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In this supplement, we first discuss the link with group theory and the freeness and
nonfreeness properties. We then discuss the extension to a multivariate X. Section S3
gathers all proofs.

S1. LINK WITH GROUP THEORY

S1.1. Definitions

WE FIRST RECALL SOME USEFUL DEFINITIONS on group theory. A group S is a
set endowed with a binary operator ∗ that satisfies three properties. The first is
associativity: for all (s1� s2� s3) ∈ S3, (s1 ∗ s2)∗ s3 = s1 ∗(s2 ∗ s3). The second is the
existence of an identity element e ∈ S satisfying s ∗ e = e ∗ s = s for all s ∈ S .
The third is the existence of inverses. Every element s ∈ S admits an element
called its inverse and denoted s−1 that satisfies s ∗ s−1 = s−1 ∗ s = e. The set B of
all bijections onto X , endowed with the composition operator, is an example
of a group.

A group S is said to be Abelian if for every (s1� s2) ∈ S2, s1 ∗ s2 = s2 ∗ s1.
A subgroup T of S is a subset of S that is itself a group for ∗. If we let (Ti)i∈I
denote a family of subgroups of S , one can check that

⋂
i∈I Ti is also a group.

The group generated by a subset I of S is the intersection of all subgroups of
S containing I. By definition, it is the smallest subgroup of S including I. In
the paper, S is the subgroup of B generated by the functions (sij)(i�j)∈{1�����K}2 .

We also define the notion of group actions and orbits. For any set A and a
group S , a group action · is a function from S × A to A (denoted by s · x)
satisfying, for every (s1� t) ∈ S2 and x ∈A, (s1 ∗ t) · x = s1 · (t · x) and e · x = x.
The orbit Ox of x ∈A is then defined by

Ox = {s · x� s ∈ S}�
In the paper, the group action is s · x = s(x) and the orbit of x is the set
Ox = {s(x)� s ∈ S}. Finally, a group action · is free if s · x = x for some x ∈ A
implies that s = e. This definition coincides, in the setting of the paper, with
the freeness property.

S1.2. The Freeness and Nonfreeness Properties

S1.2.1. General Results

Let us recall that the freeness properties holds if there exists no s ∈ S dif-
ferent from the identity function that admits a fixed point. The nonfreeness
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property holds if there exists s ∈ S different from the identity function that
admits a positive and finite number of fixed points.

Whether these properties hold depends on the way the instrument Z affects
the endogenous variable X . A first observation is that if there exist (i� j) ∈
{1� � � � �K}2 such that FX|Z=i and FX|Z=j cross at least once and at most a finite
number of times on X , then the nonfreeness property holds.1 A case where
the different (FX|Z=i)i∈{1�����K} cross are generalized location–scale models, with
the exception of pure location models. In the latter case, the freeness property
holds.

PROPOSITION S1: Suppose that

h(Z�η) = μ
(
ν(Z)+ σ(Z)η

)
�(S1.1)

where Z ⊥⊥ η, Support(η) = R, σ(Z) > 0, and μ is a strictly increasing function
from R to X . If σ(Z) is not constant, the nonfreeness property holds. Otherwise,
the freeness property holds.

S1.2.2. Illustration

Let us illustrate the freeness and nonfreeness properties in a specific con-
text. Suppose that we are interested in measuring the effect of unemployment
duration X on an health index Y , using policy changes on unemployment ben-
efits as an instrument Z. Suppose that the hazard rate of X conditional on
Z = z satisfies a Cox model λz(t) = λ0 exp(−cbz(t)), where bz(t) denotes un-
employment benefits at date t under policy status z.2 We show hereafter that
depending on the type of policy changes that we consider, we end up with ei-
ther freeness or nonfreeness.

