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INTRODUCTION

THIS SUPPLEMENTAL MATERIAL INCLUDES (i) proofs omitted from the main
text, (ii) additional simulation examples, (iii) an extended notion of the identi-
fied set, (iv) difficulties associated with the use of alternative discrepancies,
(v) inference methods, (vi) computational details of the implementation of
the method in the paper, (vii) an example of equivalence to standard bound-
ing techniques, and (viii) relationships with earlier information-theoretic and
entropy-based methods.

APPENDIX B: PROOFS OMITTED FROM THE MAIN TEXT

Throughout the proofs, we denote ρ(u|z;θ) by ρ(u|z), making the depen-
dence on θ implicit (as all arguments hold pointwise in θ).

PROOF OF PROPOSITION 2.1: This proof frequently makes the use of ran-
dom variables (and expectations, probabilities, or support thereof) that are
conditional on the event Z = z and the following qualifications will apply
throughout. Since we consider regular conditional probability measures, a dis-
tribution (say, of a random variable U) conditional on Z = z will be a well
defined probability measure for all z in a set Z ′ ⊆Z of probability 1 under the
distribution of Z. All statements for a given z will be for z ∈ Z ′ and we need
not consider z ∈Z \Z ′, since such events have probability 0 and will not affect
any unconditional probabilities or expectations. Also, recall that g(u�z�θ) is
assumed to be measurable throughout. Finally, since all arguments hold point-
wise in θ, we make dependence on θ implicit and denote ρ(u|z;θ) by ρ(u|z),
λ(u|z;θ) by λ(u|z), and u̇(z�θ) by u̇(z).

We now verify that the example satisfies the conditions of Definition 2.2.
We first note that the support of λ(·|z) is U by construction and that ρ
differs from λ only by a multiplicative prefactor C(z�θ)exp(−‖g(u�z�θ) −
g(u̇(z)� z�θ)‖2). Since C(z�θ)≥ 1 by construction, the prefactor is nonvanish-
ing for any finite g(u�z�θ) and it follows that the supports of ρ(·|z) and λ(·|z)
agree.

Next, we check the differentiability requirement on Eπ[lnEρ[exp(γ′g(U�Z�
θ))|Z]]. We first check that the second derivative is finite—the boundedness of
the function itself and of its first derivative follow by similar arguments. By the
same reasoning as in the proof of Lemma A.1, the interchanges of derivatives
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with expectation performed below are allowed. We then have

∂2

∂γ ∂γ′Eπ

[
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]](S.1)

=Eπ

[
Eρ[g(U�Z�θ)g′(U�Z�θ)exp(γ′g(U�Z�θ))|Z]

Eρ[exp(γ′g(U�Z�θ))|Z]
]

−Eπ

[
g̃(Z�θ�γ)g̃′(Z�θ�γ)

]
=Eπ

[
Eρ

[(
g(U�Z�θ)− g̃(Z�θ�γ)

)(
g(U�Z�θ)− g̃(Z�θ�γ)

)′
× exp

(
γ′g(U�Z�θ)

)|Z]
/Eρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]�
where

g̃(z�θ�γ)≡ Eρ[g(U�Z�θ)exp(γ′g(U�Z�θ))|Z = z]
Eρ[exp(γ′g(U�Z�θ))|Z = z] 	

We then bound each element of the matrix (S.1) by a single scalar quantity: For
i� j ∈ {1� 	 	 	 � dg}, we have

Eρ

[(
gi(U�Z�θ)− g̃i(Z�θ�γ)

)(
gj(U�Z�θ)− g̃j(Z�θ�γ)

)
(S.2)

× exp
(
γ′g(U�Z�θ)

)|Z = z
]

/Eρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
]

≤
(
Eρ

[(
gi(U�Z�θ)− g̃i(Z�θ�γ)

)2
exp
(
γ′g(U�Z�θ)

)|Z = z
]

/Eρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
])1/2

×
(
Eρ

[(
gj(U�Z�θ)− g̃j(Z�θ�γ)

)2
exp
(
γ′g(U�Z�θ)

)|Z = z
]

/Eρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
])1/2

≤ Eρ[‖g(U�Z�θ)− g̃(Z�θ�γ)‖2 exp(γ′g(U�Z�θ))|Z = z]
Eρ[exp(γ′g(U�Z�θ))|Z = z]

= Eρ[‖g(U�Z�θ)− g̃(Z�θ�γ)‖2 exp(γ′g(U�Z�θ))|Z = z]
Eρ[exp(γ′g(U�Z�θ))|Z = z]

× exp(−γ′g(u̇(z)� z�θ))
exp(−γ′g(u̇(z)� z�θ))
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=Eρ

[∥∥g(U�Z�θ)− g̃(Z�θ�γ)
∥∥2

× exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

/Eρ

[
exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]
�

where we have (i) used the Cauchy–Schwarz inequality, (ii) used the fact that
(gi(u� z�θ) − g̃i(z� θ�γ))

2 ≤ ‖g(u�z�θ) − g̃(z�θ�γ)‖2 for i = 1� 	 	 	 � dg, and
(iii) multiplied the numerator and denominator by the same nonvanishing fac-
tor exp(−γ′g(u̇(z)� z�θ)).

We now bound, in turn, the numerator and the denominator of (S.2). Since
the expected square deviation about the mean is less than about any other
point (such as g(u̇(z)� z�θ)), we have

Eρ

[∥∥g(U�Z�θ)− g̃(Z�θ�γ)
∥∥2

× exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

≤Eρ

[∥∥g(U�Z�θ)− g
(
u̇(z)� z�θ

)∥∥2

× exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]
	

Next, since a polynomial can be bounded by a suitable linear combination of
exponentials (uniformly for any value of their corresponding argument),

Eρ

[∥∥g(U�Z�θ)− g
(
u̇(z)� z�θ

)∥∥2
(S.3)

× exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

≤
dg∑
j=0

AjEρ

[
exp
(
γ′
j

(
g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

for some finite A0� 	 	 	 �Adg ∈ R
+ and some γ0� 	 	 	 � γdg , each taking value in R

dg

and lying in an ε-neighborhood of γ (for some finite ε > 0 independent of z).
Considering any one term in the sum (S.3), we have, by the definition of ρ,

AjEρ

[
exp
(
γ′
j

(
g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

(S.4)

=Aj

(
Eλ

[
exp
(
γ′
j

(
g(U�Z�θ)− g

(
u̇(z)� z�θ

))
− ∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

/Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
])
�

where the denominator is simply the reciprocal of the normalization constant
C(z�θ). The denominator of (S.4) can be easily bounded below by exploiting
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the assumed presence, in λ, of a point mass of probability q > 0 at U = u̇(z),

Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

(S.5)

≥Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)
× 1
(
g(U�Z�θ) = g

(
u̇(z)� z�θ

))|Z = z
]

=Eλ

[
exp(0)1

(
g(U�Z�θ) = g

(
u̇(z)� z�θ

))|Z = z
]

=Eλ

[
1
(
g(U�Z�θ) = g

(
u̇(z)� z�θ

))|Z = z
]

≥Eλ

[
1
(
U = u̇(z)

)|Z = z
]= q > 0�

where we have used the fact that (i) including an indicator function multiplier
in an expectation of a positive quantity can only reduce its value (in a slight
abuse of notation, we take the convention that the expectation of an indicator
function turning on at the location of a point mass simply yields the probability
mass assigned to that point) and (ii) the event g(U�Z�θ) = g(u̇(z)� z�θ) is no
less probable than U = u̇(z) because there may be multiple u ∈ U such that
g(u�z�θ) = g(u̇(z)� z�θ). We can then bound (S.4) as

AjEρ

[
exp
(
γ′
j

(
g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

(S.6)

≤ q−1AjEλ

[
exp
(
γ′
j

(
g(U�Z�θ)− g

(
u̇(z)� z�θ

))
− ∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

≤ q−1AjEλ

[
exp
(‖γj‖

∥∥g(U�Z�θ)− g
(
u̇(z)� z�θ

)∥∥
− ∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

≤ q−1AjEλ

[
exp
(

sup
x∈R

(‖γj‖x− x2
))∣∣Z = z

]
= q−1AjEλ

[
exp
(‖γj‖2/4

)|Z = z
]

= q−1Aj exp
(‖γj‖2/4

)
≤ q−1Aj exp

((‖γ‖ + ε
)2
/4
)
�

where we have used (i) inequality (S.5), (ii) the fact that supx∈R(‖γj‖x− x2) =
‖γj‖2/4, and (iii) the fact that γj is in an ε-neighborhood of γ, combined with
the triangle inequality.

