt(i)� (A.69)

P
(
T = t|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)= bt(i)
(
B+

t PZ(t)
)
 (

B′
tPrZ

)
� (A.70)

where 
 means the Hadamard (element-wise) multiplication and PrZ and bt(i) are previ-
ously defined notations: PrZ = [P(Z = z1)� � � � �P(Z = zNZ

)]′ is the vector of instrumental
variable probabilities and bt(i) = [1[s1 ∈ Σt(i)]� � � � �1[sNS

∈ Σt(i)]] is the binary row-vector
that indicates if each s ∈ supp(S) belongs to Σt(i).
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PROOF: Probability P(T = t|S= s) can be written as

P(T = t|S= s)=
∑

z∈supp(Z)

P(T = t|S= s�Z = z)P(Z = z|S= s)�

P(T = t|S= s)=
∑

z∈supp(Z)

1[T = t|S= s�Z = z]P(Z = z)�

⇒ P(T = t|S= s)= Bt[·� s]′PrZ� (A.71)

The second equality simply restates Equation (17) of the main paper. It uses the fact that
Z ⊥⊥ S as shown in Lemma L-1. The third equality (Equation (A.71)) relies on the def-
inition of Bt . In our notation, Bt[·� s]′ means the transpose of the column-vector Bt[·� s]
and Bt[·� s′] means the column-vector of Bt associated with response-type s′. Lemma L-
16 states that if unordered monotonicity Condition A-3 holds and s� s′ ∈ Σt(i), then
Bt[·� s] = Bt[·� s′] (see also Remark A.2). We combine Equation (A.71) (P(T = t|S= s)=
Bt[·� s]′PrZ) and Lemma L-16 to prove Equation (A.68) of the lemma:

P(T = t|S= s)=Bt[·� s]′PrZ = Bt

[·� s′]′PrZ = P
(
T = t|S= s′)�

Equation (A.68) implies Equation (A.69) as shown below:

P
(
T = t|S ∈ Σt(i)

)=
∑

s′∈Σt(i)

P
(
T = t|S= s′) P

(
S= s′)

P
(
S ∈ Σt(i)

)
= P(T = t|S= s)

∑
s′∈Σt(i)

P
(
S= s′)

P
(
S ∈ Σt(i)

) for any s ∈ Σt(i)

= P(T = t|S= s)�

Equation (A.70) comes from expressing P(T = t|S ∈ Σt(i)) in matrix notation and ap-
plying the results just stated. From Theorem T-6, we have that P(S ∈ Σt(i)) is identified
by P(S ∈ Σt(i)) = bt(i)B

+
t PZ(t). Note that bt(i) is a row-vector of dimension 1 ×NS and

B+
t PZ(t) is a vector of dimension NS × 1. Let ξ represent the vector ξ =B+

t PZ(t). In this
notation, we can write P(T = t|S ∈ Σt(i)) · P(S ∈ Σt(i)) as

P
(
S ∈ Σt(i)

) · P(T = t|S ∈ Σt(i)
)

=
( ∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1]
)

· P(T = t|S ∈ Σt(i)
)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)

=
∑

s∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)

+
∑

s/∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)

=
∑

s∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)
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+
∑

s/∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · (Bt[·� s]′PrZ
)

= bt(i)
(
ξ 
 (

B′
tPrZ

))
= bt(i)

(
B+

t PZ(t)
)
 (

B′
tPrZ

)
�

The first equality simply states P(S ∈ Σt(i)) as a summation. The second equality includes
the value P(T = t|S ∈ Σt(i)) inside the summation. The third equality splits the summa-
tion into two terms according to the following partition of the support of S: Σt(i) and
supp(S)\Σt(i). The fourth equality replaces P(T = t|S ∈ Σt(i)) by P(T = t|S= s) in each
term of the sum. The reasons for the replacement differ in each term of the summation.
The replacement in the first term of the fourth equality is due to Equation (A.69) which
states that P(T = t|S = s) = P(T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The replacement in the
second term of the fourth equality is due to the fact that bt(i)[1� s] = 0 for all s /∈ Σt(i).
The fifth equality regroups the summation terms. The sixth equality uses Equation (A.71)
(P(T = t|S = s) = Bt[·� s]′PrZ). The seventh equality expresses the summation in matrix
form. The eighth equality uses the definition of the vector ξ = B+

t PZ(t). Note that if
Σt(i)= ∅, then bt(i) is a row-vector of elements zero and P(T = t|S ∈ Σt(i))= 0. Q.E.D.

Our proof benefits from a convenient partition of the response-type set Σt(i) explored
in the lemma below.

LEMMA L-26: Consider the IV model (1)–(3). Let t = supp(T) \ {t} and i ∈ {0�1� � � � �
NZ}; then, for any t ′ ∈ t̄ ≡ supp(T) \ {t}, we can always partition the response-type set Σt(i)
as

Σt(i)=
NZ⋃
i′=0

(
Σt(i)∩Σt′

(
i′
))
� and bt(i)=

NZ∑
i′=0

bt′
(
i′
)
 bt(i)� (A.72)

Moreover, if Σt(i)∩Σt′
(
i′
) �= ∅ ⇒ Σt(i)∩Σt′

(
i′
)= Σt′

(
i′
)

(A.73)
holds for some t ′ ∈ t̄,

then 1
[
Σt(i)∩Σt′

(
i′
) �= ∅] · bt′

(
i′
)= bt′

(
i′
)
 bt(i)� (A.74)

PROOF: The partition in (A.72) uses the fact that
⋃NZ

i′=0 Σt′(i
′) is a partition of supp(S)

for any t ′ ∈ supp(T). The equation in (A.72) is a direct consequence of the defini-
tion of bt(i) which is a binary row-vector that indicates whether or not a response-
type belongs to set Σt(i). Property (A.73) restates the theorem assumption. Suppose
Σt(i) ∩ Σt′(i

′) �= ∅; then, according to Assumption (A.73), Σt(i) ∩ Σt′(i
′) = Σt′(i

′). This
implies that if bt′(i

′)[1� s] = 1, then it must be that bt(i)[1� s] = 1 for any s ∈ supp(S).
Therefore, bt′(i

′)
 bt(i) = 1 · bt′(i
′). Instead, if Σt(i) ∩Σt′(i

′) = ∅, then bt′(i
′)
 bt(i) is a

row-vector of zero elements, which can be written as bt′(i
′) 
 bt(i) = 0 · bt′(i

′). Thus the
equation 1[Σt(i) ∩ Σt′(i

′) �= ∅] · bt′(i
′) = bt′(i

′) 
 bt(i) holds regardless if Σt(i) ∩ Σt′(i
′) is

empty or not. Q.E.D.
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Lemma L-27 below investigates probabilities P(T ∈ t̄|S= s); s ∈ Σt(i). It can be under-
stood as a counterpart of Lemma L-25, which focuses on probabilities P(T = t|S= s); s ∈
Σt(i).

LEMMA L-27: Consider the IV model (1)–(3) in which unordered monotonicity Condi-
tion A-3 holds. Let t̄ = supp(T) \ {t} and s� s′ ∈ supp(S) such that s� s′ ∈ Σt(i) for some
i ∈ {1� � � � �NZ − 1}; then the following equalities for probabilities P(T = t|S = s); s ∈ Σt(i)
hold:

P(T ∈ t̄|S= s)= P
(
T ∈ t̄|S= s′) for any s� s′ ∈ Σt(i)� (A.75)

P(T ∈ t̄|S= s)= P
(
T ∈ t̄|S ∈ Σt(i)

)
for all s ∈ Σt(i)� (A.76)

Moreover, if Σt(i) ∩ Σt′(i
′) �= ∅ ⇒ Σt(i) ∩ Σt′(i

′) = Σt′(i
′) holds for all t ′ ∈ t̄, and i′ ∈

{1� � � � �NZ},

then P
(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)= bt(i)
∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

)
� (A.77)

where 
, PrZ, and bt(i) follow our previous notation.

PROOF: Using (A.75) and (A.68) from Lemma L-25:

P(T ∈ t̄|S = s)= (1 − P(T = t|S= s)
)= (1 − P

(
T = t|S= s′))

= P
(
T ∈ t̄|S= s′) for all s� s′ ∈ Σt(i)�

From Equation (A.76) comes from (A.69) of Lemma L-25:

P
(
T ∈ t̄|S ∈ Σt(i)

)= (1 − P
(
T = t|S ∈ Σt(i)

))= (1 − P(T = t|S= s)
)

= P(T ∈ t̄|S= s) for any s ∈ Σt(i)�

We now rewrite probability P(T ∈ t̄|S ∈ Σt(i)) in Equation (A.76) as

P
(
T ∈ t̄|S ∈ Σt(i)

)
=
∑
t′∈t̄

P
(
T = t ′|S ∈ Σt(i)

)

=
∑
t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]P(T = t ′|S ∈ Σt(i)∩Σt′

(
i′
))P(S ∈ Σt(i)∩Σt′

(
i′
))

P
(
S ∈ Σt(i)

)
=
∑
t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]P(T = t ′|S ∈ Σt′

(
i′
))P(S ∈ Σt′

(
i′
))

P
(
S ∈ Σt(i)

)
⇒ P

(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)
=
∑
t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]P(T = t ′|S ∈ Σt′

(
i′
))
P
(
S ∈ Σt′

(
i′
))
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=
∑
t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]bt′

(
i′
)(
B+

t PZ(t)
)
 (

B′
tPrZ

)

=
∑
t′∈t̄

(
NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]bt′

(
i′
))(

B+
t′PZ

(
t ′
))
 (

B′
tPrZ

)

=
∑
t′∈t̄

(
NZ∑
i′=0

bt′
(
i′
)
 bt(i)

)(
B+

t′PZ

(
t ′
))
 (

B′
tPrZ

)
=
∑
t′∈t̄

bt(i)
(
B+

t′PZ

(
t ′
))
 (

B′
tPrZ

)
∴ P

(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)
= bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
tPrZ

)
�

The second equality applies the law of iterated expectations over the partition sug-
gested by Equation (A.70) of Lemma A.72. The equality introduces the binary indica-
tor 1[Σt(i) ∩ Σt′(i

′) �= ∅] that assures a summation within the response-types in Σt(i).
Nevertheless, if a response-type set Σ is empty, that is, Σ = ∅, then P(S ∈ Σ) = 0.
The third equality uses the assumption that Σt(i) ∩ Σt′(i

′) = Σt′(i
′) whenever Σt(i) ∩

Σt′(i
′) �= ∅. The fourth equality generates the term P(T ∈ t̄|S ∈ Σt(i))P(S ∈ Σt(i)),

which is our object of analysis as stated in the lemma. The fifth equality applies
the result of Equation (A.70) of Lemma L-25, namely, P(T = t ′|S ∈ Σt′(i

′))P(S ∈
Σt′(i

′)) = bt′(i
′)(B+

t PZ(t)) 
 (B′
tPrZ). The sixth equality isolates the common term

(B+
t PZ(t)) 
 (B′

tPrZ) of the summation. The seventh equality uses the result stated
by Equation (A.74) of Lemma L-26, that is, 1[Σt(i) ∩ Σt′(i

′) �= ∅] · bt′(i
′) = bt′(i

′) 

bt(i). The eighth equality uses the result stated by Equation (A.72) of Lemma L-26,
that is, bt(i) = ∑NZ

i′=0 bt′(i
′) 
 bt(i). The eighth equality isolates the common term

bt(i). Q.E.D.

