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THIS SUPPLEMENT CONSISTS OF EIGHT SECTIONS.
In Section S.1, we illustrate the use of SARSEU through a few simple theo-

retical exercises. In each case, the exercise is to present a well known alterna-
tive to risk-averse SEU and to show that data generated by these theories can
violate SARSEU.

In Section S.2, we show that, in the 2 × 2 case, SARSEU is equivalent to
requirements (5) and (6) in the main paper.

In Section S.3, we provide the details of the example of risk-averse probabil-
ity sophisticated preferences that violate SARSEU.

In Section S.4, we present the proof of Proposition 6, on the equivalence
between SEU rationality and maxmin expected utility rationality.

In Section S.5, we show that SEU and SDU are observationally equivalent
under certain assumptions on the data.

In Section S.6, we present the relationship between SARSEU and results ob-
tained in the revealed preference literature on objective expected utility, where
the probability over states is assumed to be observable and given as a primitive.
The point is that the axiom to characterize objective expected utility has a simi-
lar syntax to SARSEU and that the differences between the two are instructive.

In Section S.7, we present the proof of Theorem 22 in Appendix B of the
paper. The theorem is a generalization of Section S.6 and the main result in
the paper (Theorem 1) in the sense that we allow that there are some states
whose probabilities are objective and known to us.

In Section S.8, we study the relation between SARSEU and the axiomatiza-
tion in Savage (1954). It is useful to see the role of SARSDU and SARSEU in
ruling our violations of Savage’s axioms.

S.1. APPLICATIONS OF SARSEU

We discuss, in turn, nonconcave SEU and SDU. By showing that these mod-
els can generate data sets that violate SARSEU, we show that the models are
in fact testable beyond risk-averse SEU. In other words, that nonconcave SEU
and SDU all have testable implications over and beyond those of risk-averse
SEU. This point has been made by Bayer, Bose, Polisson, and Renou (2012) for
nonconcave SEU and maxmin expected utility, but they use Afriat inequalities
to this end; here we seek to illustrate the use of SARSEU.

S.1.1. Nonconcave SEU

The concavity of u plays an important role in our characterization. This
should not be surprising, as risk aversion has obvious economic meaning and
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content. There are, however, instances in revealed preference theory where
concavity has no implications for a rational consumer. Afriat’s theorem (Afriat
(1967)) shows that concavity is not a testable property of a utility function. For
the SEU model, concavity of u is equivalent to the convexity of preferences
over state-contingent bundles. So it is legitimate to ask about the testability of
the concavity of u. In this section, we show that indeed concavity is testable.

In the following, we will show an example of a data set generated from a
nonconcave SEU model that violates SARSEU.

Consider the data set

pk1 = (1�2)� xk1 = (1�2) and pk2 = (1�1�2)� xk2 = (10�1)�

Note that

xk1
s2
> xk2

s2
and xk2

s1
> xk1

s1
�

while

pk1
s2

pk2
s2

pk2
s1

xk1
s1

= 2
2

1�1
1

= 1�1 > 1�

so SARSEU is violated, and the data set is not rationalizable by any concave
utility and priors.

It is, however, rationalizable by the following nonconcave SEU. Let μ =
( 1

3 �
2
3). Define

v(x)=
{

1 if x ≤ 9,
2 if 9 < x ≤ 10,
1 if x > 10.

Remember that B(p� I) = {x : R2
+ : pk · x ≤ pk · xk} for all p ∈ RS

++ and
I ∈ R++. Let u(x)= ∫ x

0 v(s)ds.
It is clear that x1 is optimal for

∑
μsu(xs) in B(p1�p1 · x1), as v(xs1) =

v(xs2)= 1 for all (xs1�xs2) ∈ B(p1�p1 · x1).
By the monotonicity of u, any maximum of

∑
μsu(xs) in B(p2�p2 · x2) must

lie on the budget line pk2
s1
xs1 +pk2

s2
xs2 = 13. Note that, on the budget line,

xs2 = 13 − 1�1xs1

2
�

so xs2 ≤ 13
2 < 9 for xs1 ≥ 0. For all xs1 ≥ 0, define f (xs1)= μ1u(xs1)+μ2u(xs2)=

1
3 [u(xs1) + 2u( 13−1�1xs1

2 )]. Then f ′(xs1) = 1
3 [v(xs1)− 1�1] for xs1 ∈ [0�13/1�1], as
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v(
13−1�1xs1

2 )= 1. Thus,

f ′(xs1)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0�1
3

if xs1 ≤ 9,

0�9
3

if 9 < xs1 ≤ 10,

−0�1
3

if 10 < xs1 .

So f (xs1) has two local maxima, xs1 = 0 and xs1 = 10. By a direct calculation,
f (0) = 13

6 = 2 + 1
6 and f (10) = 1

3(9 + 2) + 2
3(

13−1�1×10
2 ) = 3 + 4

3 . Since f (10) >
f(0), it is indeed optimal to choose x2 in B(p2�p2 · x2).

S.1.2. State-Dependent Utility

SDU is the model in which an agent seeks to maximize
∑

s∈S us(xs), where us

is a utility function over money for each state s. By means of Afriat inequalities,
Varian (1983a) has proposed a characterization of an additive linear model that
includes a SDU model as a special case.

On the other hand, we have proposed a combinatorial axiom (i.e., SARSDU)
for concave SDU, which is beyond Afriat inequalities. The axiom is weaker
than SARSEU. Hence, the two models should be distinguishable. In the fol-
lowing discussion, we propose an example of a data set that is consistent with
SARSDU but not with SARSEU.

Assume S = {s1� s2}. Consider the data set

pk1 = (3�2)� pk2 = (1�1) and xk1 = (2�1)� xk2 = (3�4)�

Choose strictly concave functions us1 and us2 such that

u′
s1
(2)= 3 > 1 = u′

s1
(3) and u′

s2
(1)= 2 > 1 = u′

s2
(4)�

Then

u′
s1
(2)

u′
s2
(1)

= pk1
s1

pk1
s2

�
u′
s1
(3)

u′
s2
(4)

= pk2
s1

pk2
s2

�

so that the first-order conditions are satisfied.
The sequence {(xk1

s1
�xk1

s2
)� (xk2

s2
�xk2

s1
)} satisfies the condition of SARSEU.

However,

pk1
s1

pk1
s2

pk2
s2

pk2
s1

= 3
2
> 1�
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This is a violation of SARSEU. Note also that this data set violates require-
ment (6).

S.2. PROOF OF REMARK 1

In Remark 1 in the paper, we claimed that the following two requirements
are equivalent to SARSEU in the 2 × 2 case. Here we prove this statement.

REQUIREMENTS:

xk1
s1
> xk2

s1
and xk2

s2
> xk1

s2
⇒ pk1

s1

pk2
s1

pk2
s2

pk1
s2

≤ 1�(5)

xk1
s1
> xk1

s2
and xk2

s2
> xk2

s1
⇒ pk1

s1

pk1
s2

pk2
s2

pk2
s1

≤ 1�(6)

REMARK: In the 2 × 2 case, a data set satisfies SARSEU if and only if it
satisfies requirements (5) and (6).

