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S1. PROOFS

PROOF OF LEMMA 1: CONSIDER ANY TWO FIRMS with x > x′ ∈ [0�1] and so
v(x� ·) > v(x′� ·) > 0. If w′ = w(x′� θ�G) solves (6) for firm x′, then optimality
implies

w′ + λ(·)[1 − F
(
W

(
w′·))]v(x′� ·) ≤ω+ λ(·)[1 − F

(
W (ω� ·))]v(x′� ·)(S1)

for all ω<w′ satisfying W (ω�θ�G)≥ Vu(θ�G). As this inequality implies [1 −
F(W (w′·))] < [1 − F(W (ω� ·))] for all such ω, then v(x′� ·) < v(x� ·) and (S1)
further imply

w′ + λ(·)[1 − F
(
W

(
w′·))]v(x� ·)

< ω+ λ(·)[1 − F
(
W (ω� ·))]v(x�θ�G)

(with strict inequality) for all such ω. Thus if wage w′ is optimal for firm x′,
firm x > x′ sets a no lower wage. This completes the proof of Lemma 1. Q.E.D.

PROOF OF LEMMA 2: We consider each part in turn.
(i) The distribution of posted wages is continuous (no mass points) and has

connected support.
The proofs are by contradiction. Suppose there is a mass of firms that op-

timally post wage w′′. Equation (6) implies a firm in this mass point is strictly
better off by paying a marginally higher wage w′ > w′′, as this causes its quit
rate to fall by a discrete amount. Wage w′′ is therefore not optimal, which is
the required contradiction.

Suppose the support is not connected; that is, there exist two equilibrium
wages w′, w′′ with w′ > w′′, where no mass points imply F(W (w′� ·)� ·) =
F(W (w′′� ·)� ·). Equation (6) implies that announcing w′ is not optimal, which
is the required contradiction.

(ii) Equilibrium wage strategies w(x�θ�G) are strictly increasing in x ∈ [0�1],
where the lowest wage paid is w(0� θ�G)=R(θ�G) = b.

Distribution function G(·) must have a connected support (the startup en-
try distribution Γ0 is uniform and so is connected). Hence equilibrium wage
strategies must be strictly increasing in x because there can be no mass points.

We next prove w(0� θ�G) = R(θ�G) using a contradiction argument.
First note that posting w(0� θ�G) < R(θ�G) cannot be optimal since all
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workers quit into unemployment, which yields zero profit. Suppose instead
w(0� θ�G) > R(θ�G). No mass points in F(·) and (6) imply posting wage
w′ = R(θ�G) strictly dominates posting wage w(0� θ�G) > R(θ�G), which
contradicts w(0� θ�G) an equilibrium wage offer.

We now show w(0� θ�G) = b. Let w(θ�G) = w(0� θ�G) denote the lowest
wage paid in the market. As x = 0 is an absorbing state, then, conditional on
survival, this firm forever posts wage w(θ�G). Thus the value of being em-
ployed at firm x= 0, denoted W (θ�G), is given by

rW (θ�G) = w(θ�G)+ δ(θ)
[
Vu(·)−W

]
(S2)

+ λ(·)
∫ W

W

[
W ′ −W

]
dF

(
W ′� ·)

+ α

∫ θ

θ

[
W

(
θ′� ·) −W (θ� ·)]dH(

θ′|θ) + ∂W

∂t
�

where the term ∂W /∂t describes the expected capital gain through the dynamic
evolution of G.

The flow value of being unemployed and choosing home production is given
by

rVu = b+ λ(·)
∫ W

W

[
W ′ − Vu(·)

]
dF

(
W ′� ·)(S3)

+ α

∫ θ

θ

[
Vu

(
θ′� ·) − Vu(θ� ·)

]
dH

(
θ′|θ) + ∂Vu

∂t
�

while free entry into entrepreneurship implies Vu(·) is also given by

rVu = λ(·)
∫ W

W

[
W ′ − Vu(·)�0

]
dF

(
W ′� ·)

+ α

∫ θ

θ

[
Vu

(
θ′� ·) − Vu(θ� ·)

]
dH

(
θ′|θ)

+ μ

E

∫ 1

0

[
v(x�θ�G] +W

(
w(x� ·)�θ�G) − Vu(·)

]
dx+ ∂Vu

∂t
�

where at rate μ/E, the entrepreneur creates a new startup company, which,
with one employee, generates expected profit v(x�θ�G) that is sold to out-
side investors for its value, and he/she becomes the first employee with value
W (w′� θ�G) on equilibrium wage w′ =w(x� ·). Thus free entry implies

E(θ�G)= μ

b

∫ 1

0

[
v(x� ·)+W

(
w(x)� ·) − Vu(·)

]
dΓ0(x)�(S4)
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where it is assumed that μ/b is sufficiently small that E < U along the equi-
librium path. As the definition of the reservation wage implies W (θ�G) =
Vu(θ�G), (S2) and (S3) now imply w(θ�G) = b.

(iii) Given any job offer (w′� θ�G), each employee believes x = x̂(w′� θ�G),
where x̂ ∈ [0�1] solves

w(x̂�θ�G)=w′ when w′ ∈ [
b�w(1� θ�G)

]
�

x̂= 0 when w′ < b�

x̂= 1 when w′ >w(1� θ�G)


It follows directly, as wages are fully revealing, that beliefs must be consistent
with Bayes rule and that beliefs are monotonic;

(iv) That any employee on wage w′ ≥ b quits if and only if the outside offer
w′′ ≥w′ was established in the text.

