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BY JIANJUN MIAO AND ALEJANDRO RIVERA

THIS SUPPLEMENT CONSIST of two appendices. In Appendix SA, we adopt the
Chen–Epstein (2002) recursive multiple-priors utility model to study the ro-
bust contracting problem. We compare this case with the robust contracting
problem studied in the paper. In Appendix SB, we study a model with risk
aversion only and compare the solution with our robust contracting solution.
We also establish some observational equivalence results.

APPENDIX SA: CONTRACT WITH CHEN–EPSTEIN UTILITY

Suppose that the principal’s preferences are represented by recursive
multiple-priors utility proposed by Chen and Epstein (2002). The contracting
problem is given by

max
(C�τ�a)

min
{h:|ht |≤κ}

EQh

[∫ τ

0
e−rt(dXt − dCt)+ e−rτL

]
�(SA.1)

subject to the incentive constraint and the participation constraint described in
the paper.

By the Girsanov theorem, we write the dynamics of W under Qh as

dWt = γWt dt − dCt − λμ(1 − at)dt + htφt dt +φt dB
h
t �(SA.2)

We then obtain the HJB equation:

rF(W ) = max
dC≥0�φ≥σλ

min
|h|≤κ

μ+ σh− dC + F ′(W )(γW − dC + hφ)(SA.3)

+ F ′′(W )

2
φ2�

For optimization over φ to be well defined, it must be the case that F ′′(W ) < 0.
Otherwise, F would approach infinity when φ approaches infinity.

By an argument similar to that in the paper, we must have F ′(W ) ≥ −1.
Define W̄ as the smallest value such that F ′(W ) = −1. Then the principal pays
the agent whenever Wt hits the boundary W̄ and reflects at this point.

Solving for h yields the solution

h
(
F ′(W );φ) =

⎧⎨
⎩

−κ if φF ′(W )+ σ > 0�
κ if φF ′(W )+ σ < 0�
any in [−κ�κ] if φF ′(W )+ σ = 0�

(SA.4)
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Substituting this solution into (SA.3), we obtain

rF(W ) = max
φ≥σλ

μ+ F ′(W )γW + (
F ′(W )φ+ σ

)
h
(
F ′(W );φ)

(SA.5)

+ 1
2
F ′′(W )φ2�

We consider two cases.

CASE SA.1: F ′(W )≥ 0.

By the incentive constraint 0 < σλ ≤ φ, we can see from (SA.4) that
h(F ′(W );φ) = −κ. In this case, the HJB equation becomes

rF(W )= max
σλ≤φ

μ+ F ′(W )γW − (
F ′(W )φ+ σ

)
κ+ 1

2
F ′′(W )φ2�

Since F is concave, the first-order condition gives the unconstrained maximizer

φ(W )= F ′(W )κ

F ′′(W )
≤ 0�

which violates the incentive constraint. Thus the optimal sensitivity is given by
φ∗(W ) = σλ. That is, the incentive constraint binds. This case happens on the
left increasing branch of F for low values of W since F is concave. Intuitively,
for low values of W , there is a strong concern for liquidation. The optimal con-
tract should expose the agent to minimum uncertainty and hence the optimal
sensitivity is such that the incentive constraint just binds. This feature is similar
to that in our model with the multiplier preferences.

CASE SA.2: −1 ≤ F ′(W ) < 0.

Define

φ̃(W ) ≡ −σ/F ′(W )�

Since F ′(W ) ∈ [−1�0), we have φ̃(W ) ∈ [σ�∞). It follows from λ ∈ (0�1) that
σλ< φ̃(W ). We can then rewrite the HJB equation (SA.5) as

rF(W )= max

{
max

σλ≤φ≤φ̃(W )

μ+ F ′(W )γW − (
F ′(W )φ+ σ

)
κ

+ (1/2)F ′′(W )φ2︸ ︷︷ ︸
G1(φ;W )

�(SA.6)

max
φ̃(W )≤φ

μ+ F ′(W )γW + (
F ′(W )φ+ σ

)
κ

+ (1/2)F ′′(W )φ2︸ ︷︷ ︸
G2(φ;W )

}
�
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When φ= φ̃(W ), G1 and G2 are equal. Since F is concave, F ′(W )κ/F ′′(W ) >
0 achieves the unconstrained maximum for G1(φ;W ) and −F ′(W )κ/F ′′(W ) <
0 achieves the unconstrained maximum for G2(φ;W ). Incorporating con-
straints, we consider three cases.

