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This supplement provides appendices not included in the main text. Appendix E
provides proofs omitted from the main text. Appendices F–H concern kernel-type esti-
mators, providing primitive conditions for their application to conditional moment in-
equalities, strong approximation results, and proofs. Appendix I provides additional de-
tails on the use of primitive conditions to verify an asymptotic linear expansion needed
for strong approximation of series estimators and Appendix J gives some detailed argu-
ments for local polynomial estimation of conditional moment inequalities. Appendix K
provides local asymptotic power analysis that supports the findings of our Monte Carlo
experiments. Appendix L provides further Monte Carlo evidence.

APPENDIX E: PROOFS OMITTED FROM THE MAIN TEXT

E.1. Proof of Lemma 2—Estimation of Vn

There is a single proof for both analytical and simulation methods, but it
is convenient for clarity to split the first step of the proof into separate cases.
There are four steps in total.

Step 1a—Bounds on kn�V(γn) in the Analytical Case. We have that for some
constant η> 0,

kn�V(γn) :=
(
ān + c(γn)

ān

)
�

κn := κn

(
γ′
n

) :=Qγ′
n

(
sup
v∈V

Z∗
n(v)

)
� κ̄n := 7

(
ān + η��n

ān

)
�

The claim of this step is that given the sequence γn, we have, for all large n,

kn�V(γn)≥ κn(γn)�(E.1)

6kn�V(γn) < κ̄n�(E.2)

Inequality (E.2) follows from (B.2) in Step 2 of the proof of Lemma 1 (with γn

in place of γ′
n); (E.1) follows immediately from Condition C.3.

Step 1b—Bounds on kn�V(γn) in the Simulation Case. We have

kn�V(γn) :=Qγn

(
sup
v∈V

Z�
n(v)

∣∣Dn

)
�
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(
γ′
n
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�
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The claim of this step is that given γn, there is γn ≥ γ′
n = γn − o(1) such that,

wp → 1,

kn�V(γn)≥ κn

(
γ′
n

)
�(E.3)

6kn�V(γn) < κ̄n�(E.4)

To show inequality (E.3), note that by Condition C.2 and Lemma 11, wp → 1,

κn�V
(
γn + o(1/�n)

)+ o(δn) ≥ kn�V(γn)≥ κn�V
(
γn − o(1/�n)

)− o(δn)�(E.5)

Hence (E.3) follows from

Pn

(
sup
v∈V

Z̄∗
n(v)≤ x

)∣∣∣
x=kn�V (γn)

≥(1) Pn

(
sup
v∈V

Z̄∗
n(v) ≤ κn�V

(
γn − o(1/�n)

)− o(δn)
)

− o(1) wp → 1

≥(2) Pn

(
sup
v∈V

Z̄∗
n(v) ≤ κn�V

(
γn − o(1/�n)

))− o(1)

= γn − o(1/�n)− o(1)=: γ′
n� (γn ≥ γ′

n)

where inequality (1) holds by (E.5) and inequality (2) holds by anti-concentra-
tion Corollary 2.

To show inequality (E.4), note that by Condition C.3, we have

κn�V
(
γn + o(1/�n)

)+ o(δn) ≤ ān + c(γn + o(1/�n))
ān

+ o(δn)

≤ ān + η��n +η log 10
ān

+ o(δn)�

where the last inequality relies on

c
(
γn + o(1/�n)

)≤ −η log
(
1 − γn − o(1/�n)

)≤ ηo(��n)+η log 10

holding for large n by Condition C.3. From this we deduce (E.4).
Step 2—Lower Containment. We have that for all v ∈ Vn,

An(v) := θ̂n(v)− inf
v∈V

(
θ̂n(v)+ kn�V(γn)sn(v)

)
≤ −Zn(v)σn(v)+ κnσn(v)

+ sup
v∈V

{
θn0 − θ̂n(v)− kn�V(γn)sn(v)

} := Bn(v)�
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since θn(v) ≤ θn0 + κnσn(v) ∀v ∈ Vn and θ̂n(v)− θn(v) = −Zn(v)σn(v). There-
fore,

Pn{Vn ⊆ V̂n}
= Pn

{
An(v)≤ 2kn�V(γn)sn(v)�∀v ∈ Vn

}
≥ Pn

{
Bn(v)≤ 2kn�V(γn)sn(v)�∀v ∈ Vn

}
≥ Pn

{−Zn(v)σn(v) ≤ 2kn�V(γn)sn(v)− κnσn(v)�∀v ∈ Vn

}
− Pn

{
sup
v∈V

θn0 − θ̂n(v)

sn(v)
≥ kn�V(γn)

}
:= a− b = γ′

n − o(1)= 1 − o(1)�

where b = o(1) follows similarly to the proof of Theorem 1 (analytical case)
and Theorem 2 (simulation case), using that kn�V(γn) ≥ kn�Vn(γn) for suffi-
ciently large n, and a= 1 − o(1) follows from the argument

a ≥(1) Pn

(
sup
v∈V

−Zn(v) ≤ 2kn�V(γn)
[
1 − oPn

(
δn/(ān + ��n)

)]− κn

)
≥(2) Pn

(
sup
v∈V

−Z∗
n(v)≤ 2kn�V(γn)− κn − oPn(δn)

)
− o(1)

≥(3) Pn

(
sup
v∈V

−Z∗
n(v)≤ κn − oPn(δn)

)
− o(1)

≥(4) γ
′
n − o(1)= 1 − o(1)�

where terms o(δn) are different in different places; where inequality (1) follows
by Condition C.4, inequality (2) is by Condition C.2 and by Step 1, namely by
kn�V(γ

′
n)≤ κ̄n � ān + ��n wp → 1, inequality (3) follows by Step 1, and inequal-

ity (4) follows by the anti-concentration Corollary 2 and definition of κn.
Step 3—Upper Containment. We have that for all v /∈ V n,

An(v) := θ̂n(v)− θn0 − inf
v∈V

(
θ̂n(v)− θn0 + kn�V(γn)sn(v)