Lemma L-28 shows the identification formula for E(Y(t) · 1[T = t]|S ∈ Σt(i)) that will
be useful in our final proof.

LEMMA L-28: Consider the IV model (1)–(3) in which unordered monotonicity Condi-
tion A-3 holds. Let t ∈ supp(T) and i ∈ {1� � � � �NZ}; then,

E
(
Y(t) · 1[T = t]|S ∈ Σt(i)

)=E
(
Y(t)|S ∈ Σt(i)

) · P(T = t|S ∈ Σt(i)
)
� (A.78)

and E(Y(t) · 1[T = t]|S ∈ Σt(i))P(S ∈ Σt(i)) is identified by

E
(
Y(t) · 1[T = t]|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)= bt(i)
(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
� (A.79)
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PROOF: Equation (A.79) is demonstrated below:

E
(
Y(t) · 1[T = t]|S ∈ Σt(i)

)
=
∑

s∈Σt(i)

E
(
Y(t) · 1[T = t]|S= s

) P(S= s)

P
(
S ∈ Σt(i)

)
=
∑

s∈Σt(i)

E
(
Y(t)|S = s

) ·E(1[T = t]|S= s
) P(S = s)

P
(
S ∈ Σt(i)

)

=

∑
s∈Σt(i)

E
(
Y(t)|S = s

) · P(T = t|S= s)P(S = s)

P
(
S ∈ Σt(i)

)
⇒ E

(
Y(t) · 1[T = t]|S ∈ Σt(i)

)
P(S ∈ Σt(i)

=
∑

s∈Σt(i)

(
E
(
Y(t)|S= s

)
P(S= s)

)
P(T = t|S= s)

= P
(
T = t|S ∈ Σt(i)

)( ∑
s∈Σt(i)

E
(
Y(t)|S= s

)
P(S= s)

)
= P

(
T = t|S ∈ Σt(i)

)(
E
(
Y(t)|S ∈ Σt(i)

) · P(S ∈ Σt(i)
))

∴ E
(
Y(t) · 1[T = t]|S ∈ Σt(i)

)
= P

(
T = t|S ∈ Σt(i)

)
E
(
Y(t)|S ∈ Σt(i)

)
� (A.80)

The fifth equality comes from Equation (A.69) of Lemma L-25 which states that P(T =
t|S = s) = P(T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The last equation eliminates the term
P(S ∈ Σt(i)) in both sides of the equation.

According to Theorem T-6, E(Y(t)|S ∈ Σt(i)) ·P(S ∈ Σt(i)) is identified by E(Y(t)|S ∈
Σt(i)) · P(S ∈ Σt(i)) = bt(i)B

+
t QZ(t). Note that bt(i) is a row-vector of dimension

1 × NS and B+
t QZ(t) is a vector of dimension NS × 1. Let ξ represent the vector

ξ = B+
t QZ(t). The remainder of the proof of this lemma follows the rationale of

Lemma L-25:

E
(
Y(t) · 1[T = t]|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)
= P

(
T = t|S ∈ Σt(i)

)
E
(
Y(t)|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)
= P

(
T = t|S ∈ Σt(i)

)(
bt(i)B

+
t QZ(t)

)
= P

(
T = t|S ∈ Σt(i)

)( ∑
s∈supp(S)

bt(i)[1� s] · ξ[s�1]
)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)

=
∑

s∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)
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+
∑

s/∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S ∈ Σt(i)
)

=
∑

s∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)

+
∑

s/∈Σt(i)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · P(T = t|S= s)

=
∑

s∈supp(S)

bt(i)[1� s] · ξ[s�1] · (Bt[·� s]′PrZ
)

= bt(i)
(
ξ 
 (

B′
tPrZ

))= bt(i)
(
B+

t QZ(t)
)
 (

B′
tPrZ

)
�

The first equality applies the result in Equation (A.80). The second equality uses
E(Y(t)|S ∈ Σt(i)) · P(S ∈ Σt(i)) = bt(i)B

+
t QZ(t) from Theorem T-6. The third equal-

ity transforms bt(i)B
+
t QZ(t) into a summation where ξ = B+

t QZ(t). The fourth equality
includes the value P(T = t|S ∈ Σt(i)) inside the summation. The fifth equality splits the
summation into two terms according to the following partition of the support of S: Σt(i)
and supp(S) \ Σt(i). The sixth equality replaces P(T = t|S ∈ Σt(i)) by P(T = t|S = s) in
each term of the sum. The reasons for the replacement differ in each term of the summa-
tion. The replacement in the first term of the fourth equality is due to Equation (A.69)
which states that P(T = t|S = s) = P(T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The replace-
ment in the second term of the fourth equality is due to the fact that bt(i)[1� s] = 0 for
all s /∈ Σt(i). The sixth equality uses Equation (A.71) (P(T = t|S = s) = Bt[·� s]′PrZ).
The seventh equality regroups the summation terms. The eighth equality expresses
the summation into matrix form. The ninth equality uses the definition of the vector
ξ = B+

t QZ(t). Note that if Σt(i) = ∅, then bt(i) is a row-vector of elements zero and
P(T = t|S ∈ Σt(i))= 0. Q.E.D.

PROOF: We now return to Equation (A.67):

∑
s∈Σt(i)

∑
t′∈t̄

E
(
Y
(
t ′
)|S= s

)
P
(
T = t ′|S= s

)
P(S= s)

P
(
S ∈ Σt(i)

)
P(T ∈ t̄|S= s)

=

∑
t′∈t̄

∑
s∈Σt(i)

(
E
(
Y
(
t ′
)|S= s

)
P
(
T = t ′|S= s

))
P(S= s)

P
(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)

=

∑
t′∈t̄

∑
s∈Σt(i)

(
E
(
Y
(
t ′
) · 1

[
T = t ′

]|S= s
))
P(S= s)

P
(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)

=

∑
t′∈t̄

E
(
Y
(
t ′
) · 1

[
T = t ′

]|S ∈ Σt(i)
)
P
(
S ∈ Σt(i)

)
P
(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

) � (A.81)
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The first equality uses Equation (A.76) of Lemma L-27 which states that P(T ∈ t̄|S =
s) = P(T ∈ t̄|S ∈ Σt(i)) for all s ∈ Σt(i). The second equality uses the conditional inde-
pendence Y(t) ⊥⊥ T |S from Lemma L-1. The denominator of (A.81) is given by Equa-
tion (A.77) of Lemma L-27 which states that

P
(
T ∈ t̄|S ∈ Σt(i)

)
P
(
S ∈ Σt(i)

)= bt(i)
∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

)
�

This is the expected expression. To prove the theorem, it remains to derive the expression
for the numerator of (A.81):(∑

t′∈t̄
E
(
Y
(
t ′
) · 1

[
T = t ′

]|S ∈ Σt(i)
))

P
(
S ∈ Σt(i)

)

=
(∑

t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]E(Y (t ′)1[T = t ′

]|S ∈ Σt(i)∩Σt′
(
i′
))

× P
(
S ∈ Σt(i)∩Σt′

(
i′
))

P
(
S ∈ Σt(i)

) )
P
(
S ∈ Σt(i)

)

=
∑
t′∈t̄

NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]E(Y (t ′) · 1

[
T = t ′

]|S ∈ Σt′
(
i′
))
P
(
S ∈ Σt′

(
i′
))

=
∑
t′∈t̄

(
NZ∑
i′=0

1
[
Σt(i)∩Σt′

(
i′
) �= ∅]bt′

(
i′
))(

B+
t QZ(t)

)
 (
B′

tPrZ
)

=
∑
t′∈t̄

(
NZ∑
i′=0

bt′
(
i′
)
 bt(i)

)(
B+

t′PZ

(
t ′
))
 (

B′
tPrZ

)
=
∑
t′∈t̄

bt(i)
(
B+

t′QZ

(
t ′
))
 (

B′
tPrZ

)
∴
∑
t′∈t̄

E
(
Y
(
t ′
) · 1

[
T = t ′

]|S ∈ Σt(i)
)
P
(
S ∈ Σt(i)

)= bt(i)
∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
tPrZ

)
�

The proof follows the rationale of Lemma L-27. The first equality applies Partition (A.72)
of Lemma L-26. The second equality eliminates P(S ∈ Σt(i)) and uses Property (A.73)
of Lemma L-26. The third equality applies Equation A.79 of Lemma L-28 which states
that E(Y(t) · 1[T = t]|S ∈ Σt(i))P(S ∈ Σt(i)) = bt(i)(B

+
t′QZ(t

′)) 
 (B′
t′PrZ). The fourth

equality applies Equation (A.74) of Lemma L-26, while the fifth equality applies Equa-
tion (A.72) of Lemma L-26. The last equation isolates the common term bt(i). Q.E.D.

A.19. Derivation of the Equations for the Example of Theorem T-9

Theorem T-9 generates the following formulas for E(Y(ta)|S ∈ Σta(2)) and E(Y(t̄a)|
S ∈ Σta(2)) given the response matrix R from Table III:

E
(
Y(ta)|S ∈ Σta(2)

)=E
(
Y(ta)|S ∈ {s2� s3}

)= bta(2)B
+
ta
QZ(ta)

bta(2)B
+
t PZ(ta)

� (A.82)



WEB APPENDIX FOR UNORDERED MONOTONICITY 43

E
(
Y(t̄a)|S ∈ Σta(2)

)
= E

(
Y
({tb� tc})|S ∈ {s2� s3}

)
(A.83)

= bta(2)
(
B+

tb
QZ(tb)

)
 (
B′

tb
PrZ
)+ bta(2)

(
B+

tc
QZ(tc)

)
 (
B′

tc
PrZ
)

bta(2)
(
B+

tb
PZ(tb)

)
 (
B′

tb
PrZ
)+ bta(2)

(
B+

tc
PZ(tc)

)
 (
B′

tc
PrZ
) �

where PrZ = [P(Z = zno)�P(Z = za)�P(Z = zbc)
]′
�

The components of Equation (A.82) that can be estimated from observed data are

PZ(ta) = [P(T = ta|Z = zno)�P(T = ta|Z = za)�P(T = ta|Z = zbc)
]′;

QZ(ta) = [E(Y · 1[T = ta]|Z = zno
)
�E
(
Y · 1[T = ta]|Z = za

)
�

E
(
Y · 1[T = ta]|Z = zbc

)]′
�

The components of Equation (A.82) that depend on the response matrix are

bta(2)= [0�1�1�0�0�0�0];

Bta =
⎡⎣1 1 1 0 0 0 0

1 1 1 1 0 1 0
1 0 0 0 0 0 0

⎤⎦⇒B+
ta

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
1/2 0 −1/2
1/2 0 −1/2

−1/2 1/2 0
0 0 0

−1/2 1/2 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

Equation (A.82) renders the following expressions:

bta(2)B
+
ta
QZ(ta) = E

(
Y · 1[T = ta]|Z = zno

)−E
(
Y · 1[T = ta]|Z = zbc

)
�

(A.84)
bta(2)B

+
t PZ(ta) = P(T = ta|Z = zno)− P(T = ta|Z = zbc)�

∴E
(
Y(ta)|ta ∈ Σta(2)