PROOF: It is easy to see that SARSEU implies the two requirements. To
prove the reciprocal, we need a preliminary concept.

We say that a set σ ≡ {(xki
si
� x

k′
i

s′i
)}ni=1 of pairs that satisfies the three conditions

in SARSEU is minimal if there exists no subset (σi)
m
i=1 of pairs such that (i) σi

satisfies the three conditions in SARSEU for each i = 1� � � � �m and (ii) σ =⋃n

i=1 σi.

STEP 1: If a set {(xki
si
� x

k′
i

s′i
)}ni=1 of pairs is minimal and satisfies the three con-

ditions, then it must take one of the following forms:
(a) σa ≡ {(xk1

s1
�xk1

s2
)� (xk2

s2
�xk2

s1
)};

(b) σb ≡ {(xk1
s1
�xk2

s1
)� (xk2

s2
�xk1

s2
)};

(c) σc ≡ {(xk
s � x

k′
s′ )� (x

k′
s′ �x

k
s′)� (x

k′
s′ �x

k′
s )} for some k, k′ such that k �= k′ and

s, s′ such that s �= s′;
(d) σd ≡ {(xk

s � x
k′
s′ )� (x

k′
s � x

k
s )� (x

k
s � x

k
s′)} for some k, k′ such that k �= k′ and s,

s′ such that s �= s′.

PROOF: Fix a minimal set σ = {(xki
si
� x

k′
i

s′i
)}ni=1 of pairs that satisfies the three

conditions.

CASE 1: For all i, either ki = k′
i or si = s′

i holds. It is easy to see that either
σ = {(xk1

s1
�xk1

s2
)� (xk2

s2
�xk2

s1
)} or σ = {(xk1

s1
�xk2

s1
)� (xk2

s2
�xk1

s2
)}. These correspond to

Step 1(a) and (b).
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CASE 2: There exists i such that neither ki = k′
i nor si = s′

i holds. Suppose
that we have (xk1

s1
�xk2

s2
) in the pair without loss of generality.

We cannot have (xk2
s2
�xk1

s1
) in σ because of condition (i). Since the sequence

{(xki
si
� x

k′
i

s′i
)}ni=1 satisfies conditions (ii) and (iii), we must have two pairs such that

(xk2
s � xk1

s ) and (xk
s2
�xk

s1
) for some s ∈ {s1� s2} and k ∈ {k1�k2} in the sequence.

Note that we cannot have (xk2
s2
�xk1

s2
) and (xk1

s2
�xk1

s1
) because these imply xk2

s2
>

xk1
s2
> xk1

s1
, which would contradict that (xk1

s1
�xk2

s2
) in σ satisfies condition (i).

Note also that we cannot have (xk2
s1
�xk1

s1
) and (xk2

s2
�xk2

s1
) because these im-

ply xk2
s2
> xk2

s1
> xk1

s1
. This again contradicts that (xk1

s1
�xk2

s2
) in σ satisfies condi-

tion (i). It follows that we must have one of the following two subcases.

SUBCASE 2.1: The pairs (xk2
s2
�xk1

s2
) and (xk2

s2
�xk2

s1
) are in σ . Then {(xk1

s1
�xk2

s2
)�

(xk2
s2
�xk1

s2
)� (xk2

s2
�xk2

s1
)} satisfies the three conditions. Since σ is minimal, it must

hold that σ = {(xk1
s1
�xk2

s2
)� (xk2

s2
�xk1

s2
)� (xk2

s2
�xk2

s1
)}. This corresponds to Step 1(c).

SUBCASE 2.2: The pairs (xk2
s1
�xk1

s1
) and (xk1

s2
�xk1

s1
) are in σ . In this case, again

by the minimality of σ , it must hold that σ = {(xk1
s1
�xk2

s2
)� (xk2

s1
�xk1

s1
)� (xk1

s2
�xk1

s1
)}.

This corresponds to Step 1(d).

Note that we have exhausted all cases. Q.E.D.

For any set σ ≡ {(xki
si
� x

k′
i

s′i
)}ni=1 of pairs that satisfies the three conditions in

SARSEU, define

f (σ)=
n∏

i=1

pki
si

p
k′
i

s′i

�

STEP 2: We have f (σt)≤ 1 for each t ∈ {a�b� c�d}.

PROOF: By requirement (5),

f
(
σa

) = pk1
s1

pk2
s1

pk2
s2

pk1
s2

≤ 1�

By requirement (6),

f
(
σb

) = pk1
s1

pk1
s2

pk2
s2

pk2
s1

≤ 1�
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To show that f (σc)≤ 1, assume without loss of generality that σc = {(xk1
s1
�xk2

s2
)�

(xk2
s2
�xk1

s2
)� (xk2

s2
�xk2

s1
)}. In this case, it must hold that xk2

s2
> xk2

s1
and xk1

s1
> xk1

s2
.

Hence, by requirement (6),

pk2
s2

pk2
s1

pk1
s1

pk1
s2

≤ 1�

So

f
(
σc

) = pk1
s1

pk2
s2

pk2
s2

pk1
s2

pk2
s2

pk2
s1

= pk2
s2

pk2
s1

pk1
s1

pk1
s2

≤ 1�

To show that f (σd) ≤ 1, assume without loss of generality that σd =
{(xk1

s1
�xk2

s2
)� (xk2

s1
�xk1

s1
)� (xk1

s2
�xk1

s1
)}. In this case, it must hold that xk2

s1
> xk2

s2
and

xk1
s2
> xk1

s1
. Hence, by requirement (6),

pk2
s1

pk2
s1

pk1
s2

pk1
s1

≤ 1�

So

f
(
σd

) = pk1
s1

pk2
s2

pk2
s1

pk1
s1

pk1
s2

pk1
s1

= pk2
s1

pk2
s2

pk1
s2

pk1
s1

≤ 1�
Q.E.D.

Now by using Steps 1 and 2, we can prove the remark. Choose a se-
quence of pairs (xki

si
� x

k′
i

s′i
)ni=1 that satisfies the three conditions in SARSEU. Let

σ = {(xki
si
� x

k′
i

s′i
)}ni=1. For each t, there exists a set of index M(t) such that σ =

(
⋃

i∈M(a) σ
a)∪ (

⋃
i∈M(b) σ

b)∪ (
⋃

i∈M(c) σ
c)∪ (

⋃
i∈M(d) σ

d):

n∏
i=1

pki
si

p
k′
i

s′i

= f (σ) =
( ∏

i∈M(a)

f
(
σa

)) · · ·
( ∏

i∈M(d)

f
(
σd

)) ≤ 1�
Q.E.D.

