SUPPLEMENT TO "COMMITMENT, FLEXIBILITY, AND OPTIMAL SCREENING OF TIME INCONSISTENCY"

(Econometrica, Vol. 83, No. 4, July 2015, 1425–1465)

BY SIMONE GALPERTI

Appendix B contains all omitted proofs of the main paper. Appendix C contains the calculations for the illustrative example. Appendix D discusses the case of outside options with type-dependent values. Appendix E discusses the case of finitely many states.

APPENDIX B: OMITTED PROOFS

B.1. Proof of Proposition 3.1 and Corollary 3.1

IF $\sigma > 0$, (IR) MUST BIND; if $\sigma = 0$, assume w.l.o.g. that (IR) holds with equality. The problem becomes

$$\max_{\boldsymbol{\alpha}^t} \left\{ \int_s^{\overline{s}} \left[u_1(\boldsymbol{\alpha}^t(s); s) - c(\boldsymbol{\alpha}^t(s)) \right] dF \right\} \quad \text{s.t.} \quad \text{(IC)}.$$

Ignoring (IC), this problem has a unique solution (up to $\{\underline{s}, \overline{s}\}$): $\alpha^t \equiv \mathbf{e}$. Since \mathbf{e} is increasing and t > 0, by standard arguments, there is $\pi_{\mathbf{e}}^t$ such that $(\mathbf{e}, \pi_{\mathbf{e}}^t)$ satisfies (IC). Specifically, for every s,

$$\boldsymbol{\pi}_{\mathbf{e}}^{t}(s) = u_{2}(\mathbf{e}(s); s, t) - \int_{s}^{s} tb(\mathbf{e}(y)) dy - k,$$

where $k \in \mathbb{R}$. Since **e** is differentiable,

$$\frac{d\boldsymbol{\pi}_{\mathbf{e}}^{t}(s)}{ds} = \frac{\partial u_{2}(\mathbf{e}(s); s, t)}{\partial a} \frac{d\mathbf{e}(s)}{ds},$$

which equals $c'(\mathbf{e}(s))\frac{d\mathbf{e}(s)}{ds}$ if and only if t = 1 by the definition of \mathbf{e} and Assumption 2.1. The expression of $\frac{d\mathbf{q}^t}{ds}$ follows from the definition of u_1 and u_2 .

B.2. Proof of Corollary 4.2

Being increasing, \mathbf{a}_{sb}^{I} is differentiable a.e. on $[\underline{v}, \overline{v}]$. If $\frac{d\mathbf{a}_{sb}^{I}}{dv} > 0$ at v, then using condition (E),

$$\frac{d\mathbf{p}_{sb}^{I}/dv}{d\mathbf{a}_{sb}^{I}/dv} = vb'(\mathbf{a}_{sb}^{I}(v)) - 1 \quad \text{and} \quad \frac{d\mathbf{p}_{fb}^{I}/dv}{d\mathbf{a}_{fb}^{I}/dv} = vb'(\mathbf{a}_{fb}^{I}(v)) - 1.$$

DOI: 10.3982/ECTA11851

The result follows from b'' < 0 and Theorem 4.1(a).

B.3. Proof of Lemma A.2

(Continuity in x). Suppress r^C . For $x \in (0,1) \setminus \{x^m\}$, z is continuous, so Z'(x) = z(x). If $\Omega(x) < Z(x)$, by definition, $\omega(\cdot)$ is constant in a neighborhood of x. Suppose $\Omega(x) = Z(x)$. Since Ω is convex and $\Omega \le Z$, their right and left derivatives satisfy $\Omega^+(x) \le Z^+(x)$ and $\Omega^-(x) \ge Z^-(x)$. Since $\Omega^-(x) \le \Omega^+(x)$ and Z is differentiable at x, $\Omega^-(x) = \Omega^+(x)$; so ω is continuous at x. Finally, consider x^m . If $v^m = \overline{v}^l$, then $x^m = 1$ and we are done. For $x^m \in (0,1)$, ω is continuous if $\Omega(x^m) < Z(x^m)$ when z jumps at x^m . Recall that $z(x^m-) = \lim_{v \uparrow v^m} w^l(v; r^C)$ and $z(x^m+) = z(x^m) = \lim_{v \downarrow v^m} w^l(v; r^C)$. By expression (A.8), z can only jump down at x^m , so $z(x^m-) > z(x^m)$. Suppose $\Omega(x^m) = Z(x^m)$. By the previous argument, $\Omega^+(x^m) \le Z^+(x^m) = z(x^m)$. By convexity, $\omega(x) \le \Omega^-(x^m)$ for $x \le x^m$. So, for x close to x^m from the left, we get the following contradiction:

$$\Omega(x) = \Omega(x^m) - \int_x^{x^m} \omega(y) \, dy > Z(x^m) - \int_x^{x^m} z(y) \, dy = Z(x).$$

(Continuity in r^C). Given x, $Z(x; r^C)$ is continuous in r^C . So Ω is continuous if $x \in \{0,1\}$, since $\Omega(0; r^C) = Z(0; r^C)$ and $\Omega(1; r^C) = Z(1; r^C)$. Consider $x \in (0,1)$. For $r^C \ge 0$, by definition, $\Omega(x; r^C) = \min\{\tau Z(x_1; r^C) + (1-\tau)Z(x_2; r^C)\}$ over all τ , $x_1, x_2 \in [0,1]$ such that $x = \tau x_1 + (1-\tau)x_2$. By continuity of $Z(x; r^C)$ and the Maximum Theorem, $\Omega(x,\cdot)$ is continuous in r^C for every x. Moreover, $\Omega(\cdot; r^C)$ is differentiable in x with derivative $\omega(\cdot; r^C)$. Fix $x \in (0,1)$ and any sequence $\{r^C_n\}$ with $r^C_n \to r^C$. Since $\Omega(x; r^C_n) \to \Omega(x; r^C)$, Theorem 25.7, p. 248, of Rockafellar (1970) implies $\omega(x; r^C_n) \to \omega(x; r^C)$.

B.4. Proof of Lemma A.6

Recall that $\overline{w}^I(\underline{v}^I) = \omega(0)$ and $w^I(\underline{v}^I) = z(0)$. If $\omega(0) > z(0)$, since z is continuous on $[0, x^m]$ and ω is increasing, there is x > 0 such that $\omega(y) > z(y)$ for $y \le x$. Since $Z(0) = \Omega(0)$, we get the contradiction

$$Z(x) = Z(0) + \int_0^x z(y) \, dy < \Omega(0) + \int_0^x \omega(y) \, dy = \Omega(x).$$

If $\omega(0) < z(0)$, let $\hat{x} = \sup\{x \mid \forall x' < x, \ \omega(x') < z(x')\}$. By continuity, $\hat{x} > 0$. Then, for $0 < x < \hat{x}$,

$$Z(x) = Z(0) + \int_0^x z(y) \, dy > \Omega(0) + \int_0^x \omega(y) \, dy = \Omega(x).$$

It follows that $v_b \ge (F^I)^{-1}(\hat{x}) > \underline{v}^I$.

B.5. Proof of Corollary 4.3

Let $t^C = 1$. Since F is uniform, $F^i(v) = v - \underline{v}^i$. Using (A.7),

$$(B.1) w^{I}(v; r^{C}) = \begin{cases} (v/t^{I})(1 + r^{C}(1 - 2t^{I})) + r^{C}\underline{v}^{I}, & \text{if } v \in [\underline{v}^{I}, \underline{v}^{C}), \\ (v/t^{I})(1 + r^{C}(t^{I} - 1)^{2}), & \text{if } v \in [\underline{v}^{C}, \overline{v}^{I}]. \end{cases}$$

The function w^I is continuous at \underline{v}^C . It is strictly increasing and greater than v/t^I on $[\underline{v}^C, \overline{v}^I]$, as $r^C > 0$ and $t^I < 1$; w^I is strictly increasing on $[\underline{v}^I, \underline{v}^C)$ if and only if $t^I < 1/2$ or $t^C < (2t^I - 1)^{-1} = \overline{t}^C$.

Consider first v^b and v_b , when $v^b > v_b$. If $t^I \le 1/2$ or $r^C < \overline{r}^C$, then w^I is strictly increasing and equals \overline{w}^I (see the proof of Theorem 4.1); so $\overline{\mathbf{a}}^I$ (see (A.9)) is strictly increasing on $[\underline{v}^I, \overline{v}^I]$, and $v_b = \underline{v}^I$. Otherwise, $v_b \ge \underline{v}^C > \underline{v}^I$ and v_b is characterized by (A.16):

(B.2)
$$(v_b - \underline{v}^I)^2 = \frac{r^C (t^I)^2}{1 + r^C (t^I - 1)^2} (\underline{v}^C - \underline{v}^I)^2.$$

Since w^I is strictly increasing on $[v_b, \overline{v}^I]$, it equals \overline{w}^I . Using (A.15), v^b must satisfy

(B.3)
$$\int_{v^b}^{\overline{v}^I} \left[w^I(y; r^C) - w^I(v^b; r^C) \right] dy = -\left(\overline{v}^I - \underline{v}^I \right) r^C \int_{\overline{v}^I}^{\overline{v}^C} g^C(y) \, dy.$$

The derivative of the right-hand side of (B.3) with respect to v^b is $-w_v^I(v^b; r^C) \times (\overline{v}^I - v^b) < 0$. So, for $r^C > 0$, there is a unique $v^b > v_b$ that satisfies (B.3). Letting $K = \int_{\overline{v}^C}^{\overline{v}^C} g^C(y) \, dy < 0$, (B.3) becomes

