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Appendix B contains all omitted proofs of the main paper. Appendix C contains
the calculations for the illustrative example. Appendix D discusses the case of outside
options with type-dependent values. Appendix E discusses the case of finitely many
states.

APPENDIX B: OMITTED PROOFS

B.1. Proof of Proposition 3.1 and Corollary 3.1

IF σ > 0, (IR) MUST BIND; if σ = 0, assume w.l.o.g. that (IR) holds with equal-
ity. The problem becomes

max
αt

{∫ s

s

[
u1

(
αt(s); s) − c

(
αt(s)

)]
dF

}
s.t. (IC).

Ignoring (IC), this problem has a unique solution (up to {s� s}): αt ≡ e. Since
e is increasing and t > 0, by standard arguments, there is π t

e such that (e�π t
e)

satisfies (IC). Specifically, for every s,

π t
e(s) = u2

(
e(s); s� t) −

∫ s

s

tb
(
e(y)

)
dy − k�

where k ∈ R. Since e is differentiable,

dπ t
e(s)

ds
= ∂u2

(
e(s); s� t)
∂a

de(s)
ds

�

which equals c′(e(s)) de(s)
ds

if and only if t = 1 by the definition of e and Assump-
tion 2.1. The expression of dqt

ds
follows from the definition of u1 and u2.

B.2. Proof of Corollary 4.2

Being increasing, aI
sb is differentiable a.e. on [v� v]. If daI

sb

dv
> 0 at v, then using

condition (E),

dpI
sb/dv

daI
sb/dv

= vb′(aI
sb(v)

) − 1 and
dpI

fb/dv

daI
fb/dv

= vb′(aI
fb(v)

) − 1�

The result follows from b′′ < 0 and Theorem 4.1(a).

© 2015 The Econometric Society DOI: 10.3982/ECTA11851

http://www.econometricsociety.org/suppmatlist.asp
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA11851


2 SIMONE GALPERTI

B.3. Proof of Lemma A.2

(Continuity in x). Suppress rC. For x ∈ (0�1) \ {xm}, z is continuous, so
Z′(x) = z(x). If Ω(x) < Z(x), by definition, ω(·) is constant in a neigh-
borhood of x. Suppose Ω(x) = Z(x). Since Ω is convex and Ω ≤ Z, their
right and left derivatives satisfy Ω+(x) ≤ Z+(x) and Ω−(x) ≥ Z−(x). Since
Ω−(x) ≤ Ω+(x) and Z is differentiable at x, Ω−(x) = Ω+(x); so ω is con-
tinuous at x. Finally, consider xm. If vm = vI , then xm = 1 and we are done.
For xm ∈ (0�1), ω is continuous if Ω(xm) < Z(xm) when z jumps at xm. Re-
call that z(xm−) = limv↑vm wI(v; rC) and z(xm+) = z(xm) = limv↓vm wI(v; rC).
By expression (A.8), z can only jump down at xm, so z(xm−) > z(xm). Sup-
pose Ω(xm) = Z(xm). By the previous argument, Ω+(xm) ≤ Z+(xm) = z(xm).
By convexity, ω(x) ≤ Ω−(xm) for x ≤ xm. So, for x close to xm from the left,
we get the following contradiction:

Ω(x) = Ω
(
xm

) −
∫ xm

x

ω(y)dy > Z
(
xm

) −
∫ xm

x

z(y)dy = Z(x)�

(Continuity in rC). Given x, Z(x; rC) is continuous in rC. So Ω is continuous
if x ∈ {0�1}, since Ω(0; rC) = Z(0; rC) and Ω(1; rC) = Z(1; rC). Consider x ∈
(0�1). For rC ≥ 0, by definition, Ω(x; rC)= min{τZ(x1; rC)+ (1 − τ)Z(x2; rC)}
over all τ�x1�x2 ∈ [0�1] such that x= τx1 +(1−τ)x2. By continuity of Z(x; rC)
and the Maximum Theorem, Ω(x� ·) is continuous in rC for every x. Moreover,
Ω(·; rC) is differentiable in x with derivative ω(·; rC). Fix x ∈ (0�1) and any
sequence {rC

n } with rC
n → rC. Since Ω(x; rC

n ) → Ω(x; rC), Theorem 25.7, p. 248,
of Rockafellar (1970) implies ω(x; rC

n ) →ω(x; rC).

B.4. Proof of Lemma A.6

Recall that wI(vI) = ω(0) and wI(vI) = z(0). If ω(0) > z(0), since z is con-
tinuous on [0�xm] and ω is increasing, there is x > 0 such that ω(y) > z(y) for
y ≤ x. Since Z(0)= Ω(0), we get the contradiction

Z(x)= Z(0)+
∫ x

0
z(y)dy <Ω(0)+

∫ x

0
ω(y)dy =Ω(x)�

If ω(0) < z(0), let x̂ = sup{x | ∀x′ < x, ω(x′) < z(x′)}. By continuity, x̂ > 0.
Then, for 0 < x< x̂,

Z(x)= Z(0)+
∫ x

0
z(y)dy >Ω(0)+

∫ x

0
ω(y)dy =Ω(x)�

It follows that vb ≥ (F I)−1(x̂) > vI .
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B.5. Proof of Corollary 4.3

Let tC = 1. Since F is uniform, Fi(v) = v− vi. Using (A.7),

wI
(
v; rC

) =
{(

v/tI
)(

1 + rC
(
1 − 2tI

)) + rCvI� if v ∈ [vI� vC),(
v/tI

)(
1 + rC

(
tI − 1

)2)
� if v ∈ [

vC� vI].(B.1)

The function wI is continuous at vC. It is strictly increasing and greater than
v/tI on [vC� vI], as rC > 0 and tI < 1; wI is strictly increasing on [vI� vC) if and
only if tI ≤ 1/2 or rC < (2tI − 1)−1 = rC.