S.3. PROBABILISTIC SOPHISTICATION

We present the detailed arguments behind the example in Section 5 of the
paper. The example has a data set that is generated by risk-averse probability
sophisticated preferences, but that violates SARSEU.

In the example, we have S = {s1� s2} and x1 = (2�2), p1 = (1�2), x2 = (8�0),
and p2 = (1�1). In the following discussion, we define the function V that
represents the probabilistically sophisticated preferences. Fix μ ∈ Δ++ with
μs1 = μs2 = 1/2. Any vector x ∈ R2

+ induces the probability distribution on R+
given by x1 with probability 1/2 and x2 with probability 1/2. Let Π be the set
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of all probability measures on R+ for which the support is finite and has cardi-
nality smaller than or equal to 2.

We shall define a function V : Π → R that represents probabilistically so-
phisticated preferences. We use h : {(x1�x2) ∈ R2

+ : x1 ≥ x2} → R with the prop-
erty that

h(x1�x2)≤ h

(
x1 + x2

2
�
x1 + x2

2

)
�

and then define V (π) = h(x̄π� ¯x
π), where ¯x

π is the smallest point in the sup-
port of π and x̄π is the largest.

Let C1 be the set of vectors x for which x1 + x2 ≥ 8, let C3 be the set of
vectors x for which x1 + 2x2 ≤ 6, and let C2 be the complement of C1 ∪ C3 in
{(x1�x2) ∈ R2

+ : x1 ≥ x2}. It is easy to see that these sets are pairwise disjoint.
For σ ∈ (6�8), let lσ ⊂ R2

+ be the set of vectors on the line segment between
(or the convex hull of) between (σ�0) and (σ−4�σ−4). We have the following
basic properties of σ .

LEMMA S.1: Suppose that σ ∈ (6�8).
(i) We have (x1�x2) ∈ lσ if and only if

x2 =
(
σ − 4

4

)
(σ − x1)�

(ii) We have lσ ⊂ C2.
(iii) For each x ∈ C2, there is a unique σ ∈ (6�8) with x ∈ lσ .

PROOF: The proof of statement (i) is a direct calculation. For statement (ii),
note that σ < 8 and σ −4+σ −4 < 8. The function (x1�x2) �→ x1 +x2 is linear
and is, therefore, maximized on lσ at an extreme. Since this function is smaller
than 8 on both extremes, it is smaller than 8 over all lσ and, therefore, lσ does
not intersect C1. Similarly, it does not intersect C3 by the linearity of x1 + 2x2

and checking the extremes.
For statement (iii), fix σ ∈ (6�8). Consider the function f σ(x1�x2) =

(σ − 4)x1 + 4x2. One can verify that f σ(σ�0) = σ(σ − 4) = f σ(σ − 4�σ − 4).
Then f σ(x1�x2) = σ(σ − 4) for all (x1�x2) ∈ lσ , as f σ is linear. Consider
σ ′ �= σ . Say σ ′ >σ . Then the minimum of f σ over lσ ′ is obtained at an extreme
point of lσ ′ , again by linearity. Now, σ ′ > σ implies that f σ(σ�0) < f σ(σ ′�0)
and f σ(σ − 4�σ − 4) < f σ(σ ′ − 4�σ ′ − 4). Hence, f σ(x) < fσ(x′) for all x ∈ lσ

and x′ ∈ lσ
′ . Thus, if x ∈ lσ , then x /∈ lσ

′ .
We complete the proof of statement (iii) by showing that for all x ∈ C2 there

is σ with x ∈ lσ . Let x ∈C2. Consider the quadratic equation σ2 − (4 + x1)σ +
4(x1 − x2) = 0, derived from the identity in statement (i) of this lemma. By
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solving this equation explicitly and choosing the larger solution, we obtain

σ =
4 + x1 +

√
−8x1 + x2

1 + 16(1 + x2)

2
�

By a direct calculation, it can be shown that

[σ > 6 ⇔ 6 < x1 + 2x2] and [σ < 8 ⇔ x1 + 2x2 > 6]�
Since x ∈ C2, we obtain σ ∈ (6�8). Q.E.D.

Define the function h : {(x1�x2) ∈ R2
+ : x1 ≥ x2} → R as

h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(x1 + x2) if x ∈ C1,

1
3
(x1 + 2x2) if x ∈ C3,

σ(x1�x2)− 4 if x ∈ C2,

where σ(x1�x2) is the unique σ ∈ (6�8) with x ∈ lσ .

LEMMA S.2: If x ∈ C3, x′ ∈ C2, and x′′ ∈C1, then h(x) < h(x′) < h(x′′).

PROOF: Let σ ∈ R+ be such that x′ ∈ lσ . We must have 8 >σ > 6, so

h(x) = 1
3
(x1 + 2x2)≤ 1

3
6 <σ − 4 = h

(
x′)

as x1 + 2x2 ≤ 6 and σ > 6, and

h
(
x′) = σ − 4 < 4 ≤ 1

2
(
x′′

1 + x′′
2

) = h
(
x′′)

as 8 >σ and x′′
1 + x′′

2 ≥ 8. Q.E.D.

LEMMA S.3: For any (x1�x2) ∈ {(x1�x2) ∈ R2
+ : x1 ≥ x2},

h(x1�x2)≤ h

(
x1 + x2

2
�
x1 + x2

2

)
�

PROOF: First, let x ∈ C3. If (x1+x2
2 � x1+x2

2 ) /∈ C3, the result follows from
Lemma S.2. So suppose that (x1+x2

2 � x1+x2
2 ) ∈ C3. Then

h

(
x1 + x2

2
�
x1 + x2

2

)
= 1

3

(
x1 + x2

2
+ x1 + x2

)
≥ 1

3
(x1 + 2x2)

= h(x1�x2)�

where the inequality follows from x1 ≥ x2.
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Second, suppose that x ∈ C1. Then (x1+x2
2 � x1+x2

2 ) ∈ C1 and it is immediate
that h(x) = h(x1+x2

2 � x1+x2
2 ).

Third, suppose that x ∈ C2. It is easy to see that (x1+x2
2 � x1+x2

2 ) /∈C3 (as x1+x2
2 +

2 x1+x2
2 = x1 +x2 + x1+x2

2 ≥ x1 +2x2 > 6), and the result follows from Lemma S.2
when (x1+x2

2 � x1+x2
2 ) ∈ C1, so consider the case when (x1+x2

2 � x1+x2
2 ) ∈ C2.

Let σ ∈ (6�8) be such that x ∈ lσ . Consider the function (x′
1�x

′
2) �→ x′

1 + x′
2

for (x′
1�x

′
2) ∈ lσ . Note that (x′

1�x
′
2) ∈ lσ means that

x′
1 + x′

2 = x′
1 + σ − 4

4
(
σ − x′

1

) =
(

1 − σ − 4
4

)
x1 + σ − 4

4
σ�

which is monotone increasing in x′
1, as σ < 8. But (x1�x2) ∈ lσ implies that

x1 ≥ σ − 4; hence, (σ − 4)+ (σ − 4)≤ x1 + x2. Thus,

h(x) = σ − 4 ≤ x1 + x2

2
= h

(
x1 + x2

2
�
x1 + x2

2

)
� Q.E.D.