)= E
(
Y · 1[T = ta]|Z = zno

)−E
(
Y · 1[T = ta]|Z = zbc

)
P(T = ta|Z = zno)− P(T = ta|Z = zbc)

� (A.85)

We now examine Equation (A.83). We first target the terms bta(2)(B
+
tb
QZ(tb))
 (B′

tb
PrZ)

and bta(2)(B
+
tb
PZ(tb)) 
 (B′

tb
PrZ). The components of these terms that can be estimated

from observed data are

PZ(tb)= [P(T = tb|Z = zno)�P(T = tb|Z = za)�P(T = tb|Z = zbc)
]′;

QZ(tb)= [E(Y · 1[T = tb]|Z = zno
)
�E
(
Y · 1[T = tb]|Z = za

)
�E
(
Y · 1[T = tb]|Z = zbc

)]′;
PrZ = [P(Z = zno)�P(Z = za)�P(Z = zbc)

]
�
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The components of these terms that depend on the response matrix are

Btb =
⎡⎣0 0 0 1 1 0 0

0 0 0 0 1 0 0
0 1 0 1 1 0 0

⎤⎦⇒ B+
tb

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−1 0 1
0 0 0
1 −1 0
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

B′
tb

PrZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
P(Z = zbc)

0
P(Z = zno)+ P(Z = zbc)

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

The examined terms render the following expressions:

bta(2)
(
B+

tb
QZ(tb)

)
 (
B′

tb
PrZ
)

= (E(Y · 1[T = tb]|Z = zbc
)−E

(
Y · 1[T = tb]|Z = zno

))
P(Z = zbc)�

bta(2)
(
B+

tb
PZ(tb)

)
 (
B′

tb
PrZ
)= (P(T = tb|Z = zbc)− P(T = tb|Z = zno)

)
P(Z = zbc)�

Next, we target the terms bta(2)(B
+
tb
QZ(tb))
 (B′

tb
PrZ) and bta(2)(B

+
tb
PZ(tb))
 (B′

tb
PrZ).

The components of the terms that can be estimated from observed data are

PZ(tb)= [P(T = tb|Z = zno)�P(T = tb|Z = za)�P(T = tb|Z = zbc)
]′;

QZ(tb)= [E(Y · 1[T = tb]|Z = zno
)
�E
(
Y · 1[T = tb]|Z = za

)
�E
(
Y · 1[T = tb]|Z = zbc

)]′;
PrZ = [P(Z = zno)�P(Z = za)�P(Z = zbc)

]
�

The components of these terms that depend on the response matrix are

Btc =
⎡⎣0 0 0 0 0 1 1

0 0 0 0 0 0 1
0 0 1 0 0 1 1

⎤⎦⇒ B+
tc

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

−1 0 1
0 0 0
0 0 0
1 −1 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

B′
tc

PrZ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

P(Z = zbc)
0
0

P(Z = zno)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�
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The examined terms generate the following expressions:

bta(2)
(
B+

tc
QZ(tc)

)
 (
B′

tc
PrZ
)

= (E(Y · 1[T = tc]|Z = zbc
)−E

(
Y · 1[T = tc]|Z = zno

))
P(Z = zbc)�

bta(2)
(
B+

tc
PZ(tc)

)
 (
B′

tc
PrZ
)

= (P(T = tc|Z = zbc)− P(T = tc|Z = zno)
)
P(Z = zbc)�

Combining the terms, we have that

E
(
Y(t̄a)|S ∈ Σta(2)

)
= ((E(Y · 1[T = tc]|Z = zbc

)−E
(
Y · 1[T = tc]|Z = zno

))
+ (E(Y · 1[T = tb]|Z = zbc

)−E
(
Y · 1[T = tb]|Z = zno

)))
/
((
P(T = tc|Z = zbc)− P(T = tc|Z = zno)

)
+ (P(T = tb|Z = zbc)− P(T = tb|Z = zno)

))
�

which can be also written as

E
(
Y(t̄a)|S ∈ Σta(2)

)
=
(
E
(
Y · 1[T �= ta]|Z = zbc

)−E
(
Y · 1[T �= ta]|Z = zno

))(
P(T �= ta|Z = zbc)− P(T �= ta|Z = zno)

) �

A.20. Proof of Corollary C-5

PROOF: Corollary C-3 states that

E
(
Y(t)|t-Switchers

)

=

(
NZ−1∑
i=1

bt(i)

)
B+

t QZ(t)(
NZ−1∑
i=1

bt(i)

)
B+

ta
PZ(t)

�

Thus it suffices to prove that

E
(
Y(t̄)|t-Switchers

)

=
bt(i)

∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

) �
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We use Theorem T-9 to express E(Y(t̄)|t-Switchers) as

E
(
Y(t̄)|t-Switchers

)=E

(
Y(t̄)

∣∣∣S ∈
NZ−1⋃
i=1

Σt(i)

)

=
NZ−1∑
i=1

E
(
Y(t̄)|S ∈ Σt(i)

) P
(
S ∈ Σt(i)

)
P

(
S ∈

NZ−1⋃
i=1

Σt(i)

)

=
NZ−1∑
i=1

bt(i)
∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (B′

t′PrZ
)

bt(i)
∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

)
× bt(i)B

+
t PZ(t)(

NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

�

The third equality uses the equation for P(S ∈ t-Switchers) of Corollary C-2 and the
expression for P(S ∈ Σt(i)) of Theorem T-6. Q.E.D.

A.21. Derivation of Equations for Example of Corollary C-5

Corollary (C-5) states that E(Y(t)|t-Switchers) and E(Y(t̄)|t-Switchers) can be identi-
fied by

E
(
Y(t)|t-Switchers

)=

(
NZ−1∑
i=1

bt(i)

)
B+

t QZ(t)(
NZ−1∑
i=1

bt(i)

)
B+

t PZ(t)

� (A.86)

E
(
Y(t̄)|t-Switchers

)=
NZ−1∑
i=1

(bt(i)
∑
t′∈t̄

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

))� (A.87)

The parameter E(Y(ta)|ta-Switchers) is associated with the response matrix R of Table III
as computed in Example 7.1. Thus we focus on Equation (A.87) for ta-Switchers, namely,

E
(
Y(t̄a)|ta-Switchers

)
(A.88)

=

2∑
i=1

(
bta(i)

(
B+

tb
QZ(tb)

)
 (
B′

tb
PrZ
)+ (B+

tc
QZ(tc)

)
 (
B′

tc
PrZ
)

bta(i)
(
B+

tb
PZ(tb)

)
 (
B′

tb
PrZ
)+ (B+

tc
PZ(tc)

)
 (
B′

tc
PrZ
) )(

2∑
i=1

bta(i)

)
B+

t PZ(ta)

�
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The denominator of Equation (A.88) is examined in Example 7.1 and is given by

P(S ∈ ta-Switchers)
(A.89)

=
(

2∑
i=1

bta(i)

)
B+

t PZ(ta)= P(T = ta|Z = za)− P(T = ta|Z = zbc)�(
B+

tb
QZ(tb)

)
 (
B′

tb
PrZ
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
E
(
Y · 1[T = tb]|Z = zbc

)−E
(
Y · 1[T = tb]|Z = zno

)
0

E
(
Y · 1[T = tb]|Z = zno

)−E
(
Y · 1[T = tb]|Z = za

)
E
(
Y · 1[T = tb]|Z = za

)
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠




⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
P(Z = zbc)

0
P(Z = zno)+ P(Z = zbc)

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

(
B+

tc
QZ(tc)

)
 (
B′

tc
PrZ
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

E
(
Y · 1[T = tc]|Z = zbc

)−E
(
Y · 1[T = tc]|Z = zno

)
0
0

E
(
Y · 1[T = tc]|Z = zno

)−E
(
Y · 1[T = tb]|Z = zb

)
E
(
Y · 1[T = tc]|Z = zno

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠



⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

P(Z = zbc)
0
0

P(Z = zno)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

(
B+

tb
PZ(tb)

)
 (
B′

tb
PrZ
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
P(T = tb|Z = zbc)− P(T = tb|Z = zno)

0
P(T = tb|Z = zno)− P(T = tb|Z = za)

P(T = tb|Z = za)
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠




⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
P(Z = zbc)

0
P(Z = zno)+ P(Z = zbc)

1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�
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B+

tc
PZ(tc)

)
 (
B′

tc
PrZ
)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

P(T = tc|Z = zbc)− P(T = tc|Z = zno)
0
0

P(T = tc|Z = zno)− P(T = tb|Z = zb)
P(T = tc|Z = zno)

⎞⎟⎟⎟⎟⎟⎟⎟⎠



⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

P(Z = zbc)
0
0

P(Z = zno)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

Also, we have that bta(1)= [0�0�0�1�0�1�0]′ and bta(2)= [0�1�1�0�0�0�0]′; thus,

bta(1)
∑

t∈{tb�tc}

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bta(1)

∑
t∈{tb�tc}

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

)

=

((
E
(
Y · 1[T = tb]|Z = zno

)−E
(
Y · 1[T = tb]|Z = za

))(
P(Z = zno)+ P(Z = zbc)

)
+ (E(Y · 1[T = tc]|Z = zno

)−E
(
Y · 1[T = tb]|Z = zb

))
P(Z = zno)

)
((

P(T = tb|Z = zno)− P(T = tb|Z = za)
)(
P(Z = zno)+ P(Z = zbc)

)
+ (P(T = tc|Z = zno)− P(T = tb|Z = zb)

)
P(Z = zno)

) �

(A.90)

bta(2)
∑

t∈{tb�tc}

(
B+

t′QZ

(
t ′
))
 (

B′
t′PrZ

)
bta(2)

∑
t∈{tb�tc}

(
B+

t′PZ

(
t ′
))
 (

B′
t′PrZ

)

=

( (
E
(
Y · 1[T = tb]|Z = zbc

)−E
(
Y · 1[T = tb]|Z = zno

))
P(Z = zbc)

+ (E(Y · 1[T = tc]|Z = zbc
)−E

(
Y · 1[T = tc]|Z = zno

))
P(Z = zbc)

)
( (

P(T = tb|Z = zbc)− P(T = tb|Z = zno)
)
P(Z = zbc)

+ (P(T = tc|Z = zbc)− P(T = tc|Z = zno)
)
P(Z = zbc)

) � (A.91)

Parameter E(Y(t̄a)|ta-Switchers) is given by the sum of the expressions in (A.90) and
(A.91) divided by the probability in (A.89).

APPENDIX B: DIRECTED GRAPHS FOR IV AND STRATA

This section presents IV model (1)–(6) as a directed acyclic graph and introduces strata
into this framework. The IV model defined in (1)–(3) can be equivalently restated as

T = fT (Z�V )� Y = fY (T�V � εY )� V = fV (εV )� Z = fZ(εZ)� (B.1)

where

(εY � εV � εZ) are mutually independent error terms. (B.2)

Equation (B.1) specifies the causal directions of the IV model (1)–(3). Instrument Z
affects T but does not directly affect Y . Z affects Y only through its effect on T .
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FIGURE S2.—DAG for the standard choice model with instrumental variables. This figure represents the
confounding model with instrumental variables as a DAG. Arrows represent direct causal relationships. Circles
represent unobserved variables. Squares represent observed variables.