First, when

σλ≤ F ′(W )κ

F ′′(W )
≤ φ̃(W )�

G1(φ
∗(W );W ) is the maximum on the right-hand side of equation (SA.6),

where the optimal sensitivity is

φ∗(W )= F ′(W )κ

F ′′(W )
�

and the worst-case density generator is h∗(W ) = −κ. Figure S1 illustrates the
solution.

Second, when

F ′(W )κ

F ′′(W )
≤ σλ≤ φ̃(W )�

G1(φ
∗(W );W ) is the maximum on the right-hand side of equation (SA.6),

where the optimal sensitivity is φ∗(W )= σλ and the worst-case density gener-
ator is h∗(W )= −κ. Figure S2 illustrates the solution.

Third, when

σλ≤ φ̃(W )≤ F ′(W )κ

F ′′(W )
�

FIGURE S1.—Functions G1 and G2 for the case where σλ ≤ F ′(W )κ
F ′′(W )

≤ φ̃(W ).
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FIGURE S2.—Functions G1 and G2 for the case where F ′(W )κ
F ′′(W )

≤ σλ ≤ φ̃(W ).

the optimal sensitivity is φ∗(W ) = φ̃(W ) and G1(φ
∗(W );W ) = G2(φ

∗(W );
W ). In this case, the worst-case density generator takes any value in [−κ�κ] by
(SA.4). Figure S3 illustrates the solution.

Combining the three cases above, the optimal sensitivity is given by

φ∗(W )= max
{
σλ�min

{
F ′(W )κ

F ′′(W )
� φ̃(W )

}}
�

It is possible that

min
{
F ′(W )κ

F ′′(W )
� φ̃(W )

}
>σλ�

FIGURE S3.—Functions G1 and G2 for the case where σλ ≤ φ̃(W ) ≤ F ′(W )κ
F ′′(W )

.
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so that the incentive constraint does not bind. We expect that this case hap-
pens when W is sufficiently large. For example, when W reaches the payout
boundary W = W̄ , the HJB equation becomes

rF(W̄ ) = max
{

max
σλ≤φ≤σ

{
μ− γW̄ − (−φ+ σ)κ

}
�

max
σ≤φ

{
μ− γW̄ + (−φ+ σ)κ

}}
�

It follows that the optimal sensitivity is given by φ = σ > σλ. Thus, at the
payout boundary, the agent bears all the uncertainty. This feature is the same
as in our model with the multiplier preferences. Intuitively, when W is suffi-
ciently large, the concern for ambiguity is large and hence the principal wants
the agent to share more ambiguity.

In summary, the Chen–Epstein model and the multiplier utility model in
continuous time deliver some similar properties of the optimal contract. In
particular, the incentive constraint binds when the agent’s continuation value is
low and does not bind when the agent’s continuation value is sufficiently high.
The key difference is that the corner solution gives the worst-case belief in the
Chen–Epstein model, while the worst-case belief in the multiplier utility model
is time varying and state dependent. The time-varying worst-case belief in the
multiplier utility model has much more transparent asset pricing implications.
Another difference is that the principal’s value function is globally concave in
the Chen–Epstein model, but this may not be the case in the multiplier utility
model. Finally, the multiplier utility model is analytically much more tractable
and is numerically much easier to solve.