LEMMA S.4: For all x�x′ ∈ {(x1�x2) ∈ R2
+ : x1 ≥ x2}, if x′

2 ≤ x2 and x′
1 ≤ x1,

then h(x′
1�x

′
2) ≤ h(x1�x2). If x′

2 < x2 or x′
1 < x1, furthermore, then h(x′

1�x
′
2) <

h(x1�x2).

PROOF: First x ∈ C1. Then x′ ∈ C1 and there is nothing more to prove. In
second place, suppose that x ∈ C2. Then we cannot have x′ ∈ C3 as x1 + 2x2 ≤
x′

1 + 2x′
2. The result follows from Lemma S.2 if x′ ∈ C1, so focus on the case

when x′ ∈ C2. It suffices to show that σ(x1�x2) is strictly increasing both in x1

and in x2. As shown in the proof of Lemma S.3,

σ(x1�x2)=
4 + x1 +

√
−8x1 + x2

1 + 16(1 + x2)

2
�

By a direct calculation,

∂σ

∂x1
= 1

2

(
1 + −4 + x1√

−8x1 + x2
1 + 16(1 + x2)

)
�

∂σ

∂x2
= 4√

−8x1 + x2
1 + 16(1 + x2)

�

Hence, ∂σ
∂x2

> 0. Since
√−8x1 + x2

1 + 16(1 + x2) > −4 + x1, we also obtain
∂σ
∂x1

> 0.
Finally, when x ∈ C3 the conclusion either follows from Lemma S.2 or from

the monotonicity of x1 + 2x2. Q.E.D.
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As noted in the main paper, we define V : Π → R by V (π) = h(x̄π� ¯x
π),

where ¯x
π is the smallest point in the support of π and x̄π is the largest. Recall

that h is defined on {(x1�x2) ∈ R2
+ : x1 ≥ x2}. So the definition of V shows that

the preferences represented by V are symmetric across a 45 degree line. Write
π ≺ π ′ if π ′ strictly first-order stochastically dominates π. Let Fπ and Fπ′ be
the cumulative distribution functions (CDFs) of π and π ′, respectively.

LEMMA S.5: The relationship π ≺ π ′ implies that V (π) < V (π ′).

PROOF: Assume π ≺ π ′. By Lemma S.4, it suffices to show that ¯x
π ≤ ¯x

π′

and x̄π ≤ x̄π′ , and that at least one of the inequalities is strict. Suppose that

¯x
π > ¯x

π′ or x̄π > x̄π′ . By choosing x such that ¯x
π′
< x < min{x̄π′

� ¯x
π}, we have

Fπ′(x) = 1/2 > 0 = Fπ(x). This contradicts that π ≺ π ′. Hence, ¯x
π ≤ ¯x

π′ . In
the same way, we obtain x̄π ≤ x̄π′ . Moreover, since π �= π ′, we obtain ¯x

π < ¯x
π′

or x̄π < x̄π′ . Q.E.D.

For any π ∈ Π, let e(π) be the degenerate lottery that yields the expected
value of π (recall that π has finite support) with probability 1. The following
result is immediate from Lemma S.3.

LEMMA S.6: We have V (π) ≤ V (e(π)).

Lemma S.5 establishes that V represents probabilistically sophisticated pref-
erences. Lemma S.6 says that the preferences are also risk-averse. We now pro-
ceed to verify that the data set defined at the outset is rationalizable an agent
with utility function V . We write πx ∈ Π for the probability measure induced
by x ∈ R2

+.
For observation 1, the budget set is

B
(
p1�p1 · x1

) = {
x ∈ R2

+ : x1 + 2x2 ≤ 6
}
�

For all x ∈ B(p1�p1 · x1), it is clear that max{x1�x2} + 2 min{x1�x2} ≤ x1 +
2x2 ≤ 6 and, hence, that

V (πx)= 1
3
(
max{x1�x2} + 2 min{x1�x2}

) ≤ 2 = V (πx1)�

For observation 2, the budget set is

B
(
p2�p2 · x2

) = {
x ∈ R2

+ : x1 + x2 ≤ 8
}
�

Note that h(x) ≤ 2 for all x ∈ C3 and h(x) ≤ 4 for all x ∈ C2. Since B(p2�
p2 · x2) ∩ C1 consists of vectors for which x1 + x2 = 8 and since h(x1�x2) = 4
for those vectors, it follows that V (πx)≤ V (πx2) for all x ∈ B(p2�p2 · x2).
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S.4. MAXMIN EXPECTED UTILITY

In this section, we provide the proof of Proposition 6. We restate Proposi-
tion 6.

PROPOSITION: Let S = K = 2. Then a data set is maxmin expected utility ra-
tional if and only if it is SEU rational.

PROOF: Let (xk�pk)k=k1�k2 be a data set. Suppose that the data set is maxmin
rational. Then there is a set

M = {
λ

¯
μ+ (1 − λ)μ̄ : λ ∈ [0�1]}

of probabilities for some
¯
μ� μ̄ ∈ Δ++, and a strictly increasing and concave util-

ity u satisfying the conditions stated above. Suppose without loss of generality
that

¯
μs1 < μ̄s1 .

Let

μk ∈ arg min
μ∈M

∑
s∈S

μsu
(
xk
s

)
and vks ∈ ∂u

(
xk
s

)
�

and let λk > 0 be such that μk
s v

k
s = λkpk

s for all k and s.
Using the first-order conditions, we obtain

A= vk1
s1

vk1
s2

vk2
s2

vk2
s1

=
[
μk1

s2

μk1
s1

μk2
s1

μk2
s2

][
pk1

s1

pk1
s2

pk2
s2

pk2
s1

]
�(S.1)

By the concavity of u, A ≤ 1. There are three cases to consider.
First, let xk1

s1
> xk1

s2
and xk2

s2
> xk2

s1
. Then xk1

s1
> xk1

s2
implies that μk1 =

¯
μ, and

xk2
s2
> xk2

s1
implies that μk2 = μ̄. Then

μk1
s2

μk1
s1

μk2
s1

μk2
s2

= μ̄s1

¯
μs1

¯
μs2

μ̄s2

≥ 1�

Thus, A ≤ 1 implies that SARSEU is not violated.
In second place, let xk1

s1
> xk2

s1
, xk2

s2
> xk1

s2
, and xk1

s1
> xk1

s2
. Then xk1

s1
> xk1

s2
im-

plies that μk1 =
¯
μ, and we have that

μk1
s2

μk1
s1

μk2
s1

μk2
s2

= μk2
s1

¯
μs1

¯
μs2

μk2
s2

≥ 1�

as μk2
s1

≥
¯
μs1 and

¯
μs2 ≥ μk2

s2
. Thus, A ≤ 1 implies that SARSEU is not violated.