First, if the unemployment benefits are less generous after the policy change,
so that b1(t) < b2(t) for all t, FX|Z=2 stochastically dominates FX|Z=1. The free-
ness property holds because all unemployed people have less incentives to find
a job. Now consider the case where unemployment benefits were initially con-
stant over time, b1(t) = b1, but then become decreasing: b2(t) = b211{t ≤ t0} +
b221{t > t0} for a given threshold t0, with b21 > b1 > b22. The new policy is
thus more generous for short periods of unemployment and less generous
for longer ones. The integrated hazard satisfies Λ1(t) = ∫ t

0 λ1(u)du = B1t and
Λ2(t) = B21t1{t ≤ t0} + (B22t + (B21 − B22)t0)1{t > t0}, with B1 = λexp(−cb1)

1Torgovitsky (2015) uses such fixed points to achieve identification. Interestingly, this crossing
property is also used by Guerre, Perrigne, and Vuong (2009) to achieve identification of first-price
auction models with risk averse bidders. They use for that purpose exogenous variation in the
number of bidders, which plays the role of discrete instrument in their framework. The crossing
they use is on the bidding functions and is automatically satisfied by the theoretical bidding model.

2This toy model is useful to discuss the economic contents of our assumptions but does not
pretend to be fully realistic.
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and B2i = λexp(−cb2i), i ∈ {1�2}. Because FX|Z=z(x) = 1 − exp(−Λz(x)) and
s12 = F−1

X|Z=2 ◦ FX|Z=1, we obtain s12 = Λ−1
2 ◦Λ1. Hence, nonfreeness holds here,

because Λ1 and Λ2 cross once.
Now, suppose that we experience several changes, but bz(t) = az + b(t),

so that unemployment benefits differ by the same constant over time under
the different policies. Then X satisfies a generalized location model, so that
the freeness property holds by Proposition S1. Finally, we provide an example
where K ≥ 3 and nonfreeness holds, though the (sij)i�j do not cross. Suppose
that b1(·) and b2(·) are as previously but b21 < b1, so that the second policy is
always less generous than the first. Suppose also we have a third policy satisfy-
ing b3(t)= b311{t ≤ t0} + b221{t > t0} and b31 < b21. The third policy is thus less
generous than the second. As a result, sij(x) > x for all i < j. Suppose also for
ease of exposition that b21 = 2b1/3, b31 = b1/4, and b22 = b1/5, and let us prove
that s31 ◦ s2

12 admits a unique fixed point.3

Within this framework, the integrated hazard rates satisfy Λ1(t) = B1t, with
B1 = λexp(−cb1) and

Λj(t)= Bj1t1{t ≤ t0} + (
B22t + (Bj1 −B22)t0

)
1{t > t0}

for j = 2�3, with Bji = λexp(−cbji). Because sij = Λ−1
j ◦Λi, it follows that

si1(t)=Ei1t1{t ≤ t0} + (
Et + (Ei1 −E)t0

)
1{t > t0}

for i = 2�3, with Ei1 = Bi1/B1 > 1 and E = B22/B1 > Ei1. Some computations
yield

s2
21(t) = E2

21t1{t ≤ t0/E21} + (
E21Et + (E21 −E)t0

)
1{t0 ≥ t > t0/E21}

+ (
E2t + (E21 −E)(E + 1)t0

)
1{t > t0}�

We have E31 = exp(3cb1/4) > exp(2cb1/3) = E2
21. Thus s31(t) > s2

21(t) for
t ∈ (0� t0/E21) and they do not cross on this interval. The functions s31 and s2

21
are then linear on (t0/E21� t0) and s31(t0/E21) > s2

21(t0/E21). If s31(t0) > s2
21(t0),

the functions do not cross on this interval either. Otherwise, if s31(t0) < s2
21(t0),

the functions cross only once on the interval (t0/E21� t0). Finally, s31 and s2
21

are linear on [t0�+∞) with different slopes. Moreover, for t > t0, E2 > E so
that s2

21(t) > s31(t) for t > t0 large enough. Hence, if s31(t0) > s2
21(t0), the func-

tions cross only once on the interval [t0�+∞) whereas they do not cross if
s31(t0) < s2

21(t0). At the end, in all cases, s31 ◦ s2
12 admits a unique fixed point.