We now obtain a lower bound on the denominator of (S.2),

Eρ

[
exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))|Z = z
]

(S.7)

=Eλ

[
exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))
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× exp
(−∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

/Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(z)� z�θ

)∥∥2)|Z = z
]

≥Eλ

[
exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))
× exp

(−∥∥g(U�Z�θ)− g
(
u̇(z)� z�θ

)∥∥2)|Z = z
]

≥Eλ

[
exp
(
γ′(g(U�Z�θ)− g

(
u̇(z)� z�θ

)))
× exp

(−∥∥g(U�Z�θ)− g
(
u̇(z)� z�θ

)∥∥2)
× 1
(
g(U�Z�θ) = g

(
u̇(z)� z�θ

))|Z = z
]

=Eλ

[
1
(
g(U�Z�θ) = g

(
u̇(z)� z�θ

))|Z = z
]

≥Eλ

[
1(U = u̇)|Z = z

]= q�

where we have used the definition of ρ and the facts (i) that Eλ[exp(−‖g(U�Z�
θ) − g(u̇(z)� z�θ)‖2)|Z = z] ≤ Eλ[1|Z = z] = 1, (ii) that a multiplicative indi-
cator function can only reduce the value of an expectation of a positive quan-
tity, (iii) that g(U�Z�θ) = g(u̇(z)� z�θ) implies that both exponentials equal
1, (iv) that u = u̇(z) implies g(u�z�θ) = g(u̇(z)� z�θ), and (v) that the event
U = u̇(z) given Z = z has probability q by construction.

Combining the bounds (S.6) and (S.7), both of which hold uniformly in z
and do not depend on z, the expectation in (S.1) can be bounded by a finite
quantity at any γ ∈R

dg ,

Eπ

[
Eρ[‖g(U�Z�θ)− g̃(Z�θ�γ)‖2 exp(γ′g(U�Z�θ))|Z]

Eρ[exp(γ′g(U�Z�θ))|Z]
]

(S.8)

≤ Āexp
((‖γ‖ + ε

)2
/4
)
�

where Ā ≡ q−2
∑dg

j=0 Aj . This bound on the second derivative of

Eπ

[
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]≡ M̃(γ)

also implies that M̃(γ) and ∂M̃(γ)/∂γ are finite at all γ ∈ R
dg . Indeed,

∂M̃(γ)/∂γ is given by the path integral

∂M̃(γ1)

∂γ
= ∂M̃(γ1)

∂γ

∣∣∣∣
γ1=0

+
∫ γ1

0

∂2M̃(γ)

∂γ ∂γ′ · dγ(S.9)

= ∂M̃(γ1)

∂γ

∣∣∣∣
γ1=0

+
∫ 1

0

∂2M̃(αγ1)

∂γ ∂γ′ · γ1 dα�
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where we take a linear integration path for simplicity. Note that ∂M̃(γ1)/
∂γ|γ1=0 is given by

Eπ

[
Eρ[g(U�Z�θ)exp(γ′

1g(U�Z�θ))|Z]
Eρ[exp(γ′

1g(U�Z�θ))|Z]
]∣∣∣∣

γ1=0

=Eπ

[
Eρ

[
g(U�Z�θ)|Z]]

=Eπ

[
Eλ[g(U�Z�θ)exp(−‖g(U�Z�θ)− g(u̇(Z)�Z�θ)‖2)|Z]

Eλ[exp(−‖g(U�Z�θ)− g(u̇(Z)�Z�θ)‖2)|Z]
]

=Eπ

[
Eλ

[(
g(U�Z�θ)− g

(
u̇(Z)�Z�θ

))
× exp

(−∥∥g(U�Z�θ)− g
(
u̇(Z)�Z�θ

)∥∥2)|Z]
/Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(Z)�Z�θ

)∥∥2)|Z]]
+Eπ

[
Eλ

[
g
(
u̇(Z)�Z�θ

)]]
so that ‖∂M̃(γ1)/∂γ|γ1=0‖ is bounded by

Eπ

[
Eλ

[∥∥g(U�Z�θ)− g
(
u̇(Z)�Z�θ

)∥∥(S.10)

× exp
(−∥∥g(U�Z�θ)− g

(
u̇(Z)�Z�θ

)∥∥2)|Z]
/Eλ

[
exp
(−∥∥g(U�Z�θ)− g

(
u̇(Z)�Z�θ

)∥∥2)|Z]]
+Eπ

[
Eλ

[∥∥g(u̇(Z)�Z�θ
)∥∥]]

≤Eπ

[
q−1Eλ

[∥∥g(U�Z�θ)− g
(
u̇(Z)�Z�θ

)∥∥
× exp

(−∥∥g(U�Z�θ)− g
(
u̇(Z)�Z�θ

)∥∥2)|Z]]
+Eπ

[∥∥g(u̇(Z)�Z�θ
)∥∥]

≤Eπ

[
q−1Eλ

[(
sup
x∈R

|x|exp
(−x2

))∣∣Z]]+Eπ

[∥∥g(u̇(Z)�Z�θ
)∥∥]

≤Eπ

[
q−1Eλ[1|Z]]+Eπ

[∥∥g(u̇(Z)�Z�θ
)∥∥]

= q−1 +Eπ

[∥∥g(u̇(Z)�Z�θ
)∥∥]

≤ q−1 +Eπ

[
inf
u∈U

∥∥g(u�Z�θ)
∥∥]+ω

≤ q−1 +Eμ×π

[∥∥g(U�Z�θ)
∥∥]+ω<∞�

where we have used the facts that (i) result (S.5) holds, (ii) that supx∈R |x| ×
exp(−x2) ≤ 1, (iii) that ‖g(u̇(z)� z�θ)‖ ≤ infu∈U ‖g(u�z�θ)‖ + ω by construc-
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tion, and (iv) that infu∈U ‖g(u�Z�θ)‖ ≤ ‖g(ũ�Z�θ)‖ for any ũ ∈ U , and that
Eμ×π[‖g(U�Z�θ)‖] (with μ denoting the true data generating process of U
given Z) must be finite for the model to be well defined. Combining (S.9),
(S.10), and (S.8), we then have

∥∥∥∥∂M̃(γ1)

∂γ

∥∥∥∥
≤
∥∥∥∥∂M̃(γ1)

∂γ

∣∣∣∣
γ1=0

∥∥∥∥+
∫ 1

0

∥∥∥∥∂2M̃(αγ1)

∂γ ∂γ′

∥∥∥∥‖γ1‖dα

≤ q−1 +Eμ×π

[∥∥g(U�Z�θ)
∥∥]+ω+ ‖γ1‖ sup

α∈[0�1]

∥∥∥∥∂2M̃(αγ1)

∂γ ∂γ′

∥∥∥∥
≤ q−1 +Eμ×π

[∥∥g(U�Z�θ)
∥∥]+ω+ ‖γ1‖Āexp

((‖γ1‖ + ε
)2
/4
)
	

By a similar reasoning, M̃(γ) is also bounded at each γ ∈ R
dg since M̃(γ1) =

M̃(0)+ ∫ 1
0

∂M̃(αγ1)

∂γ
· γ1 dα and M̃(0)= 0.

We have thus shown that the ρ provided satisfies the required support con-
dition, and the corresponding Eπ[lnEρ[exp(γ′g(U�Z�θ))|Z]] satisfies the ex-
istence and differentiability conditions of Definition 2.2. Q.E.D.

PROOF OF LEMMA A.1: If Eπ[lnEρ[exp(γ′g(U�Z�θ))|Z]] exists for all γ ∈
R

dg , then Eρ[exp(γ′g(U�Z�θ))|Z = z] must exist and be finite for all γ ∈ R
dg

and for almost all z, except perhaps on a set of probability 0 under π. By the
properties of moment generating functions defined for all γ ∈ R

dg , the ∂
∂γ

and
∂2

∂γ ∂γ′ operators therefore commute with Eρ[·|Z = z] and we have

∂2

∂γ2
j

lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
]

=

∫
(gj(u� z�θ)− g̃j(z�θ�γ))

2 exp(γ′g(u�z�θ))dρ(u|z)∫
exp(γ′g(u�z�θ))dρ(u|z)

≡Aj(z)

for j = 1� 	 	 	 � dg. Since this quantity is nonnegative at any z, we also have

Eπ

[
Aj(Z)

]= Eπ

[
∂2

∂γ2
j

lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]

= ∂2

∂γ2
j

Eπ

[
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]�
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where the latter quantity is finite by assumption. Hence, Eπ[lnEρ[exp(γ′g(U�
Z�θ))|Z]] being twice differentiable implies that Aj(Z) has finite expectation
under π. As covariances and means can be bounded in terms of variances, the
first derivatives and mixed second derivatives of lnEρ[exp(γ′g(U�Z�θ))|Z]
also commute with the expectation Eρ[·|Z = z]. This in turn implies that
both

Eπ

[∣∣∣∣ ∂

∂γj

lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
]∣∣∣∣
]

and

Eπ

[∣∣∣∣ ∂2

∂γj ∂γj′
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z = z
]∣∣∣∣
]

are finite, and this absolute integrability result implies that ∂/∂γj and ∂2/
∂γj ∂γj′ also commutes with Eπ . Since we have shown that interchanges of
derivatives and expectations are allowed, we can verify that

gγ = ∂

∂γ
Eπ

[
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]
and

Vγ = ∂2

∂γ ∂γ′Eπ

[
lnEρ

[
exp
(
γ′g(U�Z�θ)

)|Z]]�
which both exist because Eπ[lnEρ[exp(γ′g(U�Z�θ))|Z]] is twice differen-
tiable.