Finally, let xk1
s1
> xk2

s1
, xk2

s2
> xk1

s2
, and xk1

s1
≤ xk1

s2
. Then

xk2
s2
> xk1

s2
≥ xk1

s1
> xk2

s1
�
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so μk2 = μ̄. Thus,

μk1
s2

μk1
s1

μk2
s1

μk2
s2

= μ̄s1

μk1
s1

μk1
s2

μ̄s2

≥ 1�

as μk1
s2

≥ μ̄s2 and μ̄s1 ≥ μk1
s1

. Thus A ≤ 1 implies that SARSEU is not vio-
lated. Q.E.D.

The result in the proposition does not, however, extend beyond the case of
two observations. In the following discussion, we provide an example that (risk-
averse) maxmin expected utility has testable implications beyond the (risk-
averse) SEU model.

Assume S = {s1� s2}. Consider the consumption data set

k1 k2 k3 k4

s1 6 5 8 3
s2 7 4 1 2

The table has xk
s in entry (s�k). We present a maxmin expected utility model

that is a set M of probabilities and a concave utility u, such that the above
consumptions are chosen for certain prices—the prices are defined below so
that the relevant first-order conditions hold.

Let the set of probabilities be the convex hull of
¯
μ = (1 − q�q) and

μ̄ = (q�1 − q) with q ∈ (1/2�1). Denote this set of probabilities by M . Let
v(x) = α−βx for x ∈ [1/10�10]; define it in an arbitrary fashion outside of that
interval, as long as it is strictly positive and decreasing. Then u(x) = ∫ x

0 v(t)dt
is a strictly monotone increasing and concave function.

Note that since u is strictly monotone increasing, minμ∈M
∑

j=1�2 μsu(x
ki
sj
) =

(1 − q)u(xki
s1
)+ qu(xki

s2
) for i = 2�3�4 and minμ∈M

∑
j=1�2 μsu(x

ki
sj
)= qu(xk1

s1
)+

(1 − q)u(xk1
s2
). Note that the sequence {(xk3

s1
�xk1

s2
)� (xk1

s1
�xk2

s1
)� (xk2

s2
�xk4

s1
)�

(xk4
s2
�xk3

s2
)} satisfies properties (i), (ii), and (iii) in SARSEU.

Now let pki
s1

= (1 − q)v(xki
s1
) and pki

s2
= qv(xki

s2
) for i = 2�3�4. Let pk1

s1
=

qv(xk1
s1
) and pk1

s2
= (1 − q)v(xk1

s2
). Then the maxmin expected utility defined

by u and M satisfies the first-order conditions at the specified prices pk and
quantities xk. We have that

pk3
s1

pk1
s2

pk1
s1

pk2
s1

pk2
s2

pk4
s1

pk4
s2

pk3
s2

= α−βxk3
s1

α−βxk1
s2

α−βxk1
s1

α−βxk2
s1

α−βxk2
s2

α−βxk4
s1

α−βxk4
s2

α−βxk3
s2

×
(

q

1 − q

)(
q

1 − q

)(
1 − q

q

)(
q

1 − q

)
�
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Note that ( q

1−q
)( q

1−q
)( 1−q

q
)( q

1−q
) = ( q

1−q
)2 > 1. By choosing α large enough, we

obtain that
p
k3
s1

p
k1
s2

p
k1
s1

p
k2
s1

p
k2
s2

p
k4
s1

p
k4
s2

p
k3
s2

> 1. So SARSEU is violated.

S.5. OBSERVATIONAL EQUIVALENCE BETWEEN SEU AND SDU

In this section, we show that SEU and SDU are observationally equivalent
under a particular condition on the data.

CONDITION S.7: There exists a permutation s(1)� s(2)� � � � � s(|S|) of the set
S of states such that for any k�k′ ∈K,

xk
s(t) > xk′

s(t′) ⇔ t > t ′�

Condition S.7 is plausible when prices and incomes do not vary much relative
to beliefs. So across observations, the agent is likely to consume more in the
states that she thinks are more likely.

PROPOSITION S.8: Suppose that a data set (xk�pk)Kk=1 satisfies Condition S.7.
Then (xk�pk)Kk=1 is SEU rational if and only if it is SDU rational.

PROOF: Obviously, SEU rationality implies SDU rationality. To show the
converse, suppose that the data set is SDU rational. Choose a sequence
{(xki

si
� x

k′
i

s′i
)}ni=1 such that (i) xki

si
> x

k′
i

s′i
for all i ∈ {1� � � � � n}, (ii) each s appears

as si the same number of times as s′
i, and (iii) each k appears as ki the same

number of times as k′
i.

Suppose that si �= s′
i for some i. Then by Condition S.7 there exist t, t ′ such

that t > t ′, and si = s(t) and s′
i = s(t ′). By (ii), then there must be (x

kj
sj � x

k′
j

s′j
)

such that s(t ′) = sj and sj �= s′
j . Then, by Condition S.7 again, there must be t ′′

such that t ′ > t ′′ and s(t ′′) = s′
j . We can repeat this argument infinitely many

times to find ever smaller t, which contradicts the finiteness of the set of states.
Therefore, for each i, we have si = s′

i.
Hence, the {(xki

si
� x

k′
i

s′i
)}ni=1 satisfies all of the conditions in SARSDU. Since

the data set is SDU rational, Theorem 3 shows that

n∏
i=1

p
ki
ti

p
ki
t′i

≤ 1�(S.2)

Therefore, conditions (i), (ii), and (iii) imply (S.2), which is SARSEU. Hence,
by Theorem 1, the data set must be SEU rational. Q.E.D.
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S.6. OBJECTIVE EXPECTED UTILITY

In this section, we present the relationship between our main theorem and
results in Green and Srivastava (1986), Varian (1983b), and Kubler, Selden,
and Wei (2014). These authors discuss a setting where an objective probability
μ ∈ Δ++ is given. Given the objective probability μ, they seek to understand
when there is a utility function for which the observed purchases maximize
expected utility.

We show that we can write a version of our SARSEU that uses “risk-neutral”
prices in place of regular prices. We show that this modified axiom character-
izes the objective expected utility theory. Our modified SARSEU is, therefore,
equivalent to the conditions studied by Green and Srivastava (1986) and Varian
(1983b), and to the axiom in Kubler, Selden, and Wei (2014).

It is worth emphasizing that Kubler, Selden, and Wei (2014) allow μ to de-
pend on k, so that the agent may use a different prior when faced with different
optimization problems. In our subjective probability setup, this would make no
sense because everything is rationalizable by suitably choosing priors in each
optimization problem. Here we are being consistent with the rest of the paper
in assuming a fixed prior through all observations, but the result can be relaxed
to fit a variable-prior setup.