Consider first vb and vb, when vb > vb. If tI ≤ 1/2 or rC < rC, then wI is strictly
increasing and equals wI (see the proof of Theorem 4.1); so aI (see (A.9)) is
strictly increasing on [vI� vI], and vb = vI . Otherwise, vb ≥ vC > vI and vb is
characterized by (A.16):

(
vb − vI

)2 = rC
(
tI

)2

1 + rC
(
tI − 1

)2

(
vC − vI

)2
�(B.2)

Since wI is strictly increasing on [vb� v
I], it equals wI . Using (A.15), vb must

satisfy ∫ vI

vb

[
wI

(
y; rC

) −wI
(
vb; rC

)]
dy = −(

vI − vI
)
rC

∫ vC

vI
gC(y)dy�(B.3)

The derivative of the right-hand side of (B.3) with respect to vb is −wI
v(v

b; rC)×
(vI −vb) < 0. So, for rC > 0, there is a unique vb > vb that satisfies (B.3). Letting
K = ∫ vC

vI gC(y)dy < 0, (B.3) becomes

−rC
[
2tI

(
vI − vI

)
K

] = (
1 + rC

(
tI − 1

)2)(
vI − vb

)2
(B.4)

if vb ≥ vC, and

−rC
[
2tI

(
vI − vI

)
K

] = rC
(
tI

)2(
vI − vC

)2 + (
1 + rC

(
1 − 2tI

))(
vI − vb

)2

if vb < vC. So, if tI > 1/2, the function vb(r
C) is constant at vI for rC < rC, and

at rC, it jumps from vI to vC. Monotonicity for rC > rC follows by applying the
Implicit Function Theorem to (B.2):

dvb

drC = 1
2

[
tI

1 + rC
(
tI − 1

)2

]2 (
vC − vI

)2(
vb − vI

) > 0�
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Similarly,

dvb

drC =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− vI − vb

2rC
[
1 + rC

(
tI − 1

)2] < 0� if vb ≥ vC,

− vI − vb

2rC
(
1 + rC

(
1 − 2tI

)) < 0� if vb < vC;

for the second inequality, recall that vb < vb < vC if and only if tI ≤ 1/2 or
rC < rC.

Consider now the behavior of bI(rC) = b(aI
sb), which matches that of aI

sb for
any rC. By Theorem 4.1 and Assumption 2.1, bI(v; rC) ∈ (b(a)�b(a)). Also,
bI(v; rC) solves maxy∈[b(a)�b(a)]{ywI(v; rC) + ξ(y)}. By strict concavity of ξ(y), it
is enough to study how wI(rC) relates to v/tI . The function wI(·; rC) crosses
v/tI only once at v∗ ∈ (vI� vI). Also, wI(v; rC) = wI(v; rC) on [vb� v

b]. So, it is
enough to show that, as rC rises, wI(vb(rC); rC) falls and wI(vb(r

C); rC) rises.

LEMMA B.1: Suppose vb and vb are characterized by (A.15) and (A.16). If
wI

v(v
b; rC) > 0 and wI

v(vb; rC) > 0, then d
drC w

I(vb(rC); rC) < 0 and d
drC w

I(vb(r
C);

rC) > 0.

PROOF: It follows by applying the Implicit Function Theorem to (A.15) and
(A.16). Q.E.D.

Consider wI(vb(r
C); rC). If tI ≤ 1/2 or rC < rC, then vb(r

C) = vI and
wI

r(v
I; rC) = (1 − tI)(vI/tI) > 0. If tI > 1/2, then wI(vI; rC) ↑ wI(vI� rC) =

wI(vC� rC) as rC ↑ rC. By Lemma B.1, wI(vb(r
C); rC) increases in rC, for rC > rC,

because wI
v(vb(r

C); rC) > 0 when vb > vC. Similarly, wI(vb(rC); rC) decreases
in rC, because wI

v(v
b(rC); rC) > 0 when vb < vb.

B.6. Proof of Corollary 4.4

Fix aI
sb and recall that it minimizes RC(aI) among all increasing aI equal to aI

sb

on [vI� vI]. Using (A.18) and aC
un from Proposition 4.3, condition (R) becomes

[
b(a)− b

(
aC
fb

(
vC

))] ∫ vu

vI
gI(v)dv

≥RC
(
aI
sb

) +
∫ vC

vC
b
(
aC
fb(v)

)
GC(v)dFC

− b
(
aC
fb

(
vC

))∫ vC

vI
gI(v)dv�
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Since aC
fb and aI

sb are infeasible, the right-hand side is positive. RC(aI
sb) has been

minimized. The result follows, since
∫ vu

vI gI(v)dv < 0.

B.7. Proof of Lemma A.8

The proof uses b ∈ B (see the proof of Lemma A.1). Suppose rI > 0. Using
R̃I(b) =RI(b−1(b)) in (A.18), write W̃ C(b)− rIR̃I(b) as

VSC(
b−1(b)� rI

) =
∫ vC

vC

[
b(v)wC

(
v� rI

) + ξ
(
b(v)

)]
dFC

+ rI

∫ vC

vI
b(v)gI(v)dv�

where wC(v� rI)= v/tC − rIGC(v). Note that wC is continuous in v, except pos-
sibly at vI if vI ≥ vC, where it can jump up. Using the method in the proof
of Theorem 4.1, let wC(v; rI) be the generalized version of wC. By the argu-
ment in Lemma A.2, wC(v; rI) is continuous in v over [vC� vC]—except possibly
at vI , where we can assume right- or left-continuity w.l.o.g.—and in rI . Now, on
[vC� vC], let φ(y�v; rI)= ywC(v; rI)+ ξ(y) and

b
C(
v; rI

) = arg max
y∈[b(a)�b(a)]

φ
(
y� v; rI

)
�

Since wC is increasing by construction, b
C

is increasing on [vC� vC] and contin-
uous in rI . On [vI� vC], let b

C
be the pointwise maximizer of the second integral

in VSC. By Proposition 4.3’s proof, b
C
(v; rI) equals b(a) on [vI� vu) and b(a) on

[vu� vC).
Suppose [vu� vC) = ∅. Then b

C
is increasing and an argument similar to that

in Lemma A.4 establishes that b
C

maximizes VSC. Since such a b
C

is pointwise
continuous in rI , so is VSC(b−1(b

C
(rI))� rI).