(B.4)
$$-r^{C} \left[2t^{I} \left(\overline{v}^{I} - \underline{v}^{I} \right) K \right] = \left(1 + r^{C} \left(t^{I} - 1 \right)^{2} \right) \left(\overline{v}^{I} - v^{b} \right)^{2}$$

if $v^b \ge \underline{v}^C$, and

$$-r^{C}[2t^{I}(\overline{v}^{I}-v^{I})K] = r^{C}(t^{I})^{2}(\overline{v}^{I}-v^{C})^{2} + (1+r^{C}(1-2t^{I}))(\overline{v}^{I}-v^{b})^{2}$$

if $v^b < \underline{v}^C$. So, if $t^I > 1/2$, the function $v_b(r^C)$ is constant at \underline{v}^I for $r^C < \overline{r}^C$, and at \overline{r}^C , it jumps from \underline{v}^I to \underline{v}^C . Monotonicity for $r^C > \overline{r}^C$ follows by applying the Implicit Function Theorem to (B.2):

$$\frac{dv_{b}}{dr^{C}} = \frac{1}{2} \left[\frac{t^{I}}{1 + r^{C}(t^{I} - 1)^{2}} \right]^{2} \frac{\left(\underline{v}^{C} - \underline{v}^{I}\right)^{2}}{\left(v_{b} - \underline{v}^{I}\right)} > 0.$$

Similarly,

$$\frac{dv^{\mathbf{b}}}{dr^{C}} = \begin{cases} -\frac{\overline{v}^{I} - v^{\mathbf{b}}}{2r^{C} \left[1 + r^{C} \left(t^{I} - 1\right)^{2}\right]} < 0, & \text{if } v^{\mathbf{b}} \geq \underline{v}^{C}, \\ -\frac{\overline{v}^{I} - v^{\mathbf{b}}}{2r^{C} \left(1 + r^{C} \left(1 - 2t^{I}\right)\right)} < 0, & \text{if } v^{\mathbf{b}} < \underline{v}^{C}; \end{cases}$$

for the second inequality, recall that $v_b < v^b < \underline{v}^C$ if and only if $t^I \leq 1/2$ or $r^C < \overline{r}^C$.

Consider now the behavior of $\mathbf{b}^I(r^C) = b(\mathbf{a}_{sb}^I)$, which matches that of \mathbf{a}_{sb}^I for any r^C . By Theorem 4.1 and Assumption 2.1, $\mathbf{b}^I(v; r^C) \in (b(\underline{a}), b(\overline{a}))$. Also, $\mathbf{b}^I(v; r^C)$ solves $\max_{y \in [b(\underline{a}), b(\overline{a})]} \{y\overline{w}^I(v; r^C) + \xi(y)\}$. By strict concavity of $\xi(y)$, it is enough to study how $\overline{w}^I(r^C)$ relates to v/t^I . The function $\overline{w}^I(\cdot; r^C)$ crosses v/t^I only once at $v^* \in (\underline{v}^I, \overline{v}^I)$. Also, $\overline{w}^I(v; r^C) = w^I(v; r^C)$ on $[v_b, v^b]$. So, it is enough to show that, as r^C rises, $w^I(v^b(r^C); r^C)$ falls and $w^I(v_b(r^C); r^C)$ rises.

LEMMA B.1: Suppose v^b and v_b are characterized by (A.15) and (A.16). If $w_v^I(v^b;r^C)>0$ and $w_v^I(v_b;r^C)>0$, then $\frac{d}{dr^C}w^I(v^b(r^C);r^C)<0$ and $\frac{d}{dr^C}w^I(v_b(r^C);r^C)>0$.

PROOF: It follows by applying the Implicit Function Theorem to (A.15) and (A.16). Q.E.D.

Consider $w^I(v_b(r^C); r^C)$. If $t^I \leq 1/2$ or $r^C < \overline{r}^C$, then $v_b(r^C) = \underline{v}^I$ and $w^I_r(\underline{v}^I; r^C) = (1 - t^I)(\underline{v}^I/t^I) > 0$. If $t^I > 1/2$, then $w^I(\underline{v}^I; r^C) \uparrow w^I(\underline{v}^I, \overline{r}^C) = w^I(\underline{v}^C, \overline{r}^C)$ as $r^C \uparrow \overline{r}^C$. By Lemma B.1, $w^I(v_b(r^C); r^C)$ increases in r^C , for $r^C > \overline{r}^C$, because $w^I_v(v_b(r^C); r^C) > 0$ when $v_b > \underline{v}^C$. Similarly, $w^I(v^b(r^C); r^C)$ decreases in r^C , because $w^I_v(v^b(r^C); r^C) > 0$ when $v^I_v(v^I) = v^I_v(v^I)$.

B.6. Proof of Corollary 4.4

Fix \mathbf{a}_{sb}^{I} and recall that it minimizes $R^{C}(\mathbf{a}^{I})$ among all increasing \mathbf{a}^{I} equal to \mathbf{a}_{sb}^{I} on $[\underline{v}^{I}, \overline{v}^{I}]$. Using (A.18) and \mathbf{a}_{un}^{C} from Proposition 4.3, condition (R) becomes

$$\begin{split} \left[b(\underline{a}) - b(\mathbf{a}_{fb}^{C}(\underline{v}^{C}))\right] \int_{\underline{v}^{I}}^{v_{u}} g^{I}(v) \, dv \\ &\geq R^{C}(\mathbf{a}_{sb}^{I}) + \int_{\underline{v}^{C}}^{\overline{v}^{C}} b(\mathbf{a}_{fb}^{C}(v)) G^{C}(v) \, dF^{C} \\ &- b(\mathbf{a}_{fb}^{C}(\underline{v}^{C})) \int_{v^{I}}^{\underline{v}^{C}} g^{I}(v) \, dv. \end{split}$$

Since \mathbf{a}_{fb}^{C} and \mathbf{a}_{sb}^{I} are infeasible, the right-hand side is positive. $R^{C}(\mathbf{a}_{sb}^{I})$ has been minimized. The result follows, since $\int_{v^{I}}^{v_{u}} g^{I}(v) dv < 0$.

B.7. Proof of Lemma A.8

The proof uses $\mathbf{b} \in \mathcal{B}$ (see the proof of Lemma A.1). Suppose $r^I > 0$. Using $\widetilde{R}^I(\mathbf{b}) = R^I(b^{-1}(\mathbf{b}))$ in (A.18), write $\widetilde{W}^C(\mathbf{b}) - r^I \widetilde{R}^I(\mathbf{b})$ as

$$VS^{C}(b^{-1}(\mathbf{b}), r^{I}) = \int_{\underline{v}^{C}}^{\overline{v}^{C}} [\mathbf{b}(v)w^{C}(v, r^{I}) + \xi(\mathbf{b}(v))] dF^{C}$$
$$+ r^{I} \int_{v^{I}}^{\underline{v}^{C}} \mathbf{b}(v)g^{I}(v) dv,$$

where $w^C(v,r^I) = v/t^C - r^I G^C(v)$. Note that w^C is continuous in v, except possibly at \overline{v}^I if $\overline{v}^I \geq \underline{v}^C$, where it can jump up. Using the method in the proof of Theorem 4.1, let $\overline{w}^C(v;r^I)$ be the generalized version of w^C . By the argument in Lemma A.2, $\overline{w}^C(v;r^I)$ is continuous in v over $[\underline{v}^C,\overline{v}^C]$ —except possibly at \overline{v}^I , where we can assume right- or left-continuity w.l.o.g.—and in r^I . Now, on $[v^C,\overline{v}^C]$, let $\phi(y,v;r^I) = y\overline{w}^C(v;r^I) + \xi(y)$ and

$$\overline{\mathbf{b}}^{C}(v; r^{I}) = \arg\max_{y \in [b(\underline{a}), b(\overline{a})]} \phi(y, v; r^{I}).$$

Since \overline{w}^C is increasing by construction, $\overline{\mathbf{b}}^C$ is increasing on $[\underline{v}^C, \overline{v}^C]$ and continuous in r^I . On $[\underline{v}^I, \underline{v}^C]$, let $\overline{\mathbf{b}}^C$ be the pointwise maximizer of the second integral in VS^C . By Proposition 4.3's proof, $\overline{\mathbf{b}}^C(v; r^I)$ equals $b(\underline{a})$ on $[\underline{v}^I, v^u)$ and $b(\overline{a})$ on $[v^u, \underline{v}^C)$.

Suppose $[v^{u}, \underline{v}^{C}) = \emptyset$. Then $\overline{\mathbf{b}}^{C}$ is increasing and an argument similar to that in Lemma A.4 establishes that $\overline{\mathbf{b}}^{C}$ maximizes VS^{C} . Since such a $\overline{\mathbf{b}}^{C}$ is pointwise continuous in r^{I} , so is $VS^{C}(b^{-1}(\overline{\mathbf{b}}^{C}(r^{I})), r^{I})$.