To show that V −1
γ exists for all γ ∈ R

dg , we show that η′Vγη never vanishes
for any unit vector η. Note that η′Vγη is the expected value (under π) of the
variance of η′g(U�z�θ) (conditional on z) under the measure ρ̃(u|z) defined
via

dρ̃(u|z)= exp
(
γ′g(u�z�θ)

)
dρ(u|z)

/∫
exp
(
γ′g(u�z�θ)

)
dρ(u|z)	

By assumption, η′g(u�z�θ) does not remain constant as u varies in U (for all z
in a subset of positive probability under π). Since ρ(u|z) is supported on all of
U and exp(γ′g(u�z�θ)) is strictly positive for finite γ, it follows that the mea-
sure ρ̃(u|z) is also supported on all of U . Hence, the variance of η′g(U�z�θ)
under ρ̃(u|z) is strictly positive for any unit vector η. Q.E.D.

PROPOSITION B.1: Let X and Y be random vectors (which could be functions
of other random variables). If a conditional expectation E[Y |X] (and its corre-
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sponding unconditional expectation E[Y ]) are well defined,1 then the restriction
E[Y |X] = 0 (with probability 1 under the distribution of X) is equivalent to a
countable set of unconditional moment restrictions.

PROOF: By iterated expectation, it is trivial to show that E[Y |X] = 0 (with
probability 1 under F , the distribution of X) implies that E[Ya(X)] = 0 for
any measurable function a(·), in particular, a countable set of functions a(·).

To show the converse, we consider moments of the form E[Yeiξ′X] for
ξ ∈ R, where i = √−1. First note that if E[Y ] is well defined, then E[|Y |]
must exist. By Lemma 3 in Schennach (2007), this implies that E[Yeiξ′X]
is continuous in ξ. Hence, having E[Yeiξ′X] = 0 for all rational ξ im-
plies that E[Yeiξ′X] = 0 for all ξ ∈ R. The inverse Fourier transform of
E[Yeiξ′X] = E[E[Y |X]eiξ′X] therefore vanishes almost everywhere. Since
E[eiξ′XE[Y |X]] = ∫ eiξ′XE[Y |X]dF(x), its inverse Fourier transform is the
measure defined via the differential element E[Y |X = x]dF(x). Having this
measure vanish almost everywhere is equivalent to having E[Y |X = x] = 0
with probability 1 under F . Therefore, we have just shown that a countable
set of unconditional moment restrictions2 (E[Yeiξ′X] = 0 for all rational ξ) im-
plies a conditional mean restriction (E[Y |X] = 0 with probability 1). Note that
the sequence of moments constructed here is not the only one possible (see
Chamberlain (1987) for an alternative). Q.E.D.

PROPOSITION B.2: Independence restrictions can be imposed via a countable
number of moment factorization restriction of the form (17), that is, without loss
of generality, the index t can be discrete.

PROOF: Without loss of generality, let the random variables X and Y denote
two random quantities (which could be functions of other random variables) to
be required to be independent (more independent quantities can be handled
similarly). By Theorem 16-B in Loève (1977), two random variables X and Y
are independent if and only if

E
[
exp(iξX)exp(iηY)

]= E
[
exp(iξX)

]
E
[
exp(iηY)

]
(S.11)

for all ξ�η ∈R, where i = √−1. By result 13.4-A in Loève (1977), all three ex-
pectations in (S.11) are continuous functions of ξ and η. Hence, imposing the
constraint (S.11) at all rational ξ and η is sufficient to imply that (S.11) holds
for all ξ�η ∈ R. Since rationals are countable, the result is proven. Note that
the sequence of moments constructed here is not the only possibility. Q.E.D.

1This entails measurability assumptions, absolute conditional moment existence, and regular-
ity of the appropriate conditional measures.

2Note that rationals can be ordered in sequence: For instance, write them as n/m, picking
(n�m) ∈ Z

2 along a “square spiral pattern” and eliminating duplicates.



10 SUSANNE M. SCHENNACH

APPENDIX C: ADDITIONAL SIMULATION EXAMPLES

C.1. Regression With Interval-Valued Data

We now illustrate the method with our Example 1.1. To this effect, we use an
i.i.d. sample of 250 observations, generated according to3

Y ∗ = Xθ1 + V with θ1 = 1�

Y = ⌈Y ∗⌉�
Y = ⌊Y ∗⌋�

where X ∼ N(0�1) and V ∼N(0�1/4). The algorithm of Section 2.3 (with em-
pirical likelihood) was used with R = 500, after 50 equilibration steps.4 As seen
in Figure S.1, the set over which the objective function (solid curve) vanishes
matches the conventional bounds (indicated by diamonds and calculated as in
Manski and Tamer (2002)). This is verified analytically in Appendix H. (The
small apparent discrepancy visible in the graph merely reflects the fact that the
objective function is computed on a discrete mesh of values of θ1. This quali-
fication will apply to our remaining examples as well.) However, what is more

FIGURE S.1.—Objective function for an interval-valued data regression model. The upper di-
amonds mark the standard bounds for this model, while the true value of the parameter is in-
dicated by a vertical dashed line. The solid curve is obtained with the usual uncorrelatedness
assumption, while the dashed line is for a model that also assumes that the variance of the resid-
uals is uncorrelated with the (squared) regressor. The horizontal solid and dashed lines indicate
the corresponding critical values at the 95% level.

3Let 
·� and �·� denote the “round up” and “round down” operations, respectively.
4The number of simulation steps was determined by gradually increasing the number of steps

until the simulation noise (which can be obtained by a standard variance calculation) became
negligible relative to the critical value used to calculate the confidence regions.
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interesting and new is that we can now easily add any other types of reasonable
moment conditions we are willing to assume to narrow down the identified
set (including moment conditions that may be nonmonotone in the unobserv-
ables).

EXAMPLE 1.1—Continued: The worst-case scenario that gives rise to the
bounds may be associated with unusual patterns of heteroskedasticity in the
residuals Y ∗ − Xθ, with point masses in the distribution of Y ∗ for large |X|
but not for small |X|. If this appears extremely implausible, one could add two
more moment conditions to ensure that the variance of the residuals (condi-
tional on X) is not correlated with X2. The moment function would then be

g(U�Z�θ) =
⎡
⎣ V X(

V 2 − θ2

)
X2

V 2 − θ2

⎤
⎦ �(S.12)

where V = Y +U(Y −Y)−Xθ1 and θ = (θ1� θ2) in which θ2 is an additional
nuisance parameter (the mean of V 2).

Interestingly, this more complex model requires no additional effort on the
part of the researcher—the simulations take care of everything. It would have
been quite difficult to compute the bounds for this more complex model ana-
lytically, let alone to handle the sampling noise properly.

Of course, one has to take into account sampling variation so as to get a
proper confidence region. This is done here by calculating a critical value and
keeping all values of θ such that the objective function exceeds the critical
value. Here, the critical value is obtained using Theorem F.1 (all critical values
obtained in the present simulation section are obtained similarly).

C.2. Censored Regression

We now apply our method to the censored regression of Example 1.2 by
generating an i.i.d. sample of 250 observations as

X ∼N(0�1)�

V ∼ N(0�1/4)�

Y ∗ = θ1 +Xθ2 + V �

Y = min
(
Y ∗�1

)
	

The algorithm of Section 2.3 (with empirical likelihood) was used with R =
900, after 100 equilibration steps. Figure S.2(a) shows the resulting objective
function. In this example, there is both an intercept and a slope parameter,
but we are profiling out the intercept to only show the objective function as a
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FIGURE S.2.—Objective function for a censored regression model. (a) Result obtained with
the usual uncorrelatedness and zero mean assumptions on the residuals. The upper diamond
marks the well known lower bound for this model. (b) Same exercise while assuming, in addition,
that the variance of the residuals is uncorrelated with the regressor. In each panel, the horizontal
line indicates the critical values at the 95% level and the true value of the parameter is indicated
by a vertical dashed line.

function of the slope coefficient θ2, which is of greater interest. The set over
which the objective function (solid curve) vanishes matches the conventional
bound (indicated by a diamond and calculated as in Manski and Tamer (2002)).
Without any other information beyond the standard uncorrelatedness assump-
tion between the regressor and the residuals, the censored regression of Exam-
ple 1.2 only admits a lower bound on the slope coefficient for the (randomly
generated) sample used here. No upper bound for the slope coefficient exists
because the possible values of Y ∗ given the observed data can be arbitrarily
large when there are censored observations.5

However, large values of the slope coefficient imply a rather strange dis-
tribution of the residuals, namely, residuals of a much larger magnitude for
censored observations than for uncensored ones. By imposing slightly more
structure on the residuals, it is possible to obtain both a lower and an upper
bound on the slope coefficient, as shown in Figure S.2(b).