The nonfreeness property holds though the (sij)i�j do not cross.

3The same result holds for more general values of (b21� b31� b22), but the argument is more
complicated.
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S2. THE MULTIVARIATE CASE

In the multivariate case, the topology of the orbits is more complicated and a
full classification is difficult to obtain. Yet, Theorem 1 is still valid and previous
ideas can be partially extended. We first write the suitable generalizations of
Assumptions 2 and 3 in this context. Henceforth, H still denotes the interior
of the support of η.

ASSUMPTION S1—Dual Strict Monotonicity: We have ε ∈ R, h(Z�η) =
(h1(Z�η1)� � � � �hd(Z�ηd)) and for all (x� z�m) ∈ X × {1� � � � �K} × {1� � � � � d},
τ 	→ g(x�τ) and v 	→ hm(z� v) are strictly increasing.

ASSUMPTION S2—Technical Restrictions: (i) Support(X|Z = z) =∏d

m=1[xm�xm] with −∞ ≤ xm < xm ≤ ∞ independent of z.
(ii) The variable ε has a uniform distribution.
(iii) The function Fηm is continuous and strictly increasing on its support for

m ∈ {1� � � � � d}.
(iv) The function(u� v) 	→ Fε|η=v(u) is continuous and strictly increasing in u

for all v ∈H.
(v) The functions g(·� ·) and h(z� ·) are continuous on X × (0�1) and H,

respectively.

It is easy to see that under these conditions, Theorem 1 is still valid, where
S is still the group generated by the sij(x) = (sij1(x1)� � � � � sijd(xd)), with sijm =
F−1
Xm|Z=j ◦ FXm|Z=i. The issue is, therefore, whether the condition on the orbits

holds or not.

S2.1. The Free Case

The powerful tools that we used for the univariate free case, namely Hölder’s
and Denjoy’s theorems, no longer apply. Hölder’s theorem states that if free-
ness holds for a group of functions on the real line, this group is Abelian.
Thanks to this property, we can reduce our study to the unit circle. This re-
sult does not hold, however, for functions of several variables. Moreover, even
if we were able to come back to the unit circle on each coordinate, Denjoy’s
theorem would only prove density on each of these coordinates but not on the
Cartesian product of these unit circles, which would be necessary to establish
full identification.

Even if we cannot use the same proof as in the univariate case, the general-
ized location model still provides some interesting insights. Suppose that

Xm = μm

(
νm(Z)+ηm

)
� m= 1� � � � � d�(S2.1)

where μm is strictly increasing and continuous and, without loss of generality,
ν1(1)= · · · = νd(1)= 0. Hereafter, we let A denote the K− 1 ×d matrix of the
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typical (k− 1�m) element νm(k), for k = 2� � � � �K, and let Ak be the kth line
of A. We make the following assumption.

ASSUMPTION S3—Rank and Nonperiodicity Condition: (i) The matrix A
has rank d and (ii) supposing, without loss of generality, that (A1� � � � �Ad) are
linearly independent, there exists i > d such that Ai = ∑d

k=1 λkAk and for all
(c1� � � � � cd) ∈ Zd , (c1� � � � � cd) �= (0� � � � �0),

∑d

k=1 λkck /∈ Z.

Condition (i) is similar to the standard rank condition in linear instrumen-
tal variables models, and actually identical when μ1� � � � �μd are the identity
function. Condition (ii) is similar to the nonperiodicity condition imposed in
Assumption 4 in the univariate case, and can be interpreted as a rank condi-
tion. It basically states that using a value i of the instrument, we can yield a
binary instrument Zi whose effect is truly distinct from those we can produce
using the first d + 1 values of Z. A necessary condition for Assumption S3 to
hold is that K ≥ d + 2, which is logical since full identification was obtained
in the univariate case with K ≥ 3. Theorem S1 shows that the model is iden-
tified under this condition. Its proof relies on a characterization of additive
subgroups of Rd , which can be found, for instance, in Bourbaki (1974).