APPENDIX SB: COMPARISON WITH RISK AVERSION

Does risk aversion have the same implications as ambiguity aversion? To ad-
dress this question, we study a contracting problem with a risk averse principal
who has no concern for robustness. Suppose that the principal derives utility
from a consumption process (Cp

t ) according to time-additive expected utility

EPa

[∫ ∞

0
e−rtu

(
C

p
t

)
dt

]
�

where we take u(cp) = −exp(−αcp)/α for tractability. Here α > 0 represents
the CARA parameter. Risk neutrality corresponds to α = 0. Since it is gener-
ally impossible to have C

p
t dt + dCt = dYt = μat dt + σ dBa

t , we suppose that
the principal can borrow and save at the interest rate r. Suppose that the agent
cannot borrow or save. We use Xt to denote the principal’s wealth level and
write his budget constraint before liquidation as

dXt = rXt dt −C
p
t dt − dCt +μat dt + σ dBa

t � X0 given�(SB.1)
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for 0 ≤ t < τ. At the liquidation time τ, the principal obtains liquidation value
L and starts with wealth Xτ− + L. The budget constraint after liquidation is
given by

dXt = rXt dt −C
p
t dt� Xτ = Xτ− +L�(SB.2)

for t ≥ τ. The principal selects a contract (Cp�C�τ�a) to solve the following
problem:

PROBLEM SB.1—Contract With Risk Aversion:

max
(Cp�C�τ�a)

EPa

[∫ ∞

0
e−rtu

(
C

p
t

)
dt

]
�

subject to (SB.1), and (SB.2), and

EPa

[∫ τ

0
e−γs

(
dCs + λμ(1 − as)ds

)]
(SB.3)

≥EPâ

[∫ τ

0
e−γs

(
dCs + λμ(1 − âs) ds

)]
�

EPa

[∫ τ

0
e−γs

(
dCs + λμ(1 − as)ds

)] =W0�(SB.4)

where âs ∈ {0�1} and W0 ≥ 0 is given.

This particular problem has not been studied in the literature and is of in-
dependent interest.1 In the benchmark model and the model in Section 2, the
principal is not allowed to save and consumes the residual profits dYt − dCt

each time. Since the interest rate and the principal’s discount rate are identi-
cal, the risk neutral principal is indifferent between spending one dollar now
and saving this dollar for consumption tomorrow. Thus allowing saving does
not affect the optimal contract except that wealth must be added to the prin-
cipal’s value function without saving to obtain the value function with saving.
When the principal is risk averse, the wealth level is a new state variable in
addition to the agent’s continuation value, making our analysis more compli-
cated. We will show below that due to the lack of wealth effect of the CARA
utility, we can simplify our problem to a one-dimensional one.

1Biais, Mariotti, Plantin, and Rochet (2007, p. 371) pointed out that an important future re-
search topic is to introduce a risk averse principal and study the relation between expected stock
returns and incentive problems.
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SB.1. Optimal Contract With Agency

Let V (W0�X0) denote the principal’s value function for Problem SB.1 when
we vary W0 and X0. Suppose that implementing high effort at = 1 is optimal.
Then V (W �X) satisfies the heuristic HJB equation

rV (W �X) = max
Cp�c≥0�φ≥σλ

− 1
α

exp
(−αCp

) + VW (W �X)(γW − c)(SB.5)

+ VX(W �X)
(
rX −Cp − c +μ

)
+ VWW (W �X)

φ2

2
+ VXX(W �X)

σ2

2
+ VXW (W �X)σφ�

The first-order conditions imply that

exp
(−αCp

) = VX(W �X)�

VX(W �X)≥ −VW (W �X) with equality when c > 0�

φ= max
{
−VXW (W �X)σ

VWW (W �X)
�σλ

}
�

The second-order condition for φ is VWW (W �X) < 0, that is, V is concave
in W .