EXAMPLE 1.2—Continued: The problem of the absence of an upper bound
in our censored regression example can be eliminated by simply constraining
the variance of the residuals to be uncorrelated with the regressors, in addition
to the usual uncorrelatedness assumption:

g(U�Z�θ) =
[ (

Y +U1(Y = c)−Xθ
)
X(

Y +U1(Y = c)−Xθ
)2
X

]
	

5The problem still admits a lower bound because there are no censored observations below
the mean of the X .
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This amounts to imposing a weak form of homoskedasticity. (Note that the
moment conditions here exploit the knowledge that X has zero mean, for sim-
plicity.)

This represents a substantial reduction in the uncertainty in the model pa-
rameters. As before, this required no extra analytical work. In contrast, it
would be very difficult to derive the bounds analytically because some of the
moment functions are not monotone in the unobservable.

C.3. Nonlinear Errors-in-Variables Model Without Side Information

We now consider a model for which a preexisting analysis of identification is
not available.

EXAMPLE 1.5—Continued: Consider a nonlinear errors-in-variables model

Y = r
(
X∗� θ

)+ V2�(S.13)

X =X∗ + V1�

where r(X∗� θ) is a given parametric specification with unknown param-
eter vector θ = (θ1� θ2) and we impose the vector of moment conditions
g(U�Z�θ) = (V1� V2� V1 ∂r(X

∗� θ)/∂θ1� V1 ∂r(X
∗� θ)/∂θ2� V2 ∂r(X

∗� θ)/∂θ1�
V2 ∂r(X

∗� θ)/∂θ2� V1V2)
′. These conditions essentially combine the uncorrelat-

edness assumptions of an errors-in-variables model with the standard normal
equations for a least-square regression.

While it is known that this model can be point-identified under full mu-
tual independence assumptions (Schennach and Hu (2013)), no such result
exists under the weaker uncorrelatedness conditions imposed here. A sample
of 250 i.i.d. observation is generated according to Equation (S.13) with θ1 = 1,
θ2 = 0	5, and X∗ ∼ N(0�1), V1 ∼ N(0�1/4) and V2 ∼ N(0�1/4). The resulting
objective function is shown in Figure S.3 for two specifications:

r
(
X∗� θ

)= θ1X
∗ + θ2

(
X∗)2

�(S.14)

r
(
X∗� θ

)= θ1X
∗ + θ2 exp

(
X∗)	(S.15)

This example illustrates the construction of a confidence region (instead of a
confidence interval). It should be noted that deriving bounds for this model
would have been extremely difficult due to the nonmonotonicity of the mo-
ment functions. In fact, calculating equivalent moment inequalities from Equa-
tion (15) involves an optimization problem that has no analytic solution for
the specification (S.15). In contrast, our method applies directly—only trivial
changes in the program that handles the standard measurement error problem
were needed.

The time needed to complete these simulations ranges from a few minutes
(for the simplest models) to a few hours (for the one with 27 moment con-
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FIGURE S.3.—Objective function for (a) the polynomial measurement error model of Equa-
tion (S.14) and (b) for the linear-exponential measurement error model of Equation (S.15). The
base plane shows the joint critical region at the 95% and the 99% levels, while the true value of
the parameters is indicated by the filled circle.

ditions) on an average single processor personal computer in 2008–2009 and
using the Gauss language. These times could undoubtedly be improved signif-
icantly by fine-tuning the implementation and using a compiled language. The
main advantages of the method lie in its simplicity (regardless of the complex-
ity of the model), its straighforward adaptability to new models, and its robust-
ness (e.g., guaranteed convergence of the optimization algorithms thanks to
smoothness and convexity).

APPENDIX D: EXTENDED NOTION OF THE IDENTIFIED SET

D.1. Motivation

Our extended notion of the identified set given in Equation (3) accounts for
the possibility of a measure μ that does not belong to PU |Z (for instance, a
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distribution that is improper in the sense that it cannot be normalized so that∫
dμ(u|z) = 1 for z in a set of positive probability), but that is the limit of

some sequence μk in PU |Z such that Eμk×π[g(U�Z�θ)] → 0. The set Θ0 (from
Equation (3)) is preferable to Θ∗

0 (Equation (2)) for two reasons.
• Under Θ∗

0, the set of possible values of the moments (as μ ∈ PU |Z varies)
may be open, which causes some conceptual issues in testing: Some values of
the moments may, technically, be inconsistent with the model (because they
are “just outside” of an open set), but there exist moment values that are arbi-
trarily close to those that are consistent with the model. This implies that any
statistical test would fail to reject a model that is apparently false. These prob-
lems do not occur with Θ0, since the set of possible values of the moments is
closed by construction.

• The set Θ∗
0 is not invariant to reparametrization of the dependence of

g(u�z�θ) on u. An explicit example is given in Appendix D.2 below. This in-
variance is important because the choice of the particular parametrization of
the unobservables of the model is arbitrary, as it does not result in any de-
tectable changes in the observable quantities. In contrast, the set Θ0 has this
invariance property. This follows from the fact that the value of a supremum is
the same whether the least upper bound is reached for one value of the argu-
ment or not.

The need for a more general notion of the identified set arises because we
allow for moment functions g(u�z�θ), which may be unbounded or discon-
tinuous, and sets U , which may be unbounded. Under stronger assumptions,
one can ensure Θ0 = Θ∗

0 (e.g., Galichon and Henry (2013) make uniform inte-
grability assumptions to rule out improper distributions). But this is unnec-
essary here, since, in light of the first point above, the distinction between
Θ0 and Θ∗

0 is inconsequential in practice, as it could never be detected, and
since the second point even emphasizes that any difference between Θ∗

0 and
Θ0 would be parametrization-dependent and, therefore, meaningless. Only Θ0

has a parametrization-independent interpretation.

D.2. Example

Let g(U�Z�θ) = exp(−U2) + θ with θ ∈ Θ = [0�1] and U taking values in
U = R. (This example does not rely on any dependence on Z; hence, the con-
ditional distribution of U may be taken to be independent of Z without loss
of generality.) We will show that Θ∗

0 is empty while Θ0 = {0}. However, un-
der an innocuous reparametrization of the unobservables, Θ∗

0 = Θ0 = {0}, thus
showing that Θ∗

0 is not parametrization invariant, while Θ0 is.
Since supμ∈PU |Z Eμ[g(U�Z�θ)] > 0 for all θ > 0, the identified set is, at best,

the singleton {0} and we, therefore, carry out the analysis for θ = 0 only.
Case 1. The case of U = R.
(a) Any proper (i.e., tight) probability measure must assign a positive prob-

ability to a compact set. Since exp(−U2) is strictly positive on any compact
nondegenerate interval, Eμ[exp(−U2)]> 0 for any μ ∈PU |Z and Θ∗

0 is empty.
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(b) However, consider a sequence of probability measure μj such as a se-
quence of Gaussians with width diverging to infinity. It can be readily ver-
ified that Eμj

[exp(−U2)] → 0 even though Eμj
[exp(−U2)] > 0 at each j.

Clearly, μj does not converge to a proper probability measure (the increas-
ing width of the Gaussian causes the limit to fail to be tight). Nevertheless
supμ∈PU |Z Eμ[exp(−U2)] = 0 and we have Θ0 = {0}.

Case 2. Take Ũ ≡ arctanU and g̃(Ũ�Z�θ) ≡ g(tan Ũ�Z�θ). By definition,
the support of Ũ is the closure of {arctanU :U ∈ R}, that is, Ũ = [−π/2�π/2].
The function g̃(Ũ�Z�θ) is clearly defined for Ũ ∈]−π/2�π/2[ and can nat-
urally be extended by continuity for Ũ = ±π/2, that is, g̃(±π/2�Z�θ) =
limŨ→±π/2 g̃(Ũ�Z�θ)= 0 + θ.

(a) We then have that Θ∗
0 = {0} because Eμ[g̃(Ũ�Z�θ)] = 0 for θ = 0 and μ

equal to a point mass at Ũ = π/2.
(b) We also have Θ0 = {0} for the same reason.
Hence, in this example, Θ∗

0 is not parametrization invariant, while Θ0 is.