THEOREM S1: If Equation (S2.1) and Assumptions 1 and S1–S3 hold, g is
identified.

S2.2. The Nonfree Case

Without freeness, we can still use fixed points to achieve identification. How-
ever, another element comes into play, namely the attractiveness of these fixed
points. Attractiveness is not an issue in the univariate case since the functions
are strictly increasing. Any fixed point of s can be reached by applying several
times either s or s−1 and g is thus identified at the fixed point.

This is no longer true in a multidimensional setting, as illustrated in Fig-
ure S1. Consider the bivariate case with K = 2, and let xf = (x1�f � x2�f ) denote
a fixed point of s12 = (s1�12� s2�12). Suppose first that s1�12(x1) > x1 if and only if
x1 < x1�f , while s2�12(x2) < x2 if and only if x2 < x2�f (see Figure S1, case (a)).
No sequence (sk12(x))k∈N converges in X . When x = (x1�x2) ∈ (−∞�x1�f ) ×
(−∞�x2�f ), for instance, the sequence (sk1�12(x1))k∈N converges to x1�f but the
sequence (sk2�12(x2))k∈N tends to −∞, with (x1�f �−∞) /∈X . On the other hand,
suppose that sm�12(xm) < xm if and only if xm < xm�f for m ∈ {1�2} (Figure S1,
case (b)). For any x = (x1�x2), the sequence (s−k

12 (x))k∈N converges to xf .
In short, a condition on the position of the coordinates of s12 is necessary

and sufficient to secure identification when K = d = 2. The sufficiency part of
this result actually extends to any K and d, as Proposition S2 shows.
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FIGURE S1.—Illustration of the attractiveness issue under nonfreeness.

PROPOSITION S2: Under Assumptions 1, S1, and S2, if there exists s =
(s1� � � � � sd) ∈ S with exactly one fixed point xf = (x1�f � � � � � xd�f ) and such that
for all x = (x1� � � � � xd), sgn[(sm(x) − xm)(xm − xm�f )] does not depend on
m ∈ {1� � � � � d}, then g is identified.

Even if the attractiveness condition may seem restrictive, it is important to
note that only one function in the group has to satisfy this condition. Hence, it
may hold even when no function sij admits an attractive fixed point, because we
also have at hand all the compositions of the sij . To illustrate this idea, consider
the generalized location–scale models of the form

Xm = μm

(
νm(Z)+ σm(Z)ηm

)
�(S2.2)

with σm(Z) > 0 and μm a strictly increasing and continuous function. Without
loss of generality, we set σ1(1) = · · · = σd(1) = 1. Unless σm(·) is constant for
some m, all the functions sij admit a unique fixed point, which is not attractive
in general. Nevertheless, under a simple rank condition, the model is identified
because one can always construct a function s ∈ S with an attractive fixed point.
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THEOREM S2: If Equation (S2.2) and Assumptions 1, S1, and S2 hold, and
the rank of the matrix of typical (i� j) element lnσi(j + 1) is d, there exists s ∈ S
that admits a unique and attractive fixed point. Thus, g is identified.

S3. ADDITIONAL PROOFS

We begin by stating and proving Lemma S1, used in the proof of Theorem 2.

LEMMA S1: Suppose that s12 is C2 with s12(x) − x > 0 for all x ∈ X . Then
for any a ∈ X , there exists an increasing C2 diffeomorphism r̃ from [0�1) to
[a� s12(a)) satisfying r̃(0) = a, limx→1 r̃(x) = s12(a), limx→1 r̃

′(x) = [s12 ◦ r̃]′(0),
and limx→1 r̃

′′(x) = [s12 ◦ r̃]′′(0).