Conjecture that the value function takes the form

V (W �X)= − 1
αr

exp
(−αr

[
X +H(W )

])
�(SB.6)

where the function H can be interpreted as the certainty equivalent value to
the principal. Substituting this guess into the preceding first-order conditions
yields the principal’s consumption policy

Cp(W �X)= r
(
X +H(W )

)
�(SB.7)

the optimal sensitivity

φ(W )= max
{

αrσH ′(W )

H ′′(W )− αrH ′(W )2 �σλ

}
�(SB.8)

and the payout policy

H ′(W )≥ −1 with equality when c > 0�(SB.9)

The second-order condition for φ becomes

H ′′(W )− αrH ′(W )2 < 0�(SB.10)
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Substituting (SB.6), (SB.7), (SB.8), and (SB.9) into (SB.5) yields an ODE for
H(W ),

rH(W )= μ+H ′(W )γW +H ′′(W )
φ(W )2

2
−αr

[
φ(W )H ′(W )+ σ

]2

2
�(SB.11)

We now find boundary conditions for this ODE. First, define a cutoff W̄ as
the lowest value such that

H ′(W̄ )= −1�(SB.12)

For W ∈ [0� W̄ ), H ′(W ) >−1. Then it is optimal to pay the agent according to
dC = max{W − W̄ �0}. By the super-contact condition,

H ′′(W̄ )= 0�(SB.13)

Then equation (SB.8) implies that φ(W̄ )= σ > σλ.
When W = 0, the project is liquidated and the principal obtains the liq-

uidation value L. Since both the discount rate of the principal and the in-
terest rate equal r, we can show that Cp(0�X) = r(X + L) and V (0�X) =
−exp(−αr(X +L))/(αr) so that

H(0)= L�(SB.14)

PROPOSITION SB.1: Consider the contracting Problem SB.1 with risk aversion.
Suppose that implementing high effort at = 1 is optimal and

L<
μ

r
− ασ2

2
�(SB.15)

Suppose that there exists a twice continuously differentiable function H(W ) sat-
isfying (SB.11) with the boundary conditions (SB.12), (SB.13), and (SB.14) such
that condition (SB.10) holds and H ′(W ) > −1 on [0� W̄ ). Then the principal’s
value function is given by (SB.6) for W ∈ [0� W̄ ], the principal’s optimal consump-
tion policy is given by (SB.7). The contract delivers the initial value W ∈ [0� W̄ ]
and the optimal payment C∗ given in

C∗
t =

∫ t

0
1{Ws=W̄ } dC

∗
s(SB.16)

to the agent whose continuation value (Wt) follows the dynamics

dWt = γWt dt − dC∗
t +φ(Wt)dB

1
t � W0 =W�(SB.17)

for t ∈ [0� τ], where the optimal sensitivity φ(W ) is given in (SB.8). When
W > W̄ � the principal’s value function is given by V (W �X)= − 1

αr
exp(−αr[X +
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H(W̄ ) − (W − W̄ )]). The principal pays W − W̄ immediately to the agent and
the contract continues with the agent’s new initial value W̄ .

PROOF: Given the conjecture in (SB.6), we can derive

VX(W �X)= e−αr(X+H(W ))� VXX(W �X)= −αre−αr(X+H(W ))�

VW (W �X)=H ′(W )e−αr(X+H(W ))�

VXW (W �X)= −αrH ′(W )e−αr(X+H(W ))�

VWW (W �X)= [
H ′′(W )− αrH ′(W )2

]
e−αr(X+H(W ))�

Substituting these expressions into the HJB equation (SB.5), we can derive
the optimal policies in the proposition. The proof of the optimality follows a
similar argument for Propositions 1–3 in the paper. We omit it here. Q.E.D.

Condition (SB.15) is analogous to condition (17) in the paper and ensures
that liquidation is inefficient in the optimal contract with risk aversion. We can
give a necessary and sufficient condition for the optimality of implementing
high effort analogous to that in Proposition 3 of the paper. For simplicity, we
omit this result.

We first observe that when α = 0, ODE (SB.11) reduces to that in De-
Marzo and Sannikov (2006). Furthermore, when H is concave, (SB.8) implies
φ(W ) = σλ and hence the incentive constraint always binds. Since the bound-
ary conditions (SB.12), (SB.13), and (SB.14) are identical to those in DeMarzo
and Sannikov (2006), the solution for H(W ) and W̄ must be identical to theirs,
too. We next turn to the case of risk aversion with α > 0 and compare the so-
lution with that in the case of robustness.