FIGURE S3.—A causal model with instrumental variables. This figure represents the confounding model
with instrumental variables as a DAG. Arrows represent direct causal relationships. Circles represent unob-
served variables and the ε are kept implicit. Squares represent observed variables.

Causal relationships are indicated by directed arrows. Unobserved variables are repre-
sented by circles. Squares represent observed variables. This leads to the Directed Acyclic
Graph S2.

It is standard (but sometimes confusing) not to depict the error terms (εZ� εT � εY � εV )
which, in Figure S2, are represented as circles with arrows pointing to their associated
variables, and we follow this convention in Figure S3.

We note that strata add no new information not already present in the DAG of Fig-
ure S3. See Figure S4. Strata are just representations of the model that give a coarser
summary of the influence of V on T that is useful as a control function.

FIGURE S4.—IV model with response vector S. This figure represents the confounding model with instru-
mental variables and response vector S as a DAG. Arrows represent direct causal relationships. Circles repre-
sent unobserved variables and the ε are kept implicit. Squares represent observed variables.
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APPENDIX C: EXAMPLES OF THE BENEFITS OF USING INDICATOR FUNCTIONS FOR
THE GENERAL UNORDERED MODEL

This section6 provides a simple example that clarifies the ideas discussed in the main pa-
per. Let Tω ∈ {1�2�3} be the choice made by agent ω. Let Zω ∈ {z0� z1} be an instrumental
variable. Yω is the observed outcome. Yω(t� z) denotes the counterfactual outcome when
Tω is fixed at t ∈ {1�2�3} and Zω is fixed at z ∈ {z0� z1}. Tω(z) is the counterfactual choice
when the instrument is fixed at z ∈ {z0� z1}. Exclusion restrictions require that Yω(t� z0)=
Yω(t� z1) ≡ Yω(t). Independence relationship (Y(t)�T (z)) ⊥⊥ Z;z ∈ {z0� z1}� t ∈ {1�2�3}
is a version of random assignment.

If choices are ordered, one can invoke ordered monotonicity: Tω(z1) ≥ Tω(z0) for all
ω. Under it, E(Y |Z = z1)−E(Y |Z = z0) identifies

E(Y |Z = z1)−E(Y |Z = z0)
(C.1)

=
2∑

t=1

3∑
t′=t+1

E
(
Y
(
t ′
)−Y(t)|T(z1)= t ′�T (z0)= t

)
P
(
T(z1)= t ′�T (z0)= t

)
�

This is the gain (over all possible outcomes) arising from a change in the instrument from
Z = z0 to Z = z1.

PROOF: Ordered monotonicity, that is, Tω(z1)≥ Tω(z0) for all ω, generates the follow-
ing response matrix:

s1 s2 s3 s4 s5 s6

R=
[

1 2 3 1 1 2
1 2 3 2 3 3

]
values for T(z0)
values for T(z1)

· (C.2)

From Equation (14) of Theorem T-1, we have the following relationships:

E
(
Y · 1[T = 1]|Z = z0

)
=E

(
Y(1)|S= s1

)
P(S= s1)+E

(
Y(1)|S = s4

)
P(S = s4)

+E
(
Y(1)|S= s5

)
P(S= s5)�

E
(
Y · 1[T = 2]|Z = z0

)
=E

(
Y(2)|S= s2

)
P(S= s2)+E

(
Y(2)|S = s6

)
P(S = s6)�

E
(
Y · 1[T = 3]|Z = z0

)
=E

(
Y(3)|S= s3

)
P(S= s3)�

Also

E
(
Y · 1[T = 1]|Z = z1

)
=E

(
Y(1)|S= s1

)
P(S= s1)�

6This sub-appendix was motivated by the comments of Elie Tamer.
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E
(
Y · 1[T = 2]|Z = z1

)
=E

(
Y(2)|S= s2

)
P(S= s2)+E

(
Y(2)|S = s4

)
P(S= s4)�

E
(
Y · 1[T = 3]|Z = z1

)
=E

(
Y(3)|S= s3

)
P(S= s3)+E

(
Y(3)|S = s5

)
P(S= s5)

+E
(
Y(3)|S= s6

)
P(S= s6)�

But we can express E(Y |Z = z) as E(Y |Z = z) =∑3
t=1 E(Y · 1[T = t]|Z = z), thus,

E(Y |Z = z1)−E(Y |Z = z0) =
3∑

t=1

E
(
Y · 1[T = t]|Z = z1

)−E
(
Y · 1[T = t]|Z = z0

)
�

where

E
(
Y · 1[T = 1]|Z = z1

)−E
(
Y · 1[T = 1]|Z = z0

)
= −(E(Y(1)|S = s4

)
P(S = s4)+E

(
Y(1)|S= s5

)
P(S= s5)

)
�

E
(
Y · 1[T = 2]|Z = z1

)−E
(
Y · 1[T = 2]|Z = z0

)
=E

(
Y(2)|S= s4

)
P(S= s4)−E

(
Y(2)|S = s6

)
P(S= s6)�

E
(
Y · 1[T = 3]|Z = z1

)−E
(
Y · 1[T = 3]|Z = z0

)
=E

(
Y(3)|S= s5

)
P(S= s5)+E

(
Y(3)|S = s6

)
P(S= s6)�

The summation of all the terms above generates Equation (C.1):

E(Y |Z = z1)−E(Y |Z = z0)

=
2∑

t=1

3∑
t′=t+1

E
(
Y
(
t ′
)−Y(t)|T(z1)= t ′�T (z0)= t

)
× P

(
T(z1)= t ′�T (z0)= t

)
� Q.E.D.

Our analysis requires no order on T . Our analysis is based on 1[Tω(z) = t], which takes
value 1 if Tω(z) = t and zero otherwise. If choices are not ordered, economic theory can be
used to justify monotonicity relationships based on indicator functions generated by Tω(z)
and not the Tω(z) itself. Using this notation, an example of monotonicity expressed in
terms of indicator functions is the order 1[Tω(z1)= t] ≥ 1[Tω(z0) = t]; t ∈ {1�3}, assumed
to hold for all ω. For this case, E(Y |Z = z1)−E(Y |Z = z0) identifies

E(Y |Z = z1)−E(Y |Z = z0)
(C.3)

=
∑
t∈{1�3}

E
(
Y(t)−Y(2)|T(z1)= t�T (z0)= 2

)
P
(
T(z1)= t�T (z0)= 2

)
�

PROOF: Suppose instead that the following monotonicity relationship holds:

1
[
Tω(z1) = t

]≥ 1
[
Tω(z0)= t

]; t ∈ {1�3} for all ω�
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In this case, the associated response matrix is given by

s1 s2 s3 s4 s5

R=
[

1 2 3 2 2
1 2 3 1 3

]
values for T(z0)
values for T(z1)

� (C.4)

According to Equation (14) of Theorem T-1, we have the following relationships:

E
(
Y · 1[T = 1]|Z = z0

)= E
(
Y(1)|S= s1

)
P(S = s1)�

E
(
Y · 1[T = 2]|Z = z0

)= E
(
Y(2)|S= s2

)
P(S = s2)+E

(
Y(2)|S = s4

)
P(S= s4)

+E
(
Y(2)|S= s5

)
P(S= s5)�

E
(
Y · 1[T = 3]|Z = z0

)= E
(
Y(3)|S= s3

)
P(S = s3)�

Also

E
(
Y · 1[T = 1]|Z = z1

)=E
(
Y(1)|S = s1

)
P(S= s1)+E

(
Y(1)|S= s4

)
P(S = s4)�

E
(
Y · 1[T = 2]|Z = z1

)=E
(
Y(2)|S = s2

)
P(S= s2)�

E
(
Y · 1[T = 3]|Z = z1

)=E
(
Y(3)|S = s3

)
P(S= s3)+E

(
Y(3)|S= s5

)
P(S = s5)�

In the same fashion as previous analysis, we can express E(Y |Z = z) as E(Y |Z = z) =∑3
t=1 E(Y · 1[T = t]|Z = z); thus,

E(Y |Z = z1)−E(Y |Z = z0)=
3∑

t=1

E
(
Y · 1[T = t]|Z = z1

)−E
(
Y · 1[T = t]|Z = z0

)
�

where

E
(
Y · 1[T = 1]|Z = z1

)−E
(
Y · 1[T = 1]|Z = z0

)=E
(
Y(1)|S= s4

)
P(S= s4)�

E
(
Y · 1[T = 2]|Z = z1

)−E
(
Y · 1[T = 2]|Z = z0

)= −(E(Y(2)|S= s4

)
P(S = s4)

+E
(
Y(2)|S = s5

)
P(S= s5)

)
�

E
(
Y · 1[T = 3]|Z = z1

)−E
(
Y · 1[T = 3]|Z = z0

)=E
(
Y(3)|S= s5

)
P(S= s5)�

The summation of all the terms above generates Equation (C.3):

E(Y |Z = z1)−E(Y |Z = z0)

=
∑
t∈{1�3}

E
(
Y(t)−Y(2)|T(z1)= t�T (z0)= 2

)
P
(
T(z1) = t�T (z0)= 2

)
�

Q.E.D.

APPENDIX D: RESPONSE-TYPE ELIMINATION DUE TO MONOTONIC RELATIONSHIPS
AND CHOICE RESTRICTIONS

Table SI presents the 27 response-types of the multiple treatment model analyzed in
Section 5. Table SI considers the case where Z takes values in supp(Z) = {zno� za� zbc},
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TABLE SI

RESPONSE-TYPES AND ELIMINATION OF RESPONSE-TYPES FOR S WHEN supp(Z) = {zno� za� zbc} UNDER
RESTRICTIONS (41)–(44)a

Values Instrumental Variable Z Takes Restriction Analysis

No Voucher Voucher for a Voucher for b or c
Response-Types T(zno) T(za) T(zbc) Relationship 1 Relationship 2 Relationship 3 Relationship 4

1 ta ta ta � � � �
2 ta ta tb � � � �
3 ta ta tc � � � �
4 ta tb ta ✗ ✗ � ✗
5 ta tb tb ✗ � � �
6 ta tb tc ✗ � � �
7 ta tc ta ✗ ✗ � ✗
8 ta tc tb ✗ � � �
9 ta tc tc ✗ � � �

10 tb ta ta � � ✗ �
11 tb ta tb � � � �
12 tb ta tc � � � �
13 tb tb ta � ✗ ✗ ✗
14 tb tb tb � � � �
15 tb tb tc � � � �
16 tb tc ta � ✗ ✗ ✗
17 tb tc tb � � � �
18 tb tc tc � � � �
19 tc ta ta � � ✗ �
20 tc ta tb � � � �
21 tc ta tc � � � �
22 tc tb ta � ✗ ✗ ✗
23 tc tb tb � � � �
24 tc tb tc � � � �
25 tc tc ta � ✗ ✗ ✗
26 tc tc tb � � � �
27 tc tc tc � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno� za� zbc} and treatment status T ranges over {tno� ta� tbc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zno)�T(za)�T (zbc)] takes. Columns 5 to 8
indicate whether the response-type violates any of the following monotonicity relationships

Relationship 1 1
[
Tω(zno) = ta

]≤ 1
[
Tω(za) = ta

]
�

Relationship 2 1
[
Tω(zbc) = ta

]≤ 1
[
Tω(za) = ta

]
�

Relationship 3 1
[
Tω(zno) ∈ {b� c}]≤ 1

[
Tω(zbc) ∈ {b� c}]�

Relationship 4 1
[
Tω(za) ∈ {b� c}]≤ 1

[
Tω(zbc) ∈ {b� c}]�

A check mark sign indicates that the associated response-type does not violate the relation. A cross sign indicates that the associated
response-type violates the relationship.

and displays the restrictions on admissible strata imposed by the relationships presented
at the base of the table.