APPENDIX E: DIFFICULTIES WITH ALTERNATIVE DISCREPANCIES

This section shows that using likelihood maximization instead of entropy
maximization leads to a solution where the Lagrange multipliers for the
infinite-dimensional constraints cannot be solved for analytically.

The Lagrangian for likelihood maximization (in the notation of Section 2.2)
is

−
∫ ∫

ln
(
f (u|z))dρ(u|z)dπ(z)

+ γ′
∫ ∫

g(u�z�θ)f (u|z)dρ(u|z)dπ(z)

+
∫

φ(z)

(∫
f (u|z)dρ(u|z)− 1

)
dπ(z)	

The first order condition is then∫ ∫ (
1

f (u|z) − γ′g(u�z�θ)−φ(z)

)
δf (u|z)dρ(u|z)dπ(z)= 0	

Since the equality must hold for any δf (u|z), we have

1
f (u|z) − γ′g(u�z�θ)−φ(z)= 0
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or, after rearranging,

f (u|z)= 1
γ′g(u�z�θ)+φ(z)

	

The fact that conditional distributions must integrate to 1 at each value of the
conditioning variable implies that

∫
1

γ′g(u�z�θ)+φ(z)
dρ(u|z)= 1	(S.16)

Clearly, φ(z) cannot be solved for analytically. Even the technique used to de-
termine the analogue of φ(z) in conventional empirical likelihood (EL) does
not work. To see this, rewrite (S.16) as

[
−
∫

γ′g(u�z�θ)
γ′g(u�z�θ)+φ(z)

dρ(u|z)
]

(S.17)

+ (1 −φ(z)
)∫ 1

γ′g(u�z�θ)+φ(z)
dρ(u|z)= 0	

In EL, the first term in brackets would vanish as a consequence of the mo-
ment conditions being satisfied (thus implying that φ(z) would have to be 1).
However, here, the moment conditions only imply that

∫ ∫
γ′g(u�z�θ)

γ′g(u�z�θ)+φ(z)
dρ(u|z)dπ(z)= 0

and the first term in (S.17) cannot be concluded to vanish (and φ(z) �= 1 in
general). The distinction arises from the presence of conditional distributions
in the present setup that are absent in EL.

APPENDIX F: INFERENCE METHODS

As models defined via moment conditions that involve unobservables are
often set-identified, inference methods capable of handling this situation are
essential. We describe below how the inferential techniques based on subsam-
pling or other simulation techniques (as described in Chernozhukov, Hong,
and Tamer (2007)) can be applied in our settings.

F.1. Objective Functions and Confidence Regions

We first introduce a general class of possible objective functions.
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DEFINITION F.1: Given an i.i.d. sample Z1� 	 	 	 �Zn, we consider an empirical
objective function that admits the representation

L̂n(θ) = sup
γ∈Rdg

L̂n(θ�γ)�

L̂n(θ�γ) = −1
2
ĝ′(θ�γ)W (θ�γ)ĝ(θ�γ)+ R̂n(θ�γ)�

where W (θ�γ) is a positive semidefinite6 matrix and

ĝ(θ�γ)= 1
n

n∑
i=1

g̃(Zi� θ�γ)�

and where the remainder satisfies

sup
{θ∈Θ�γ∈Rdg :‖g(θ�γ)‖=O(n−1/2)}

∣∣R̂n(θ�γ)
∣∣= op

(
n−1
)

and is such that

L̂n(θ�γ) ≤ −C
∥∥ĝ(θ�γ)∥∥2

(S.18)

for some C > 0 with probability approaching 1. We also assume throughout
that the ρ(u|z) used to construct g̃(Z�θ�γ) is as in Definition 2.2 and that the
unobservables Ui are i.i.d.

This definition includes GMM-like objective functions. In the important spe-
cial case where W (θ�γ) = V −(θ�γ)—the generalized inverse of V (θ�γ) =
E[g̃(Zi� θ�γ)g̃

′(Zi� θ�γ)]—this definition includes the log empirical likelihood
(EL) and the continuous updating estimator (CUE) as special cases:

L̂EL
n (θ) = sup

γ∈Rdg

inf
λ∈Rdg

1
n

n∑
i=1

− ln
(
1 − λ′g̃(Zi� θ�γ)

)
�

L̂CUE
n (θ) = sup

γ∈Rdg

−1
2
ĝ′(θ�γ)V̂ −1(θ�γ)ĝ(θ�γ) with

V̂ (θ�γ) = 1
n

n∑
i=1

g̃(Zi� θ�γ)g̃
′(Zi� θ�γ)	

6Even though this allows for singular weighting matrices, Equation (S.18) below prevents the
objective function from vanishing when ĝ(θ�γ) �= 0.
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The inclusion of EL is useful, in light of its known optimality properties in the
context of point-identified models (Newey and Smith (2004), Kitamura (2001),
Kitamura, Santos, and Shaikh (2012), among others) and in a large class of set-
identified models (Canay (2010)). The functionL̂n(θ) also includes any GEL
and ETEL as special cases.

It should be noted that although L̂n(θ�γ) depends on the choice of ρ in
Definition 2.2, the objective function L̂n(θ) does not, as can be seen by setting
π to the sample distribution in Corollary 2.1.

For maximum generality, we decompose the parameter vector as θ = (β�η),
where β ∈ B is the parameter vector of interest, while η ∈ Nβ is a vec-
tor of nuisance parameters (which may be empty if desired). We focus on
the construction of confidence regions for β in the identified set B0 ≡ {β ∈
B : infη∈Nβ

infγ∈Rdg ‖E[g̃(Zi� θ�γ)]‖ = 0} via the “profiled” statistic

Q̂n(β) = −
(

sup
η∈Nβ

sup
γ∈Rdg

L̂n

(
(β�η)�γ

)− sup
θ∈Θ

sup
γ∈Rdg

L̂n(θ�γ)
)
�(S.19)

where Nβ is a compact subset of Θ (which may be β-dependent). If no nuisance
parameters are needed, the supremum over η is to be eliminated. The statistic
Q̂n(β) is positive by construction (to follow the convention of Chernozhukov,
Hong, and Tamer (2007)). The idea of subtracting the maximum value of the
objective function for an “unrestricted model” is known to yield efficiency im-
provements in point-identified models (for instance, it reduces the number of
degrees of freedom of the limiting χ2 distribution of likelihood ratio-type tests
(Newey and McFadden (1994))) and it is natural to expect improvements in
set-identified models. This idea is also exploited in Chernozhukov, Hong, and
Tamer (2007).

In this framework, consistent estimates of the identified set and/or confi-
dence regions have the general form

B̂ = {β :nQ̂n(β) ≤ ĉα
}
�(S.20)

where ĉα is a critical value selected so that B̂ is consistent and/or has the correct
coverage 1 − α.

F.2. Consistency

Consistency of B̂ (in the sense that the Hausdorff distance between B̂ and
B0 goes to 0 in probability) follows by a straightforward application of The-
orem 3.2 in Chernozhukov, Hong, and Tamer (2007). Most of this theorem’s
requisite assumptions translate directly in the present context. We focus here
only on the assumptions that demand special attention.
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One less obvious issue is that the set of possible values of the parame-
ter γ is not compact (it is R

dg). This can be handled by reparametrizing
the moment functions to render the parameter space compact.7 To this ef-
fect, let ḡ(θ�γ) = E[g̃(Zi� θ�γ)], Kθ ≡ Closure{Eπ0[g̃(Zi� θ�γ)] :γ ∈ R

dg}, and
K∗

θ =Kθ ∩ C, where C is a sufficiently large compact convex set that contains a
neighborhood of {0}. The reparametrized moment functions are then

g̃κ(z�θ�κ) ≡ lim
j→∞

g̃(z�θ�γj)(S.21)

with γj (j = 1�2� 	 	 	) such that ḡ(θ�γj) = κ + (κ̄ − κ)/j, where κ̄ denotes the
center of mass of K∗

θ. These definitions effectively parametrize the sample mo-
ment function by their value κ in the population. The limit in (S.21) is intro-
duced to handle potential solutions at infinity (‖γ‖ → ∞). These solution at
infinity (in γ) are mapped into solutions (in terms of κ) at the boundary of Kθ.
Although the boundary of Kθ may itself sometimes be at infinity, we can restrict
Kθ to a compact set K∗

θ = Kθ ∩ C without loss of generality because we are in-
terested in values of κ that make the sample moment as small as possible, that
is, values of κ near 0. The constraint κ ∈ C is, therefore, not binding with prob-
ability approaching 1. The reparametrized moment functions g̃κ(·� θ�κ) are
then indexed over a domain

⋃
θ∈Θ{θ} ×K∗

θ, which is compact by construction.

REMARK F.1: This reparametrization is merely a device in the proof of
consistency—this is not needed for the implementation of the method. As ex-
plained at the end of Section 2.1, optimizing γ over a noncompact set poses
absolutely no practical implementation problems. In fact, it is easier than hav-
ing to worry about boundary solutions.