PROOF: We actually prove the stronger result that for any (a�b� c) ∈
X × R∗+ × R, there exists an increasing C2 diffeomorphism r̃ from [0�1) to
[a� s12(a)) satisfying r̃(0) = a, limx→1 r̃(x) = s12(a), r̃ ′(0) = b, limx→1 r̃

′(x) =
s′

12(a)b, r̃ ′′(0)= c, and limx→1 r̃
′′(x) = s′′

12(a)b
2 + s′

12(a)c. For that, we construct
r̃ ′ satisfying all the restrictions. We first define the functions gd�e for any d > 0
and e ∈ (0�1/4) as follows:

• On [0� e), let gd�e(x)= b+ cx(1 − x/2e).
• On [e�2e), let gd�e(x) = 1/2[(b + ce/2 − d) sin(π(x − e)/e + π/2) +

(b+ ce/2 + d)].
• On [2e�1 − 2e), let gd�e(x)= d.
• On [1−2e�1−e), let gd�e(x)= 1/2[(f (e)−d) sin(π(x−1+e)/e+π/2)+

(f (e)+ d)], with f (e) = s′
12(a)b− (s′′

12(a)b
2 + s′

12(a)c)e/2.
• On [1 − e�1), let gd�e(x) = s′

12(a)b + [s′′
12(a)b

2 + s′
12(a)c](x − 1)(1 +

(x− 1)/2e).
By construction, gd�e and g′

d�e are continuous. If e is small enough, b +
ce/2 > 0 f (e) > 0 and gd�e(x) > 0 for all x ∈ [0�1). Moreover, gd�e(0) = b,
limx→1 gd�e(x) = s′

12(a)b, g′
d�e(0) = c, and limx→1 g

′
d�e(x) = s′′

12(a)b
2 + s′

12(a)c.
Moreover, because limd→0

e→0

∫ 1
0 gd�e(x)dx = 0 and for any e ∈ (0�1/4),

limd→∞
∫ 1

0 gd�e(x)dx = +∞, there exists, by the intermediate value theorem,
(d∗� e∗) such that f (e∗) > 0 and

∫ 1
0 gd∗�e∗(x)dx = s12(a) − a. By construction,

r̃(x) = a+ ∫ x

0 gd∗�e∗(t)dt satisfies all the restrictions of the lemma. Q.E.D.

S3.1. Proof of Proposition S1

Suppose first that σ(Z) is constant, equal to 1 without loss of generality. We
have h−1(i�x) = −ν(i)+μ−1(x). As a result, sij(x) = μ(ν(j)− ν(i)+μ−1(x)).
For any s ∈ S , there exists (i1� j1� � � � � ip� jp) ∈ {1� � � � �K}2p such that s = si1j1 ◦
· · · ◦ sipjp . By a straightforward induction, s(x) = μ(

∑K

i=1 ν(i)n(i) + μ−1(x)),
where n(i) = ∑p

l=1 1{jl = i} − 1{il = i}. Thus, s(x) = x for some x implies that
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i=1 ν(i)n(i)= 0, implying in turn that s is the identity function. Thus, freeness
holds. Now suppose that σ(Z) is not constant and let i� j be such that σ(i) �=
σ(j). We have

sij(x) = μ

[
ν(j)+ σ(j)

μ−1(x)− ν(i)

σ(i)

]
�

Thus, sij is different from the identity function and we can easily see that it
admits a unique fixed point. Therefore, the nonfreeness property holds.