)
> −Zn(v)σn(v)+ κ̄nσ̄n

+ sup
v∈V

{
θn0 − θ̂n(v)− kn�V(γn)sn(v)

} := Cn(v)�

since θn(v) > θn0 + κ̄nσ̄n�∀v /∈ V̄n, and θ̂n(v)− θn(v) = −Zn(v)σn(v). Hence

Pn(V̂n 
⊆ V̄n)

= Pn

{
An(v)≤ 2kn�V(γn)sn(v)�∃v /∈ V̄n

}
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≤ Pn

{
Cn(v) < 2kn�V(γn)sn(v)�∃v /∈ V̄n

}
≤ Pn

{
− sup

v∈V
2
∣∣Zn(v)

∣∣σ̄n < 3kn�V(γn)s̄n − κ̄nσ̄n

}
:= a= o(1)�

where we used elementary inequalities to arrive at the last conclusion. Then
a= o(1), since

a ≤(1) Pn

(−2
∣∣Zn(v)

∣∣< 3kn�V(γn)
[
1 + oPn

(
δn/(ān + ��n)

)]− κ̄n�

∃v ∈ V
)

≤(2) Pn

(−∣∣Z∗
n(v)

∣∣< (3kn�V(γn)− κ̄n

)
/2 + o(δn)�∃v ∈ V

)+ o(1)

≤(3) Pn

(−∣∣Z∗
n(v)

∣∣<−kn�V(γn)+ o(δn)�∃v ∈ V
)+ o(1)

≤(4) 2Pn

(
sup
v∈V

Z∗
n(v) > kn�V(γn)− o(δn)

)
+ o(1)

≤(5) 2Pn

(
sup
v∈V

Z∗
n(v) > κn − o(δn)

)
+ o(1)≤(6) 2

(
1 − γ′

n

)+ o(1)�

where inequality (1) follows by Condition C.4, inequality (2) follows by Con-
dition C.2 and Step 1, namely by kn�V(γ

′
n) ≤ κ̄n � ān + ��n wp → 1, inequality

(3) follows by Step 1 and the union bound, inequality (4) holds by the union
bound and symmetry, inequality (5) holds by Step 1, and inequality (6) holds
by the definition of κn and the anti-concentration Corollary 2.

Step 4—Rate. We have that wp → 1,

dH(V̂n� V0) ≤(1) dH(V̂n� Vn)+ dH(Vn�V0)≤(2) 2dH(V n�V0)

≤(3) 2(σ̄nκ̄n)
1/ρn/cn�

where inequality (1) holds by the triangle inequality, inequality (2) follows by
the containment V0 ⊆ Vn ⊆ V̂n ⊆ V̄n holding wp → 1, and inequality (3) follows
from κ̄nσ̄n → 0 holding by assumption and from the following relation that
holds by Condition V:

dH(V̄n� V0) = sup
v∈V̄n

d(v�V0)≤ sup
{
d(v�V0) :θn(v)− θn0 ≤ κ̄nσ̄n

}
≤ sup

{
d(v�V0) :

(
cnd(v�V0)

)ρn ∧ δ ≤ κ̄nσ̄n

}
≤ sup

{
t : (cnt)ρn ∧ δ ≤ κ̄nσ̄n

}
≤ c−1

n (κ̄nσ̄n)
1/ρn for all 0 ≤ κ̄nσ̄n ≤ δ� Q.E.D.
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E.2. Proof of Lemma 4

Step 1—Verification of Condition C.1. This condition holds by inspection in
view of continuity of v 
→ pn(v�βn) and v 
→ pn(v� β̂) implied by Condition
P(ii) and by Ωn and Ω̂n being positive definite.

Step 2—Verification of Condition C.2.
(a) By Condition P, uniformly in v ∈ V , for β∗

n(v) denoting an intermediate
value between βn and β̂n,

Zn(v) = pn(v�β
∗
n(v))

′

‖pn(v�βn)′Ω1/2
n ‖

√
n(β̂n −βn)

= pn(v�βn)
′

‖pn(v�βn)′Ω1/2
n ‖

√
n(β̂n −βn)

+ Ln

√
n‖β̂n −βn‖2

min
v∈V

‖pn(v�βn)‖
1

λmin(Ω
1/2
n )

= pn(v�βn)
′Ω1/2

n

‖pn(v�βn)′Ω1/2
n ‖ Nk + oPn

(
δ′
n

)+OPn

(
n−1/2

)
�

(b) First note, using the inequality∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥≤

(
2
‖a− b‖

‖a‖
)

∧
(

2
‖a− b‖

‖b‖
)
�(E.6)

that we have

Mn =
∥∥∥∥ pn(v�βn)

′Ω1/2
n

‖pn(v�βn)′Ω1/2
n ‖ − pn(v� β̂n)

′Ω̂1/2
n

‖pn(v� β̂n)′Ω̂1/2
n ‖

∥∥∥∥
≤ 2

‖pn(v�βn)
′Ω1/2

n −pn(v� β̂n)
′Ω̂1/2

n ‖
‖pn(v�βn)′Ω1/2

n ‖

≤ 2
‖pn(v�βn)

′Ω1/2
n (I −Ω−1/2

n Ω̂1/2
n )‖

‖pn(v�βn)′Ω1/2
n ‖

+ 2
Ln‖β̂n −βn‖

min
v∈V

‖pn(v�βn)‖
λmax(Ω̂

1/2
n )

λmin(Ω
1/2
n )

≤ 2
∥∥Ω−1/2

n

∥∥∥∥Ω̂1/2
n −Ω1/2

n

∥∥+OPn

(
n−1/2

)
≤ OPn

(
n−b
)+OPn

(
n−1/2

)=OPn

(
n−b
)
�
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for some b > 0. We have that

EPn

(
sup
v∈V

∣∣Z∗
n(v)−Z�

n(v)
∣∣∣∣Dn

)
≤ MnEPn‖Nk‖ � Mn

√
k�

Hence for any δ′′
n ∝ n−b′ with a constant 0 < b′ < b, we have by Markov’s in-

equality that

Pn

(
sup
v∈V

∣∣Z∗
n(v)−Z�

n(v)
∣∣> δn�n

∣∣Dn

)
≤ OPn(n

−b)