SB.2. Limited Observational Equivalence

When αr = 1/θ, equations (27) and (SB.8) are identical and hence the two
ODEs (26) and (SB.11) are identical. In addition, the boundary conditions are
the same. The second-order conditions (15) and (SB.10) are also identical. By
Proposition 2 in the paper and Proposition SB.1, we have the following result:

PROPOSITION SB.2: When αr = 1/θ, the robust contract for Problem 3.1 and
the optimal contract with risk aversion for Problem SB.1 deliver the same liqui-
dation time and payout policy to the agent. Furthermore, H(W ) = F(W ), where
F(W ) is the principal’s value function in Problem 3.1.

Given this result, our previous characterization of the robust contract can be
applied here. But the interpretation is different. The tradeoff here is between
risk sharing and incentives for the risk averse principal. But the tradeoff in the
robust contracting problem is between ambiguity sharing and incentives. In
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that problem, the principal is risk neutral, but ambiguity averse. The endoge-
nous belief heterogeneity is the driving force for the principal and the agent to
share model uncertainty.

Note that Proposition SB.2 shows only a limited observational equivalence
between the robust contract and the contract with risk aversion because the
principal’s consumption policy and value function are different in these two
contracts. In particular, the principal’s value function V (W �X) is globally con-
cave in W under assumption (SB.10) in Proposition 7, but the value function
F(W ) in Proposition 2 may not be globally concave. Thus, unlike in the robust
contracting problem, public randomization is never optimal in the contracting
problem with risk aversion. Moreover, the principal’s consumption processes
in these two contracts are different. With exponential preferences the princi-
pal consumes continuously in time, while with linear preferences the principal
only consumes at certain points. Technically, the consumption processes are
absolutely continuous in the former case and are singular in the latter case.

The preceding limited observational equivalence has a different nature than
the equivalence between robustness and a special class of recursive utility (i.e.,
risk-sensitive utility) established by Hansen, Sargent, Turmuhambetova, and
Williams (2006). To see this, we consider a discrete-time approximation for
intuition. Let the time interval be dt. The time-additive expected utility process
(Ut) derived from a consumption process (ct) satisfies

Ut = u(ct)dt + e−r dtEt[Ut+dt]�
where Et is the conditional expectation operator with respect to a reference
measure P . The function u characterizes both risk aversion and intertemporal
substitution. The multiplier utility process (Ut) with a concern for robustness
introduced by Hansen and Sargent satisfies the recursion

Ut = u(ct)dt + e−r dt

[
inf
Q
EQ

t [Ut+dt] + θEtΦ

(
ξQ
t+dt

ξQ
t

)]
�

where Φ(x) = x lnx− x+ 1 is the relative entropy index and ξQ
t = dQ/dP|Ft .

Solving the minimization problem implies that the multiplier utility model is
equivalent to the risk-sensitive utility model given by

Ut = u(ct)dt − e−r dtθ lnEt exp
(−Ut+dt

θ

)
�

This utility is a special case of recursive utility studied by Epstein and Zin
(1989). The parameter 1/θ enhances risk aversion.

In the continuous-time limit as dt → 0, we can represent a utility process by
the backward stochastic differential equation

dUt = μU
t dt + σU

t dBt�
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where (Bt) is a standard Brownian motion under P . For the multiplier utility
model, the drift μU

t satisfies

rUt = u(ct)+μU
t + inf

ht

(
σU

t ht + θ

2
h2
t

)
= u(ct)+μU

t −
(
σU

t

)2

2θ
�(SB.18)

where the worst-case density is given by ht = −σU
t /θ. The expression on the

right-hand side of the last equality is the same as that for risk-sensitive utility,
which is a special case of the continuous-time model of recursive utility studied
by Duffie and Epstein (1992).

We now consider two contracting problems in the “risk neutral” case with
u(c) = c by replacing the time-additive expected utility in Problem SB.1
with multiplier utility and recursive risk-sensitive utility. Let V m(W �X) and
V rs(W �X) denote the principal’s value function in these two problems.