(v) That any employee on wage w′ < b quits into unemployment follows since
workers believe the firm’s state x̂ = 0 and that the firm will forever post wage w = b
in the future, and so given w′ < b, it is better to be unemployed.

This completes the proof of Lemma 2. Q.E.D.

PROOF OF PROPOSITION 1: We first show that (12) is necessary. Equation
(11) implies the firm’s optimal wage w satisfies the necessary first order condi-
tion

1 − v(x� ·)h(x̂� ·)G
′(x̂)

G(x̂)

∂x̂

∂w
= 0�(S5)

where belief x̂(w� ·) solves w = w(x̂� ·). As Lemma 2 implies ∂x̂/∂w = [1/∂w
∂x

],
(S5) implies that (12) is a necessary condition for equilibrium.

To show that (12) is sufficient, let w(·� θ�G) denote the solution to the ini-
tial value problem defined in Proposition 1. As G(0) = U > 0, this solution is
continuous and strictly increasing in x.

Now consider any firm x ∈ (0�1] and let

C(w�θ�G)=w + v(x�θ�G)

∫ 1

x̂(w�θ�G)

h(z�θ�G)dG(z)

G(z)

describe the minimand in (11). If the firm sets a lower wage w′ = w(x′� ·) < w
with x′ ∈ [0�x), its employees believe x̂= x′ < x. Hence

∂C

∂w

(
w′� θ�G

) = 1 − v(x�θ�G)
h
(
x′� θ�G

)
dG

(
x′)

G
(
x′) ∂x̂

∂w′

for such w′. But (S5) implies

1 − v
(
x′� ·)h

(
x′� θ�G

)
G′(x′)

G
(
x′) ∂x̂

∂w′ = 0
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at x′ and combining yields

∂C

∂w′ = 1 − v(x�θ�G)

v
(
x′� θ�G

) < 0

because values v(·) are strictly increasing in x. Thus for w′ < w(x�θ�G), an
increase in w′ strictly decreases C(·). The same argument establishes that
increasing w′ when x′ ∈ (x�1] strictly increases C(·). Finally note for wages
w′ >w(1� θ�G), the worker’s belief is fixed at x̂= 1 and so higher wages strictly
increase C , while wage w′ < b does not satisfy the constraint W ≥ Vu. Hence
given all other firms offer wages according to Proposition 1, the cost minimiz-
ing wage for any firm x ∈ [0�1] is to offer w = w(x�θ�G). This completes the
proof of Proposition 1. Q.E.D.

S2. A [PARTIALLY POOLING] STATIONARY BAYESIAN EQUILIBRIA WITH MASS
POINTS AND NON-MONOTONE BELIEFS

We construct a steady state example with α�γ = 0 (no shocks) and μ < δ,
and homogenous firms p(x) = p. Equilibrium implies that all firms make the
same profit v(x) = v and so hire at the same rate h, where c′(h) = v/p. With
monotone beliefs, Proposition 1 establishes the equilibrium wage equation

w(x)= b+ hv log
[
G(x)/U

]



We construct a stationary Bayesian equilibrium with a mass point as follows.
Fix an xc ∈ (0�1) and define w ≡ w(xc) = b + hv log[G(xc)/U]. Consider the
set of equilibrium wage strategies

we(x)=w(x) for x ∈ [
0�xc

)
�

we(x)=w for x ∈ [
xc�1

];
that is, mass 1 − xc of firms announce the same wage w = w(xc). Each firm’s
steady state quit rate is then

q̂(x) =
∫ 1

x

h(z�θ�G)

G(z)
dG(z)= −h logG(x) for x ∈ [

0�xc
)
�

q̂(x) = −h logG
(
xc

)
for x ∈ [

xc�1
]
�

since workers employed by firms in the mass point quit when indifferent.
Steady state turnover arguments imply, for any x ≤ xc , that G(x) must satisfy

δ
[
1 −G(x)

] = μ[1 − x] + q̂(x)G(x)
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and so G(x) is uniquely determined by the implicit function

G(x)
[
δ− h logG(x)

] = δ−μ[1 − x] for x≤ xc
(S6)

It is easy to show that x < 1 implies G(x) < 1. Putting x = 0 in (3) implies that
v > 0 satisfies

(r + δ)v = p− b−pc(h)+ hv[1 + logU]�
with steady state unemployment U = G(0) > 0 given by the implicit function

U[δ− h logU] = δ−μ


In any such equilibrium, all firms x ∈ [0�1] make the same profit v, but all firms
with x ≥ xc post the same wage w and have the same quit rate q̂(xc) > 0. This
describes a stationary Bayesian equilibrium with the following beliefs:

Non-Monotone Beliefs: Given any job offer w′, each employee believes x =
x̂(w′), where x̂ solves

we(x̂)= w′ when w′ ∈ [b�w)�

x̂∼U
[
xc�1

]
when w′ = w�

x̂= 0 when w′ >w�

x̂= 0 when w′ < b


Should any firm in the mass point x ∈ [xc�1] deviate to wage w′ > w, these
beliefs imply workers expect wage w = b in the entire future, which increases
their quit rate to q̂(0) > q̂(xc). Equation (6) thus implies any such wage devia-
tion is strictly profit reducing. As, by construction, all wages w′ ∈ [b�w] gener-
ate equal value (while w′ < b generates zero profit because all quit into unem-
ployment), a stationary Bayesian equilibrium exists with a mass point of firms
offering w.
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