δ′′
n�n

= oPn

( 1
�n

)
�

Now select δn = δ′
n ∨ δ′′

n.
Step 3—Verification of Condition C.3. We shall employ Lemma 12, which

has the required notation in place. We only need to compute an upper bound
on the covering numbers N(ε�V�ρ) for the process Zn. We have that

σ
(
Z∗

n(v)−Z∗
n(ṽ)

)
≤
∥∥∥∥ pn(v�βn)

′Ω1/2
n

‖pn(v�βn)′Ω1/2
n ‖ − pn(ṽ�βn)

′Ω1/2
n

‖pn(ṽ�βn)′Ω1/2
n ‖
∥∥∥∥

≤ 2
∥∥∥∥(pn(v�βn)−pn(ṽ�βn))

′Ω1/2
n

‖pn(v�βn)′Ω1/2
n ‖

∥∥∥∥
≤ 2

Ln

min
v∈V

‖pn(v�βn)‖
λmax(Ω

1/2
n )

λmin(Ω
1/2
n )

‖v− ṽ‖ ≤ CL‖v − ṽ‖�

where C is some constant that does not depend on n, by the eigenvalues of Ωn

bounded away from zero and from above. Hence by the standard volumetric
argument,

N(ε�V�ρ)≤
(

1 +CLdiam(V)

ε

)d

� 0 < ε< 1�

where the diameter of V is measured by the Euclidean metric. Condition C.3
now follows by Lemma 12, with an(V) = (2

√
logLn(V)) ∨ (1 + √

d), and
Ln(V)= C ′(1 +CLdiam(V))d , where C ′ is some positive constant.

Step 4—Verification of Condition C.4. Under Condition P, we have that
1 ≤ an(V)≤ ān := an(V)� 1� so that Condition C.4(a) follows, since by Condi-
tion P,

σ̄n =
√

max
v∈V

∥∥pn(v�βn)Ω
1/2
n

∥∥/n
≤
√

max
v∈V

∥∥pn(v�βn)
∥∥∥∥Ω1/2

n

∥∥/n �
√

1/n�
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To verify Condition C.4(b), note that uniformly in v ∈ V ,

∣∣∣∣‖pn(v�βn)
′Ω̂1/2

n ‖
‖pn(v�βn)′Ω1/2

n ‖ − 1
∣∣∣∣

≤
∣∣∣∣‖pn(v�βn)

′Ω̂1/2
n ‖ − ‖pn(v�βn)

′Ω1/2
n ‖

‖pn(v�βn)′Ω1/2
n ‖

∣∣∣∣
≤ ‖pn(v�βn)

′(Ω̂1/2
n −Ω1/2

n )‖
‖pn(v�βn)′Ω1/2

n ‖ ≤ ‖pn(v�βn)
′Ω1/2(Ω−1/2

n Ω̂1/2
n − I)‖

‖pn(v�βn)′Ω1/2
n ‖

≤ ∥∥Ω−1/2
n Ω̂1/2

n − I
∥∥≤ ∥∥Ω−1/2

n

∥∥∥∥Ω̂1/2
n −Ω1/2

n

∥∥= oPn(δn)�

since ‖Ω̂1/2
n −Ω1/2

n ‖ = OPn(n
−b) for some b > 0, and since ‖Ω−1/2

n ‖ is uniformly
bounded, both implied by the assumptions.

Step 5—Verification of Condition S. Under Condition V, for large enough
n, since rn � c−1

n (1/
√
n)1/ρn = o(1), we have that rn ≤ ϕn for large n for some

ϕn = o(1). Condition S then follows by noting that for any positive o(1) term,
sup‖v−ṽ‖≤o(1) |Zn(v)−Zn(ṽ)| � o(1)‖Nk‖ = oPn(1). Q.E.D.

APPENDIX F: KERNEL-TYPE ESTIMATION OF THE BOUNDING FUNCTION
FROM CONDITIONAL MOMENT INEQUALITIES

In this section, we provide primitive conditions that justify application of
kernel-type estimation methods covered in Section 4.3 for models character-
ized by conditional moment inequalities.

EXAMPLE 7—Bounding Function From Conditional Moment Inequalities:
Suppose that we have an i.i.d. sample of (Xi�Zi)� i = 1� � � � � n, defined on the
probability space (A� A�P), where we take P fixed in this example. Suppose
that support(Zi)= Z ⊆ [0�1]d and

θn0 = min
v∈V

θn(v)

for θn(v) = EP[m(Xi�μ� j)|Zi = z], v = (z� j), where V ⊆ Z × {1� � � � � J} is
the set of interest. Suppose the first J0 functions correspond to equalities
treated as inequalities, so that m(Xi�μ� j) = −m(Xi�μ� j + 1) for j ∈ J0 =
{1�3� � � � � J0 − 1}. Hence θn(z� j) = −θn(z� j + 1) for j ∈ J0, and we only need
to estimate functions θn(z� j) with the index j ∈ J := J0 ∪{J0 +1� J0 +2� � � � � J}.
Suppose we use the local polynomial approach to approximating and estimat-
ing θn(z� j). For u ≡ (u1� � � � � ud), a d-dimensional vector of nonnegative inte-
gers, let [u] = u1 + · · · + ud . Let Ap be the set of all d-dimensional vectors u
such that [u] ≤ p for some integer p ≥ 0 and let |Ap| denote the number of
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elements in Ap. For z ∈ R
d with u ∈Ap, let zu =∏d

i=1 z
ui
i . Now define

p(b� z)=
∑
u∈Ap

buz
u�(F.1)

where b = (bu)u∈Ap is a vector of dimension |Ap|. For each v = (z� j) and
Yi(j) :=m(Xi�μ� j), define

Sn(b) :=
n∑

i=1

[
Yi(j)− p

(
b�

Zi − z

hn

)]2

Khn(Zi − z)�

where Kh(u) := K(u/h), K(·) is a d-dimensional kernel function, and hn is a
sequence of bandwidths. The local polynomial estimator θ̂n(v) of the regres-
sion function is the first element of b̂(z� j) := arg minb∈R

|Ap | Sn(b).
We impose the following conditions:

(i) For each j ∈ J , θ(z� j) is (p+ 1) times continuously differentiable with
respect to z ∈ Z , where Z is convex;

(ii) the probability density function f of Zi is bounded above and bounded
below from zero with continuous derivatives on Z ;

(iii) Yi(j) :=m(Xi�μ� j), Yi := (Yi(j)� j ∈ J )′, and Ui := Yi−EP[Yi|Zi], and
Ui is a bounded random vector;

(iv) for each j, the conditional on Zi density of Ui exists and is uniformly
bounded from above and below or, more generally, Condition R stated in Ap-
pendix G holds;

(v) K(·) has support on [−1�1]d , is twice continuously differentiable,∫
uK(u)du= 0, and

∫
K(u)du= 1;

(vi) hn → 0, nhd+|J |+1
n → ∞, nhd+2(p+1)

n → 0, and
√
n−1h−2d → 0 at polyno-

mial rates in n.
These conditions are imposed to verify Assumptions A1–A7 in Kong, Lin-

ton, and Xia (2010). Details of verification are given in Supplementary Ap-
pendix J. Note that p> |J |/2 − 1 is necessary to satisfy bandwidth conditions
in (vi). The assumption that Ui is bounded is technical and is made to simplify
exposition and proofs.

Let δn = 1/ logn. Then it follows from Corollary 1 and Lemmas 8 and 10 of
Kong, Linton, and Xia (2010) that

θ̂n(z� j)− θ(z� j) = 1
nhd

nf (z)
e′

1S
−1
p

n∑
i=1

(
e′
jUi

)
Kh(Zi − z)up

(
Zi − z

hn

)
(F.2)

+Bn(z� j)+Rn(z� j)�
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where e1 is an |Ap| × 1 vector whose first element is 1 and all others are 0’s, Sp

is an |Ap| × |Ap| matrix such that Sp = {∫ zu(zv)′ du :u ∈Ap�v ∈ Ap}, up(z) is
an |Ap| × 1 vector such that up(z) = {zu :u ∈Ap},

Bn(z� j)= O
(
hp+1
n

)
and Rn(z� j)= oP

(
δn

(nhd
n)

1/2

)

uniformly in (z� j) ∈ Z ×{1� � � � � J}. The exact form of Bn(z� j) is given in equa-
tion (12) of Kong, Linton, and Xia (2010). The result that Bn(z� j) = O(hp+1

n )
uniformly in (z� j) follows from the standard argument based on Taylor expan-
sion given in Fan and Gijbels (1996), Kong, Linton, and Xia (2010), or Masry
(1996). The condition that nhd+2(p+1)

n → 0 at a polynomial rate in n corresponds
to the undersmoothing condition.

Now set K(z/h) ≡ e′
1S

−1
p Kh(z)up(z/h), which is a kernel of order (p + 1)

(see Section 3.2.2 of Fan and Gijbels (1996)). Let

gv(U�Z) := e′
jU

(hd
n)

1/2f (z)
K
(
Z − z

hn

)
�

Then it follows from Lemma 15 in Appendix J that uniformly in v ∈ V ,(
nhd

n

)1/2(
θ̂n(z� j)− θn(z� j)

)= Gn(gv)+ oP(δn)�

Application of Theorems 8 and 9 in Appendix G, based on the Rio–Massart
coupling, verifies condition NK(i)(a) and (b). Finally, Condition NK(ii) holds
if we take f̂n(z) to be the standard kernel density estimator with kernel K and
let e′

jÛi = Yi(j)− θ̂n(z� j).

APPENDIX G: STRONG APPROXIMATION FOR KERNEL-TYPE METHODS

To establish our strong approximation for kernel-type estimators, we use
Theorem 1.1 in Rio (1994), stated below, which builds on the earlier results
of Massart (1989). After the statement of the Rio–Massart coupling, we pro-
vide our strong approximation result, which generalizes the previous results to
kernel-type estimators for regression models with multivariate outcomes. We
then provide a novel multiplier method to approximate the distribution of such
estimators. The proofs for these results are provided in Appendix H.

G.1. Rio–Massart Coupling

Consider a sufficiently rich probability space (A� A�P). Indeed, we can al-
ways enrich an original space by taking the product with [0�1] equipped with
the uniform measure over Borel sets of [0�1]. Consider a suitably measur-
able, namely image admissible Suslin, function class F containing functions
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f : Id → I for I = (−1�1). A function class F is of uniformly bounded varia-
tion of at most K(F) if

TV(F) := sup
f∈F

sup
g∈Dc(Id)

(∫
Rd

f (x)divg(x)/‖g‖∞ dx

)
≤K(F)�

where Dc(I
d) is the space of C∞ functions taking values in R

d with compact
support included in Id , and where divg(x) is the divergence of g(x). Suppose
the function class F obeys the uniform L1 covering condition

sup
Q

N
(
ε� F�L1(Q)

)≤ C(F)εd(F)�

where sup is taken over probability measures with finite support and N(ε� F�
L1(Q)) is the covering number under the L1(Q) norm on F . Let X1� � � � �Xn

be an i.i.d. sample on the probability space (A� A�P) from density fX with sup-
port on Id , bounded from above and away from zero. Let PX be the measure
induced by fX . Then there exists a PX -Brownian bridge Bn with almost sure
continuous paths with respect to the L1(PX) metric such that for any positive
t ≥ C logn,

P
(√

n sup
f∈F

∣∣Gn(f )− Bn(f )
∣∣≥ C

√
tn(d−1)/dK(F)+Ct

√
logn

)
≤ e−t �

where constant C depends only on d, C(F), and d(F).

G.2. Strong Approximation for Kernel-Type Estimators

We shall use the following technical condition in what follows.