PROPOSITION SB.3: The contracting Problems SB.1 with multiplier utility and
risk-sensitive utility are equivalent. They deliver the same liquidation time and
payout policy to the agent as in the robust contract for Problem 3.1. In addition,
V m(W �X)= V rs(W �X)=X+F(W ), where F(W ) is the principal’s value func-
tion in Problem 3.1.

PROOF: By equation (SB.18), the HJB equation for multiplier utility is given
by

rV m(W �X) = max
Cp�c≥0�φ≥σλ

Cp + V m
W (W �X)(γW − c)

+ V m
X (W �X)

(
rX −Cp − c +μ

)
+ V m

WW (W �X)
φ2

2
+ V m

XX(W �X)
σ2

2
+ V m

XW (W �X)σφ

+ min
h

[
V m
X (W �X)σ + V m

W (W �X)φ
]
h+ θ

2
h2�

The optimal density generator is given by

h= −V m
X (W �X)σ + V m

W (W �X)φ

θ
�

This HJB equation is equivalent to that for risk-sensitive utility after solving
for the optimal density. We can easily verify that V m(W �X) = V rs(W �X) =
X + F(W ), where F(W ) is the value function for Problem 3.1. The optimal
policies are also the same. Q.E.D.
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SB.3. Implementation and Asset Pricing With Risk Aversion

Proposition SB.2 shows that the robust contract and the optimal contract
with risk aversion deliver identical liquidation and payout policies when αr =
1/θ. This section will show that the implementation of the two contracts and
the asset pricing implications are slightly different. Now the risk averse prin-
cipal (investors) can put his wealth into two bank accounts. One is the cor-
porate account which holds cash reserves Mt = Wt/λ and earns interests at
the rate r as in Section 4. Project payoffs are put in this account. The other
is the private account with savings S

p
t = Xt − Mt at the interest rate r. There

are still debt and equity. The firm pays coupon [μ − (γ − r)Mt]dt, regular
dividends dC∗

t /λ, and special dividends [σ − 1
λ
φ(λMt)]dB1

t (it raises capital
through equity issues when this term is negative). The entrepreneur (agent)
holds a fraction λ of equity and receives regular dividends dC∗

t . Investors
(principal) receive coupon, regular dividends (1 − λ)dC∗

t /λ, and all special
dividends (or inject capital) and put them in the private saving account. In-
vestors finance their consumption spending using this account. The cash re-
serves Mt follow dynamics as in equation (30). The firm is liquidated when
the cash reserves reach zero and pays out special dividends (repurchases eq-
uity) or raises capital through equity issues when the cash reserves Mt rise to
a level Ŵ /λ. It pays regular dividends when the cash reserves Mt hit another
higher level W̄ /λ. As in Section 4, this capital structure is incentive compati-
ble.

The private savings Sp
t follow the dynamics

dS
p
t = rS

p
t dt −Cp

(
λMt�Mt + S

p
t

)
dt

+ [
μ− (γ − r)Mt

]
dt + 1 − λ

λ
dC∗

t +
[
σ − φ(λMt)

λ

]
dB1

t �

where S
p
0 = X0 − W0/λ. The investors’ consumption Cp(λMt�Mt + S

p
t ) =

Cp(Wt�Xt) achieves their maximized utility in the optimal contract. From the
preceding equation, we can see clearly the smoothing role of special dividends.
Note that σ − φ(λMt)/λ < 0. In good times when dB1

t > 0, investors inject
cash into the firm’s cash reserves so that they can receive dividends in bad
times when dB1

t < 0.
We now price debt and equity. The state price in the model with risk averse

investors is equal to the intertemporal marginal rate of substitution

πt = π
(
t�Mt� S

p
t

)
(SB.19)

= exp
(−rt − α

[
Cp

(
λMt�S

p
t +Mt

) −Cp
(
λM0� S

p
0 +M0

)])
�
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where π0 = 1. Using the state price, we can compute equity value per share
as

St = EP1

t

[∫ τ

t

πs

πt

1
λ
dC∗

s

]
+ 1

1 − λ
EP1

t

[∫ τ

t

πs

πt

(
σ − φ(λMs)

λ

)
dB1

s

]