Suppose [vu� vC) 
= ∅. Let vm = max{vI� vC}. By an argument similar to that
in Lemma A.3, any optimal bC ∈ B can take only three forms on [vu� vC]: (1) it
is constant at b

C
(vd) on [vu� vd], where vd ∈ (vC� vm) ∪ (vm� v

C) and equals b
C

otherwise; (2) it is constant at y ∈ [bC
(vm−)�b

C
(vm+)] on [vu� vd] with vd = vm

and equals b
C

otherwise; (3) it is constant on [vu� vC]. We can first find an opti-
mal bC within each class and then pick an overall maximizer. Note that in both
case (1) and (2), bC has to maximize

bC
(
vd

)
H

(
vd� rI

) + ξ
(
bC

(
vd

))
FC

(
vd

) +
∫ vC

vd
φ

(
b

C
(v)� v; rI

)
dFC�(B.5)



6 SIMONE GALPERTI

where

H
(
vd� rI

) = rI

∫ vC

vu
gI(v)dv+

∫ vd

vC
wC(

v� rI
)
dFC�

Note that, since wC(v� rI) is continuous in rI , so is (B.5).
Case 1: Let b

C
(vm) = b

C
(vm−), so that b

C
is continuous on [vC� vm]. Then,

(B.5) is continuous in vd for vd ∈ [vC� vm]. Hence, there is an optimal vd.
By an argument similar to that in Lemma A.4, there is a unique optimal bC

1
within this case. Let Φ(bC

1 ; rI) be the value of (B.5) at bC
1 , which is continuous

in rI .
Case 2: Let b

C
(vm) = b

C
(vm+), so that b

C
is continuous on [vm� vC]. Then,

(B.5) is continuous in vd for vd ∈ [vm� vC]. As before, there is an optimal vd and
a unique optimal bC

2 within this case. Let Φ(bC
2 ; rI) be the value of (B.5) at bC

2 ,
which is continuous in rI .

Case 3: Let vd = vm. Then, there is a unique bC(vd) ∈ [bC
(vm−), b

C
(vm+)]

which maximizes (B.5). This identifies a function bC
3 and value Φ(bC

3 ; rI). Since
b

C
(vm−; rI) and b

C
(vm+; rI) are continuous in rI , so is Φ(bC

3 ; rI).
Case 4: bC is constant at y on [vu� vC]. Then y ∈ [b(a)�b(a)] has to maxi-

mize

y

[
rI

∫ vC

vu
gI(v)dv+

∫ vC

vC
wC(

v� rI
)
dFC

]
+ ξ(y)�

The unique solution to this problem identifies a unique constant bC
4 and value

Φ(bC
4 ; rI), which is again continuous in rI .

Now, let b̂C be the function that solves maxj=1�2�3�4 Φ(bC
j ; rI). An argument

similar to that in Lemma A.5 establishes that

max
b∈B

VSC(
b−1(b)� rI

) =Φ
(
b̂C; rI

) + b(a)rI

∫ vu

vI
gI(v)dv�

which is therefore continuous in rI .
Now, let bC

un = b(aC
un) and let B∗ be the set of bC ∈ B that equal bC

un on
[vC� vC]. By construction, VSC(b−1(bC

un)� r
I) = maxb∈B∗VSC(b−1(b)� rI). I claim

that there is b̂C ∈ B\B∗ such that VSC(b−1(b̂C)� rI) > VSC(b−1(bC
un)� r

I). Fo-
cus on [vm� vC] and recall that (w.l.o.g.) wC is continuous on [vm� vC]. Since
rI > 0, GC implies wC(v� rI) > v/tC for v ∈ [vm� vC). I claim that wC(vm� r

I) >
vm/t

C. By the logic in Lemma A.6, wC(vm� r
I) ≤ wC(vm� r

I). If wC(vm� r
I) =

wC(vm� r
I), the claim follows. If wC(vm� r

I) < wC(vm� r
I), then there is v0 > vm

such that wC(v� rI) = wC(v0� r
I) on [vm�v0]; so, wC(vm� r

I) = wC(v0� r
I) ≥

v0/t
C > vm/t

C. Since wC is continuous and increasing, in either case there is
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v1 > vm such that wC(v� rI) > v/tC on [vm�v1]. Construct b̂C by letting b̂C(v) =
arg maxy∈[b(a)�b(a)] φ(y�v; rI) if v ∈ [vm� vC], and bC

un(v) if v ∈ [vI� vm). Then,
b̂C ∈ B, but b̂C(v) > bC

un(v) on [vm�v1]; so b̂C /∈ B∗. Finally, VSC(b−1(b̂C)� rI) −
VSC(b−1(bC

un)� r
I) equals∫ vC

vm

{[
b̂C(v)wC

(
v� rI

) + ξ
(
b̂C(v)

)]
− [

bC
un(v)w

C
(
v� rI

) + ξ
(
bC
un(v)

)]}
dFC > 0�

B.8. Proof of Proposition 4.5

Recall that, by (E), the j-device is fully defined by aj up to kj . Given aj ,
define hj =Uj(aj�pj). Then, ICji

1 becomes hj ≥ hi +Rj(ai) and (IRj) becomes
hj ≥ 0. Since Πj(aj�pj)=W j(aj)−Uj(aj�pj), the provider solves

PN =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

(aj �hj)Nj=1

(1 − σ)

N∑
j=1

γjW j
(
aj

) + σ

N∑
j=1

γj
[
W j

(
aj

) − hj)
]

s.t. ai increasing� hj ≥ hi +Rj
(
ai

)
� and

hj ≥ 0� for all j� i�

As in the proof of Lemma A.1 and Theorem 4.1, it is convenient to work
with the functions b ∈ B. Recall that W̃ j(bj) = W j(b−1(bj)) and R̃j(bi) =
Rj(b−1(bi)).