Suppose $[v^u, \underline{v}^C) \neq \emptyset$. Let $v_m = \max\{\overline{v}^I, \underline{v}^C\}$. By an argument similar to that in Lemma A.3, any optimal $\mathbf{b}^C \in \mathcal{B}$ can take only three forms on $[v^u, \overline{v}^C]$: (1) it is constant at $\overline{\mathbf{b}}^C(v^d)$ on $[v^u, v^d]$, where $v^d \in (\underline{v}^C, v_m) \cup (v_m, \overline{v}^C)$ and equals $\overline{\mathbf{b}}^C$ otherwise; (2) it is constant at $\overline{y} \in [\overline{\mathbf{b}}^C(v_m-), \overline{\mathbf{b}}^C(v_m+)]$ on $[v^u, v^d]$ with $v^d = v_m$ and equals $\overline{\mathbf{b}}^C$ otherwise; (3) it is constant on $[v^u, \overline{v}^C]$. We can first find an optimal \mathbf{b}^C within each class and then pick an overall maximizer. Note that in both case (1) and (2), \mathbf{b}^C has to maximize

(B.5)
$$\mathbf{b}^{C}(v^{d})H(v^{d}, r^{I}) + \xi(\mathbf{b}^{C}(v^{d}))F^{C}(v^{d}) + \int_{v^{d}}^{\overline{v}^{C}} \phi(\overline{\mathbf{b}}^{C}(v), v; r^{I}) dF^{C},$$

where

$$H(v^{\mathrm{d}}, r^I) = r^I \int_{v^{\mathrm{u}}}^{\underline{v}^C} g^I(v) \, dv + \int_{v^C}^{v^{\mathrm{d}}} \overline{w}^C(v, r^I) \, dF^C.$$

Note that, since $\overline{w}^{C}(v, r^{I})$ is continuous in r^{I} , so is (B.5).

Case 1: Let $\overline{\mathbf{b}}^C(v_m) = \overline{\mathbf{b}}^C(v_m -)$, so that $\overline{\mathbf{b}}^C$ is continuous on $[\underline{v}^C, v_m]$. Then, (B.5) is continuous in v^d for $v^d \in [\underline{v}^C, v_m]$. Hence, there is an optimal v^d . By an argument similar to that in Lemma A.4, there is a unique optimal \mathbf{b}_1^C within this case. Let $\Phi(\mathbf{b}_1^C; r^I)$ be the value of (B.5) at \mathbf{b}_1^C , which is continuous in r^I .

Case 2: Let $\overline{\mathbf{b}}^{C}(v_m) = \overline{\mathbf{b}}^{C}(v_m+)$, so that $\overline{\mathbf{b}}^{C}$ is continuous on $[v_m, \overline{v}^{C}]$. Then, (B.5) is continuous in v^d for $v^d \in [v_m, \overline{v}^{C}]$. As before, there is an optimal v^d and a unique optimal \mathbf{b}_2^C within this case. Let $\Phi(\mathbf{b}_2^C; r^I)$ be the value of (B.5) at \mathbf{b}_2^C , which is continuous in r^I .

Case 3: Let $v^d = v_m$. Then, there is a unique $\mathbf{b}^C(v^d) \in [\overline{\mathbf{b}}^C(v_m-), \overline{\mathbf{b}}^C(v_m+)]$ which maximizes (B.5). This identifies a function \mathbf{b}_3^C and value $\Phi(\mathbf{b}_3^C; r^I)$. Since $\overline{\mathbf{b}}^C(v_m-; r^I)$ and $\overline{\mathbf{b}}^C(v_m+; r^I)$ are continuous in r^I , so is $\Phi(\mathbf{b}_3^C; r^I)$.

Case 4: \mathbf{b}^C is constant at \overline{y} on $[v^u, \overline{v}^C]$. Then $\overline{y} \in [b(\underline{a}), b(\overline{a})]$ has to maximize

$$\overline{y}\bigg[r^I\int_{v^u}^{\underline{v}^C}g^I(v)\,dv+\int_{\underline{v}^C}^{\overline{v}^C}\overline{w}^C\big(v,r^I\big)\,dF^C\bigg]+\xi(\overline{y}).$$

The unique solution to this problem identifies a unique constant \mathbf{b}_4^C and value $\Phi(\mathbf{b}_4^C; r^I)$, which is again continuous in r^I .

Now, let $\hat{\mathbf{b}}^C$ be the function that solves $\max_{j=1,2,3,4} \Phi(\mathbf{b}_j^C; r^I)$. An argument similar to that in Lemma A.5 establishes that

$$\max_{\mathbf{b} \in \mathcal{B}} VS^{\mathcal{C}} \big(b^{-1}(\mathbf{b}), r^{\mathcal{I}} \big) = \Phi \big(\hat{\mathbf{b}}^{\mathcal{C}}; r^{\mathcal{I}} \big) + b(\underline{a}) r^{\mathcal{I}} \int_{v^{\mathcal{I}}}^{v^{u}} g^{\mathcal{I}}(v) \, dv,$$

which is therefore continuous in r^{I} .

Now, let $\mathbf{b}_{un}^{C} = b(\mathbf{a}_{un}^{C})$ and let \mathcal{B}^{*} be the set of $\mathbf{b}^{C} \in \mathcal{B}$ that equal \mathbf{b}_{un}^{C} on $[\underline{v}^{C}, \overline{v}^{C}]$. By construction, $VS^{C}(b^{-1}(\mathbf{b}_{un}^{C}), r^{I}) = \max_{\mathbf{b} \in \mathcal{B}^{*}} VS^{C}(b^{-1}(\mathbf{b}), r^{I})$. I claim that there is $\hat{\mathbf{b}}^{C} \in \mathcal{B} \setminus \mathcal{B}^{*}$ such that $VS^{C}(b^{-1}(\hat{\mathbf{b}}^{C}), r^{I}) > VS^{C}(b^{-1}(\mathbf{b}_{un}^{C}), r^{I})$. Focus on $[v_{m}, \overline{v}^{C}]$ and recall that (w.l.o.g.) \overline{w}^{C} is continuous on $[v_{m}, \overline{v}^{C}]$. Since $r^{I} > 0$, G^{C} implies $w^{C}(v, r^{I}) > v/t^{C}$ for $v \in [v_{m}, \overline{v}^{C})$. I claim that $\overline{w}^{C}(v_{m}, r^{I}) > v_{m}/t^{C}$. By the logic in Lemma A.6, $\overline{w}^{C}(v_{m}, r^{I}) \leq w^{C}(v_{m}, r^{I})$. If $\overline{w}^{C}(v_{m}, r^{I}) = w^{C}(v_{m}, r^{I})$, the claim follows. If $\overline{w}^{C}(v_{m}, r^{I}) < w^{C}(v_{m}, r^{I})$, then there is $v_{0} > v_{m}$ such that $\overline{w}^{C}(v, r^{I}) = w^{C}(v_{0}, r^{I})$ on $[v_{m}, v_{0}]$; so, $\overline{w}^{C}(v_{m}, r^{I}) = w^{C}(v_{0}, r^{I}) \geq v_{0}/t^{C} > v_{m}/t^{C}$. Since \overline{w}^{C} is continuous and increasing, in either case there is

 $v_1 > v_m$ such that $\overline{w}^C(v, r^I) > v/t^C$ on $[v_m, v_1]$. Construct $\hat{\mathbf{b}}^C$ by letting $\hat{\mathbf{b}}^C(v) = \arg\max_{y \in [b(\underline{a}), b(\overline{a})]} \phi(y, v; r^I)$ if $v \in [v_m, \overline{v}^C]$, and $\mathbf{b}_{un}^C(v)$ if $v \in [\underline{v}^I, v_m)$. Then, $\hat{\mathbf{b}}^C \in \mathcal{B}$, but $\hat{\mathbf{b}}^C(v) > \mathbf{b}_{un}^C(v)$ on $[v_m, v_1]$; so $\hat{\mathbf{b}}^C \notin \mathcal{B}^*$. Finally, $VS^C(b^{-1}(\hat{\mathbf{b}}^C), r^I) - VS^C(b^{-1}(\mathbf{b}^C), r^I)$ equals

$$\begin{split} & \int_{v_m}^{\overline{v}^C} \left\{ \left[\hat{\mathbf{b}}^C(v) w^C(v, r^I) + \xi \left(\hat{\mathbf{b}}^C(v) \right) \right] \\ & - \left[\mathbf{b}_{un}^C(v) w^C(v, r^I) + \xi \left(\mathbf{b}_{un}^C(v) \right) \right] \right\} dF^C > 0. \end{split}$$

B.8. Proof of Proposition 4.5

Recall that, by (E), the *j*-device is fully defined by \mathbf{a}^j up to k^j . Given \mathbf{a}^j , define $h^j = U^j(\mathbf{a}^j, \mathbf{p}^j)$. Then, IC_1^{ji} becomes $h^j \geq h^i + R^j(\mathbf{a}^i)$ and (IR^j) becomes $h^j \geq 0$. Since $H^j(\mathbf{a}^j, \mathbf{p}^j) = W^j(\mathbf{a}^j) - U^j(\mathbf{a}^j, \mathbf{p}^j)$, the provider solves

$$\mathcal{P}^{N} = \begin{cases} \max_{(\mathbf{a}^{j}, h^{j})_{j=1}^{N}} (1 - \sigma) \sum_{j=1}^{N} \gamma^{j} W^{j}(\mathbf{a}^{j}) + \sigma \sum_{j=1}^{N} \gamma^{j} [W^{j}(\mathbf{a}^{j}) - h^{j})] \\ \text{s.t.} \quad \mathbf{a}^{i} \text{ increasing,} \quad h^{j} \geq h^{i} + R^{j}(\mathbf{a}^{i}), \quad \text{and} \\ h^{j} > 0, \quad \text{for all } j, i. \end{cases}$$

As in the proof of Lemma A.1 and Theorem 4.1, it is convenient to work with the functions $\mathbf{b} \in \mathcal{B}$. Recall that $\widetilde{W}^{j}(\mathbf{b}^{j}) = W^{j}(b^{-1}(\mathbf{b}^{j}))$ and $\widetilde{R}^{j}(\mathbf{b}^{i}) = R^{j}(b^{-1}(\mathbf{b}^{i}))$.