The table shows which response-types violate the monotonicity relationships in (41)–
(44), which are restated below for sake of clarity:

Relationship 1 1
[
Tω(zno)= ta

]≤ 1
[
Tω(za)= ta

]
�

Relationship 2 1
[
Tω(zbc)= ta

]≤ 1
[
Tω(za)= ta

]
�
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TABLE SII

RESPONSE MATRIX GENERATED BY MONOTONICITY RELATIONSHIP (41)–(44)

Response-Types of S
Instrumental
Variables

Counterfactual
Choices s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

No Voucher T(zno) ta ta ta tb tb tb tb tb tb tc tc tc tc tc tc
Voucher for a T(za) ta ta ta ta ta tb tb tc tc ta ta tb tb tc tc
Voucher for b or c T(zbc) ta tb tc tb tc tb tc tb tc tb tc tb tc tb tc

Relationship 3 1
[
Tω(zno) ∈ {b� c}]≤ 1

[
Tω(zbc) ∈ {b� c}]�

Relationship 4 1
[
Tω(za) ∈ {b� c}]≤ 1

[
Tω(zbc) ∈ {b� c}]�

The elimination process described in Table SI generates the response matrix R of Ta-
ble I in the text reproduced as Table SII.

Table SIII displays the response-types that violate the following choice restrictions:

Choice Restriction 1 Chω(zno)= ta ⇒ Chω(za)= ta�

Choice Restriction 2 Chω(zno)= tb ⇒ Chω(za) �= tc and Chω(zbc) �= ta�

Choice Restriction 3 Chω(zno)= tc ⇒ Chω(za) �= tb and Chω(zbc) �= ta�

Choice Restriction 4 Chω(za)= tb ⇒ Chω(zno)= tb and Chω(zbc) �= ta�

Choice Restriction 5 Chω(za)= tc ⇒ Chω(zno)= tc and Chω(zbc) �= ta�

Choice Restriction 6 Chω(zbc)= ta ⇒ Chω(zno)= ta and Chω(za) = ta�

The elimination process described in Table SIII generates the response matrix R of
Table SIV that has 11 response-types. Table SIV displays the response-types arising from
applying WARP (49) for the budget sets (41)–(44). Table SV illustrates the response-types
for the choice restrictions of Table II in the text.

Table SVI demonstrates the restrictions on admissible response-types from the restric-
tions imposed in Table IV in the text.

We present additional examples next.

D.1. Another Example of Choice Restrictions That Generate an Unordered Monotonic
Response

Suppose that Z takes values in supp(Z) = {zno� zb� zbc}. Following the rationale of Sec-
tion 5.2, assume the following budget relationships:

Budget Relationships for ta Λω(zno� ta)= Λω(zb� ta)= Λω(zbc� ta)�

Budget Relationships for tb Λω(zno� tb)⊂ Λω(zb� tb)=Λω(zbc� tb)�

Budget Relationships for tc Λω(zno� tc) =Λω(zb� tc) ⊂Λω(zbc� tc)�

The budget set relationships above can be used as input to WARP (49), which generates
the following choice restrictions:

Choice Restriction 1 Chω(zno)= ta ⇒ Chω(zb) �= tc�
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TABLE SIII

RESTRICTIONS ON RESPONSE VECTOR S FOR supp(Z) = {zno� za� zbc} UNDER SIX CHOICE RESTRICTIONS
BELOWa

Values Instrumental Variable Z Takes Restriction Analysis

No Voucher Voucher for a Voucher for b or c
Response-Types T(zno) T(za) T(zbc) Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6

1 ta ta ta � � � � � �
2 ta ta tb � � � � � �
3 ta ta tc � � � � � �
4 ta tb ta ✗ � � ✗ � ✗
5 ta tb tb ✗ � � ✗ � �
6 ta tb tc ✗ � � ✗ � �
7 ta tc ta ✗ � � � ✗ ✗
8 ta tc tb ✗ � � � ✗ �
9 ta tc tc ✗ � � � ✗ �

10 tb ta ta � ✗ � � � ✗
11 tb ta tb � � � � � �
12 tb ta tc � � � � � �
13 tb tb ta � ✗ � ✗ � ✗
14 tb tb tb � � � � � �
15 tb tb tc � � � � � �
16 tb tc ta � ✗ � � ✗ ✗
17 tb tc tb � ✗ � � ✗ �
18 tb tc tc � ✗ � � ✗ �
19 tc ta ta � � ✗ � � ✗
20 tc ta tb � � � � � �
21 tc ta tc � � � � � �
22 tc tb ta � � ✗ ✗ � ✗
23 tc tb tb � � ✗ ✗ � �
24 tc tb tc � � ✗ ✗ � �
25 tc tc ta � � ✗ � ✗ ✗
26 tc tc tb � � � � � �
27 tc tc tc � � � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno� za� zbc} and treatment status T ranges over {ta� tb� tc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zno)�T(za)�T (zbc)] takes. The remaining six
columns indicate whether the response-type violates any of the following choice restrictions respectively:

Choice Restriction 1 Chω(zno)= ta ⇒ Chω(za)= ta�

Choice Restriction 2 Chω(zno)= tb ⇒ Chω(za) �= tc and Chω(zbc) �= ta�

Choice Restriction 3 Chω(zno)= tc ⇒ Chω(za) �= tb and Chω(zbc) �= ta�

Choice Restriction 4 Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) �= ta�

Choice Restriction 5 Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) �= ta�

Choice Restriction 6 Chω(zbc) = ta ⇒ Chω(zno) = ta and Chω(za) = ta�

A check mark sign indicates that the associated response-type does not violate the choice restriction. A cross sign indicates that the
associated response-type violates the choice restriction.

Choice Restriction 2 Chω(zno)= tb ⇒ Chω(zb)= tb and Chω(zc) �= ta�

Choice Restriction 3 Chω(zno)= tc ⇒ Chω(zb) �= ta and Chω(zc) �= ta�

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za)= ta and Chω(zc) �= tb�
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TABLE SIV

ADMISSIBLE RESPONSE-TYPES UNDER WARP (49)

Response-Types of S

Instrumental Variables Count. Choices s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

No Voucher T(zno) ta ta ta tb tb tb tb tc tc tc tc
Voucher for a T(za) ta ta ta ta ta tb tb ta ta tc tc
Voucher for b or c T(zbc) ta tb tc tb tc tb tc tb tc tb tc

Choice Restriction 5 Chω(zb)= tb ⇒ Chω(zc) �= ta�

Choice Restriction 6 Chω(zb)= tc ⇒ Chω(za)= tc and Chω(zc)= tc�

Choice Restriction 7 Chω(zbc)= ta ⇒ Chω(za)= ta and Chω(zb)= ta�

Choice Restriction 8 Chω(zbc)= tb ⇒ Chω(zb)= tb�

The elimination process described in Table SVII generates the response matrix Ta-
ble SVIII. If we also assume neutral income effects, we can eliminate response-types s7

and s8 above and obtain the response matrix of Table V of the main paper, presented here
as Table SIX.

D.2. An Example Where Choice Restrictions Fail to Generate Identification

Choice restrictions do not always generate response matrices that achieve iden-
tification. Table SX presents a response matrix generated by the revealed prefer-
ence analysis when Z takes values in supp(Z) = {zno� zb� zc}. The generated response
matrix is not consistent with unordered monotonicity Condition A-3 and the rank
of its associated binary matrix BT is equal to 7, which is less than the number of
response-types, that is, 8. Thus, response-type probabilities are not identified (Corol-
lary C-1).

As another example, suppose Z takes values in supp(Z) = {zno� zb� zc}. Following the
same rationale of Section 5.2, we assume the following budget relationships:

Budget Relationships for ta Λω(zno� ta) =Λω(zb� ta)= Λω(zc� ta)�

Budget Relationships for tb Λω(zno� tb)= Λω(zc� tb)⊂ Λω(zb� tb)�

Budget Relationships for tc Λω(zno� tc)=Λω(zb� tc)⊂Λω(zc� tc)�

The budget set relationships above can be used as input to WARP (49), which generates
the following choice restrictions:

Choice Restriction 1 Chω(zno)= ta ⇒ Chω(zb) �= tc and Chω(zc) �= tb�

Choice Restriction 2 Chω(zno)= tb ⇒ Chω(zb)= tb and Chω(zc) �= ta�

Choice Restriction 3 Chω(zno)= tc ⇒ Chω(zb) �= ta and Chω(zc)= tc�

Choice Restriction 4 Chω(zb)= ta ⇒ Chω(za) = ta and Chω(zc) �= tb�

Choice Restriction 5 Chω(zb)= tc ⇒ Chω(za)= tc and Chω(zc)= tc�

Choice Restriction 6 Chω(zc)= ta ⇒ Chω(za)= ta and Chω(zb) �= tc�
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TABLE SV

ELIMINATION OF RESPONSE-TYPES FOR supp(Z) = {zno� za� zbc} AND SEVEN CHOICE RESTRICTIONSa

Values Instrumental Variable Z Takes Restriction Analysis

No Voucher Voucher for a Voucher for b or c
Response-Types T(zno) T(za) T(zbc) Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6 Res. 7

1 ta ta ta � � � � � � �
2 ta ta tb � � � � � � �
3 ta ta tc � � � � � � �
4 ta tb ta ✗ � � ✗ � ✗ �
5 ta tb tb ✗ � � ✗ � � �
6 ta tb tc ✗ � � ✗ � � �
7 ta tc ta ✗ � � � ✗ ✗ �
8 ta tc tb ✗ � � � ✗ � �
9 ta tc tc ✗ � � � ✗ � �

10 tb ta ta � ✗ � � � ✗ ✗
11 tb ta tb � � � � � � �
12 tb ta tc � � � � � � ✗
13 tb tb ta � ✗ � ✗ � ✗ ✗
14 tb tb tb � � � � � � �
15 tb tb tc � � � � � � ✗
16 tb tc ta � ✗ � � ✗ ✗ ✗
17 tb tc tb � ✗ � � ✗ � �
18 tb tc tc � ✗ � � ✗ � ✗
19 tc ta ta � � ✗ � � ✗ ✗
20 tc ta tb � � � � � � ✗
21 tc ta tc � � � � � � �
22 tc tb ta � � ✗ ✗ � ✗ ✗
23 tc tb tb � � ✗ ✗ � � ✗
24 tc tb tc � � ✗ ✗ � � �
25 tc tc ta � � ✗ � ✗ ✗ ✗
26 tc tc tb � � � � � � ✗
27 tc tc tc � � � � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno� za� zbc} and treatment status T ranges over {ta� tb� tc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zno)�T(za)�T (zbc)] takes. The remaining
seven columns indicate whether the response-type violates any of the following choice restrictions respectively:

Choice Restriction 1 Chω(zno)= ta ⇒ Chω(za)= ta�

Choice Restriction 2 Chω(zno)= tb ⇒ Chω(za) �= tc and Chω(zbc) �= ta�

Choice Restriction 3 Chω(zno)= tc ⇒ Chω(za) �= tb and Chω(zbc) �= ta�

Choice Restriction 4 Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) �= ta�

Choice Restriction 5 Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) �= ta�

Choice Restriction 6 Chω(zbc) = ta ⇒ Chω(zno) = ta = Chω(za) = ta�

Choice Restriction 7 Chω(zno) �= ta ⇒ Chω(zbc) = Chω(zno)�

A check mark sign indicates that the associated response-type does not violate the choice restriction. A cross sign indicates that the
associated response-type violates the choice restriction.