Step 1: There is b(a) low enough so that unused options suffice to satisfy ICji
1

for j > i. If j > i, vj < vi and

R̃i
(
bj

) = −
∫ vi

vj
bj(v)gi(v)dv−

∫ vj

vj
bj(v)Gji(v)dFj�

where

gi(v)= ti − 1
ti

vf i(v)− (
1 − Fi(v)

)
and

Gji(v)= qj(v)− f i(v)

f j(v)
qi(v);

if i > j, vj > vi and

R̃i
(
bj

) = −
∫ vj

vi
bj(v)ĝi(v)dv+

∫ vj

vj
bj(v)Ĝji(v)dFj�
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where

ĝi(v)= ti − 1
ti

vf i(v)+ Fi(v)�

Ĝji(v)= tj − 1
tj

v− 1 − Fj(v)

f j(v)
− f i(v)

f j(v)

[
ti − 1
ti

v − 1 − Fi(v)

f i(v)

]
�

Take j > i. Suppose ICji
1 is violated (and all other constraints hold): hj <

hi + R̃j(bi). Fix bi for v ≥ vi, and let bi(v)= b(a) for v < vi. Then,

Rj
(
bi

) = −b(a)

∫ vi

vj
ĝj(v)dv+

∫ vi

vi
bi(v)Ĝij(v)dFi�

LEMMA B.2:
∫ vi

vj
ĝj(v)dv < 0.

PROOF: Integrating by parts,∫ vi

vj
ĝj(v)dv = −

∫ vi

vj

(
v/tj

)
f j(v)dv+ Fj

(
vi

)
vi

=
∫ vi

vj

(
vi − (

v/tj
))
f j(v)dv�

Note that vi ≤ s ≤ v/tj , with strict inequality for v ∈ (vj� vi). Q.E.D.

So there is b(a) small enough so that the b̃i just constructed satisfies hj ≥
hi + R̃j (̃bi). We need to check the other constraints. For j′ < i, the values bi

takes for v < vi are irrelevant; so, ICj′i
1 are unchanged. For ĵ > i and ĵ 
= j, it

could be that Rĵ(̃bi) > Rĵ(bi), and b̃i may violate ICĵi
1 while bi did not. But since

Lemma B.2 holds for every j > i and N is finite, there is b(a) small enough so
that ICji

1 for all j > i.
Step 2: As usual, (IRN) and ICjN

1 imply (IRj) for j < N . Let Y = (B×R)N be
the subspace of (X × R)N , where X = {b|b : [v� v] → R}. Now, let Π̃(B�h) =∑N

j=1 γ
j[W̃ j(bj)− hj] and W̃ (B)= ∑N

j=1 γ
jW̃ j(bj). PN is equivalent to

P̃N =
{

max
{B�h}∈Y

(1 − σ)W̃ (B)+ σΠ̃(B�h)

s.t. Γ (B�h)≤ 0�

where Γ : (X ×R)N → R
r (r = 1 + N(N−1)

2 ) is given by Γ 1(B�h)= −hN and, for
j = 2� � � � � r, Γ j(B�h)= R̃i(bj)+ hj − hi for i < j.

Step 3: Existence of interior points.
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LEMMA B.3: In P̃N , there is {B�h} ∈ Y such that Γ (B�h) < 0.

PROOF: Γ (B�h) < 0 if and only if hN > 0 and hi > hj + R̃i(bj) for i < j. For
i = 1� � � � �N , let bi = bi

fb = b(ai
fb) on [vi� v] and possibly extend it on [v� vi) to

include appropriate unused options. Note that these extensions are irrelevant
for R̃j(bi) if j < i. Recall that R̃j(bi) ≥ 0 for j < i, and it can be easily shown
that R̃1(bi) ≥ R̃j(bi) for 1 < j < i. Thus, let hN = 1, and for i < N , let hi =
hi+1 + R̃1(bi+1)+ 1. Now, fix i < N and consider any j > i. We have

hi = hj +
j−i∑
n=1

R̃1
(
bi+n

) + (j − i)≥ hj + R̃i
(
bj

) + (j − i) > hj + R̃i
(
bj

)
�

Since R̃i(bj) are bounded and N is finite, the vector h so constructed is well
defined. Q.E.D.

Step 4: We can now use Corollary 1, p. 219, and Theorem 2, p. 221, of
Luenberger (1969) to characterize solutions of P̃N . Note that (X × R)N is a
linear vector space and Y is a convex subset of it. By Lemma B.3, Γ has inte-
rior points. Since Π̃ and W̃ are concave (b′′ < 0 and c′′ ≥ 0), the objective is
concave and Γ (B�h) is convex. For λ ∈ R

r
+, define L(B�h;λ) as

(1 − σ)W̃ (B)+ σΠ̃(B�h)+ λNhN −
N∑
i=1

∑
j<i

λji
[
R̃j

(
bi

) + hi − hj
]

=
N∑
i=1

γi

[
W̃ i

(
bi

) −
∑
j<i

λji

γi
R̃j

(
bi

)] +
N∑
i=1

hiμi(λ�γ�σ)�

where

μi(λ�γ�σ)=

⎧⎪⎪⎨⎪⎪⎩
∑
j>i

λij −
∑
j<i

λji − σγi� if i < N ,

λN −
∑
j<N

λjN − σγN� if i =N .