CONDITION R: The random (J + d) vector (Ui�Zi) obeys Ui = (Ui�1� � � � �
Ui�J) = ϕn(Xi�1), and Zi = ϕ̃n(X2i), where Xi = (X ′

1i�X
′
2i)

′ is a (d1 + d)
vector with 1 ≤ d1 ≤ J, which has density bounded away from zero by

¯
f

and bounded above by f̄ on the support Id1+d , where ϕn : Id1 
→ IJ and∑d1
l=1

∫
Id1 |Dx1lϕn(x1)|dx1 ≤ B, where Dx1lϕn(x1) denotes the weak derivative

with respect to the lth component of x1, and ϕ̃n : Id 
→ Id is continuously dif-
ferentiable such that maxk≤d supx2

|∂ϕ̃n(x2)/∂x2k| ≤ B and |det∂ϕ̃n(x2)/∂x2| ≥
c > 0, where ∂ϕ̃n(x2)/∂x2k denotes the partial derivative with respect to the
kth component of x2. The constants J�B�

¯
f , f̄ , and c, and vector dimensions

do not depend on n. (| · | denotes the �1 norm.)

A simple example of (Ui�Zi) satisfying this condition is given in Corollary 3
below.
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THEOREM 8—Strong Approximation for Kernel-Type Estimators: Consider
a suitably enriched probability space (A� A�Pn) for each n. Let n → ∞. Assume
the following conditions hold for each n: (a) There are n i.i.d. (J+d)-dimensional
random vectors of the form (Ui�Zi) that obey Condition R, and the density fn of
Z is bounded from above and away from zero on the set Z , uniformly in n. (b) Let
v = (z� j) and V = Z ×{1� � � � � J}, where Z ⊆ Id . The kernel estimator v 
→ θ̂n(v)
of some target function v 
→ θn(v) has an asymptotic linear expansion uniformly
in v ∈ V ,

(
nhd

n

)1/2(
θ̂n(v)− θn(v)

)= Gn(gv)+ oPn(δn)�

gv(Ui�Zi) := 1
(hd

n)
1/2fn(z)

e′
jUiK

(
z −Zi

hn

)
�

where e′
jUi ≡ Uij , K is a twice continuously differentiable product kernel func-

tion with support on Id ,
∫

K(u)du = 1, and hn is a sequence of bandwidths
that converges to zero. (c) For a given δn ↘ 0, the bandwidth sequence obeys
(n−1/(d+d1)h−1

n logn)1/2 + (nhd
n)

−1/2 log3/2 n = o(δn). Then there exists a sequence
of centered Pn-Gaussian bridges Bn such that

sup
v∈V

∣∣(nhd
n

)1/2(
θ̂n(v)− θn(v)

)− Bn(gv)
∣∣= oPn(δn)�

Moreover, the paths of v 
→ Bn(gv) can be chosen to be continuous almost surely
(a.s.).

REMARK 8: Conditions (a) and (b) cover standard conditions in the litera-
ture, imposing a uniform Bahadur expansion for kernel-type estimators, which
have been shown in Masry (1996) and Kong, Linton, and Xia (2010) for kernel
mean regression estimators and also local polynomial estimators under fairly
general conditions. Implicit in the expansion above is that the asymptotic bias
is negligible, which can be achieved by undersmoothing, that is, choosing the
bandwidth to be smaller than the rate-optimal bandwidth.

COROLLARY 3—A Simple Leading Case for Moment Inequalities Applica-
tion: Suppose that (Ui�Zi) has bounded support, which we then take to be a
subset of IJ+d without loss of generality. Suppose that Ui = (Uij� j = 1� � � � � J),
where for the first J0/2 pairs of terms, we have Uij = −Uij+1� j = 1�3� � � � � J0 − 1.
Let J = {1�3� � � � � J0 − 1� J0 + 1� J0 + 2� � � �}. Suppose that (Uij�Zi� j ∈ J ) have
joint density bounded from above and below by some constants f̄ and

¯
f . Suppose

these constants and d, J, and d1 = |J | do not depend on n. Then Condition R
holds and the conclusions of Theorem 8 then hold under the additional conditions
imposed in the theorem.
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Note that Condition R allows for much more general error terms and re-
gressors. For example, it allows error terms Ui not to have a density at all, and
Zi only to have density bounded from above.

The next theorem shows that the Brownian bridge Bn(gv) can be approx-
imately simulated via the Gaussian multiplier method. That is, consider the
symmetrized process

G
o
n(gv) = 1√

n

n∑
i=1

ξigv(Ui�Zi)= Gn(ξgv)�(G.1)

where ξ1� � � � � ξn are i.i.d. N(0�1), independent of the data Dn and of
{(Ui�Zi)}ni=1, which are i.i.d. copies of (U�Z). Conditional on the data, this is a
Gaussian process with a covariance function that is a consistent estimate of the
covariance function of v 
→ Bn(gv). Theorem 9 below shows that the uniform
distance between a copy of Bn(gv) and G

o
n(gv) is small with an explicit proba-

bility bound. Note that if the function class {gv� v ∈ V } were Donsker, then such
a result would follow from the multiplier functional central limit theorem. In
our case, this function class is not Donsker, so we require a different argument.

For the following theorem, consider now a sufficiently rich probability space
(A� A�Pn). Note that we can always enrich the original space if needed by
taking the product with [0�1] equipped with the uniform measure over Borel
sets of [0�1].