Choice Restriction 7 Chω(zc)= tb ⇒ Chω(za)= tb and Chω(zb)= tb�

The elimination process described in Table SXI generates the response matrix of Ta-
ble SX, also presented below as Table SXII.
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TABLE SVI

ELIMINATION OF RESPONSE-TYPES UNDER UNORDERED MONOTONICITYa

Values Z Takes Elimination of Response-Types

Response-Types T(zno) T(za) T(zbc) Rel. 1 Rel. 2 Rel. 3 Rel. 4 Rel. 5 Rel. 6 Rel. 7 Rel. 8 Rel. 9

1 ta ta ta � � � � � � � � �
2 ta ta tb � � � � � � � � �
3 ta ta tc � � � � � � � � �
4 ta tb ta ✗ � ✗ ✗ � ✗ � � �
5 ta tb tb ✗ � � ✗ � � � � �
6 ta tb tc ✗ � � ✗ � ✗ � � �
7 ta tc ta ✗ � ✗ � � � ✗ � ✗
8 ta tc tb ✗ � � � � � ✗ � ✗
9 ta tc tc ✗ � � � � � ✗ � �

10 tb ta ta � ✗ � � ✗ � � � �
11 tb ta tb � � � � � � � � �
12 tb ta tc � � � � ✗ � � � �
13 tb tb ta � ✗ ✗ � ✗ ✗ � � �
14 tb tb tb � � � � � � � � �
15 tb tb tc � � � � ✗ ✗ � � �
16 tb tc ta � ✗ ✗ � ✗ � ✗ � ✗
17 tb tc tb � � � � � � ✗ � ✗
18 tb tc tc � � � � ✗ � ✗ � �
19 tc ta ta � ✗ � � � � � ✗ �
20 tc ta tb � � � � � � � ✗ �
21 tc ta tc � � � � � � � � �
22 tc tb ta � ✗ ✗ ✗ � ✗ � ✗ �
23 tc tb tb � � � ✗ � � � ✗ �
24 tc tb tc � � � ✗ � ✗ � � �
25 tc tc ta � ✗ ✗ � � � � ✗ ✗
26 tc tc tb � � � � � � � ✗ ✗
27 tc tc tc � � � � � � � � �

a This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges
over supp(Z) = {zno� za� zbc} and treatment status T ranges over supp(T) = {ta� tb� tc}. The first column enumerates the 27 possi-
ble response-types. Columns 2 to 4 present the response-types according to the vector of the values that [Tω(zno)�Tω(za)�Tω(zbc)]
takes. Columns 5 to 13 indicate whether the response-type violates any of the following monotonicity relations:

Monotonicity Relationship 1 1
[
Tω(zno) = ta

]≤ 1
[
Tω(za) = ta

]
�

Monotonicity Relationship 2 1
[
Tω(zbc) = ta

]≤ 1
[
Tω(zno)= ta

]
�

Monotonicity Relationship 3 1
[
Tω(zbc) = ta

]≤ 1
[
Tω(za)= ta

]
�

Monotonicity Relationship 4 1
[
Tω(za) = tb

]≤ 1
[
Tω(zno) = tb

]
�

Monotonicity Relationship 5 1
[
Tω(zno) = tb

]≤ 1
[
Tω(zbc)= tb

]
�

Monotonicity Relationship 6 1
[
Tω(za) = tb

]≤ 1
[
Tω(zbc)= tb

]
�

Monotonicity Relationship 7 1
[
Tω(za) = tc

]≤ 1
[
Tω(zno) = tc

]
�

Monotonicity Relationship 8 1
[
Tω(zno) = tc

]≤ 1
[
Tω(zbc)= tc

]
�

Monotonicity Relationship 9 1
[
Tω(za) = tc

]≤ 1
[
Tω(zbc) = tc

]
�

A check mark sign indicates that the associated response-type does not violate the relationship. A cross sign indicates that the associ-
ated response-type violates the relationship.
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TABLE SVII

RESTRICTIONS ON RESPONSE VECTOR S FOR supp(Z) = {zno� zb� zbc} UNDER CHOICE RESTRICTIONS
BELOW

Values Instrumental Variable Z Takes Choice Restriction Analysis

No Voucher Voucher for b Voucher b and c

Response-Types T(zno) T(zb) T(zbc) 1 2 3 4 5 6 7 8

1 ta ta ta � � � � � � � �
2 ta ta tb � � � ✗ � � � ✗
3 ta ta tc � � � � � � � �
4 ta tb ta � � � � ✗ � ✗ �
5 ta tb tb � � � � � � � �
6 ta tb tc � � � � � � � �
7 ta tc ta ✗ � � � � ✗ ✗ �
8 ta tc tb ✗ � � � � ✗ � ✗
9 ta tc tc ✗ � � � � ✗ � �

10 tb ta ta � ✗ � ✗ � � ✗ �
11 tb ta tb � ✗ � ✗ � � � ✗
12 tb ta tc � ✗ � ✗ � � � �
13 tb tb ta � ✗ � � ✗ � ✗ �
14 tb tb tb � � � � � � � �
15 tb tb tc � � � � � � � �
16 tb tc ta � ✗ � � � ✗ ✗ �
17 tb tc tb � ✗ � � � ✗ � ✗
18 tb tc tc � ✗ � � � ✗ � �
19 tc ta ta � � ✗ ✗ � � ✗ �
20 tc ta tb � � ✗ ✗ � � � ✗
21 tc ta tc � � ✗ ✗ � � � �
22 tc tb ta � � ✗ � ✗ � ✗ �
23 tc tb tb � � � � � � � �
24 tc tb tc � � � � � � � �
25 tc tc ta � � ✗ � � ✗ ✗ �
26 tc tc tb � � � � � ✗ � ✗
27 tc tc tc � � � � � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno� zb� zbc} and treatment status T ranges over {ta� tb� tc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zno)�T (zb)�T (zbc)] takes. The remaining
eight columns indicate whether the response-type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) �= tc �

Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) �= ta�

Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) �= ta and Chω(zc) �= ta�

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) �= tb�

Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) �= ta�

Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc �

Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta�

Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb�

A check mark sign indicates that the associated response-type does not violate the choice restriction. A cross sign indicates that the
associated response-type violates the choice restriction.
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TABLE SVIII

RESPONSE-TYPES GENERATED BY WARP ONLY FOR supp(Z) = {zno� zb� zbc}

Response-Types of S
Instrumental
Variables

Count.
Choices s1 s2 s3 s4 s5 s6 s7 s8 s9

No Voucher T(zno) ta ta ta ta tb tb tc tc tc
Voucher for b T(zb) ta ta tb tb tb tb tb tb tc
Voucher for b or c T(zbc) ta tc tb tc tb tc tb tc tc

TABLE SIX

RESPONSE-TYPES GENERATED BY WARP AND NEUTRAL INCOME EFFECTS FOR supp(Z) = {zno� zb� zbc}

Response-Types of S
Instrumental
Variables

Count.
Choices s1 s2 s3 s4 s5 s6 s7

No Voucher T(zno) ta ta ta ta tb tc tc
Voucher for car b T(zb) ta ta tb tb tb tb tc
Voucher for car b or c T(zbc) ta tc tb tc tb tc tc

D.3. An Example Without Unordered Monotonicity That Generates Identification

Assume that Z takes values in supp(Z) = {zc� zb� zbc}. Following the same rationale of
Section 5.2, we assume the following budget relationships:

Budget Relationships for ta Λω(zc� ta)=Λω(zb� ta) =Λω(zbc� ta)�

Budget Relationships for tb Λω(zc� tb)⊂ Λω(zb� tb)= Λω(zbc� tb)�

Budget Relationships for tc Λω(zb� tc)⊂Λω(zc� tc)=Λω(zbc� tc)�

The budget set relationships above can be used as input to WARP (49), which generates
the following choice restrictions:

Choice Restriction 1 Chω(zc)= ta ⇒ Chω(zb) �= tc and Chω(zc) �= tc�

Choice Restriction 2 Chω(zc)= tb ⇒ Chω(zb)= tb and Chω(zc)= tb�

Choice Restriction 3 Chω(zc)= tc ⇒ Chω(zc) �= ta�

Choice Restriction 4 Chω(zb)= ta ⇒ Chω(za) �= tb and Chω(zc) �= tb�

Choice Restriction 5 Chω(zb)= tb ⇒ Chω(zc) �= ta�

TABLE SX

RESPONSE-TYPES GENERATED BY WARP AND NORMAL CHOICES FOR supp(Z) = {zno� zb� zc}

Response-Types of S
Instrumental
Variables

Count.
Choices s1 s2 s3 s4 s5 s6 s7 s8

No Voucher T(zno) ta ta ta ta tb tb tc tc
Voucher for car b T(zb) ta ta tb tb tb tb tb tc
Voucher for car c T(zc) ta tc ta tc tb tc tc tc
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TABLE SXI

RESTRICTIONS ON RESPONSE VECTOR S FOR supp(Z) = {zno� zb� zc} UNDER CHOICE RESTRICTIONS BELOW

Values Instrumental Variable Z Takes Choice Restriction Analysis

No Voucher Voucher for b Voucher c
Response-Types T(zno) T(zb) T(zc) 1 2 3 4 5 6 7

1 ta ta ta � � � � � � �
2 ta ta tb ✗ � � ✗ � � ✗
3 ta ta tc � � � � � � �
4 ta tb ta � � � � � � �
5 ta tb tb ✗ � � � � � ✗
6 ta tb tc � � � � � � �
7 ta tc ta ✗ � � � ✗ ✗ �
8 ta tc tb ✗ � � � ✗ � ✗
9 ta tc tc ✗ � � � ✗ � �

10 tb ta ta � ✗ � ✗ � ✗ �
11 tb ta tb � ✗ � ✗ � � ✗
12 tb ta tc � ✗ � ✗ � � �
13 tb tb ta � ✗ � � � ✗ �
14 tb tb tb � � � � � � �
15 tb tb tc � � � � � � �
16 tb tc ta � ✗ � � ✗ ✗ �
17 tb tc tb � ✗ � � ✗ � ✗
18 tb tc tc � ✗ � � ✗ � �
19 tc ta ta � � ✗ ✗ � ✗ �
20 tc ta tb � � ✗ ✗ � � ✗
21 tc ta tc � � ✗ ✗ � � �
22 tc tb ta � � ✗ � � ✗ �
23 tc tb tb � � ✗ � � � ✗
24 tc tb tc � � � � � � �
25 tc tc ta � � ✗ � ✗ ✗ �
26 tc tc tb � � ✗ � ✗ � ✗
27 tc tc tc � � � � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno� zb� zc} and treatment status T ranges over {ta� tb� tc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zno)�T (zb)�T (zc)] takes. The remaining
seven columns indicate whether the response-type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) �= tc and Chω(zc) �= tb�

Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) �= ta�

Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) �= ta and Chω(zc) = tc �

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) �= tb�

Choice Restriction 5 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc �

Choice Restriction 6 Chω(zc) = ta ⇒ Chω(za) = ta and Chω(zb) �= tc �

Choice Restriction 7 Chω(zc) = tb ⇒ Chω(za) = tb and Chω(zb) = tb�

A check mark sign indicates that the associated response-type does not violate the choice restriction. A cross sign indicates that the
associated response-type violates the choice restriction.