Step 1: There is $b(\underline{a})$ low enough so that unused options suffice to satisfy IC_1^{ji} for j > i. If j > i, $\overline{v}^j < \overline{v}^i$ and

$$\widetilde{R}^{i}(\mathbf{b}^{j}) = -\int_{\overline{v}^{j}}^{\overline{v}^{i}} \mathbf{b}^{j}(v)g^{i}(v) dv - \int_{v^{j}}^{\overline{v}^{j}} \mathbf{b}^{j}(v)G^{ji}(v) dF^{j},$$

where

$$\begin{split} g^i(v) &= \frac{t^i-1}{t^i} v f^i(v) - \left(1-F^i(v)\right) \quad \text{and} \\ G^{ji}(v) &= q^j(v) - \frac{f^i(v)}{f^j(v)} q^i(v); \end{split}$$

if i > j, $\underline{v}^j > \underline{v}^i$ and

$$\widetilde{R}^{i}(\mathbf{b}^{j}) = -\int_{v^{i}}^{\underline{v}^{j}} \mathbf{b}^{j}(v) \widehat{g}^{i}(v) dv + \int_{v^{j}}^{\overline{v}^{j}} \mathbf{b}^{j}(v) \widehat{G}^{ji}(v) dF^{j},$$

where

$$\begin{split} \widehat{g}^{i}(v) &= \frac{t^{i}-1}{t^{i}}vf^{i}(v) + F^{i}(v), \\ \widehat{G}^{ji}(v) &= \frac{t^{j}-1}{t^{j}}v - \frac{1-F^{j}(v)}{f^{j}(v)} - \frac{f^{i}(v)}{f^{j}(v)} \bigg \lceil \frac{t^{i}-1}{t^{i}}v - \frac{1-F^{i}(v)}{f^{i}(v)} \bigg \rceil. \end{split}$$

Take j > i. Suppose IC_1^{ji} is violated (and all other constraints hold): $h^j < h^i + \widetilde{R}^j(\mathbf{b}^i)$. Fix \mathbf{b}^i for $v \ge \underline{v}^i$, and let $\mathbf{b}^i(v) = b(\underline{a})$ for $v < \underline{v}^i$. Then,

$$R^{j}\big(\mathbf{b}^{i}\big) = -b(\underline{a})\int_{v^{j}}^{\underline{v}^{i}}\widehat{g}^{j}(v)\,dv + \int_{v^{i}}^{\overline{v}^{i}}\mathbf{b}^{i}(v)\widehat{G}^{ij}(v)\,dF^{i}.$$

Lemma B.2: $\int_{v^j}^{\underline{v}^i} \widehat{g}^j(v) dv < 0$.

PROOF: Integrating by parts,

$$\begin{split} \int_{\underline{v}^j}^{\underline{v}^i} \widehat{g}^j(v) \, dv &= -\int_{\underline{v}^j}^{\underline{v}^i} (v/t^j) f^j(v) \, dv + F^j(\underline{v}^i) \underline{v}^i \\ &= \int_{v^j}^{\underline{v}^i} (\underline{v}^i - (v/t^j)) f^j(v) \, dv. \end{split}$$

Note that $\underline{v}^i \le \underline{s} \le v/t^j$, with strict inequality for $v \in (\underline{v}^j, \underline{v}^i)$. Q.E.D.

So there is $b(\underline{a})$ small enough so that the $\widetilde{\mathbf{b}}^i$ just constructed satisfies $h^j \geq h^i + \widetilde{R}^j(\widetilde{\mathbf{b}}^i)$. We need to check the other constraints. For j' < i, the values \mathbf{b}^i takes for $v < \underline{v}^i$ are irrelevant; so, $\mathrm{IC}_1^{j'i}$ are unchanged. For $\hat{\jmath} > i$ and $\hat{\jmath} \neq j$, it could be that $R^{\hat{\jmath}}(\widetilde{\mathbf{b}}^i) > R^{\hat{\jmath}}(\mathbf{b}^i)$, and $\widetilde{\mathbf{b}}^i$ may violate $\mathrm{IC}_1^{\hat{\jmath}i}$ while \mathbf{b}^i did not. But since Lemma B.2 holds for every j > i and N is finite, there is $b(\underline{a})$ small enough so that IC_1^{ji} for all j > i.

Step 2: As usual, (IR^N) and IC₁^{jN} imply (IR^j) for j < N. Let $\mathcal{Y} = (\mathcal{B} \times \mathbb{R})^N$ be the subspace of $(\mathcal{X} \times \mathbb{R})^N$, where $\mathcal{X} = \{\mathbf{b} | \mathbf{b} : [\underline{v}, \overline{v}] \to \mathbb{R}\}$. Now, let $\widetilde{H}(\mathbf{B}, \mathbf{h}) = \sum_{j=1}^N \gamma^j [\widetilde{W}^j(\mathbf{b}^j) - h^j]$ and $\widetilde{W}(\mathbf{B}) = \sum_{j=1}^N \gamma^j \widetilde{W}^j(\mathbf{b}^j)$. \mathcal{P}^N is equivalent to

$$\widetilde{\mathcal{P}}^{\scriptscriptstyle N} = \begin{cases} \max_{\{\mathbf{B},\mathbf{h}\} \in \mathcal{Y}} (1-\sigma) \widetilde{W}(\mathbf{B}) + \sigma \widetilde{\Pi}(\mathbf{B},\mathbf{h}) \\ \text{s.t.} \quad \Gamma(\mathbf{B},\mathbf{h}) \leq \mathbf{0}, \end{cases}$$

where $\Gamma : (\mathcal{X} \times \mathbb{R})^N \to \mathbb{R}^r$ $(r = 1 + \frac{N(N-1)}{2})$ is given by $\Gamma^1(\mathbf{B}, \mathbf{h}) = -h^N$ and, for $j = 2, \ldots, r$, $\Gamma^j(\mathbf{B}, \mathbf{h}) = \widetilde{R}^i(\mathbf{b}^j) + h^j - h^i$ for i < j.

Step 3: Existence of interior points.

LEMMA B.3: In $\widetilde{\mathcal{P}}^N$, there is $\{\mathbf{B}, \mathbf{h}\} \in \mathcal{Y}$ such that $\Gamma(\mathbf{B}, \mathbf{h}) < 0$.

PROOF: $\Gamma(\mathbf{B}, \mathbf{h}) < 0$ if and only if $h^N > 0$ and $h^i > h^j + \widetilde{R}^i(\mathbf{b}^j)$ for i < j. For $i = 1, \ldots, N$, let $\mathbf{b}^i = \mathbf{b}^i_{fb} = b(\mathbf{a}^i_{fb})$ on $[\underline{v}^i, \overline{v}]$ and possibly extend it on $[\underline{v}, \underline{v}^i)$ to include appropriate unused options. Note that these extensions are irrelevant for $\widetilde{R}^j(\mathbf{b}^i)$ if j < i. Recall that $\widetilde{R}^j(\mathbf{b}^i) \geq 0$ for j < i, and it can be easily shown that $\widetilde{R}^1(\mathbf{b}^i) \geq \widetilde{R}^j(\mathbf{b}^i)$ for 1 < j < i. Thus, let $h^N = 1$, and for i < N, let $h^i = h^{i+1} + \widetilde{R}^1(\mathbf{b}^{i+1}) + 1$. Now, fix i < N and consider any j > i. We have

$$h^{i} = h^{j} + \sum_{n=1}^{j-i} \widetilde{R}^{1} \left(\mathbf{b}^{i+n} \right) + (j-i) \ge h^{j} + \widetilde{R}^{i} \left(\mathbf{b}^{j} \right) + (j-i) > h^{j} + \widetilde{R}^{i} \left(\mathbf{b}^{j} \right).$$

Since $\widetilde{R}^i(\mathbf{b}^j)$ are bounded and N is finite, the vector \mathbf{h} so constructed is well defined. *Q.E.D.*

Step 4: We can now use Corollary 1, p. 219, and Theorem 2, p. 221, of Luenberger (1969) to characterize solutions of $\widetilde{\mathcal{P}}^N$. Note that $(\mathcal{X} \times \mathbb{R})^N$ is a linear vector space and \mathcal{Y} is a convex subset of it. By Lemma B.3, Γ has interior points. Since $\widetilde{\Pi}$ and \widetilde{W} are concave (b'' < 0 and $c'' \ge 0)$, the objective is concave and $\Gamma(\mathbf{B}, \mathbf{h})$ is convex. For $\lambda \in \mathbb{R}_+^r$, define $L(\mathbf{B}, \mathbf{h}; \lambda)$ as

$$\begin{split} &(1-\sigma)\widetilde{W}(\mathbf{B}) + \sigma\widetilde{\Pi}(\mathbf{B},\mathbf{h}) + \lambda^N h^N - \sum_{i=1}^N \sum_{j < i} \lambda^{ji} \big[\widetilde{R}^j \big(\mathbf{b}^i \big) + h^i - h^j \big] \\ &= \sum_{i=1}^N \gamma^i \bigg[\widetilde{W}^i \big(\mathbf{b}^i \big) - \sum_{j < i} \frac{\lambda^{ji}}{\gamma^i} \widetilde{R}^j \big(\mathbf{b}^i \big) \bigg] + \sum_{i=1}^N h^i \mu^i (\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma), \end{split}$$

where

$$\mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \boldsymbol{\sigma}) = \begin{cases} \sum_{j>i} \lambda^{ij} - \sum_{j$$