S3.2. Proof of Theorem S1

As in the univariate case, we prove that any orbit is dense. The functions
s ∈ S take the form

s(x1� � � � � xd) =
(
μ1

[
K∑

k=2

n(k)ν1(k)+μ−1
1 (x1)

]
� � � � �

μd

[
K∑

k=2

n(k)νd(k)+μ−1
d (xd)

])

for some n = (n(2)� � � � � n(K)) ∈ ZK−1. Moreover, any n ∈ ZK−1 corresponds to
a function s ∈ S . We thus have

Ox0 =
{(

μ1

[
K∑

k=2

n(k)ν1(k)+μ−1
1 (x01)

]
� � � � �

μd

[
K∑

k=2

n(k)νd(k)+μ−1
d (x0d)

])
�
(
n(2)� � � � � n(K)

) ∈ ZK−1

}
�

By continuity of μ1� � � � �μd , it suffices to show that H = {∑K

k=2 n(k)A
′
k−1�

n(k) ∈ Z} is dense in Rd . Because H is an additive subgroup of Rd , it suffices
to show (see, e.g., Bourbaki (1974, paragraph 1, item 3)) that

〈H�x〉 ⊂ Z �⇒ x = 0�(S3.1)

where for any x ∈ Rd ,

〈H�x〉 = {
h′x�h ∈ H

} =
{

K∑
k=2

n(k)Ak−1x�n(k) ∈ Z

}
�

Suppose that 〈x�H〉 ⊂ Z for some x ∈ Rd . Then Akx ∈ Z for all k = 1� � � � � d.
Choosing i > d + 1 as in Assumption S3, we also have Aix ∈ Z. This implies
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that
∑d

k=1 λk(Akx) ∈ Z. Because Akx ∈ Z, Akx = 0 for k = 1� � � � � d by As-
sumption S3. Because (A1� � � � �Ad) are linearly independent, x = 0, imply-
ing (S3.1).

S3.3. Proof of Proposition S2

Suppose, without loss of generality, that sgn[(sm(xm)−xm)(xm −xm�f )] = −1
for all m = 1� � � � � d. To prove Theorem S2, it suffices to show that xf =
limk→∞ sk(x) for all x = (x1� � � � � xd) ∈ X or, equivalently, that for all m =
1� � � � � d, xm�f = limk→∞ skm(xm). If xm < xm�f , a straightforward induction shows
that (skm(x))k∈N is increasing and bounded above by xm�f . Because s has a
unique fixed point, xm�f = limk→∞ skm(xm). Similarly, if xm > xm�f , skm(x) is de-
creasing and bounded below by xm�f , the sequence also converges to xm�f .

S3.4. Proof of Theorem S2

First, some algebra shows that functions s ∈ S take the form

s(x1� � � � � xd) =
(
μ1

[
α1 +

(
K∏

k=2

σ1(k)
ek

)
μ−1

1 (x1)

]
� � � � �

μd

[
αd +

(
K∏

k=2

σd(k)
ek

)
μ−1

d (xd)

])

for some (α1� � � � �αd) ∈ Rd and (e2� � � � � eK) ∈ ZK−1. Moreover, any e ∈ ZK−1

corresponds to a function s ∈ S . Noting βm = ∏K

k=2 σm(k)
ek , the function

s admits a unique attractive fixed point xf = (x1�f � � � � � xd�f ) if, for all m,
0 <βm < 1. Indeed, μm(αm + βmμ

−1
m (xm�f )) = xm�f if and only if μ−1

m (xm�f ) =
αm

1−βm
. Moreover, μm(α + βμ−1

m (xm)) > xm for xm < xm�f . Thus, by Proposi-
tion S2, it suffices to show that there exists (e2� � � � � eK) ∈ ZK−1 such that(

K∏
k=2

σm(k)
ek

)
< 1 for all m ∈ {1� � � � � d}�(S3.2)

Let M denote the d × K − 1 matrix of typical (i� j) element lnσi(j + 1).
Because M is full rank by assumption, there exists u ∈ RK−1 such that Mu =
−(1� � � � �1)′. Thus, by density of QK−1, there exists ũ ∈QK−1 such that Mũ< 0,
where the inequality should be understood componentwise. Moreover, ũ can
be written (e2/D� � � � � eK/D)′, where (e2� � � � � eK�D) ∈ ZK . This implies that
M(e2� � � � � eK)

′ < 0, which is equivalent to (S3.2).
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