THEOREM 9—Multiplier Method for Kernels: Let v = (z� j) and V ⊆ Z ×
{1� � � � � J}, where Z is a compact convex set that does not depend on n. The esti-
mator v 
→ θ̂n(v) and the function v 
→ θn(v) are continuous in v. In what follows,
let ej denote the J vector with jth element 1 and all other elements 0. Suppose that
(U�Z) is a (J +d)-dimensional random vector, where U is a generalized residual
such that E[U |Z] = 0 a.s. and Z is a covariate; the density fn of Z is continuous
and bounded away from zero and from above on Z , uniformly in n; and the sup-
port of U is bounded uniformly in n. K is a twice continuously differentiable, possi-
bly higher order, product kernel function with support on [−1�1]d ,

∫
K(u)du= 1,

and hn is a sequence of bandwidths such that hn → 0 and nhd → ∞ such that√
n−1h−2d = o((δn/[�n

√
logn])d+1). Let {(Ui�Zi)}ni=1 be i.i.d. copies of (U�Z),

where {Zi}ni=1 are a part of the data Dn, and {Ui} are a measurable transformation
of data. Let Bn denote the Pn-Brownian bridge and let

gv(U�Z) := e′
jU

(hd
n)

1/2fn(z)
K
(
z −Z

hn

)
�

Then there exists an independent from data Dn, identically distributed copy v 
→
B̄n(gv) of the process v 
→ Bn(gv), such that for some o(δn) and o(1/�n) se-
quences,

Pn

(
sup
v∈V

∣∣Go
n(gv)− B̄n(gv)

∣∣> o(δn)
∣∣Dn

)
= oPn(1/�n)�(G.2)
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APPENDIX H: PROOFS FOR NONPARAMETRIC ESTIMATION OF θ(v) VIA

KERNEL-TYPE METHODS

H.1. Proof of Lemma 7

There are six steps, with the first four verifying Conditions C.1–C.4 and the
last two providing auxiliary calculations. Let Uij ≡ e′

jUi.
Step 1—Verification of Condition C.1. Condition C.1 holds by inspection,

in view of the continuity of v 
→ θ̂n(v), v 
→ θn(v), v 
→ σn(v), and v 
→
sn(v).

Step 2—Verification of Condition C.3. Note that

gv(Ui�Zi)

σn(v)
√
nhd

n

=
1

hd/2
n

K
(
z −Zi

hn

)
Uij∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�

We shall employ Lemma 12, which has the required notation in place. We only
need to compute an upper bound on the covering numbers N(ε�V�ρ) of V
under the metric ρ(v� v̄) = σ(Z∗

n(v)−Z∗
n(v̄)). We have that for v = (z� j) and

v̄ = (z̄� j),

σ
(
Z∗

n(v)−Z∗
n(v̄)

)≤ Υn‖z − z̄‖�

Υn := sup
v∈V�1≤k≤d

∥∥∥∥∥∥∥∥∥
∇zk

1

hd/2
n

K
(
z −Zi

hn

)
Uij∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

∥∥∥∥∥∥∥∥∥
Pn�2

�

We have that

Υn ≤ sup
v∈V�1≤k≤d

∥∥∥∥∇zk

1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

+

∣∣∣∣∇zk

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

∣∣∣∣∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�
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which is bounded by C(1+h−1
n ) for large n by Step 6. Since J is finite, it follows

that for all large n > n0, for all nonempty subsets of V ⊆ V ,

N(ε�V�ρ)≤
(
J1/d(1 +C(1 + h−1

n )diam(V))

ε

)d

� 0 < ε< 1�

Condition C.3 now follows for all n > n0 by Lemma 12, with

an(V)= (2√logLn(V)
)∨ (1 + √

d)�

Ln(V)= C ′(1 +C
(
1 + h−1

n

)
diam(V)

)d
�

where C ′ is some positive constant.
Step 3—Verification of Condition C.4. Under Condition NK, we have that

an(V)≤ ān := an(V)�
√

log�n + logn �
√

logn�

so that Condition C.4(a) follows if
√

logn/(nhd
n)→ 0.

To verify Condition C.4(b), note that

∣∣∣∣ sn(v)σn(v)
− 1
∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
fn(z)

f̂n(z)

)
︸ ︷︷ ︸

a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Ûij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2︸ ︷︷ ︸

b/c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�

Since |a(b/c)− 1| ≤ 2|a− 1| + |(b− c)/c| when |(b− c)/c| ≤ 1, the result fol-
lows from |a − 1| = OPn(n

−b) = op(δn/(ān + �n)) holding by Condition NK(ii)
for some b > 0 and from

∣∣∣∣(b− c)

c

∣∣∣∣ ≤ max
1≤i≤n

‖Ûi −Ui‖

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

+

∣∣∣∣∣∣∣∣∣

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

− 1

∣∣∣∣∣∣∣∣∣
≤ OPn

(
n−b
)
OPn(1)+OPn

(√
logn
nhd

)
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= OPn

(
n−b
)= oPn

(
δn

ān + �n

)

for some b > 0, where we used Condition NK(ii), the results of Step 6, and the
condition that nhd

n → ∞ at a polynomial rate.
Step 4—Verification of Condition C.2. Condition NK(i) and 1 � EPn[g2

v] � 1
uniformly in v ∈ V holding by Step 6 give

sup
v∈V

∣∣∣∣ Gn(gv)√
EPn[g2

v]
− Bn(gv)√

EPn[g2
v]
∣∣∣∣=OPn(δn)�

where v 
→ Bn(gv) is a zero-mean Pn-Brownian bridge, with a.s. continu-
ous sample paths. This and the condition on the remainder term in Condi-
tion NK(i) in turn imply Condition C.2(a).

To show Condition C.2(b), we need to show that for any C > 0,

Pn

(
sup
v∈V

∣∣∣∣ G
o
n(ĝv)√
En[ĝ2

v]
− B̄n(gv)√

EPn[g2
v]
∣∣∣∣>Cδn

∣∣Dn

)
= oPn(1/�n)�

where B̄n is a copy of Bn, which is independent of the data. First, Condition
NK(i), with the fact that 1 � EPn[g2

v] � 1 uniformly in v ∈ V , implies that

Pn

(
sup
v∈V

∣∣∣∣ G
o
n(gv)√
EPn[g2

v]
− B̄n(gv)√

EPn[g2
v]
∣∣∣∣>Cδn

∣∣Dn

)
= oPn

(
1
�n

)
�

Therefore, in view of the triangle inequality and the union bound, it remains
to show that

Pn

(
sup
v∈V

∣∣∣∣ G
o
n(ĝv)√
En[ĝ2

v]
− G

o
n(gv)√
EPn[g2

v]
∣∣∣∣>Cδn

∣∣Dn

)
= oPn

(
1
�n

)
�(H.1)