Another important step is to characterize the stochastic convergence of
L̂n(θ�γ). This can be accomplished by first showing that the “tilted” mo-
ment functions g̃(Zi� θ�γ) are π0-Donsker (van der Vaart and Wellner (1996),
van der Vaart (1998)), that is, their normalized sample averages converge to a
tight Gaussian process in the sup metric.8 A sufficient condition is as follows.

ASSUMPTION F.1: The variable Zi is i.i.d., E[‖g̃(Zi� θ̃� γ̃)‖2] < ∞ for some
θ̃ ∈ Θ, and γ̃ ∈ R

dg . For some α ∈]0�1], the family g̃(·� θ�γ) satisfies, for all

7Of course, any regularity conditions must then apply to the reparametrized functions; oth-
erwise, any noncompact parameter space could be made compact in this fashion without loss of
generality.

8This result, in turn, will imply that L̂n(θ�γ) converges to a Gaussian process as well (over the
identified set and dominated by a Gaussian process elsewhere), as a result of the permanence of
the Donsker property under Lipschitz transformations.



ENTROPIC LATENT VARIABLE INTEGRATION 21

positive δ less than some δ0 ∈]0�∞[,

sup
θ1∈Θ

sup
γ1∈Rdg

E
[

sup
γ2∈Rdg :‖ḡ(θ1�γ2)−ḡ(θ1�γ1)‖≤δ

∥∥g̃(Zi� θ1�γ2)− g̃(Zi� θ1�γ1)
∥∥2
]

(S.22)

=O
(
δα
)
�

sup
θ1∈Θ

sup
γ1∈Rdg

E
[

sup
θ2∈Θ:‖θ2−θ1‖≤δ

∥∥g̃(Zi� θ2�γ1)− g̃(Zi� θ1�γ1)
∥∥2
]

= O
(
δα
)
�(S.23)

where ḡ(θ�γ)=E[g̃(Zi� θ�γ)].

This assumption can be understood as a type of “Hölder continuity in expec-
tation” condition. It is a very weak condition that essentially requires points of
discontinuity to be rarely sampled. A violation of this assumption would involve
having the boundary of the set K∗

θ not be piecewise-differentiable, a some-
what pathological setting. Note that the metric used for γ in (S.22), namely
‖ḡ(θ�γ2) − ḡ(θ�γ1)‖, ensures the Hölder condition for the reparametrized
moment functions. This condition is general enough to allow for nonsmooth
functions, which is important in our setting because the limit of g̃(Zi� θ�γ) as
‖γ‖ → ∞ may be nonsmooth in γ in the common case where the boundary
of the set Kθ contains “flat” portions. Allowing for nonsmooth functions is
also useful to handle quantile restrictions. By Corollary 19.35 in van der Vaart
(1998), Assumption F.1 implies that supθ∈Θ supγ∈Rdg ‖g̃(Zi� θ�γ)‖ = Op(n

−1/2),
thus providing a specific rate of uniform convergence in probability, one of the
assumptions of Theorem 3.2 in Chernozhukov, Hong, and Tamer (2007). As-
sumption F.1 is implied by more primitive conditions on g(u�z�θ), such as mo-
ment existence and smoothness. For instance, see Lemma F.1 in Appendix F.5
for the interval-valued data model of Example 1.1.

The asymptotic treatment of Chernozhukov, Hong, and Tamer (2007) de-
pends crucially on whether the objective functions satisfies a so-called degener-
acy property. In essence, this property holds when the objective function Q̂(β)
is exactly zero in a finite sample over a set that is asymptotically close to the
identified set. The class of models we consider is so general that it includes
objective functions that do satisfy the degeneracy property and some that do
not. For instance, the interval-valued and censored data models (Examples 1.1
and 1.2) satisfy the degeneracy property, but some of the measurement error
models we consider (extensions of Example 1.5 treated in Section 2.3) do not.
The main implication is that regions of the type (S.20) provide root-n consis-
tent estimates in the degenerate case (for any nonnegative constant ĉα), but
fall just short of root-n consistency (with a convergence rate of

√
lnn/n) in the

nondegenerate case (with ĉα ∝ lnn).
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F.3. Critical Values

The general subsampling techniques proposed in the context of set-identified
models (Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh
(2010)) can be used to obtain suitable critical values ĉα. As noted, for example,
in Imbens and Manski (2004) and Chernozhukov, Hong, and Tamer (2007),
there are two main types of confidence region: pointwise regions that satisfy
limn→∞ P[β0 ∈ B̂] ≥ 1 − α for any β0 ∈ B0 and “setwise” regions that satisfy
limn→∞ P[B0 ⊂ B̂] ≥ 1 − α. Each have their relative merits and domain of ap-
plicability, an issue which we will not discuss here.

In the setwise case, the critical value ĉα can be obtained by computing the 1−
α quantile of realizations of supβ∈B̃ mQ̂m(β) (where B̃ is a suitable consistent
estimate of the identified set) obtained by drawing subsamples of size m � n
out of the full sample of size n.

In the pointwise case, the critical value ĉα is, in general, a function of β,
denoted ĉα(β). It can be obtained by computing the 1 − α quantile of real-
izations of mQ̂m(β) obtained by drawing subsamples of size m � n out of the
full sample of size n. An alternative critical value in the pointwise case is to
set ĉα to be the supremum of ĉα(β) over an estimate of the identified set.9
The latter alternative tends to produce larger regions, but avoids unsightly dis-
continuities in the confidence region boundary whose location unfortunately
depends on user-specified parameters. As noted in Imbens and Manski (2004)
and Andrews and Guggenberger (2009), it is important to ensure that point-
wise confidence regions exhibit a coverage that converges uniformly (where
the uniformity is with respect to the data generating process). This avoids para-
doxes such as having a family of set-identified models that have a smaller con-
fidence regions than a point-identified model nested as a special case of this
family. Andrews and Guggenberger (2009) provided conditions under which
pointwise regions have uniformly converging coverage in our general setup.

Most of the regularity conditions needed for the validity of subsampling
invoked in Chernozhukov, Hong, and Tamer (2007) directly translate to the
present setting. We focus here only on those that may require special atten-
tion. Establishing the stochastic convergence of L̂n(θ�γ) can be accomplished
as in the consistency result (see Assumption F.1) by first showing that the tilted
moment functions g̃(Zi� θ�γ) are π0-Donsker. Under some additional mea-
surability and approximability conditions (following Chernozhukov, Hong, and
Tamer (2007)), nQ̂n(β) then admits a limiting distribution.10

9Note that this does not produce setwise coverage because the supremum of a family of quan-
tiles is not the same as the quantile of the supremum over a family.

10Note that establishing that L̂(θ�γ) is π0-Donsker does not necessarily imply that Q̂n(β)
is (because the maximization over γ may cause loss of stochastic equicontinuity). This is an
issue related to the lack of stochastic equicontinuity in moment inequality problems noted by
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Another technical issue is that the set over which the maximizations take
place must be sufficiently regular, that is, satisfy a condition known as Cher-
noff regularity (Chernoff (1954), Silvapulle and Sen (2005)). Intuitively, this
requires these sets to have a boundary whose nonsmooth points consist, at
worst, of kinks. This ensures that the boundary solutions in the optimization
problem (which cannot be assumed away in the present settings) still result in
well defined limiting distributions. While the set Θ can be directly assumed to
satisfy this property, one cannot merely arbitrarily fix the set over which γ is
optimized. This is handled, as for the consistency result, by reparametrizing
the moment function by their expectations κ in the population. The domain
of κ is Kθ ∩ C, which is a convex set because Kθ is convex by construction and
so is C, by assumption. Convexity then implies Chernoff regularity (see, e.g.,
Claeskens (2004)).

Subsampling is not the only way to obtain critical values: one can also use the
bootstrap or simulations methods that draw from the supremum of a Gaussian
process (Canay (2010), Bugni (2010), Chernozhukov, Hong, and Tamer (2007),
Romano and Shaikh (2010), Andrews and Soares (2010), Andrews and Bar-
wick (2012)), although the specifics of their implementation (such as the use of
“shrinkage” techniques to ensure validity of the bootstrap) are not discussed
here.