Then, $\{\mathbf{B},\mathbf{h}\}$ solves $\widetilde{\mathcal{P}}^N$ if and only if there is $\mathbf{\lambda} \geq \mathbf{0}$ such that $L(\mathbf{B},\mathbf{h};\mathbf{\lambda}) \geq L(\mathbf{B}',\mathbf{h}';\mathbf{\lambda})$ and $L(\mathbf{B},\mathbf{h};\mathbf{\lambda}') \geq L(\mathbf{B},\mathbf{h};\mathbf{\lambda})$ for all $\{\mathbf{B}',\mathbf{h}'\} \in \mathcal{Y}, \mathbf{\lambda}' \geq \mathbf{0}$. The first inequality is equivalent to

(B.6)
$$\mathbf{b}^{i} \in \arg\max_{\mathbf{b} \in \mathcal{B}} \widetilde{W}^{i}(\mathbf{b}) - \sum_{j < i} \frac{\lambda^{ji}}{\gamma^{i}} \widetilde{R}^{j}(\mathbf{b})$$

and

(B.7)
$$h^i \in \arg \max_{h \in \mathbb{R}} \mu^i(\lambda, \gamma, \sigma) h$$
.

The second is equivalent to

(B.8)
$$-h^{N} < 0$$
 and $\lambda^{N} h^{N} = 0$,

and, for i > i,

(B.9)
$$\widetilde{R}^i(\mathbf{b}^j) + h^j - h^i \le 0$$
 and $\lambda^{ij} [R^i(\mathbf{b}^j) + h^j - h^i] = 0$.

LEMMA B.4: If $(\mathbf{B}, \mathbf{h}, \boldsymbol{\lambda})$ satisfies (B.6)–(B.9), then $\mu^i(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) = 0$ for all i.

PROOF: By (IR^N) and IC^{iN}, $h^i \ge 0$ for all i; so, $\mu^i(\lambda, \gamma, \sigma) \ge 0$ for all i. Since $(1 - \sigma)\widetilde{W}(\mathbf{B}) + \sigma\widetilde{\Pi}(\mathbf{B}, \mathbf{h})$ is bounded below by $\mathbb{E}(u_1(a^{\mathrm{nf}}; s)) - c(a^{\mathrm{nf}}) > 0$, then $\mu^i(\lambda, \gamma, \sigma) \le 0$ for all i.

Q.E.D.

COROLLARY B.5: If $\sigma = 0$, then $\lambda = 0$. If $\sigma > 0$, IR^N binds and, for every i < N, there is j > i such that IC^{ij} binds.

PROOF: Lemma B.4 implies the second part. For the first part, since $\mu^i(\lambda, \gamma, \sigma) = 0$ for all i,

$$\begin{split} 0 &= \sum_{i=1}^{N} \mu^{i}(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \boldsymbol{\sigma}) \\ &= \sum_{i=1}^{N-1} \biggl[\sum_{i>i} \lambda^{ij} - \sum_{i< i} \lambda^{ji} \biggr] + \lambda^{N} - \sum_{i< N} \lambda^{jN} - \boldsymbol{\sigma} = \lambda^{N} - \boldsymbol{\sigma}. \end{split}$$

So, if $\sigma = 0 = \lambda^N$, then $\mu^N(\lambda, \gamma, \sigma) = 0$ implies $\sum_{j < N} \lambda^{jN} = 0$. Hence, $\lambda^{jN} = 0$ for j < N. Suppose for all $j \ge i + 1$, $\lambda^{nj} = 0$ for all n < j. Then, $\mu^i(\lambda, \gamma, \sigma) = 0$ implies $\sum_{j < i} \lambda^{ji} = \sum_{j > i} \lambda^{ij} = 0$. Hence, $\lambda^{ji} = 0$ for all j < i. Q.E.D.

So, although by $\mu^i(\lambda, \gamma, \sigma) = 0$ any $h^i \in \mathbb{R}$ solves (B.7), the upward binding constraints pin down **h**, once **B** has been chosen.

Thus, $\widetilde{\mathcal{P}}^N$ has a solution if there is $(\mathbf{B}, \boldsymbol{\lambda})$ so that, for every i, \mathbf{b}^i solves (B.6), $\mu^i(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) = 0$, and (B.8) and (B.9) hold. By the arguments in the proof of Theorem 4.1 (see Step 5 below), for $\boldsymbol{\lambda} \geq \mathbf{0}$, a solution \mathbf{b}^i to (B.6) always exists and is unique on $(\underline{v}^i, \overline{v}^i)$ and is pointwise continuous in $\boldsymbol{\lambda}$. Moreover, if $\boldsymbol{\lambda}^{ji} \to +\infty$ for some j < i, then $\mathbf{b}^i \to b(a^{\mathrm{nf}})$ on $(\underline{v}^j, \overline{v}^i)$, and $\widetilde{R}^j(\mathbf{b}^i) \to 0$. And since $\mu^i(\boldsymbol{\lambda}, \boldsymbol{\gamma}, \sigma) = 0$, $\boldsymbol{\lambda}^{ij'} \to +\infty$ for some j' > i, so that $\widetilde{R}^i(\mathbf{b}^{j'}) \to 0$ and

 $h^i \to 0$ (using the binding $IC_1^{ij'}$). So there is λ^{ji} large enough to make (B.9) hold. Finally, (B.8) always holds with $h^N = 0$.

Step 5: Fix i > 1. Using (B.6), the expression of $\widetilde{R}^n(\mathbf{b}^i)$, and $\xi(\cdot) = -b^{-1}(\cdot) - c(b^{-1}(\cdot))$, \mathbf{b}^i must maximize within \mathcal{B}

$$VS^{i}(\mathbf{b}^{i}; \boldsymbol{\lambda}^{i}) = \sum_{n=1}^{i-1} \lambda^{ni} \int_{\overline{v}^{i}}^{\overline{v}^{n}} \mathbf{b}^{i}(v) g^{n}(v) dv$$
$$+ \int_{v^{i}}^{\overline{v}^{i}} [\mathbf{b}^{i}(v) w^{i}(v, \boldsymbol{\lambda}^{i}) + \xi(\mathbf{b}^{i}(v))] dF^{i},$$

where $\boldsymbol{\lambda}^i \in \mathbb{R}^{i-1}_+$ and

$$w^{i}(v; \boldsymbol{\lambda}^{i}) = \frac{v}{t^{i}} + \sum_{n=1}^{i-1} \lambda^{ni} q^{i}(v) - \sum_{n=1}^{i-1} \lambda^{ni} \frac{f^{n}(v)}{f^{i}(v)} q^{n}(v).$$

We can apply to $VS^i(\mathbf{b}^i; \mathbf{\lambda}^i)$ the method used in the two-type case to characterize \mathbf{b}^I (Theorem 4.1). If $\mathbf{\lambda}^i = \mathbf{0}$, $VS^i(\mathbf{b}^i; \mathbf{0}) = \widetilde{W}^i(\mathbf{b}^i)$ and $\mathbf{b}^i = \mathbf{b}^i_{fb} = b(\mathbf{a}^i_{fb})$ on $(\underline{v}^i, \overline{v}^i)$. For $v > \overline{v}^i$, let $\mathbf{b}^i(v) = \mathbf{b}^i(\overline{v}^i)$. For $v < \underline{v}^i$, $\mathbf{b}^i(v)$ may be strictly smaller than $\mathbf{b}^i(\underline{v}^i)$ to satisfy IC_1^{ji} for j > i.

Suppose $\lambda^{ni}>0$ for some n< i. Apply the Myerson-Toikka ironing method on $(\underline{v}^i,\overline{v}^i)$, by letting $z^i(x;\boldsymbol{\lambda}^i)=w^i((F^i)^{-1}(x);\boldsymbol{\lambda}^i)$ and $Z^i(x;\boldsymbol{\lambda}^i)=\int_0^x z^i(y;\boldsymbol{\lambda}^i)\,dy$. Let $\Omega^i(x;\boldsymbol{\lambda}^i)=\operatorname{conv}(Z^i(x;\boldsymbol{\lambda}^i))$, and $\omega^i(x;\boldsymbol{\lambda}^i)=\Omega^i_x(x;\boldsymbol{\lambda}^i)$ wherever defined. Extend ω^i by right-continuity, and at 1 by left-continuity. For ω^i to be continuous, it is enough to show that, if z^i is discontinuous at x, then z^i jumps down at x. To see this, note that w^i can be discontinuous only at points like \underline{v}^j for j< i and such that $\underline{v}^j\in(\underline{v}^i,\overline{v}^i)$. At such a point, let $w^i(\underline{v}^j+;\boldsymbol{\lambda}^i)=\lim_{v\downarrow\underline{v}^j}w^i(v;\boldsymbol{\lambda}^i)$ and $w^i(\underline{v}^j-;\boldsymbol{\lambda}^i)=\lim_{v\uparrow\underline{v}^j}w^i(v;\boldsymbol{\lambda}^i)$. For n< j, $\underline{v}^n>\underline{v}^j$ and hence $f^n(\underline{v}^j)=0$. So

$$\begin{split} w^i(\underline{v}^j+;\boldsymbol{\lambda}^i) &= \frac{\underline{v}^j}{t^i} + \sum_{n=1}^{i-1} \lambda^{ni} q^i(\underline{v}^j) - \sum_{n=j}^{i-1} \lambda^{ni} \frac{f^n(\underline{v}^j)}{f^i(\underline{v}^j)} q^n(\underline{v}^j), \\ w^i(\underline{v}^j-;\boldsymbol{\lambda}^i) &= \frac{\underline{v}^j}{t^i} + \sum_{i=1}^{i-1} \lambda^{ni} q^i(\underline{v}^j) - \sum_{i=1}^{i-1} \lambda^{ni} \frac{f^n(\underline{v}^j)}{f^i(\underline{v}^j)} q^n(\underline{v}^j). \end{split}$$