DEFINITION S.1: A data set (xk�pk)Kk=1 is objective expected utility (OEU)
rational if there is a concave and strictly increasing function u : R+ → R such
that, for all k,

pk · y ≤ pk · xk ⇒
∑
s∈S

μsu(ys)≤
∑
s∈S

μsu
(
xk
s

)
�

In the papers cited above, a crucial aspect of the data set is the price-
probability ratios, or “risk-neutral prices,” defined as follows: for k ∈ K and
s ∈ S,

ρk
s = pk

s

μs

�

A natural modification of SARSEU using the objective probability μ is the
following.

STRONG AXIOM OF REVEALED OBJECTIVE EXPECTED UTILITY (SAROEU):
Assume any sequence of pairs (xki

si
� x

k′
i

s′i
)ni=1 in which the following statements hold:

(i) We have xki
si
> x

k′
i

s′i
for all i.

(ii) Each k appears in ki (on the left of the pair) the same number of times it
appears in k′

i (on the right):
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The product of price-probability ratios satisfies that

n∏
i=1

ρki
si

ρ
k′
i

s′i

≤ 1�

The prior μ is observable, so we do not need the requirement on s in
SARSEU. Instead, SAROEU restricts the products of price-probability ratios,
and not the product of price ratios.

The notion of data set in Kubler, Selden, and Wei (2014) is the same as in
our paper. Kubler, Selden, and Wei (2014) investigate the case of strict concave
utility, while we have focused on weak concavity. A modification of Kubler et
al.’s axiom that allows for weak concavity is the following.1

STRONG AXIOM OF REVEALED EXPECTED UTILITY (SAREU): For all
m≥ 1 and sequences k(1)� � � � �k(m) ∈ K,

m∏
i=1

(
max

s�s′:xk(i)s >x
k(i+1)
s′

ρk(i)
s

ρk(i+1)
s′

)
≤ 1�

It is easy to modify the argument in Kubler, Selden, and Wei (2014) to show
the equivalence of a data set being OEU rational, satisfying the conditions in
Green and Srivastava (1986) and Varian (1983b).

PROPOSITION S.9: A data set is OEU rational if and only if it satisfies
SAROEU.

This result implies that SAROEU, SAREU, and the conditions in Green
and Srivastava (1986) and Varian (1983b) are equivalent.

PROOF OF PROPOSITION S.9: Using the result of Kubler, Selden, and Wei
(2014), we prove the result by establishing the equivalence between SAROEU
and SAREU.

Suppose that the data set (xk�pk)Kk=1 satisfies SAROEU. Suppose, by
way of contradiction, that SAREU is violated. Then there exist m ≥ 1 and
k1� � � � �km ∈ K such that

∏m

i=1(max
s�s′:xkis >x

ki+1
s′

(ρki
s /ρ

ki+1
s′ )) > 1. If m = 1, it

clearly contradicts SAROEU.

1SAREU and Kubler et al.’s axiom are different only in one point: their axiom requires∏m
i=1(max

s�s′ :xk(i)s >x
k(i+1)
s′

ρ
k(i)
s

ρ
k(i+1)
s′

) < 1.
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In the following discussion, we will consider the case where m > 1.Then
there exists a sequence (x

k∗
i

s∗i
� x

k∗
i+1

s
′∗
i

)mi=1 with k∗
m+1 = k∗

1 such that
∏m

i=1(ρ
k∗
i

s∗i
/

ρ
k∗
i+1

s
′∗
i

) > 1. Since the sequence satisfies the conditions in SAROEU, this con-

tradicts SAROEU.
Now, we establish that SAREU implies SAROEU. Choose a sequence

(xki
si
� x

k′
i

s′i
)ni=1 of pairs in which xki

si
> x

k′
i

s′i
; each k appears in ki (on the left of the

pair) as many times as in k′
i (on the right). If n = 1, we have that ki = k′

i = k.
Consider the sequence k(1)= k= k(2). Then SAREU implies that ρk

s /ρ
k
s′ ≤ 1,

as desired.
Now, consider the case in which n ≥ 2.

STEP 1: There exists a collection of cycles such that each cycle (k(i))2m
i=1 sat-

isfies (i) xk(i)
s(i) > xk(i+1)

s′(i+1) for i = 1�3� � � � �2m− 1 and (ii) k(2m)= k(1).

PROOF: First consider the pair (xk1
s1
�x

k′
1

s′1
). Let k(1) = k1 and k(2) = k′

1.

Since each k appears as ki as many times as k′
i, there exists a pair (xki

si
� x

k′
i

s′i
)

with ki = k(2). Let k(3) = ki and k(4) = k′
i. If k(4) = k(1), then we have

a cycle in k. Otherwise, for the same reason as was mentioned above, there
is a (xki

si
� x

k′
i

s′i
) with ki = k(4). We can now let k(5) = ki and k(6) = k′

i. If
k(6) = k(1), then we again have a cycle. Since the number of data that ap-
pear in the sequence we started from is finite, we must eventually close a cycle.
Each time we find a cycle, we can start the procedure from any remaining pair
(xki

si
� x

k′
i

s′i
) in the data set. Since each k appears in ki the same number of times

it appears in k′
i, we must exhaust all pairs after finding a finite collection of

cycles. Q.E.D.

STEP 2: We have
∏n

i=1
ρ
ki
si

ρ
k′
i

s′
i

≤ 1.

PROOF: For each cycle (k(i))2m
i=1, we have that

m/2∏
i=1

ρk(2i−1)
s(2i−1)

ρk(2i)
s′(2i)

≤
m/2∏
i=1

(
max

s�s′:xk(2i−1)
s >x

k(2i)
s′

(
ρk(2i−1)
s

ρk(2i)
s′

))
≤ 1

as

ρk(2i−1)
s(2i−1)

ρk(2i)
s′(2i)

≤ max
s�s′:xk(2i−1)

s >x
k(2i)
s′

(
ρk(2i−1)
s

ρk(2i)
s′

)
�
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Then, since the product over each cycle does not exceed 1, the product of the
cycles satisfies that

n∏
i=1

ρki
si

ρ
k′
i

s′i

≤ 1�
Q.E.D.

S.7. GENERALIZATION: SUBJECTIVE–OBJECTIVE EXPECTED UTILITY

The purpose of this section is to lay out some details left out of Appendix B
in the paper. Specifically, we allow that there are some states whose probabili-
ties are objective and known to us. The set of state with known probabilities is
S∗ ⊆ S. The probability of a state s in S∗ is μ∗

s . We allow for S∗ = S or S∗ = ∅.
Hence, the setup in this section contains as special cases the result in the pre-
vious section on objective expected utility and the main result in the paper on
subjective expected utility.