Then, {B�h} solves P̃N if and only if there is λ ≥ 0 such that L(B�h;λ) ≥
L(B′�h′;λ) and L(B�h;λ′) ≥ L(B�h;λ) for all {B′�h′} ∈ Y , λ′ ≥ 0. The first
inequality is equivalent to

bi ∈ arg max
b∈B

W̃ i(b)−
∑
j<i

λji

γi
R̃j(b)(B.6)
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and

hi ∈ arg max
h∈R

μi(λ�γ�σ)h�(B.7)

The second is equivalent to

−hN ≤ 0 and λNhN = 0�(B.8)

and, for j > i,

R̃i
(
bj

) + hj − hi ≤ 0 and λij
[
Ri

(
bj

) + hj − hi
] = 0�(B.9)

LEMMA B.4: If (B�h�λ) satisfies (B.6)–(B.9), then μi(λ�γ�σ)= 0 for all i.

PROOF: By (IRN) and ICiN , hi ≥ 0 for all i; so, μi(λ�γ�σ)≥ 0 for all i. Since
(1 −σ)W̃ (B)+σΠ̃(B�h) is bounded below by E(u1(a

nf; s))− c(anf) > 0, then
μi(λ�γ�σ)≤ 0 for all i. Q.E.D.

COROLLARY B.5: If σ = 0, then λ = 0. If σ > 0, IRN binds and, for every
i < N , there is j > i such that ICij binds.

PROOF: Lemma B.4 implies the second part. For the first part, since
μi(λ�γ�σ)= 0 for all i,

0 =
N∑
i=1

μi(λ�γ�σ)

=
N−1∑
i=1

[∑
j>i

λij −
∑
j<i

λji

]
+ λN −

∑
j<N

λjN − σ = λN − σ�

So, if σ = 0 = λN , then μN(λ�γ�σ) = 0 implies
∑

j<N λjN = 0. Hence, λjN = 0
for j < N . Suppose for all j ≥ i+ 1, λnj = 0 for all n < j. Then, μi(λ�γ�σ)= 0
implies

∑
j<i λ

ji = ∑
j>i λ

ij = 0. Hence, λji = 0 for all j < i. Q.E.D.

So, although by μi(λ�γ�σ) = 0 any hi ∈ R solves (B.7), the upward binding
constraints pin down h, once B has been chosen.

Thus, P̃N has a solution if there is (B�λ) so that, for every i, bi solves (B.6),
μi(λ�γ�σ) = 0, and (B.8) and (B.9) hold. By the arguments in the proof of
Theorem 4.1 (see Step 5 below), for λ ≥ 0, a solution bi to (B.6) always ex-
ists and is unique on (vi� vi) and is pointwise continuous in λ. Moreover, if
λji → +∞ for some j < i, then bi → b(anf) on (vj� vi), and R̃j(bi) → 0. And
since μi(λ�γ�σ) = 0, λij′ → +∞ for some j′ > i, so that R̃i(bj′) → 0 and
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hi → 0 (using the binding ICij′
1 ). So there is λji large enough to make (B.9)

hold. Finally, (B.8) always holds with hN = 0.
Step 5: Fix i > 1. Using (B.6), the expression of R̃n(bi), and ξ(·) = −b−1(·)−

c(b−1(·)), bi must maximize within B

VSi
(
bi;λi

) =
i−1∑
n=1

λni

∫ vn

vi
bi(v)gn(v)dv

+
∫ vi

vi

[
bi(v)wi

(
v�λi

) + ξ
(
bi(v)

)]
dFi�

where λi ∈ R
i−1
+ and

wi
(
v;λi

) = v

ti
+

i−1∑
n=1

λniqi(v)−
i−1∑
n=1

λni f
n(v)

f i(v)
qn(v)�

We can apply to VSi(bi;λi) the method used in the two-type case to character-
ize bI (Theorem 4.1). If λi = 0, VSi(bi;0) = W̃ i(bi) and bi = bi

fb = b(ai
fb) on

(vi� vi). For v > vi, let bi(v) = bi(vi). For v < vi, bi(v) may be strictly smaller
than bi(vi) to satisfy ICji

1 for j > i.
Suppose λni > 0 for some n < i. Apply the Myerson–Toikka ironing method

on (vi� vi), by letting zi(x;λi) = wi((Fi)−1(x);λi) and Zi(x;λi) =∫ x

0 zi(y;λi) dy . Let Ωi(x;λi) = conv(Zi(x;λi)), and ωi(x;λi) = Ωi
x(x;λi)

wherever defined. Extend ωi by right-continuity, and at 1 by left-continuity.
For ωi to be continuous, it is enough to show that, if zi is discontinuous
at x, then zi jumps down at x. To see this, note that wi can be discontinu-
ous only at points like vj for j < i and such that vj ∈ (vi� vi). At such a point, let
wi(vj+;λi) = limv↓vj wi(v;λi) and wi(vj−;λi) = limv↑vj wi(v;λi). For n < j,
vn > vj and hence f n(vj)= 0. So

wi
(
vj+;λi

) = vj

ti
+

i−1∑
n=1

λniqi
(
vj

) −
i−1∑
n=j

λni
f n

(
vj

)
f i

(
vj

) qn
(
vj

)
�

wi
(
vj−;λi

) = vj

ti
+

i−1∑
n=1

λniqi
(
vj

) −
i−1∑

n=j+1

λni
f n

(
vj

)
f i

(
vj

) qn
(
vj

)
�

Then,

wi
(
vj−;λi

) −wi
(
vj+;λi

) = λji
f j

(
vj

)
f i

(
vj

)qj
(
vj

) ≥ 0�
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since qj(vj) = (1 − tj)(vj/tj) ≥ 0. Letting wi(v;λi) = ωi(Fi(v);λi) for v ∈
(vi� vi), construct VS

i
as in the proof of Theorem 4.1.