Then,

$$w^i(\underline{v}^j-;\boldsymbol{\lambda}^i)-w^i(\underline{v}^j+;\boldsymbol{\lambda}^i)=\lambda^{ji}\frac{f^j(\underline{v}^j)}{f^i(v^j)}q^j(\underline{v}^j)\geq 0,$$

since $q^{i}(\underline{v}^{j}) = (1 - t^{j})(\underline{v}^{j}/t^{j}) \geq 0$. Letting $\overline{w}^{i}(v; \boldsymbol{\lambda}^{i}) = \omega^{i}(F^{i}(v); \boldsymbol{\lambda}^{i})$ for $v \in (v^{i}, \overline{v}^{i})$, construct \overline{VS}^{i} as in the proof of Theorem 4.1.

Note that $g^n(v) < 0$ for $v \in (\overline{v}^i, \overline{v}^n)$. So, since $\lambda^{ni} > 0$ for some n < i, the first term in VS^i is strictly negative. Let $\underline{n} = \min\{n : \lambda^{ni} > 0\}$. Then, on $(\underline{v}^i, \overline{v}^n)$, the characterization of Lemma A.3 extends to \overline{VS}^i . So \mathbf{b}^i must be constant at y^{ib} on (v^{ib}, \overline{v}^n) , where $v^{ib} \leq \overline{v}^i$ and $y^{ib} \leq \overline{\mathbf{b}}^i(\overline{v}^i)$. Moreover, $y^{ib} = \overline{\mathbf{b}}^i(v^{ib})$, if $v^{ib} > \underline{v}^i$; and $\mathbf{b}^i(v) = \overline{\mathbf{b}}^i(v)$ for $v \in [\underline{v}^i, v^{ib}]$. The argument in Lemma A.4 yields that there is a (unique) maximizer of \overline{VS}^i . The argument in Lemma A.5 implies that the (unique) maximizer of \overline{VS}^i is also the (unique) maximizer of VS^i .

Step 6: Properties of the solutions to (B.6). Suppose $\lambda^{ni} > 0$ for some n < i and define \underline{n} as before. The analog of the ironing condition for v^b applies to v^{ib} :

$$\int_{v^{i\mathrm{b}}}^{\overline{v}^i} \left[w^i \big(y; \boldsymbol{\lambda}^i \big) - w^i \big(v^{i\mathrm{b}}; \boldsymbol{\lambda}^i \big) \right] dF^i = - \sum_{n=n}^{i-1} \lambda^{ni} \int_{\overline{v}^i}^{\overline{v}^n} g^n(v) \, dv.$$

Since the sum is negative, $v^{ib} < \overline{v}^{i}$. This condition can be written as

$$\begin{split} &\int_{v^{ib}}^{\overline{v}^{i}} \left[w^{i} \left(v^{ib}; \boldsymbol{\lambda}^{i} \right) - \left(v/t^{i} \right) \right] dF^{i} \\ &= \sum_{n=n}^{i-1} \lambda^{ni} \left[\int_{v^{ib}}^{\overline{v}^{i}} G^{in}(v) \, dF^{i} + \int_{\overline{v}^{i}}^{\overline{v}^{n}} g^{n}(v) \, dv \right]. \end{split}$$

To prove that $w^i(v^{ib}; \boldsymbol{\lambda}^i) < \overline{v}^i/t^i$, it is enough to observe that the right-hand side is negative by (A.14). So, \mathbf{b}^i exhibits bunching on $[v^{ib}, \overline{v}^n]$ at value $y^{ib} < \mathbf{b}^i_{fb}(\overline{v}^i)$.

Now consider the bottom of $[\underline{v}^i, \overline{v}^i]$. By the logic in Lemma A.6, $\overline{w}^i(\underline{v}^i; \boldsymbol{\lambda}^i) \leq w^i(\underline{v}^i; \boldsymbol{\lambda}^i)$, with strict inequality if $v_b^i > \underline{v}^i$. Moreover, for $v < \underline{v}^{i-1}$, $w^i(v, \boldsymbol{\lambda}^i) = v/t^i + \sum_{n=1}^{i-1} \lambda^{ni} q^i(v)$ and $w^i(\underline{v}^i; \boldsymbol{\lambda}^i) = (\underline{v}^i/t^i)[1 + (1-t^i)\sum_{n=1}^{i-1} \lambda^{ni}] > \underline{v}^i/t^i$. So, if $\overline{w}^i(\underline{v}^i; \boldsymbol{\lambda}^i) = w^i(\underline{v}^i; \boldsymbol{\lambda}^i)$, then $\mathbf{b}^i(\underline{v}^i; \boldsymbol{\lambda}^i) > \mathbf{b}^i_{fb}(\underline{v}^i)$. Otherwise, ironing occurs on $[\underline{v}^i, v_b^i] \neq \emptyset$ and

$$\int_{v_b^i}^{v_b^i} \left[w^i (y; \boldsymbol{\lambda}^i) - \overline{w}^i (v_b^i; \boldsymbol{\lambda}^i) \right] dF^i = 0,$$

which corresponds to

$$\int_{\underline{v}^i}^{v_b^i} \left[y/t^i - \overline{w}^i \left(v_b^i; \boldsymbol{\lambda}^i \right) \right] dF^i = -\sum_{n=1}^{i-1} \lambda^{ni} \int_{\underline{v}^i}^{v_b^i} G^{in}(y) dF^i.$$

Now, for n < i,

$$\begin{split} \int_{\underline{v}^i}^{v_b^i} G^{in}(y) \, dF^i &= \int_{\underline{v}^i}^{v_b^i} q^i(y) \, dF^i - \int_{\underline{v}^i}^{v_b^i} q^n(y) \, dF^n \\ &= \int_{v_b^i/t^n}^{v_b^i/t^i} \! \left(s - v_b^i \right) dF > 0. \end{split}$$

So $\overline{w}^i(v_b^i; \boldsymbol{\lambda}^i) > \underline{v}^i/t^i$, and $\mathbf{b}^i(\underline{v}^i; \boldsymbol{\lambda}^i) > \mathbf{b}^i_{fb}(\underline{v}^i)$. Finally, note that for $v < v' < \underline{v}^{i-1}$,

$$w^{i}(v'; \boldsymbol{\lambda}^{i}) - w^{i}(v; \boldsymbol{\lambda}^{i}) = \frac{v' - v}{t^{i}} \left[1 + \sum_{n=1}^{i-1} \lambda^{ni} (1 - t^{i}) \right] + \sum_{n=1}^{i-1} \lambda^{ni} \left[\frac{F^{i}(v')}{f^{i}(v')} - \frac{F^{i}(v)}{f^{i}(v)} \right].$$

So, $w^i(\cdot; \lambda^i)$ will be decreasing in a neighborhood of v^i if, for s' > s in $[s, s^{\dagger}]$,

$$\frac{F(s')/f(s') - F(s)/f(s)}{s' - s} \ge \frac{1}{t^i} \left[(1 - t^i) + \left(\sum_{n=1}^{i-1} \lambda^{ni} \right)^{-1} \right].$$

Hence, bunching at the bottom is more likely if t^i is closer to 1 and $\sum_{n=1}^{i-1} \lambda^{ni}$ is large, that is, if the provider assigns large shadow value to *not* increasing the rents of types below i.

APPENDIX C: ILLUSTRATIVE EXAMPLE'S CALCULATIONS

Let $\underline{s} = 10$, $\overline{s} = 15$, and t = 0.9. We first characterize the first-best C- and I-device. By Corollary 3.1, $p_{\mathbf{e}}^C$ must be constant; by Proposition 3.1, it must extract the entire surplus that C derives from the C-device, thereby leaving C with expected utility m. With regard to the I-device, again by Corollary 3.1, for $a \in [100, 225]$ we have $p_{\mathbf{e}}^I(a) = p_{\mathbf{e}}^C + q^I(a)$ such that $q^I(\mathbf{e}(s)) = \mathbf{q}^{0.9}(s)$ for every $s \in [\underline{s}, \overline{s}]$. Therefore, using the formula in Corollary 3.1,

$$\frac{dq^{I}(a)}{da} = \frac{d\mathbf{q}^{0.9}(s)/ds}{d\mathbf{e}(s)/ds} = -0.1.$$

So $q^I(a) = k - 0.1a$, where k is set so that I expects to pay p_e^C (Proposition 3.1). Consider now the difference between C's and I's expected utility from the efficient I-device (i.e., $R^C(a_{fb}^I)$). Recall that $p_e^I(a) = +\infty$ for $a \notin [100, 225]$.