We have that

sup
v∈V

∣∣∣∣ G
o
n(ĝv)√
En[ĝ2

v]
− G

o
n(gv)√
EPn[g2

v]
∣∣∣∣

≤ sup
v∈V

∣∣∣∣Go
n(ĝv − gv)√
EPn[g2

v]
∣∣∣∣+ sup

v∈V

∣∣∣∣ G
o
n(gv)√
EPn[g2

v]
∣∣∣∣ sup
v∈V

∣∣∣∣σn(v)

sn(v)
− 1
∣∣∣∣�

We observe that

EPn

(
sup
v∈V

∣∣∣∣ G
o
n(gv)√
EPn[g2

v]
∣∣∣∣ sup
v∈V

∣∣∣∣σn(v)

sn(v)
− 1
∣∣∣∣∣∣Dn

)

=EPn

(
sup
v∈V

∣∣∣∣ G
o
n(gv)√
EPn[g2

v]
∣∣∣∣∣∣Dn

)
sup
v∈V

∣∣∣∣σn(v)

sn(v)
− 1
∣∣∣∣
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=OPn

(√
lognn−b

)
=OPn(δn/�n)�

where the last equality follows from Steps 5 and 3. Also we note that

EPn

(
sup
v∈V

∣∣∣∣Go
n(ĝv − gv)√
EPn[g2

v]
∣∣∣∣∣∣Dn

)

≤(1) OPn(
√

logn) sup
v∈V

∥∥∥∥
(

Uij

fn(z)
− Ûij

f̂n(z)

)
1

hd/2
n

K
(
z −Zi

hn

)∥∥∥∥
Pn�2

1
fn(z)

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�(2) OPn(
√

logn) sup
v∈V

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
(1 + |Uij|)

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

×
(∣∣∣∣fn(z)

f̂n(z)
− 1
∣∣∣∣∨ max

1≤i≤n
‖Ûi −Ui‖

)

≤(3) OPn(
√

logn)OPn(1)OPn

(
n−b
)

= oPn

(
δn

�n

)
�

where inequality (1) follows from Step 5, inequality (2) follows by elementary
inequalities, and inequality (3) follows by Step 6 and Condition NK(ii). It fol-
lows that (H.1) holds by Markov’s inequality.

Step 5—This step shows that

EPn

(
sup
v∈V

∣∣∣∣ G
o
n(gv)√
EPn[g2

v]
∣∣∣∣∣∣Dn

)
= OPn(

√
logn)�(H.2)

EPn

(
sup
v∈V

∣∣∣∣Go
n(ĝv − gv)√
EPn[g2

v]
∣∣∣∣∣∣Dn

)
(H.3)

≤OPn(
√

logn) sup
v∈V

∥∥∥∥
(

Uij

fn(z)
− Ûij

f̂n(z)

)
1

hd/2
n

K
(
z −Zi

hn

)∥∥∥∥
Pn�2

1
fn(z)

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�
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To show (H.2), we use Lemma 13 applied to Xv = Go
n(gv)√
EPn [g2

v]
conditional on

Dn. First, we compute

σ(X) = sup
v∈V

(
EPn

(
X2

v |Dn

))1/2 = sup
v∈V

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

= 1 + oPn(1)�

where the last equality holds by Step 6. Second, we observe that for v = (z� j)
and v̄ = (z̄� j),

σ(Xv −Xv̄)≤ Υn‖z − z̄‖�

Υn := sup
v∈V�1≤k≤d

∥∥∥∥∥∥∥∥∥
∇zk

1

hd/2
n

K
(
z −Zi

hn

)
Uij∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

∥∥∥∥∥∥∥∥∥
Pn�2

�

We have that

Υn ≤ sup
v∈V�1≤k≤d

∥∥∥∥∇zk

1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

+

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

·

∣∣∣∣∇zk

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

∣∣∣∣∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�

which is bounded with probability converging to 1 by C(h−1
n + 1) for large n by

Step 6 and Condition NK(ii). Since J is finite, it follows that for all large n > n0,
the covering number for V under ρ(v� v̄) = σ(Xv −Xv̄) obeys, with probability
converging to 1,

N(ε� V�ρ)≤
(
J1/d(1 +C(1 + h−1

n )diam(V))

ε

)d

� 0 < ε< σ(X)�

Hence logN(ε� V�ρ)� logn+ log(1/ε)� Hence by Lemma 13, we have that

EPn

(
sup
v∈V

|Xv|
∣∣Dn

)
≤ σ(X)+

∫ 2σ(X)

0

√
log(n/ε)dε =OPn(

√
logn)�
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To show (H.3), we use Lemma 13 applied to Xv = Go
n(ĝv−gv)√
EPn [g2

v]
conditional on

Dn. First, we compute

σ(X)= sup
v∈V

(
EPn

(
X2

v |Dn

))1/2 = sup
v∈V

∥∥∥∥
(

Uij

fn(z)
− Ûij

f̂n(z)

)
1

hd/2
n

K
(
z −Zi

hn

)∥∥∥∥
Pn�2

1
fn(z)

∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

�

Second, we observe that for v = (z� j) and v̄ = (z̄� j),

σ(Xv −Xv̄) ≤ (Υn + Υ̂n)‖z − z̄‖�
where

Υ̂n := sup
v∈V�1≤k≤d

∥∥∥∥∥∥∥∥∥
∇zk

1

hd/2
n

K
(
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which is bounded by C(1 + h−1
n ) + OPn(n

−b)OPn(1) for large n by Step 6
and Condition NK(ii). In the second term, the left term of the product is
bounded by
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which is bounded by C(1 + oPn(1))+OPn(n
−b)OPn(1) for large n by Step 6 and

Condition NK(ii); the right term of the product is bounded by C(1 + h−1
n +

oPn(1)) by Step 6. We conclude that Υ̂n ≤ C(1 + h−1
n ) for some constant C > 0

with probability converging to 1.
Since J is finite, it follows that for all large n > n0, the covering number for

V under ρ(v� v̄)= σ(Xv −Xv̄) obeys, with probability converging to 1,
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Step 6. The claims of this step are the relations, uniformly in v ∈ V�1 ≤ k ≤ d,