= EP1

t

[∫ τ

t

πs

πt

1
λ
dC∗

s

]
�

Unlike in the robust contracting problem, special dividends are not priced by
the risk averse principal. This is because the principal believes that the events
of dB1

s > 0 and dB1
s < 0 are equally likely. But the ambiguity averse principal is

pessimistic and believes that dB1
s < 0 is more likely and thus special dividends

have a positive price.
We can also compute debt value

Dt = EP1

t

[∫ τ

t

πs

πt

[
μ− (γ − r)Ms

]
ds + πτ

πt

L

]
�

and credit yield spread. Due to the lack of wealth effect for CARA utility,
the cash reserve level Mt is the only state variable for asset pricing. We still
write St = S(Mt) and Dt = D(Mt). We present asset pricing formulas in Sec-
tion SB.2.

PROPOSITION SB.4: For the model with risk aversion, the market price of risk
is equal to

αr
[
H ′(λMt)φ(λMt)+ σ

]
�(SB.20)

and the local expected equity premium under measure P1 is

φ(λMt)

λ

S′(Mt)

S(Mt)
αr

[
H ′(λMt)φ(λMt)+ σ

]
�(SB.21)

for Mt ∈ [0� W̄ /λ].

PROOF: Applying Ito’s lemma to (SB.19) yields

dπt = dπ
(
t�Mt� S

p
t

)
= π1

(
t�Mt� S

p
t

)
dt +π2

(
t�Mt� S

p
t

)
dMt +π3

(
t�Mt� S

p
t

)
dS

p
t

+ 1
2
π22

(
t�Mt� S

p
t

)
d[M�M]t + 1

2
π33

(
t�Mt� S

p
t

)
d
[
Sp�Sp

]
t

+π23

(
t�Mt� S

p
t

)
d
[
M�Sp

]
t
�
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where the subscript of π denotes partial derivative and [X�Y ]t denotes the
quadratic covariance between any two processes (Xt) and (Yt). Plugging the
dynamics of Mt and S

p
t and using equation (SB.11), we can show that

−dπt

πt

= r dt + αr
[
H ′(λMt)φ(λMt)+ σ

]
dB1

t �

where φ is given by (SB.8). Thus the market price of risk is given by (SB.20).
Proposition SB.1 shows that C∗

t makes Wt reflect at a constant boundary W̄ .
This payout policy does not depend on wealth X . It follows that equity value
only depends on one state variable Mt . Let St = S(Mt). Since the process (mt)
defined below is a martingale,

mt ≡ πtSt +
∫ t

0
πs

1
λ
dC∗

s =Et

[∫ τ

0
πs

1
λ
dC∗

s

]
�

we use Ito’s lemma and set its drift to zero. We then obtain the ODE

rS(M) = S′(M)

[
γM − αr

(
H ′(λM)φ(λM)+ σ

)φ(λM)

λ

]
(SB.22)

+ S′′(M)
φ(λM)2

2λ2 �

with boundary conditions S(0)= 0 and S′(W̄ /λ) = 1.
The local expected equity premium is given by

EP1

t

[
dSt

St

+ dC∗
t

λSt

− r dt

]
�

We use (SB.22) and Ito’s lemma to compute dSt = dS(Mt) and obtain
(SB.21). Q.E.D.

When αr = 1/θ, Proposition SB.2 implies that the market price of risk in
(SB.20) is the same as −h∗(Wt) = −h∗(λMt), where h∗ is given in (20). The
latter is the market price of model uncertainty in the model with ambiguity
aversion, which comes from the endogenous distortion of beliefs reflected by
the worst-case density generator h∗. Because special dividends are not priced in
the model with risk aversion, (SB.21) is obtained from (31) without the hedge
component. Because the hedge component is generally small in our numerical
examples, we find that the equity premium in the model with risk aversion is
also high for distressed firms with low cash reserves and approaches zero when
M approaches W̄ /λ. In Section SB.2, we show that debt value and credit yield
spread in the model with risk aversion are the same as those in the model with
ambiguity aversion when αr = 1/θ.
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