Under this *I*-device, at time 2 type *C* chooses $\alpha^C(s) = \frac{s^2}{t^2}$ for $s < \frac{\overline{s}}{t}$ and $\alpha^C(s) = \overline{s}$ otherwise. Thus

$$R^{C}(a_{fb}^{I}) = m - p_{\mathbf{e}}^{C} - k + \int_{\underline{s}}^{\overline{s}} \left[2s\sqrt{\boldsymbol{\alpha}^{C}(s)} - t\boldsymbol{\alpha}^{C}(s) \right] \frac{ds}{\overline{s} - \underline{s}}$$
$$- \left\{ m - p_{\mathbf{e}}^{C} - k + \int_{\underline{s}}^{\overline{s}} \left[2s\sqrt{\mathbf{e}(s)} - t\mathbf{e}(s) \right] \frac{ds}{\overline{s} - \underline{s}} \right\}$$
$$= \frac{1 - t}{3t(\overline{s} - \underline{s})} \left[\overline{s}^{3}(3 - t)t - (1 + t)\underline{s}^{3} \right].$$

Substituting the values of \underline{s} , \overline{s} , and t, we get $R^{C}(a_{fb}^{I}) \approx 33.18$.

To compute the difference between I's and C's expected utilities from the efficient C-device (i.e., $R^I(a_{fb}^C)$), recall that $p_e^C(a) = +\infty$ for $a \notin [100, 225]$. Given this, at time 2 type I chooses $\alpha^I(s) = t^2 s^2$ for $s > \frac{s}{t}$ and $\alpha^I(s) = \underline{s}$ otherwise. Thus

$$\begin{split} R^{I} \left(a_{fb}^{C} \right) &= m - p_{\mathbf{e}}^{C} + \int_{\underline{s}}^{\overline{s}} \left[2s \sqrt{\boldsymbol{\alpha}^{I}(s)} - \boldsymbol{\alpha}^{I}(s) \right] \frac{ds}{\overline{s} - \underline{s}} \\ &- \left\{ m - p_{\mathbf{e}}^{C} + \int_{\underline{s}}^{\overline{s}} \left[2s \sqrt{\mathbf{e}(s)} - \mathbf{e}(s) \right] \frac{ds}{\overline{s} - \underline{s}} \right\} \\ &= \frac{(1 - t)^{2}}{3(\overline{s} - \underline{s})} \left[\underline{s}^{3} t^{-2} - \overline{s}^{3} \right]. \end{split}$$

Substituting \underline{s} , \overline{s} , and t, we get $R^{I}(a_{fb}^{C}) \approx -1.43$.

The properties of the screening I-device follow from the argument in the proof of Corollary 4.3 above. The thresholds s_b and s^b can be computed using formulas (B.2) and (B.4) for v_b and v^b . Regarding the range $[a_b, a^b]$, we have that $a_b = [w^I(v_b; r^C)]^2$ and $a^b = [w^I(v^b; r^C)]^2$, where $w^I(v; r^C)$ is given in (B.1). These formulas depend on $r^C = \frac{\gamma}{1-\gamma} + \frac{\mu}{1-\gamma}$, but in this example $\mu = 0$ because unused options are always enough to deter I from taking the C-device (see below). Varying $\gamma \in (0,1)$ delivers the values in Figure 1 of the main text. By Proposition 4.2, when the provider completely removes flexibility from the I-device, she induces I to choose the ex ante efficient action $a^{nf} = (\frac{\overline{s}+\underline{s}}{2})^2 = 156.25$.

The most deterring unused option for the *C*-device depends on v_u in Proposition 4.3. As shown in its proof, $v_u = \sup\{v \in [\underline{v}^I, \underline{v}^C] \mid g^I(v) < 0\}$ where

$$g^{I}(v) = \frac{t-1}{t}vf^{I}(v) + F^{I}(v) = \frac{1}{t(\overline{s} - \underline{s})} \left[(2t-1)s - \frac{\underline{s}}{t} \right],$$

which is strictly increasing since t > 1/2. Since $\underline{v}^C = \underline{s}$ and $g^I(\underline{s}) = \frac{2(t-1)\underline{s}}{t^2(\overline{s}-\underline{s})} < 0$, we have $v_u = \underline{s}$. That is, the most deterring *C*-device induces *I* to choose the

unused option with $\underline{a} = 0$ whenever $s < \frac{s}{t}$. The associated payment must render I indifferent at time 2 between saving $\alpha^{I}(\underline{s}/t) = \underline{s}^{2}$ and zero in state $\frac{s}{t}$:

$$m - p^{C}(0) = m - p^{C}(\underline{s}^{2}) - \underline{s}^{2} + 2t(\frac{\underline{s}}{t})\sqrt{\underline{s}^{2}}.$$

Substituting and rearranging, we get $p^{C}(0) = p^{C}(100) - 100$.

We can now compute the difference in I's expected utility between the C-device with and without the unused option. This depends only on I's different choices for states in [s, s/t), and hence it equals

$$\int_{s}^{\underline{s}/t} \left[-p^{C}(0) \right] \frac{ds}{\overline{s} - \underline{s}} - \int_{s}^{\underline{s}/t} \left[-p^{C}(\underline{s}^{2}) - \underline{s}^{2} + 2s\sqrt{\underline{s}^{2}} \right] \frac{ds}{\overline{s} - \underline{s}} = \frac{\underline{s}^{3}(1 - t^{2})}{t^{2}(\overline{s} - \underline{s})}.$$

Using the parameters' values, this difference is -46.91. Since it exceeds $R^{C}(a_{fb}^{I}) \approx 33.18$, I would never choose the C-device that contains unused option $(0, p^{C}(0))$.

APPENDIX D: OUTSIDE OPTION WITH TYPE-DEPENDENT VALUES

After rejecting all the provider's devices at time 1, the agent will make certain state-contingent choices at time 2, which can be described with $(\mathbf{a}_0, \mathbf{p}_0)$ using the formalism of Section 4.1. For simplicity, consider the two-type model. By Proposition 4.1, $U^C(\mathbf{a}_0, \mathbf{p}_0) \geq U^I(\mathbf{a}_0, \mathbf{p}_0)$ with equality if and only if \mathbf{a}_0 is constant over $(\underline{v}, \overline{v})$. So C and I value the outside option differently, unless they always end up making the same choice.

When $U^C(\mathbf{a}_0, \mathbf{p}_0) > U^I(\mathbf{a}_0, \mathbf{p}_0)$, the analysis in Section 4 can be adjusted without changing its thrust. The constraints (IR^C) and (IC₁^C) set two lower bounds on *C*'s payoff from the *C*-device: one endogenous (i.e., $U^C(\mathbf{a}^I, \mathbf{p}^I) = U^I(\mathbf{a}^I, \mathbf{p}^I) + R^C(\mathbf{a}^I)$) and one exogenous (i.e., $U^C(\mathbf{a}_0, \mathbf{p}_0) = U^I(\mathbf{a}_0, \mathbf{p}_0) + R^C(\mathbf{a}_0)$). The question is which binds first. In Section 4, (IC₁^C) always binds first, for (IR^I) and (IC₁^C) imply (IR^C). Now this is no longer true. Intuitively, if (IC₁^C) binds first, then we are in a situation similar to Section 4; so the provider will distort the *I*-device as shown in Section 4.2.¹ If (IR^C) binds first, then obviously the provider has no reason to distort the *I*-device. For example, she will never distort the *I*-device, if the outside option sustains the efficient outcome with *I*—that is, $\mathbf{a}_0 = \mathbf{a}_{fb}^I$ over $[\underline{v}^I, \overline{v}^I]$. In this case, she must grant *C* at least the rent $R^C(\mathbf{a}_0)$, which already exceeds $R^C(\mathbf{a}_{fb}^I)$. Finally, if (IC₁^I) binds, then the provider will design the *C*-device as shown in Section 4.3.²

¹This case is more likely when the outside option involves little flexibility, so that $R^{C}(\mathbf{a}_{0})$ is small.

 $^{^2}$ We can extend this argument to settings in which, at time 1, the agent has access to other devices if he rejects the provider's ones. In these settings, $(\mathbf{a}_0, \mathbf{p}_0)$ can be type-dependent.

APPENDIX E: FINITELY MANY STATES AND IRRELEVANCE OF ASYMMETRIC INFORMATION

This section shows that if the set of states S is finite, then the provider may be able to always sustain the efficient outcome \mathbf{e} , even if she cannot observe the agent's degree of inconsistency. To see the intuition, consider a two-state case with $s_2 > s_1$. If the provider can observe t, she sustains $\alpha_2^* = \mathbf{e}(s_2) > \mathbf{e}(s_1) = \alpha_1^*$, with payments $\pi_1 = \pi^t(s_1)$ and $\pi_2 = \pi^t(s_2)$ that satisfy

(E.1)
$$u_2(\alpha_2^*; s_2, t) - u_2(\alpha_1^*; s_2, t) \ge \pi_2 - \pi_1 \ge u_2(\alpha_2^*; s_1, t) - u_2(\alpha_1^*; s_1, t),$$

which follows from (IC). Since $u_2(a; s, t)$ has strictly increasing differences in (a, s), having a discrete S creates some slack in (IC) at \mathbf{e} : For any t, (E.1) does not pin down π_1 and π_2 uniquely. Suppose t^I is close to t^C . Intuitively, to sustain \mathbf{e} with each type, the provider should be able to use incentive schemes that are sufficiently alike; also, since discrete states leave some leeway in the payments, she may be able to find *one* scheme that works for both types. If instead t^I is far from t^C , the provider must use different schemes to sustain \mathbf{e} with each type. Since $t^I < t^C$, I is tempted to pick α_1^* also in s_2 , and the more so, the lower is t^I . So, for I not to choose α_1^* in s_2 , α_1^* must be sufficiently more expensive than α_2^* , and this gap must rise as t^I falls. At some point, this gap must exceed C's willingness to pay for switching from α_2^* to α_1^* in s_1 .