Note that gn(v) < 0 for v ∈ (vi� vn). So, since λni > 0 for some n < i, the first
term in VSi is strictly negative. Let n = min{n : λni > 0}. Then, on (vi� vn), the
characterization of Lemma A.3 extends to VS

i
. So bi must be constant at yib on

(vib� vn), where vib ≤ vi and yib ≤ b
i
(vi). Moreover, yib = b

i
(vib), if vib > vi; and

bi(v) = b
i
(v) for v ∈ [vi� vib]. The argument in Lemma A.4 yields that there

is a (unique) maximizer of VS
i
. The argument in Lemma A.5 implies that the

(unique) maximizer of VS
i

is also the (unique) maximizer of VSi.
Step 6: Properties of the solutions to (B.6). Suppose λni > 0 for some n < i

and define n as before. The analog of the ironing condition for vb applies to vib:

∫ vi

vib

[
wi

(
y;λi

) −wi
(
vib;λi

)]
dFi = −

i−1∑
n=n

λni

∫ vn

vi
gn(v)dv�

Since the sum is negative, vib < vi. This condition can be written as

∫ vi

vib

[
wi

(
vib;λi

) − (
v/ti

)]
dFi

=
i−1∑
n=n

λni

[∫ vi

vib
Gin(v)dFi +

∫ vn

vi
gn(v)dv

]
�

To prove that wi(vib;λi) < vi/ti, it is enough to observe that the right-hand side
is negative by (A.14). So, bi exhibits bunching on [vib� vn] at value yib < bi

fb(v
i).

Now consider the bottom of [vi� vi]. By the logic in Lemma A.6, wi(vi;λi)≤
wi(vi;λi), with strict inequality if vib > vi. Moreover, for v < vi−1, wi(v�λi) =
v/ti +∑i−1

n=1 λ
niqi(v) and wi(vi;λi)= (vi/ti)[1 + (1 − ti)

∑i−1
n=1 λ

ni] > vi/ti. So, if
wi(vi;λi) = wi(vi;λi), then bi(vi;λi) > bi

fb(v
i). Otherwise, ironing occurs on

[vi� vib] 
= ∅ and

∫ vib

vi

[
wi

(
y;λi

) −wi
(
vib;λi

)]
dFi = 0�

which corresponds to

∫ vib

vi

[
y/ti −wi

(
vib;λi

)]
dFi = −

i−1∑
n=1

λni

∫ vib

vi
Gin(y)dFi�
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Now, for n < i,∫ vib

vi
Gin(y)dFi =

∫ vib

vi
qi(y)dFi −

∫ vib

vi
qn(y)dFn

=
∫ vib/t

i

vib/t
n

(
s − vib

)
dF > 0�

So wi(vib;λi) > vi/ti, and bi(vi;λi) > bi
fb(v

i).
Finally, note that for v < v′ < vi−1,

wi
(
v′;λi

) −wi
(
v;λi

) = v′ − v

ti

[
1 +

i−1∑
n=1

λni
(
1 − ti

)]

+
i−1∑
n=1

λni

[
Fi

(
v′)

f i
(
v′) − Fi(v)

f i(v)

]
�

So, wi(·;λi) will be decreasing in a neighborhood of vi if, for s′ > s in [s� s†],

F
(
s′)/f (

s′) − F(s)/f (s)

s′ − s
≥ 1

ti

[(
1 − ti

) +
(

i−1∑
n=1

λni

)−1]
�

Hence, bunching at the bottom is more likely if ti is closer to 1 and
∑i−1

n=1 λ
ni is

large, that is, if the provider assigns large shadow value to not increasing the
rents of types below i.

APPENDIX C: ILLUSTRATIVE EXAMPLE’S CALCULATIONS

Let s = 10, s = 15, and t = 0�9. We first characterize the first-best C- and
I-device. By Corollary 3.1, pC

e must be constant; by Proposition 3.1, it must
extract the entire surplus that C derives from the C-device, thereby leaving C
with expected utility m. With regard to the I-device, again by Corollary 3.1, for
a ∈ [100�225] we have pI

e(a) = pC
e +qI(a) such that qI(e(s))= q0�9(s) for every

s ∈ [s� s]. Therefore, using the formula in Corollary 3.1,

dqI(a)

da
= dq0�9(s)/ds

de(s)/ds
= −0�1�

So qI(a) = k−0�1a, where k is set so that I expects to pay pC
e (Proposition 3.1).

Consider now the difference between C’s and I’s expected utility from the
efficient I-device (i.e., RC(aI

fb)). Recall that pI
e(a) = +∞ for a /∈ [100�225].
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Under this I-device, at time 2 type C chooses αC(s)= s2

t2
for s < s

t
and αC(s) = s

otherwise. Thus

RC
(
aI
fb

) = m−pC
e − k+

∫ s

s

[
2s

√
αC(s)− tαC(s)

] ds

s − s

−
{
m−pC

e − k+
∫ s

s

[
2s

√
e(s)− te(s)

] ds

s − s

}
= 1 − t

3t(s − s)

[
s3(3 − t)t − (1 + t)s3

]
�

Substituting the values of s, s, and t, we get RC(aI
fb)≈ 33�18.

To compute the difference between I’s and C’s expected utilities from the
efficient C-device (i.e., RI(aC

fb)), recall that pC
e (a) = +∞ for a /∈ [100�225].

Given this, at time 2 type I chooses αI(s) = t2s2 for s > s

t
and αI(s) = s other-

wise. Thus

RI
(
aC
fb

) = m−pC
e +

∫ s

s

[
2s

√
αI(s)−αI(s)

] ds

s − s

−
{
m−pC

e +
∫ s

s

[
2s

√
e(s)− e(s)

] ds

s − s

}

= (1 − t)2

3(s − s)

[
s3t−2 − s3]�

Substituting s, s, and t, we get RI(aC
fb)≈ −1�43.