Investigating the general case is important because since Ellsberg (1961),
many experimenters test subjective expected utility theory in a setup where
some states’ probabilities are known. Indeed, in the experiments by Ahn, Choi,
Gale, and Kariv (2014) and Bossaerts, Ghirardato, Guarnaschelli, and Zame
(2010), the probability of one state is known and the probabilities of two other
states are unknown. One can directly test the axiom presented here by using the
experimental data obtained from Ahn et al. (2014) and Bossaerts et al. (2010).
In those cases, since there is a single objective state, the presence of η (see
Appendix B) means that the objective state is treated as subjective. As a con-
sequence, if one rejects the axiom on such data, then the explanation cannot
be that subjects doubt, or fail to understand, the experimenters’ specification
of objective uncertainty.

THEOREM S.10: A data set is SOEU rational if and only if it satisfies
SARSOEU.

PROOF: The proof is similar to the proof of Theorem 1. Here, we outline the
differences. Instead of Lemma 7, we can show that the following statements are
equivalent:

(i) We have that (xk�pk)Kk=1 is SOEU rational.
(ii) There are strictly positive numbers (vks )s∈S�k∈K , (λk)k∈K , and (μs)s∈S\S∗

such that

μsv
k
s = λkpk

s if s /∈ S∗�(S.3)

vks = λkρk
s if s ∈ S∗�

xk
s > xk′

s′ ⇒ vks ≤ vk
′

s′ �
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Results similar to Lemmas 10, 12, and 13 continue to hold, with minor adapta-
tions. There are no changes in Lemmas 8 and 9. As in Lemma 11, we need to
prove that if log(rks ) ∈ Q for all k and s, then there are numbers vks , λk, and μs

satisfying (S.3).
In the proof of the theorem, we need to change the definition of matrix A

in two ways. Let A be a matrix with K × S rows and K × S + (S \ S∗)+K + 1
columns, defined as follows: We have one row for every pair (k� s), one column
for every pair (k� s), one column for every s ∈ S \ S∗, one column for each k,
and one last column. Note the difference that the second column is now de-
fined only for s ∈ S \ S∗.

In the row corresponding to (k� s), the matrix has zeroes everywhere with
the following exceptions: it has a 1 in the column for (k� s), it has a 1 in the
column for s ∈ S \ S∗, it has a −1 in the column for k, and it has − log rks in the
very last column, instead of − logpk

s .
The definitions of B and E are the same as in the proof of Lemma 11 with

one difference: here, both B and E have 0 for each s ∈ S \S∗, not for each s ∈ S.
We can construct a sequence (xki

si
� x

k′
i

s′i
)n

∗
i=1 of pairs that satisfies condition (i) in

SARSOEU exactly as in Lemma 11.
The two differences in the definition of A lead to the two differences in

the conclusion. First, since the second column is defined only for s ∈ S \ S∗,
only for such s, we conclude that the number of times s appears as si equals
the number of times it appears as s′

i. Therefore, condition (ii) in the axiom is
satisfied. Condition (iii) holds as in Lemma 11.

Finally, we obtain

n∏
i=1

rkisi

r
k′
i

s′i

≤ 1

instead of
∏n

i=1
p
ki
si

p
k′
i

s′
i

≤ 1. Q.E.D.

S.8. RELATIONSHIP BETWEEN SARSEU AND SAVAGE’S (1954) AXIOMS

In this section, we study the relationship between SARSEU and Savage’s
(1954) axioms. Savage’s axiomatization involves seven axioms, labeled Ax-
ioms P1–P7. We show that SARSEU implies Savage’s axioms, except for Ax-
ioms P1 and P6: Axiom P1 requires preference to be a weak order, which does
not make sense for our primitive; Axiom P6 requires the set of states to be
infinite.

Specifically, it is interesting to disentangle the role of SARSDU (Section 4
of the paper) and SARSEU in ruling out violations of Savage’s axioms. It turns
out that a violation of Axioms P2 or P7 will imply a violation of SARSDU,



SAVAGE IN THE MARKET 19

the axiom behind a state-dependent representation. This makes sense, as Ax-
ioms P2 and P7 are essentially separability assumptions. A violation of Ax-
iom P4 has a different structure, and we show that it violates SARSEU (actu-
ally it violates requirement (6)). Finally, Axioms P3 and P5 cannot be violated
in our setup.

In this section, we use the following notations: For any A ⊂ S, and x ∈ RS
+

and p ∈ RS
+, xA denotes the vector in RA

+ obtained by restricting s �→ xs to A;
similarly, pA denotes the vector in RA

+ obtained by restricting s �→ ps to A.
Recall that Savage’s primitive is a complete preference relation over acts. In

contrast, our primitive is a data set (xk�pk)Kk=1. To relate the two models, we
define a revealed preference relation from the data set (xk�pk)Kk=1 and investi-
gate when it satisfies Savage’s axioms.

DEFINITION S.2: For any x� y ∈ RS
+, the following statements hold:

(i) We have x � y if there exists k ∈ K such that x= xk and pk · x≥ pk · y .
(ii) We have x � y if there exists k ∈ K such that x = xk and pk · x > pk · y .2

There is one basic problem: Savage’s primitive is a complete preference re-
lation over acts, but a data set will contain much less information than a pref-
erence relation over RS

+. The revealed preference relation is going to be in-
complete: many acts in RS

+ will not be comparable. Such incompleteness gives
rise to trivial violations of Savage’s axioms, as his axioms were formulated for
complete preferences. For example, one of Savage’s axioms is as follows.

AXIOM P2: Let x� y�x′� y ′ ∈ RS
+ and A ⊂ S such that xA = x′

A and yA = y ′
A,

and xAc = yAc and x′
Ac = y ′

Ac . Then x � y if and only if x′ � y ′.

The revealed preference relation violates Axiom P2 when only one of x, y
and x′, y ′ is comparable. This is not a particularly interesting violation of Sav-
age’s axioms. A more meaningful exercise is to show how a violation of Sav-
age’s axioms that is not due to incompleteness implies a violation of SARSEU.

DEFINITION S.3: Let � be the revealed preference relation defined from
(xk�pk)Kk=1 by Definition S.2. Then we say that the data set violates Axiom P2
if there is x� y�x′� y ′ ∈ RS

+ and A ⊂ S as in the statement of Axiom P2 for which
x� y and y ′ � x′; or y � x and x′ � y ′.

PROPOSITION S.11: If the data set violates Axiom P2, then it violates SARSDU.

PROOF: For a subset A of S and a data set (xk�pk) ∈ RS
+ × RS

++, we consider
(xk

A�p
k
A) ∈ RA

+ × RA
++. This defines a data set (xk

A�p
k
A)

K
k=1 on a restricted do-

main with A (instead of S). On this restricted domain, we can define WARP

2It is worth emphasizing that this definition already has separability built in, which goes a long
way to satisfying Savage’s axioms.
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and SARSDU in the same way as defined in Section 4. SARSDU implies
WARP on this restricted domain.

Suppose that the data set (xk�pk)Kk=1 violates Axiom P2. Then by definition
of �, and the fact that xAc = yAc and x′

Ac = y ′
Ac , the data set (xk

A�p
k
A)

K
k=1 violates

WARP. Then (xk
A�p

k
A)

K
k=1 violates SARSDU, which implies that (xk�pk)Kk=1

violates SARSDU. Q.E.D.