F.4. Simple but Conservative Critical Values

A working paper (Schennach (2009)) presents an asymptotic treatment that
provides conservative critical values in a nearly closed form, along with a sim-
pler computational method to construct confidence regions. This alternative
treatment draws on the literature on constrained statistics methods (Silvapulle
and Sen (2005), Rosen (2008)) and expresses the limiting distribution of the
test statistic in terms of the so-called χ2-bar distribution. In this fashion, a
repeated optimization over γ at each resampling step is unnecessary. This
method provides the limiting distribution of L̂n(θ) and confidence regions of
the form {

β ∈ B : sup
η∈Nβ

−nL̂
(
(β�η)

)≤ ĉα
}
�

but does not allow for a subtraction of the objective function of the unrestricted
model as in (S.19). For this reason, the resulting confidence regions tend to be
conservative in general, although they are still perfectly valid. Nevertheless, in
special cases, supθ∈Θ L̂n(θ) = 0 with probability approaching 1, and confidence
regions that are not conservative can be obtained in this fashion without re-

Chernozhukov, Hong, and Tamer (2007). Nevertheless, under fairly weak conditions (see Condi-
tions S.1 and S.3 in Chernozhukov, Hong, and Tamer (2007)), suprema over θ and γ still admit a
limiting distribution.
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course to resampling. This condition is closely related (though not identical) to
the “degeneracy property” introduced by11 Chernozhukov, Hong, and Tamer
(2007), and is satisfied in many commonly used models, such as the interval-
valued data model of Example 1.1.

We conclude this section by providing an even simpler way to calculate criti-
cal values that are also more conservative.

ASSUMPTION F.2: The variable Zi is i.i.d.

ASSUMPTION F.3: The set Θ is compact and the set Γθ = {γ ∈ R
dg :E[‖g̃(Z�

θ�γ)‖] ≤C} is nonempty for all θ ∈Θ, for some C < ∞.

ASSUMPTION F.4: We have E[‖g̃(Z�θ�γ)‖2] <∞ ∀θ ∈ Θ and γ ∈ Γθ.

THEOREM F.1: Let L̂n(θ) be as in Definition F.1 with W (θ�γ) = V −(θ�γ), the
generalized inverse of V (θ�γ) = E[g̃(Zi� θ�γ)g̃

′(Zi� θ�γ)]. Under Assumptions
F.2, F.3, and F.4, if θ ∈ Θ0, then

lim
n→∞

Pr
[−2nL̂n(θ) ≥ χ2

dg�α

]≤ α�

where χ2
dg�α

denotes the (1 − α) quantile of the χ2 distribution with dg degrees of
freedom (χ2

dg
).

PROOF: Theorem 3.4 in Owen (2001) establishes that −2nL̂n(θ�γ)
d→ χ2

q

for θ ∈ Θ0 and γ such that E[g̃(Z�θ�γ)] = 0 with q = rank(E[g̃(Z�θ�γ)g̃′(Z�
θ�γ)]) for the empirical likelihood (EL) objective function. His proof first
proceeds by showing that EL has the representation of Definition F.1; hence,
his result applies more generally for any objective function with that repre-
sentation. Note that q ≤ dg and since χ2

dg
stochastically dominates χ2

q, us-
ing a χ2

dg
instead of χ2

q will produce valid, but conservative, confidence re-

gions. It follows that R = {(θ�γ) ∈ Θ × R
dg :−2L̂n(θ�γ) ≥ χ2

dg�α
} is a confi-

dence region of level ≤ α for (θ�γ). A (slightly more) conservative region
(of level ≤ α) for θ can be obtained by keeping all θ such that there exists
at least one γ such that (θ�γ) ∈R. This is equivalent to keeping all θ such that
supγ∈Rdg −2nL̂n(θ�γ) ≥ χ2

dg�α
, that is, −2nL̂n(θ) ≥ χ2

dg�α
. Q.E.D.

This theorem is useful to get a quick idea of what the confidence regions look
like—a lookup in a χ2 table is all that is needed. In some cases, the resulting
region will be sufficiently small to already reject the null hypothesis of interest,
in which case no further steps would be needed.

11Chernozhukov, Hong, and Tamer (2007) stated their degeneracy property as L̂n(θ) −
supθ∈Θ L̂n(θ) = 0 for all θ in a set that is asymptotically close to the true identified set.
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F.5. Primitive Conditions for Assumption F.1 in Example 1.1

LEMMA F.1: In Example 1.1, if E[X4] < ∞ and E[W 4] < ∞ (where W ≡
(Y −Y)X), and W is not degenerate at 0, then Assumption F.1 holds.

PROOF: In this example, the moment condition is g̃(u� z�θ) = (y + u(y −
y)− xθ)x with z = (y� ȳ� x) and we have

g̃(z�θ�γ) =

∫ 1

0
(y + u(y − y)− xθ)xexp(γ(y + u(y − y)− xθ)x)du∫ 1

0
exp(γ(y + u(y − y)− xθ)x)du

(S.24)

= (y − θx)x+ w

1 − e−γw
− 1

γ
�

where w ≡ (y − y)x. We then have, by a mean value argument, for θ1 ∈ Θ and
γ1 ∈ R

dg ,

Bθ1�γ1 ≡ E
[

sup
θ2∈Θ:‖θ2−θ1‖≤δ

∥∥g̃(Z�θ2�γ1)− g̃(Z�θ1�γ1)
∥∥2
]

≤ E
[

sup
θ̄∈Θ:‖θ̄−θ1‖≤δ

∥∥∇θ′ g̃γ(Z� θ̄�γ1)
∥∥2
]
δ2�

where, for any θ̄ ∈ Θ and γ ∈ R
dg ,

∇θ′ g̃γ(Z� θ̄�γ)= −X2	

So supθ1∈Θ supγ1∈Rdg Bθ1�γ1 ≤ E[X4]δ2 = O(δ2) if E[X4] < ∞. This establishes
(S.23) in Assumption F.1.

To establish (S.22), let us first relate the original and reparametrized moment
functions (via κj ≡ ḡ(θ1�γj) for j = 1�2):

Aθ1�γ1 ≡ E
[

sup
γ2∈Rdg :‖ḡ(θ1�γ2)−ḡ(θ1�γ1)‖≤δ

∥∥g̃(Z�θ1�γ2)− g̃(Z�θ1�γ1)
∥∥2
]

= E
[

sup
κ2∈Kθ :‖κ2−κ1‖≤δ

∥∥g̃κ(Z�θ�κ2)− g̃κ(Z�θ�κ1)
∥∥2
]
	

By a mean value argument, we have

Aθ1�γ1 ≤ E
[

sup
κ̄∈Kθ:‖κ̄−κ1‖≤δ

∥∥∇κ′ g̃κ(Z�θ1� κ̄)
∥∥2
]
δ2	(S.25)
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To calculate ∇κ′ g̃κ(Z�θ1� κ̄), we note that ∇γ′ g̃(z�θ�γ) = ∇κ′ g̃κ(z�θ�κ)
∂κ
∂γ′ =

∇κ′ g̃κ(z�θ�κ)∇γ′ ḡ(θ�γ), so that

∇κ′ g̃κ(z�θ�κ)= ∇γ′ g̃(z�θ�γ)
(∇γ′ ḡ(θ�γ)

)−1
(S.26)

for κ and γ such that κ = ḡ(θ�γ). So as to bound (S.26), we will now find
a lower bound on ∇γ′ ḡ(θ�γ) and then an upper bound on ∇γ′ g̃(z�θ�γ). To
calculate these derivatives, we note that, from (S.24), we have

∇γg̃(z�θ�γ)= ∇γ

(
w

1 − e−γw
− 1

γ

)
= 1

γ2
− w2

(eγw/2 − e−γw/2)2
�(S.27)

where w ≡ (y − y)x. Using the inequality (ev/2 − e−v/2)2 ≥ v2 + v4/12 for any
v ∈ R (obtained by a Taylor expansion combined with a convexity argument),
Equation (S.27) can be bounded below:

1
γ2

− w2

(eγw/2 − e−γw/2)2
≥ 1

γ2
− w2

γ2w2 + γ4w4/12
= 1

12/w2 + γ2
	

Next, we observe that if W = (Y − Y)X is not degenerate at 0, there exists
ε1 > 0 so that

∫
|w|≥ε1

dF(w) = 1 − ε2 for some ε2 ∈]0�1[. We can the write,
after noting that the integrand is positive and increasing in w2,

E
[∇γg̃(Z�θ�γ)

]
(S.28)

≥E

[
1

12/W 2 + γ2

]
=
∫

1
12/w2 + γ2

dF(w)

≥
∫

|w|≥ε1

1
12/w2 + γ2

dF(w) ≥
∫

|w|≥ε1

1
12/ε2

1 + γ2
dF(w)

= 1
12/ε2

1 + γ2

∫
|w|≥ε1

dF(w)= 1 − ε2

12/ε2
1 + γ2

	

We now turn to the problem of finding an upper bound on ∇γ′ g̃κ(z�θ�κ). From
(S.27)

∇γ′ g̃κ(z�θ�κ)= 1
γ2

(
1 − γ2w2

(eγw/2 − e−γw/2)2

)
�

where one can show that 1 − v2

(ev/2−e−v/2)2 ≤ v2/12 for any v ∈ R (by a Taylor
expansion combined with a concavity argument). We can also show that 1 −
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v2

(ev/2−e−v/2)2 is increasing in |v| and reaches its maximum value of 1 as |v| → ∞.