Choice Restriction 6 Chω(zb)= tc ⇒ Chω(za)= tc and Chω(zc)= tc�

Choice Restriction 7 Chω(zbc)= ta ⇒ Chω(za)= ta and Chω(zb)= ta�

Choice Restriction 8 Chω(zbc)= tb ⇒ Chω(zb)= tb�
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TABLE SXII

RESPONSE-TYPES GENERATED BY WARP FOR supp(Z) = {zno� zb� zc}

Response-Types of S
Instrumental
Variables

Count.
Choices s1 s2 s3 s4 s5 s6 s7 s8

No Voucher T(zno) ta ta ta ta tb tb tc tc
Voucher for car b T(zb) ta ta tb tb tb tb tb tc
Voucher for car c T(zc) ta tc ta tc tb tc tc tc

Choice Restriction 9 Chω(zbc)= tc ⇒ Chω(za)= tc�

The elimination process described in Table SXIII generates the response matrix of Ta-
ble VI, also presented here as Table SXIV.

APPENDIX E: THEOREM T-3 IMPLIES VYTLACIL’S THEOREM (2002)

In the binary case where T ∈ {0�1}, T and 1[T = 1] are equivalent and Condition (iii)
reduces to

(T |Z = z�V = v) ≥ (T |Z = z′�V = v
)

or (T |Z = z�V = v)≤ (T |Z = z′�V = v
)
�
(E.1)

∀v ∈ supp(V )�

Equation (E.1) can be written in terms of an agent ω, for whom V ω = v ∈ supp(V ) as

Tω(z) ≥ Tω

(
z′) or Tω(z) ≤ Tω

(
z′)� (E.2)

which is the monotonicity condition of Imbens and Angrist (1994). Condition (iv) in T-3
reduces to

P
(
T = 1

[
ϕ(V )+ g(Z) ≥ 0

])= 1�

which is the separable representation of Vytlacil (2002). Under Equation (E.2), the re-
sponse matrix of the binary treatment model is lower triangular. This implies that matri-
ces B1�B0 are maximal matrices and thereby lonesum, which corroborates Conditions (i)
and (ii) of Theorem T-3.

APPENDIX F: EXAMPLES OF UNORDERED MONOTONIC RESPONSE MATRICES

Section 5.2 examines the case of multiple treatments, in which the treatment indicator
takes three values and the instrumental variable also takes three values. This setup gener-
ates 27 possible response-types. The number of response matrices generated by the com-
bination of seven response-types taken from these 27 possible ones totals 888,030. Among
those, there are 66 response matrices that are unordered monotonic responses, namely,
response matrices whose binary indicator matrices associated with each treatment choice
are lonesum. Those are listed in Table SXV.

APPENDIX G: WHY DO WE GET SEPARABILITY?

This appendix motivates why separability Condition (iv) of Theorem T-3 holds. We
now present a detailed discussion of how the lonesum property of matrix Bt generates
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TABLE SXIII

RESTRICTIONS ON RESPONSE VECTOR S FOR supp(Z)= {zc� zb� zbc} UNDER CHOICE RESTRICTIONS BELOWa

Values Instrumental Variable Z Takes Choice Restriction Analysis

Response Voucher for c Voucher for b Voucher for b and c

Types T(zc) T(zb) T(zbc) 1 2 3 4 5 6 7 8 9

1 ta ta ta � � � � � � � � �
2 ta ta tb � � � ✗ � � � ✗ �
3 ta ta tc ✗ � � � � � � � ✗
4 ta tb ta � � � � ✗ � ✗ � �
5 ta tb tb � � � � � � � � �
6 ta tb tc ✗ � � � � � � � ✗
7 ta tc ta ✗ � � � � ✗ ✗ � �
8 ta tc tb ✗ � � � � ✗ � ✗ �
9 ta tc tc ✗ � � � � ✗ � � ✗

10 tb ta ta � ✗ � ✗ � � ✗ � �
11 tb ta tb � ✗ � ✗ � � � ✗ �
12 tb ta tc � ✗ � ✗ � � � � ✗
13 tb tb ta � ✗ � � ✗ � ✗ � �
14 tb tb tb � � � � � � � � �
15 tb tb tc � ✗ � � � � � � ✗
16 tb tc ta � ✗ � � � ✗ ✗ � �
17 tb tc tb � ✗ � � � ✗ � ✗ �
18 tb tc tc � ✗ � � � ✗ � � ✗
19 tc ta ta � � ✗ � � � ✗ � �
20 tc ta tb � � � ✗ � � � ✗ �
21 tc ta tc � � � � � � � � �
22 tc tb ta � � ✗ � ✗ � ✗ � �
23 tc tb tb � � � � � � � � �
24 tc tb tc � � � � � � � � �
25 tc tc ta � � ✗ � � ✗ ✗ � �
26 tc tc tb � � � � � ✗ � ✗ �
27 tc tc tc � � � � � � � � �

aThis table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zc� zb� zbc} and treatment status T ranges over {ta� tb� tc}. The first column enumerates the 27 possible response-types.
Columns 2 to 4 indicate the response-types according to the vector of the values that [T(zc)�T (zb)�T (zbc)] takes. The remaining nine
columns indicate whether the response-type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zc) = ta ⇒ Chω(zb) �= tc and Chω(zc) �= tc �

Choice Restriction 2 Chω(zc) = tb ⇒ Chω(zb) = tb and Chω(zc) = tb�

Choice Restriction 3 Chω(zc) = tc ⇒ Chω(zc) �= ta�

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) �= tb and Chω(zc) �= tb�

Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) �= ta�

Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc �

Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta�

Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb�

Choice Restriction 9 Chω(zbc) = tc ⇒ Chω(za) = tc �

A check mark sign indicates that the associated response-type does not violate the choice restriction. A cross sign indicates that the
associated response-type violates the choice restriction.



64 J. J. HECKMAN AND R. PINTO

TABLE SXIV

RESPONSE-TYPES GENERATED BY WARP FOR supp(Z) = {zc� zb� zbc}

Response-Types of S
Instrumental
Variables

Count.
Choices s1 s2 s3 s4 s5 s6 s7

Voucher for c T(zc) ta ta tb tc tc tc tc
Voucher for b T(zb) ta tb tb ta tb tb tc
Voucher for b or c T(zbc) ta tb tb tc tb tc tc

separability of the choice equation in item (iv) of Theorem T-3. Our proof is in three
steps. We first show that if all Bt; t ∈ supp(T) are lonesum, then Bt[i� j] can be expressed
in terms of its column and row sums by7

Bt[i� j] = 1

[ (
NS∑
j′=1

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])

︸ ︷︷ ︸
Number of columns whose sum is bigger than or equal to the column sum of Bt [·� j]

(G.1)

≤
(

NS∑
j′=1

Bt

[
i� j′])

︸ ︷︷ ︸
row sum of Bt [i� ·]

]
�

Next, we use Equation (G.1) to show that Bt[i� j] can be also expressed in terms of
propensity scores and response-type probabilities as described in Equation (G.2):8

Bt[i� j] = 1

[(
NS∑
j′=1

P(S= sj′) · 1

[
NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j
]≤

NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j′]])

(G.2)

≤
(

NS∑
j′=1

P(S= sj′) ·Bt

[
i� j′])]�

We then use Equations (15) and (17) in the text to replace the terms Bt in Equa-
tion (G.2) with propensity scores and the probability of T = t conditional on S, which
is a function of the values that T and V take.9

A consequence of (i) in Theorem T-3 is that each binary matrix Bt is equivalent to its
maximal. This property generates a key ingredient of the proof. Bt[i� j] can be expressed

7See Lemma L-12 of Appendix A for a formal proof.
8See Lemmas L-5–L-8 and Lemma L-14 of Appendix A for a formal proof.
9For instance, we show that 1[T = t|Z = zi�S= sj] can be expressed as 1[T = t|Z = zi�S= sj] = 1[ϕ(sj� t)+

g(zi� t) ≥ 0], where g(zi� t) = P(T = t|Z = zi) and ϕ(sj� t) = −∑NS

j′=1 P(S = sj′) · 1[P(T = t|S = sj) ≤ P(T =
t|S= sj′)].
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TABLE SXV

ALL RESPONSE MATRICES THAT ARE UNORDERED MONOTONIC RESPONSESa

t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t2 t2 t3 t3
t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t2 t1 t3
t1 t2 t3 t2 t3 t2 t3 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t1

t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t2 t2 t2 t3
t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t2 t1 t2 t3 t1 t2 t1 t2 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t2 t3 t3
t1 t2 t3 t2 t3 t2 t3 t1 t2 t3 t2 t2 t3 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t3 t3 t1 t2 t3 t1 t2 t1 t2 t1 t2 t3 t1 t1 t1 t1

t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t2 t2 t2 t2
t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t2 t3 t3
t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t1 t2 t1 t1 t2 t3 t1 t1 t2 t1 t1 t2 t3 t1 t1 t1 t3

t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t2 t2 t2 t2
t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t2 t2 t3
t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t3 t3

t1 t2 t3 t1 t1 t3 t3 t1 t2 t3 t1 t1 t1 t2 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t2 t2 t3 t3 t1 t2 t3 t2 t2 t2 t3
t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t2 t3 t2 t1 t2 t3 t2 t2 t3 t3 t1 t2 t3 t2 t3 t3 t3 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t3 t3 t3
t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t2 t1 t3 t1 t2 t3 t2 t1 t2 t3 t1 t2 t3 t1 t2 t1 t3 t1 t2 t3 t1 t1 t2 t1

t1 t2 t3 t1 t1 t1 t2 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t3 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t2 t2 t2 t2
t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t2 t3 t3 t3 t1 t2 t3 t1 t1 t3 t3 t1 t2 t3 t1 t3 t3 t3
t1 t2 t3 t2 t2 t3 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t2 t1 t2 t2 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t1 t2 t3

t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t2 t1 t2 t3 t1 t1 t1 t2 t1 t2 t3 t1 t1 t1 t2 t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t2 t3 t3 t3
t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t3 t2 t3 t1 t2 t3 t2 t2 t3 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t3
t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t3 t2 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t2 t1 t2 t2

t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t2 t3 t3 t3
t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t1 t1 t1 t1
t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t2 t1 t2 t3

t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t2 t2 t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t2 t3 t3 t3
t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t3 t1 t2 t3 t2 t3 t2 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t2 t1 t1 t2 t3 t2 t1 t2 t3
t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t3 t2 t3 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t1 t1 t1

t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t2 t3 t3 t3
t1 t2 t3 t1 t1 t3 t3 t1 t2 t3 t1 t1 t2 t1 t1 t2 t3 t2 t2 t2 t3 t1 t2 t3 t3 t2 t3 t3 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t2 t1 t2 t2
t1 t2 t3 t2 t2 t2 t2 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t1 t1 t1 t1 t2 t3 t1 t3 t3 t3 t1 t2 t3 t1 t1 t1 t3

t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t3 t3 t3 t3 t1 t2 t3 t3 t3 t3 t3
t1 t2 t3 t1 t2 t3 t3 t1 t2 t3 t1 t2 t2 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t1 t1 t2 t2 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t1 t1 t2
t1 t2 t3 t1 t2 t1 t2 t1 t2 t3 t1 t1 t2 t1 t1 t2 t3 t1 t1 t2 t3 t1 t2 t3 t1 t3 t2 t3 t1 t2 t3 t1 t2 t2 t2 t1 t2 t3 t1 t2 t3 t2

aThis table presents all response matrices consisting of seven response-types that comply with the separability condition of Theorem T-3.
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TABLE SXVI