We shall use the following notation. We use 1A to denote the indicator vector
for A ⊂ S in RS

+, and for a scalar x ∈ R+, x1A denotes the vector in RA
+ with x

in all its entries (the constant vector x).

AXIOM P4: Suppose A�B ⊂ S; x > y , x′ > y ′. Then (x1A� y1Ac)� (x1B� y1Bc )
if and only if (x′1A� y

′1Ac)� (x′1B� y
′1Bc ).

DEFINITION S.4: Let � be the revealed preference relation defined from
(xk�pk)Kk=1 by Definition S.2. Then we say that the data set violates Axiom P4
if there is A�B ⊂ S and scalars x, x′, y , and y ′ as in the statement of Ax-
iom P4 for which (x1A� y1Ac) � (x1B� y1Bc ) and (x′1B� y

′1Bc ) � (x′1A� y
′1Ac),

or (x1B� y1Bc )� (x1A� y1Ac) and (x′1A� y
′1Ac)� (x′1B� y

′1Bc ).

PROPOSITION S.12: If a data set violates Axiom P4, then it violates SARSEU.

PROOF: Without loss of generality, we can assume that
∑

s∈S p
k
s = 1 for all k.

The reason is that we can normalize prices to add up to 1 without affecting the
validity of SARSEU.

Let A�B ⊂ S, and let x, x′, y , and y ′ be scalars as in the statement of Ax-
iom P4, such that (x1A� y1Ac) � (x1B� y1Bc ) and (x′1B� y

′1Bc ) � (x′1A� y
′1Ac).

Suppose, toward a contradiction, that the data set satisfies SARSEU.
First, (x1A� y1Ac) � (x1B� y1Bc ) means that there is an observation k for

which xk = (x1A� y1Ac) and

pk · xk = pk · (x1A� y1Ac) > pk · (x1B� y1Bc )�(S.4)

while (x′1B� y
′1Bc ) � (x′1A� y

′1Ac) means that there is an observation k′ such
that

pk′ · xk′ = pk′ · (x′1B� y
′1Bc

) ≥ pk′ · (x′1A� y
′1Ac

)
�(S.5)

Second, (S.4) implies that

x
∑
s∈A

pk
s + y

(
1 −

∑
s∈A

pk
s

)
> x

∑
s∈B

pk
s + y

(
1 −

∑
s∈B

pk
s

)
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and, therefore, that
∑

s∈A pk
s >

∑
s∈B p

k
s , as x > y . Similarly, (S.5) and x′ > y ′

imply that
∑

s∈B p
k′
s ≥ ∑

s∈A pk′
s . Hence,∑

s∈A\B
pk

s >
∑
s∈B\A

pk
s and

∑
s∈B\A

pk′
s ≥

∑
s∈A\B

pk′
s �(S.6)

Third, for any s ∈ A\B and any s′ ∈ B \A, we have that x= xk
s > xk

s′ = y and
x′ = xk′

s′ > xk′
s = y ′. Hence, SARSEU implies that

pk
s

pk
s′

pk′
s′

pk′
s

≤ 1�3

Thus, for any s′ ∈ B \A,

pk′
s′

∑
s∈A\B

pk
s ≤ pk

s′
∑
s∈A\B

pk′
s �

which implies that∑
s′∈B\A

pk′
s′

∑
s∈A\B

pk
s ≤

∑
s′∈B\A

pk
s′

∑
s∈A\B

pk′
s �

a contradiction to (S.6). Q.E.D.

We now discuss Axioms P3 and P7 (Axiom P5 is a nontriviality axiom that is
always satisfied in our setup). This requires some preliminary definitions.

DEFINITION S.5: For any A ⊂ S and xA� yA ∈ RA, the following statements
hold:

(i) We have xA �A yA if there exist z�w ∈ RS such that zA = xA and
wA = yA, and zAc =wAc , z �w.

(ii) We have xA �A yA if there exist z�w ∈ RS such that zA = xA and
wA = yA, and zAc =wAc , z �w.

DEFINITION S.6: The inclusion A ⊂ S is null if for any x� y ∈ RS
+ such that

xAc = yAc , it is false that x � y .

AXIOM P3: Suppose that A is not null. Then x1A �A y1A if and only if x > y .

AXIOM P7: We have that (i) xs1A �A yA for all s ∈ A implies xA �A yA;
(ii) yA �A xs1A for all s ∈A implies yA �A xA.

3Observe that here we are essentially using requirement (6).
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DEFINITION S.7: Let � be the revealed preference relation defined from
(xk�pk)Kk=1 by Definition S.2. Then we say that the data set violates the follow-
ing statements:

1. It violates Axiom P3 if there is nonnull A ⊆ S, x� y ∈ R+, and z ∈ RAc

+ for
which (x1A� z)� (y1A� z) and y ≥ x, or (y1A� z)� (x1A� z) and x > y .

2. It violates Axiom P7 if there is a nonempty A ⊆ S and x� y ∈ RS
+ such that

one of the following statements is true:
(a) We have yA �A xA while xs1A �A yA for all s ∈ A.
(b) We have xA �A yA while yA �A xs1A for all s ∈ A.

PROPOSITION S.13: (i) No data set can violate Axiom P3. (ii) If a data set
violates Axiom P7, then it violates SARSDU.

PROOF: Fix a data set that violates Axiom P3. Let A, x, y , and z be as in
the definition of a violation of Axiom P3. Suppose that (x1A� z)� (y1A� z) and
y ≥ x. Then there is an observation xk = (x1A� z) with

x
∑
s∈A

pk
s +

∑
s∈Ac

pk
s zs = pk · (x1A� z) > pk · (y1A� z)

= y
∑
s∈A

pk
s +

∑
s∈Ac

pk
s zs�

Hence, x > y , as
∑

s∈A pk
s > 0. This contradicts that the data set violates Ax-

iom P3.
Suppose that yA �A xA while xs1A �A yA given A for all s ∈ A. Let k be such

that yA = xk
A. For s ∈A, let ks be such that xs1A = xks

A . The inequality yA �A xA

implies pk
A · xk

A ≥ pk
A · xA. For all s ∈A, xs1A �A yA implies pks

A · xks
A > pks

A · xk
A.

Let s∗ be such that xs∗ ≤ xs for all s ∈ A. Then pk
A · xk

A ≥ pk
A · xA implies that

pk
A · xk

A ≥ pk
A · xks∗

A .
Now p

ks∗
A · xks∗

A > p
ks∗
A · xk

A implies that the data set (xk
A�p

k
A)

K
k=1 violates

WARP on the restricted domain. So the data set (xk
A�p

k
A)

K
k=1 must violate

SARSDU on the restricted domain. Hence, the data set (xk
A�p

k
A)

K
k=1 must vio-

late SARSDU in the original domain. Q.E.D.
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