Hence, we have 1 − v2

(ev/2−e−v/2)2 ≤ min{v2/12�1} and

∇γ′ g̃κ(z�θ�κ)≤ 1
γ2

min
{
γ2w2/12�1

}= min
{
w2

12
�

1
γ2

}
	(S.29)

Combining (S.25), (S.26), (S.28), and (S.29), we have, for γ̄ such that κ̄ =
ḡ(θ� γ̄),

Aθ1�γ1 ≤ δ2E

[
sup

κ̄∈Kθ :‖κ̄−κ1‖≤δ

(
12/ε2

1 + γ̄2

1 − ε2
min
{
W 2/12�

1
γ̄2

})2]
	(S.30)

Let ε3 > 0 and consider two complementary cases.
(i) For κ1 ≡ ḡ(θ�γ1) such that ‖κ1 − g(θ� γ̄)‖ ≤ δ for some |γ̄| ≤ ε3, we use

the fact that min(a�b)≤ a to write (S.30) as

Aθ1�γ1 ≤ δ2E

[
sup

κ̄∈Kθ:‖κ̄−κ1‖≤δ

(
12/ε2

1 + γ̄2

1 − ε2
W 2/12

)2]
(S.31)

= δ2E

[(
12/ε2

1 + ε2
3

1 − ε2
W 2/12

)2]

= δ2

(
12/ε2

1 + ε2
3

12(1 − ε2)

)2

E
[
W 4
]≡ δ2C1E

[
W 4
]
	

(ii) For all other κ1 (those associated with |γ̄| > ε3), we use the fact that
min(a�b)≤ b to write (S.30) as

Aθ1�γ1 ≤ δ2E

[
sup

κ̄∈Kθ:‖κ̄−κ1‖≤δ

(
12/ε2

1 + γ̄2

1 − ε2

1
γ̄2

)2]
(S.32)

= δ2E

[
sup

κ̄∈Kθ:‖κ̄−κ1‖≤δ

(
12/ε2

1

1 − ε2

1
γ̄2

+ 1
1 − ε2

)2]

≤ δ2E

[
sup

κ̄∈Kθ:‖κ̄−κ1‖≤δ

(
12/ε2

1

1 − ε2

1
ε2

3

+ 1
1 − ε2

)2]

= δ2

(
12/ε2

1

1 − ε2

1
ε2

3

+ 1
1 − ε2

)2

≡ δ2C2	

Combining (S.31) and (S.32), we have that

sup
θ1∈Θ

sup
γ1∈Rdg

Aθ1�γ1 ≤ δ2 max
{
C1E

[
W 4
]
�C2

}
�

which is O(δ2) if E[W 4] < ∞. This establishes (S.22) in Assumption F.1.
Q.E.D.
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APPENDIX G: COMPUTATIONAL DETAILS

Given the very different properties of the optimization problems in θ and
γ, we do not jointly optimize the objective function over θ and γ. The op-
timization over θ is “difficult” in the sense that (i) the maximum could be
reached over a set instead of at a single point (since we allow for set-identified
models) and (ii) as in any nonlinear model (such as GMM), the optimization
problem may have multiple local optima. In contrast, the problem of finding
γ can be cast as a convex optimization problem with a unique global opti-
mum. For these reasons, we scan over a grid of values of θ to map out the
identified set and avoid any trapping in local minima. For each θ, the opti-
mization over γ is well behaved and we use the simplex method due to Nelder
and Mead (1965). This method is computationally convenient because it does
not require the calculation of the derivatives of the objective function. Faster
convergence of the numerical optimization could be achieved by exploiting
derivatives of the objective function via a guarded Newton method (see Boyd
and Vandenberghe (2004, Chapter 9.5.2)) or quasi-Newton method, such as
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BGFS) method
(Nocedal (1980)).

APPENDIX H: EXAMPLE OF EQUIVALENCE TO ANALYTIC BOUNDS

In this section, we directly show equivalence between our approach with
known analytic bounds in the simple case of Example 1.1. This verification is
redundant (because we have already formally shown in Theorem 2.2 that our
method correctly determines the identified set), but some readers may find this
independent verification helpful.

To show this equivalence, we use the moment bounds provided by Theo-
rem 2.2 (which is itself equivalent to the result of Theorem 2.1). In this exam-
ple, g(u�z�θ) = (y + u(y − y) − θx)x with z = (x� y� y) and u ∈ U = [0�1].
Since the unobservable is one-dimensional, the unit vector η (in Theorem 2.2)
can only be +1 or −1.

(i) We can calculate limr→∞ η′g̃(z�θ�ηr) for η = ±1,

η′g̃(z�θ�ηr) =

∫ 1

0
ηg(u�z�θ)exp(rηg(u�z�θ))du∫ 1

0
exp(rηg(u�z�θ))du

= η(y − θx)x+
[
ηb

(
1 + 1

rηb
(e−rηb − 1)

)
1 − e−rηb

]
b=(y−y)x

�
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and, therefore,

lim
r→∞

η′g̃(z�θ�ηr) = η(y − θx)x if ηx ≥ 0�

lim
r→∞

η′g̃(z�θ�ηr) = η(y − θx)x if ηx< 0	

(ii) Equivalently, we can calculate supu∈U η
′g(u�z�θ). If η = 1, then

sup
u∈U

η′g(u�z�θ) = sup
u∈[0�1]

(
y + u(y − y)− θx

)
x

=
{
(y − θx)x if x≥ 0�
(y − θx)x if x < 0	

For η= −1, we have

sup
u∈U

η′g(u�z�θ) = sup
u∈[0�1]

(
y + u(y − y)− θx

)
x

=
{−(y − θx)x if x≥ 0�

−(y − θx)x if x < 0	

Through either route (i) or (ii), we therefore obtain the same moment inequal-
ities:

(+1)E
[{

(y − θx)x if x≥ 0
(y − θx)x if x < 0

}]
≥ 0�

(−1)E
[{

(y − θx)x if x≥ 0
(y − θx)x if x < 0

}]
≥ 0	

Isolating θ yields

(
E
[
x2
])−1

E

[{
yx if x ≥ 0
yx if x < 0

}]
≤ θ ≤ (E[x2

])−1
E

[{
yx if x ≥ 0
yx if x < 0

}]
�

which is in agreement with, for example, Manski and Tamer (2002). The above
treatment holds whether the expectation is under the population or the sample
distribution, that is, it also ensures agreement in finite samples.

APPENDIX I: COMPARISON WITH OTHER METHODS

Our work has some connections with some previously proposed information-
theoretic methods: Shen, Shi, and Wong (1999) suggested the use of an
empirical likelihood-type objective function in the presence of unobservable
variables. Their method consists of creating a discrete grid of points that ap-
proximates the support of the unobservables for each observed data point and
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maximizing the empirical likelihood calculated from this augmented sample,
which consists of both actual data points and the created grid points. This
approach has been shown to identify the true parameter value in a special
case where the unobservable has a binary support. However, such a proof
cannot be generalized further, because it can be verified that this method
does not recover the well known bounds in the interval data model of Exam-
ple 1.1.

EXAMPLE I.1: Applying the method of Shen, Shi, and Wong (1999) to Ex-
ample 1.1 does not yield the correct identified set. In their method, one would
create a grid of fictitious observation points within the sets [Y i�Y i] × Xi. The
empirical likelihood of all fictitious observation points is maximized when all
points receive the same weights. The value of the slope coefficient θ1 that cor-
responds to these weights is simply the slope of the regression of (Y i + Y i)/2
on Xi, because the uniform weights simply result in averaging values in the in-
terval [Y i�Y i]. Now, if instead one places all the weight on Y i for Xi > 0 and
all weight on Y i for Xi < 0, the corresponding θ1 parameter is the slope of the
regression of Y i1[Xi > 0] + Y i1[Xi < 0] on Xi. This is, in general, a different
value of θ1 that is nevertheless equally plausible (one cannot rule out that the
dependent variable takes these specific values). Yet, the value of the empiri-
cal likelihood for this set of weights is much lower (in fact, it is 0). Hence, the
method assigns a different likelihood to two equally likely values of the slope
parameter θ1.

Our proposed method may be reminiscent of various entropy maximiza-
tion methods proposed in Golan, Judge, and Miller (1996). Like Shen et al.’s
method, discretization of the unobservables is built into the method and its
computational requirements scale rapidly with the number of created support
points for the unobservables. A crucial distinction with our method is the fact
that their method is aimed at problems where the unobservables are variables
such as the disturbances in a conventional least-square regression (note that
their method does not reduce to conventional least-squares in such a case).
Genuinely unobservable variables, as considered here, are not investigated in
Golan, Judge, and Miller (1996) and subsequent work.
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