Proposition E.1 formalizes this intuition. Consider a finite set T of types, which may include both t > 1 and t < 1; let $\overline{t} = \max T$ and $t = \min T$.

PROPOSITION E.1: Suppose S is finite and $s_N > s_{N-1} > \cdots > s_1$. There is a single commitment device that sustains \mathbf{e} with each $t \in T$ if and only if $\overline{t}/\underline{t} \leq \min_i s_{i+1}/s_i$.

PROOF: With N states, (IC) becomes

$$u_2(\alpha_i; s_i, t) - \pi_i \ge u_2(\alpha_i; s_i, t) - \pi_i$$

for all i, j, where $\alpha_i = \boldsymbol{\alpha}(s_i)$ and $\pi_i = \boldsymbol{\pi}(s_i)$. By standard arguments, it is enough to focus on adjacent constraints. For i = 2, ..., N, let $\Delta_i = \pi_i - \pi_{i-1}$. If $\boldsymbol{\alpha}^* = \mathbf{e}$ for all i, then $\alpha_N^* > \alpha_{N-1}^* > \cdots > \alpha_1^*$ (Assumption 2.1). To sustain \mathbf{e} with t, Δ_i must satisfy

$$(CIC_{i,i-1}) \quad u_2(\alpha_i^*; s_i, t) - u_2(\alpha_{i-1}^*; s_i, t) \ge \Delta_i \ge u_2(\alpha_i^*; s_{i-1}, t) - u_2(\alpha_{i-1}^*; s_{i-1}, t),$$

for i = 2, ..., N. For any s and t, $u_2(a'; s, t) - u_2(a; s, t) = ts(b(a') - b(a)) - a' + a$. Let $s_k/s_{k-1} = \min_i s_i/s_{i-1}$, and suppose $\overline{t}s_{k-1} > s_k\underline{t}$. Then,

$$u_2(\alpha_k^*; s_{k-1}, \overline{t}) - u_2(\alpha_{k-1}^*; s_{k-1}, \overline{t}) > u_2(\alpha_k^*; s_k, \underline{t}) - u_2(\alpha_{k-1}^*; s_k, \underline{t}),$$

and no Δ_k satisfies $(CIC_{k,k-1})$ for both \underline{t} and \overline{t} . If instead $\underline{t}s_i \geq \overline{t}s_{i-1}$ for i = 2, ..., N, then for every t and i,

$$u_{2}(\alpha_{i}^{*}; s_{i}, t) - u_{2}(\alpha_{i-1}^{*}; s_{i}, t) \geq u_{2}(\alpha_{i}^{*}; s_{i-1}, \overline{t}) - u_{2}(\alpha_{i-1}^{*}; s_{i-1}, \overline{t})$$

$$\geq u_{2}(\alpha_{i}^{*}; s_{i-1}, t) - u_{2}(\alpha_{i-1}^{*}; s_{i-1}, t).$$

Set $\Delta_i^* = u_2(a_i^*; s_{i-1}, \overline{t}) - u_2(a_{i-1}^*; s_{i-1}, \overline{t})$. Then $\{\Delta_i^*\}_{i=2}^N$ satisfies all (CIC_{i,i-1}) for every t. The payment rule $\pi_i^* = \pi_1^* + \sum_{j=2}^i \Delta_j^*$ —with π_1^* small to satisfy (IR)—sustains \mathbf{e} with each t.

So, if the heterogeneity across types (measured by $\overline{t}/\underline{t}$) is small, the provider can sustain **e** without worrying about time-1 incentive constraints.

The condition in Proposition E.1, however, is not necessary for the unobservability of t to be irrelevant when sustaining \mathbf{e} . Even if $\overline{t}/\underline{t}$ is large, the provider may be able to design different devices such that each sustains \mathbf{e} with one t, and each t chooses the device for himself ('t-device'). To see why, consider an example with two types, $t^h > t^l$, and two states, $s_2 > s_1$. Suppose $t^h > 1 > t^l$, $t^h s_1 > t^l s_2$, but $s_2 > s_1 t^h$ and $s_2 t^l > s_1$. Consider all (π_1, π_2) that satisfy (E.1) and (IR) with equality:

$$(1-f)\pi_2 + f\pi_1 = (1-f)u_1(\alpha_2^*; s_2) + fu_1(\alpha_1^*; s_1),$$

where $f = F(s_1)$. Finally, choose (π_1^h, π_2^h) so that h's self-1 strictly prefers α_2^* in s_2 —i.e., $u_1(\alpha_2^*; s_2) - \pi_2^h > u_1(\alpha_1^*; s_2) - \pi_1^h$ —and (π_1^l, π_2^l) so that l's self-1 strictly prefers α_1^* in s_1 —that is, $u_1(\alpha_1^*; s_1) - \pi_1^l > u_1(\alpha_2^*; s_1) - \pi_2^l$. Then, the l-device (respectively, h-device) sustains \mathbf{e} and gives zero expected payoffs to the agent if and only if l (h) chooses it. Moreover, l strictly prefers the l-device and h the h-device. To see this, note that if self-l of either type had to choose at time 2, under either device he would strictly prefer to implement \mathbf{e} . So, by choosing the 'wrong' device, either type can only lower his payoff below zero.

Proposition E.2 gives a necessary condition for the unobservability of t to be irrelevant when sustaining **e**. Let $T^1 = T \cap [0, 1]$ and $T^2 = T \cap [1, +\infty)$. For k = 1, 2, let $\overline{t}^k = \max T^k$ and $\underline{t}^k = \min T^k$.

PROPOSITION E.2: Suppose S is finite and $s_N > s_{N-1} > \cdots > s_1$. If $\max\{\overline{t}^1/\underline{t}^1, \overline{t}^2/\underline{t}^2\} > \min_i s_{i+1}/s_i$, then there is no set of devices, each designed for a $t \in T$, such that (i) t chooses the t-device, (ii) the t-device sustains \mathbf{e} with t, and (iii) all t get the same expected payoff.

PROOF: Suppose $\max\{\overline{t}^1/\underline{t}^1, \overline{t}^2/\underline{t}^2\} = \overline{t}^1/\underline{t}^1$ —the other case is similar—and that there exist devices that satisfy (i)–(iii). Let U be each t's expected payoff and $\underline{\mathbf{p}}$ be the payment rule in the \underline{t}^1 -device. Given $\underline{\mathbf{p}}$, let $\underline{a}_i(t)$ be an optimal choice of $t \in T^1$ in s_i . For \underline{t}^1 , $\underline{a}_i(\underline{t}^1) = \alpha_i^*$ for every i. Let $\overline{S} = \{i : s_{i+1}/s_i < t\}$

 $\overline{t}^1/\underline{t}^1$ } $\neq \emptyset$. Then, (a) for every i, $\overline{t}^1s_i > \underline{t}^1s_i$ and hence $\underline{a}_i(\overline{t}^1) \geq \alpha_i^*$; (b) for $i \in \overline{S}$, $\overline{t}^1s_i > \underline{t}^1s_{i+1}$, and so $\underline{a}_i(\overline{t}^1) \geq \alpha_{i+1}^* > \alpha_i^*$. Since $t \leq 1$, (a) and (b) imply

$$\underline{\mathbf{p}}(\underline{a}_{i}(\overline{t}^{1})) - \underline{\mathbf{p}}(\alpha_{i}^{*}) \leq u_{2}(\underline{a}_{i}(\overline{t}^{1}); s_{i}, \overline{t}^{1}) - u_{2}(\alpha_{i}^{*}; s_{i}, \overline{t}^{1})$$

$$\leq u_{1}(\underline{a}_{i}(\overline{t}^{1}); s_{i}) - u_{1}(\alpha_{i}^{*}; s_{i}),$$

where the first inequality is strict for $i \in \overline{S}$. The expected payoff of \overline{t}^1 from \underline{p} is then

$$\sum_{i=1}^N \left[u_1(\underline{a}_i(\overline{t}^1);s_i) - \underline{\mathbf{p}}(\underline{a}_i(\overline{t}^1))\right] f_i > \sum_{i=1}^N \left[u_1(\alpha_i^*;s_i) - \underline{\mathbf{p}}(\alpha_i^*)\right] f_i = U,$$

where
$$f_i = F(s_i) - F(s_{i-1})$$
 for $i = 2, ..., N$ and $f_1 = F(s_1)$. Q.E.D.

So, if $T^1 \setminus \{1\} = \emptyset$ or $T^2 \setminus \{1\} = \emptyset$, the condition in Proposition E.1 is also necessary for the provider to be able to sustain \mathbf{e} , even if she cannot observe t.

REFERENCES

LUENBERGER, D. G. (1969): Optimization by Vector Space Methods. New York: Wiley. [9] ROCKAFELLAR, R. T. (1970): Convex Analysis. Princeton: Princeton University Press. [2]

Dept. of Economics, UCSD, La Jolla, CA 92093, U.S.A.; sgalperti@ucsd.edu.

Manuscript received August, 2013; final revision received March, 2015.