EXAMPLE OF A BINARY MATRIX B THAT IS EQUIVALENT TO ITS MAXIMAL

Row Row Sum Binary Matrix B Row Row Sum Reordered Matrix B

B[1� ·] 4 1 1 0 1 1 B[2� ·] 1 1 0 0 0 0
B[2� ·] 1 0 0 0 1 0 B[3� ·] 3 1 1 1 0 0
B[3� ·] 3 0 1 0 1 1 B[1� ·] 4 1 1 1 1 0

B[·�1] B[·�2] B[·�3] B[·�4] B[·�5] B[·�4] B[·�2] B[·�5] B[·�1] B[·�3]
Column Sum 1 2 0 3 2 3 2 2 1 0

in terms of its column and row sums using the following relationship:

Bt[i� j] = 1

[ (
NS∑
j′=1

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])

︸ ︷︷ ︸
Number of columns whose sum is bigger than or equal to the column sum of Bt [·� j]

(G.3)

≤
(

NS∑
j′=1

Bt

[
i� j′])

︸ ︷︷ ︸
row sum of Bt [i� ·]

]
�

where i ∈ {1� � � � �NZ} and j ∈ {1� � � � �NS}. Equation (G.3) states that we can determine
Bt[i� j] by comparing the ith row sum with the number of columns (including the jth col-
umn) whose column sum is greater than or equal to the jth column sum. If the row sum is
equal to or greater than this number of columns, then Bt[i� j] = 1; otherwise, Bt[i� j] = 0.

An example clarifies Equation (G.3). Consider the binary matrix B in Table SXVI. The
table also shows the matrix generated by reordering the columns of matrix B in decreasing
column sums and its rows in increasing row sums. The rows of the reordered matrix consist
of a sequence of elements 1 followed by a sequence of elements 0. Thus matrix B is
equivalent to its maximal.

Consider the last column of the reordered matrix. It consists of elements [0�0�0]′ whose
column sum is 0. All five columns have column sums greater than or equal to 0. The row
sums (1, 3, and 4) are all less than 5, which generates the elements 0. The second column
consists of elements [0�1�1], whose column sum is 2. There are three columns whose
column sum is equal to or greater than 2 (first, second, and third columns). The sum
of the first row is 1, which is less than 3, and this generates the element 0. The second
and third row sums are 3 and 4, both greater than or equal to 3, thereby generating the
elements 1.

Equation (G.3) also holds for the original matrix. The first column of the original matrix
consists of elements [1�0�0]′, whose column sum is 1. There are four columns whose
column sums are greater than or equal to 1 (first, second, fourth, and fifth columns). The
sum of the first row is 4, which is greater than or equal to 4, generating the element 1. The
sums of the second and third rows are 1 and 3, both less than 4, generating the elements 0.
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The lonesum property of Bt also generates the following equality:10

1

[(
NS∑
j′=1

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]])≤

(
NS∑
j′=1

)
Bt

[
i� j′]]

= 1

[(
NS∑
j′=1

P(S = sj′) · 1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]]) (G.4)

≤
(

NS∑
j′=1

P(S= sj′) ·Bt

[
i� j′])1

]
�

According to Remark 6.3, no 2 × 2 sub-matrix of each Bt takes the prohibited pat-
terns (52).11 As a consequence, we have that12

NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′] ⇔ Bt

[
i′� j
]≤ Bt

[
i′� j′] ∀i′ ∈ {1� � � � �NZ}�

thereby

1

[
NZ∑
i′=1

Bt

[
i′� j
]≤

NZ∑
i′=1

Bt

[
i′� j′]]

(G.5)

= 1

[
NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j
]≤

NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j′]]�

If we substitute Equations (G.4)–(G.5) into (G.3), we obtain

Bt[i� j] = 1

[(
NS∑
j′=1

P(S= sj′) · 1

[
NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j
]≤

NZ∑
i′=1

P(Z = zi′)Bt

[
i′� j′]])

(G.6)

≤
(

NS∑
j′=1

P(S= sj′) ·Bt

[
i� j′])]�

Next, we can represent Equations (15)–(17) in terms of Bt as

P(T = t|Z = zi)=
NS∑
j=1

Bt[i� j]P(S= sj)� (G.7)

P(T = t|S= sj)=
NZ∑
i=1

Bt[i� j]P(Z = zi)� (G.8)

where S is a balancing score for V .

10See Lemma L-13 of Appendix A for a formal proof.
11See Lemmas L-5–L-8 of Appendix A for a formal proof.
12See Lemma L-14 of Appendix A for a formal proof.
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Equations (G.7)–(G.8) are useful for translating the summations over Bt into propen-
sity scores of t, conditional on Z and V . We substitute Equations (G.7)–(G.8) into Equa-
tion (G.6). As we show here and in the proof of Theorem T-3, we can construct g(zi� t)
and ϕ(sj� t) from the following relationships:

1[T = t|Z = zi�S= sj] = 1
[
ϕ(sj� t)+ g(zi� t)≥ 0

]
� where g(zi� t)= P(T = t|Z = zi)

and

ϕ(sj� t)= −
NS∑
j′=1

P(S= sj′) · 1
[
P(T = t|S= sj)≤ P(T = t|S= sj′)

]
�

APPENDIX H: EXAMINING THE THRESHOLD PROPERTY OF CONDITION (IV) OF
THEOREM T-3

Condition (iv) of T-3 states that the treatment choice T can be expressed as

1[T = t|V = v�Z = z] = 1
[
ϕ(V � t)+ g(Z� t) ≥ 0

]
� (H.1)

This representation can be understood as the combination of a separability condition and
a threshold property:

1. The Separability Condition refers to the separable equation ϕ(v� t)+g(z� t) of Equal-
ity (H.1).

2. The Threshold Property refers to the fact that T takes value 1 if ϕ(v� t) + g(z� t) in
Equation (H.1) is greater than or equal to the threshold value 0.
To clarify the role of the threshold property, consider the case in which the separability
condition holds but the threshold property does not. In this case, Equality (H.1) would be
replaced by Equality (H.2) below:

1[T = t|V = v�Z = z] = 1
[
ϕ(V � t)≥ −g(Z� t)

]
� (H.2)

This section clarifies why the threshold property is necessary in Equality (H.1) of Con-
dition (iv). Namely, we show that separability alone is not enough to produce unordered
monotonicity.

Let T take value t∗ ∈ supp(T) when V = v and Z = z. Then the separability condition
and the threshold property discussed above imply that

if t∗ = argmax
t∈supp(T)

ϕ(v� t)+ g(z� t)�

then ϕ
(
v� t∗

)+ g
(
z� t∗

)≥ 0 and ϕ
(
v� t ′

)+ g
(
z� t ′

)
< 0 for all t ′ �= t∗�

We use the following strategy to prove that separability alone is not sufficient to produce
unordered monotonicity:

1. We present an example in which the treatment choice T is expressed by an equation
where separability holds but the threshold property does not.

2. We show that this example can generate a response matrix that contains the prohib-
ited pattern (i.e., Equation (52)).

3. We then evoke Condition (iii) of Theorem T-3 which states that the prohibited pat-
tern implies that unordered monotonicity does not hold.
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Let Ψ(t� z�v) represent the utility of choice T = t when V = v and Z = z. We assume
that Ψ(t� z�v) is separable, that is, Ψ(t� z�v)= u(v� t)+h(z� t) (but we do not invoke the
threshold property). It suffices to show that Ψ(t� z�v) can generate the prohibited pattern
defined by Equation (52). Let supp(T) = {t1� t2� t3}, supp(Z) = {z� z′}, supp(S) = {s� s′}.
The associated response matrix is given by

R =
(
(T |S= s�Z = z)

(
T |S= s′�Z = z

)(
T |S= s�Z = z′) (

T |S = s′�Z = z′))
(H.3)

=
⎛⎝argmax

t∈{t1�t2�t3}

(
u(s� t)+ h(z� t)

)
argmax
t∈{t1�t2�t3}

(
u
(
s′� t

)+ h(z� t)
)

argmax
t∈{t1�t2�t3}

(
u(s� t)+ h

(
z′� t

))
argmax
t∈{t1�t2�t3}

(
(
u
(
s′� t

)+ h
(
z′� t

))⎞⎠ �

The prohibited pattern arises in the response matrix R above which has t1 on the diagonal
but has choice values other than t1 on the off-diagonal. For this to happen, we need the
following inequalities to hold:

u(s� t1)+ h(z� t1) > max
(
u(s� t2)+ h(z� t2)�u(s� t3)+ h(z� t3)

)
�

u
(
s′� t1

)+ h
(
z′� t1

)
> max

(
u
(
s′� t2

)+ h
(
z′� t2

)
�u
(
s′� t3

)+ h
(
z′� t3

))
�

u(s� t1)+ h
(
z′� t1

)
< max

(
u(s� t2)+ h

(
z′� t2

)
�u(s� t3)+ h

(
z′� t3

))
�

u
(
s′� t1

)+ h(z� t1) < max
(
u
(
s′� t2

)+ h(z� t2)�u
(
s′� t3

)+ h(z� t3)
)
�

Now consider the following values for u(s� t)�h(z� t):

u(s� t1)= h(z� t1)= u
(
s′� t1

)= h
(
z′� t1

)= 0�

u(s� t2)= h(z� t3)= u
(
s′� t3

)= h
(
z′� t2

)= 1�

u(s� t3)= h(z� t2)= u
(
s′� t2

)= h
(
z′� t3

)= −2�

The threshold property is violated as

u(s� t1)+ h(z� t1)= 0 = max
t∈{t1�t2�t3}

u(s� t)+ h(z� t)

but

u(s� t2)+ h
(
z′� t2

)= 2 = max
t∈{t1�t2�t3}

u(s� t)+ h
(
z′� t

)
while

u(s� t1)+ h
(
z′� t1

)= 0�

Thus, the separability condition of Ψ(t� z�v) is not sufficient to guarantee that unordered
monotonicity Condition A-3 holds.
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