The properties of the screening I-device follow from the argument in the
proof of Corollary 4.3 above. The thresholds sb and sb can be computed us-
ing formulas (B.2) and (B.4) for vb and vb. Regarding the range [ab� a

b], we
have that ab = [wI(vb; rC)]2 and ab = [wI(vb; rC)]2, where wI(v; rC) is given in
(B.1). These formulas depend on rC = γ

1−γ
+ μ

1−γ
, but in this example μ = 0

because unused options are always enough to deter I from taking the C-
device (see below). Varying γ ∈ (0�1) delivers the values in Figure 1 of the
main text. By Proposition 4.2, when the provider completely removes flexi-
bility from the I-device, she induces I to choose the ex ante efficient action
anf = ( s+s

2 )2 = 156�25.
The most deterring unused option for the C-device depends on vu in Propo-

sition 4.3. As shown in its proof, vu = sup{v ∈ [vI� vC] | gI(v) < 0} where

gI(v)= t − 1
t

vf I(v)+ F I(v)= 1
t(s − s)

[
(2t − 1)s − s

t

]
�

which is strictly increasing since t > 1/2. Since vC = s and gI(s) = 2(t−1)s
t2(s−s)

< 0,
we have vu = s. That is, the most deterring C-device induces I to choose the
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unused option with a= 0 whenever s < s

t
. The associated payment must render

I indifferent at time 2 between saving αI(s/t) = s2 and zero in state s

t
:

m−pC(0)= m−pC
(
s2

) − s2 + 2t
(
s

t

)√
s2�

Substituting and rearranging, we get pC(0)= pC(100)− 100.
We can now compute the difference in I’s expected utility between the C-

device with and without the unused option. This depends only on I’s different
choices for states in [s� s/t), and hence it equals∫ s/t

s

[−pC(0)
] ds

s − s
−

∫ s/t

s

[−pC
(
s2

) − s2 + 2s
√
s2

] ds

s − s
= s3

(
1 − t2

)
t2(s − s)

�

Using the parameters’ values, this difference is −46�91. Since it exceeds
RC(aI

fb) ≈ 33�18, I would never choose the C-device that contains unused op-
tion (0�pC(0)).

APPENDIX D: OUTSIDE OPTION WITH TYPE-DEPENDENT VALUES

After rejecting all the provider’s devices at time 1, the agent will make cer-
tain state-contingent choices at time 2, which can be described with (a0�p0) us-
ing the formalism of Section 4.1. For simplicity, consider the two-type model.
By Proposition 4.1, UC(a0�p0)≥U I(a0�p0) with equality if and only if a0 is con-
stant over (v� v). So C and I value the outside option differently, unless they
always end up making the same choice.

When UC(a0�p0) > U I(a0�p0), the analysis in Section 4 can be adjusted
without changing its thrust. The constraints (IRC) and (ICC

1 ) set two lower
bounds on C’s payoff from the C-device: one endogenous (i.e., UC(aI�pI) =
U I(aI�pI) + RC(aI)) and one exogenous (i.e., UC(a0�p0) = U I(a0�p0) +
RC(a0)). The question is which binds first. In Section 4, (ICC

1 ) always binds
first, for (IRI) and (ICC

1 ) imply (IRC). Now this is no longer true. Intuitively, if
(ICC

1 ) binds first, then we are in a situation similar to Section 4; so the provider
will distort the I-device as shown in Section 4.2.1 If (IRC) binds first, then obvi-
ously the provider has no reason to distort the I-device. For example, she will
never distort the I-device, if the outside option sustains the efficient outcome
with I—that is, a0 = aI

fb over [vI� vI]. In this case, she must grant C at least the
rent RC(a0), which already exceeds RC(aI

fb). Finally, if (ICI
1) binds, then the

provider will design the C-device as shown in Section 4.3.2

1This case is more likely when the outside option involves little flexibility, so that RC(a0) is
small.

2We can extend this argument to settings in which, at time 1, the agent has access to other
devices if he rejects the provider’s ones. In these settings, (a0�p0) can be type-dependent.
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APPENDIX E: FINITELY MANY STATES AND IRRELEVANCE OF
ASYMMETRIC INFORMATION

This section shows that if the set of states S is finite, then the provider may
be able to always sustain the efficient outcome e, even if she cannot observe the
agent’s degree of inconsistency. To see the intuition, consider a two-state case
with s2 > s1. If the provider can observe t, she sustains α∗

2 = e(s2) > e(s1) = α∗
1,

with payments π1 =π t(s1) and π2 =π t(s2) that satisfy

u2

(
α∗

2; s2� t
) − u2

(
α∗

1; s2� t
) ≥ π2 −π1 ≥ u2

(
α∗

2; s1� t
) − u2

(
α∗

1; s1� t
)
�(E.1)

which follows from (IC). Since u2(a; s� t) has strictly increasing differences in
(a� s), having a discrete S creates some slack in (IC) at e: For any t, (E.1) does
not pin down π1 and π2 uniquely. Suppose tI is close to tC. Intuitively, to sustain
e with each type, the provider should be able to use incentive schemes that are
sufficiently alike; also, since discrete states leave some leeway in the payments,
she may be able to find one scheme that works for both types. If instead tI is far
from tC, the provider must use different schemes to sustain e with each type.
Since tI < tC, I is tempted to pick α∗

1 also in s2, and the more so, the lower
is tI . So, for I not to choose α∗

1 in s2, α∗
1 must be sufficiently more expensive

than α∗
2, and this gap must rise as tI falls. At some point, this gap must exceed

C’s willingness to pay for switching from α∗
2 to α∗

1 in s1.
Proposition E.1 formalizes this intuition. Consider a finite set T of types,

which may include both t > 1 and t < 1; let t = maxT and t = minT .

PROPOSITION E.1: Suppose S is finite and sN > sN−1 > · · · > s1. There is
a single commitment device that sustains e with each t ∈ T if and only if
t/t ≤ mini si+1/si.

PROOF: With N states, (IC) becomes

u2(αi; si� t)−πi ≥ u2(αj; si� t)−πj

for all i� j, where αi =α(si) and πi =π(si). By standard arguments, it is enough
to focus on adjacent constraints. For i = 2� � � � �N , let Δi = πi −πi−1. If α∗ = e
for all i, then α∗

N > α∗
N−1 > · · · > α∗

1 (Assumption 2.1). To sustain e with t, Δi

must satisfy

u2

(
α∗
i ; si� t

) − u2

(
α∗
i−1; si� t

) ≥ Δi ≥ u2

(
α∗
i ; si−1� t

) − u2

(
α∗
i−1; si−1� t

)
�(CICi�i−1)

for i = 2� � � � �N . For any s and t, u2(a
′; s� t) − u2(a; s� t) = ts(b(a′) − b(a)) −

a′ + a. Let sk/sk−1 = mini si/si−1, and suppose tsk−1 > skt. Then,

u2

(
α∗
k; sk−1� t

) − u2

(
α∗
k−1; sk−1� t

)
> u2

(
α∗
k; sk� t

) − u2

(
α∗
k−1; sk� t

)
�
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and no Δk satisfies (CICk�k−1) for both t and t. If instead tsi ≥ tsi−1 for i =
2� � � � �N , then for every t and i,

u2

(
α∗
i ; si� t

) − u2

(
α∗
i−1; si� t

) ≥ u2

(
α∗
i ; si−1� t

) − u2

(
α∗
i−1; si−1� t

)
≥ u2

(
α∗
i ; si−1� t

) − u2

(
α∗
i−1; si−1� t

)
�

Set Δ∗
i = u2(a

∗
i ; si−1� t)− u2(a

∗
i−1; si−1� t). Then {Δ∗

i }Ni=2 satisfies all (CICi�i−1) for
every t. The payment rule π∗

i = π∗
1 + ∑i

j=2 Δ
∗
j —with π∗

1 small to satisfy (IR)—
sustains e with each t. Q.E.D.

So, if the heterogeneity across types (measured by t/t) is small, the provider
can sustain e without worrying about time-1 incentive constraints.

The condition in Proposition E.1, however, is not necessary for the unobserv-
ability of t to be irrelevant when sustaining e. Even if t/t is large, the provider
may be able to design different devices such that each sustains e with one t,
and each t chooses the device for himself (‘t-device’). To see why, consider an
example with two types, th > tl, and two states, s2 > s1. Suppose th > 1 > tl,
ths1 > tls2, but s2 > s1t

h and s2t
l > s1. Consider all (π1�π2) that satisfy (E.1)

and (IR) with equality:

(1 − f )π2 + fπ1 = (1 − f )u1

(
α∗

2; s2

) + fu1

(
α∗

1; s1

)
�

where f = F(s1). Finally, choose (πh
1 �π

h
2 ) so that h’s self-1 strictly prefers α∗

2 in
s2—i.e., u1(α

∗
2; s2)−πh

2 > u1(α
∗
1; s2)−πh

1 —and (πl
1�π

l
2) so that l’s self-1 strictly

prefers α∗
1 in s1—that is, u1(α

∗
1; s1) − πl

1 > u1(α
∗
2; s1) − πl

2. Then, the l-device
(respectively, h-device) sustains e and gives zero expected payoffs to the agent
if and only if l (h) chooses it. Moreover, l strictly prefers the l-device and h the
h-device. To see this, note that if self-1 of either type had to choose at time 2,
under either device he would strictly prefer to implement e. So, by choosing
the ‘wrong’ device, either type can only lower his payoff below zero.

Proposition E.2 gives a necessary condition for the unobservability of t to be
irrelevant when sustaining e. Let T 1 = T ∩ [0�1] and T 2 = T ∩ [1�+∞). For
k= 1�2, let tk = maxTk and tk = minTk.

PROPOSITION E.2: Suppose S is finite and sN > sN−1 > · · · > s1. If max{t1
/t1,

t
2
/t2} > mini si+1/si, then there is no set of devices, each designed for a t ∈ T , such

that (i) t chooses the t-device, (ii) the t-device sustains e with t, and (iii) all t get
the same expected payoff.

PROOF: Suppose max{t1
/t1� t

2
/t2} = t

1
/t1—the other case is similar—and

that there exist devices that satisfy (i)–(iii). Let U be each t’s expected pay-
off and p be the payment rule in the t1-device. Given p, let ai(t) be an opti-
mal choice of t ∈ T 1 in si. For t1, ai(t

1) = α∗
i for every i. Let S = {i : si+1/si <



18 SIMONE GALPERTI

t
1
/t1} 
= ∅. Then, (a) for every i, t1

si > t1si and hence ai(t
1
) ≥ α∗

i ; (b) for i ∈ S,
t

1
si > t1si+1, and so ai(t

1
)≥ α∗

i+1 >α∗
i . Since t ≤ 1, (a) and (b) imply

p
(
ai

(
t

1)) − p
(
α∗
i

) ≤ u2

(
ai

(
t

1); si� t1) − u2

(
α∗
i ; si� t1)

≤ u1

(
ai

(
t

1); si) − u1

(
α∗
i ; si

)
�

where the first inequality is strict for i ∈ S. The expected payoff of t1 from p is
then

N∑
i=1

[
u1

(
ai

(
t

1); si) − p
(
ai

(
t

1))]
fi >

N∑
i=1

[
u1

(
α∗
i ; si

) − p
(
α∗
i

)]
fi = U�

where fi = F(si)− F(si−1) for i = 2� � � � �N and f1 = F(s1). Q.E.D.

So, if T 1 \ {1} = ∅ or T 2 \ {1} = ∅, the condition in Proposition E.1 is also
necessary for the provider to be able to sustain e, even if she cannot observe t.
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