1 �
∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

� 1�(H.4)

1 �
∥∥∥∥ 1

hd/2
n

K
(
z −Zi

hn

)∥∥∥∥
Pn�2

� 1�(H.5)

h−1
n �

∥∥∥∥∇zk

1

hd/2
n

K
(
z −Zi

hn

)
Uij

∥∥∥∥
Pn�2

� h−1
n �(H.6)



20 V. CHERNOZHUKOV, S. LEE, AND A. M. ROSEN
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The proofs of (H.4)–(H.8) are all similar to one another, as are those of
(H.9)–(H.12), and are standard in the kernel estimator literature. We therefore
prove only (H.4) and (H.9) to demonstrate the argument. To establish (H.4),
we have ∥∥∥∥ 1
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n
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)
C dz̄ ≤(2)

∫
K2(u)C du

for some constant 0 < C < ∞, where in inequality (1), we use the assumption
that E[U2

ij|z] and fn(z) are bounded uniformly from above, and in inequality
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(2), change of variables. On the other hand,∥∥∥∥ 1
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for some constant 0 < C < ∞, where in inequality (1), we use the assumption
that E[U2

ij|z] and fn(z) are bounded away from zero uniformly in n, and in
inequality (2), change of variables.

Moving to (H.9), it suffices to show that, uniformly in v ∈ V ,
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Given the boundedness of Uij imposed by Condition R, this is, in fact, a
standard result on local empirical processes, using Pollard’s empirical pro-
cess methods. Specifically, (H.13) follows by the application of Theorem 37
in Chapter II of Pollard (1984). Q.E.D.

H.2. Proof of Lemma 8

To show claim (i), we need to establish that for

ϕn = o(1) ·
(

hn√
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)

for any o(1) term, we have that

sup
‖v−v′‖≤ϕn

∣∣Z∗
n(v)−Z∗

n

(
v′)∣∣= oPn(1)�

Consider the stochastic process X = {Zn(v)� v ∈ V }. We shall use the stan-
dard maximal inequality stated in Lemma 13. From the proof of Lemma 7, we
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have that for v = (z� j) and v′ = (z′� j), σ(Z∗
n(v)−Z∗

n(v
′))≤ C(1+h−1

n )‖z−z′‖,
where C is some constant that does not depend on n, and logN(ε�V�ρ) �
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Hence the conclusion follows from Markov’s inequality.
Under Condition V, by Lemma 2,
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Thus, Condition S is satisfied. Q.E.D.

H.3. Proof of Theorem 8

To prove this theorem, we use the Rio–Massart coupling. First we note that

M = {hd/2
n fn(z)gv(Ui�Zi)= e′

jUiK
(
(z −Zi)/hn

)
�

z ∈ Z� j ∈ {1� � � � � J}}
is the product of {e′

jUi� j ∈ 1� � � � � J} with covering number trivially bounded
above by J and K := {K((z−Zi)/hn)� z ∈ Z} obeys supQN(ε� K�L1(Q))� ε−ν

for some finite constant ν; see Lemma 4.1 of Rio (1994). Therefore, by Lemma
A.1 in Ghosal, Sen, and van der Vaart (2000), we have that
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Q

N
(
ε� M�L1(Q)

)
� J(ε/2)−ν � ε−ν�(H.14)
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Next we bound, for Kl(u) = ∂K(u)/∂ul,
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where C is a generic constant, possibly different in different places, and where
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To see how the latter relationships holds, note that Y = ϕ̃n(v) when v ∼U(Id)
has a density bounded uniformly from above: fY (y)� 1/|det∂ϕ̃n(v)/∂v| � 1/c.
Moreover, the functions |K((z − y)/hn)| and |Kl((z − y)/hn)| are bounded
above by some constant K̄ and are nonzero only over a y belonging to a cube
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centered at z of volume (2h)d . Hence∫
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and similarly for the second term.
By the Rio–Massart coupling we have that for some constant C and t ≥

C logn,

Pn

(√
n sup

f∈M

∣∣Gn(f )− Bn(f )
∣∣≥ C

√
tn(d+d1−1)/(d+d1)K(M)+Ct

√
logn

)
≤ e−t �

which implies that

Pn

(
sup
v∈V

∣∣Gn(gv)− Bn(gv)
∣∣

≥ n−1/2C
√
tn(d+d1−1)/(d+d1)hd−1

n h−d/2
n + n−1/2h−d/2

n Ct
√

logn
)

≤ e−t �

which upon inserting t = C logn gives

Pn

(
sup
v∈V

∣∣Gn(gv)− Bn(gv)
∣∣

≥ C
[
n−1/2(d+d1)

(
h−1
n logn

)1/2 + (nhd
n

)−1/2
log3/2 n

])
� 1/n�

This implies the required conclusion. Note that gv 
→ Bn(gv) is continuous un-
der the L1(fX) metric by the Rio–Massart coupling, which implies continuity
of v 
→ Bn(gv), since v− v′ → 0 implies gv − gv′ → 0 in the L1(fX) metric.

Q.E.D.

H.4. Proof of Theorem 9

Step 1. First we note that (G.2) is implied by
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)
= oPn(δn/�n)(H.15)

in view of the Markov inequality. Using calculations similar to those in Step 5
in the proof of Lemma 7, we can conclude that for Xv := G

o
n(gv), v = (z� j),

and v̄ = (z̄� j),

σ(Xv −Xv̄) ≤ ‖v− v̄‖OPn

(
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)
�



INTERSECTION BOUNDS 25

where σ2(Xv −Xv̄) :=EPn((Xv −Xv̄)
2|Dn). Application of the Gaussian maxi-

mal inequality quoted in Lemma 13, similarly Step 6 in the proof of Lemma 7,
then gives
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where
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whence
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Next we set up a regular mesh V0 ⊂ V with mesh width ε. The cardinality of
the mesh is given by

Kn ∝ (1/ε)d ∝ h−d
n λd

n� λn =
√
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�

With such mesh selection, we have that
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)
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where π(v) denotes a point in V0 that is closest to v.
The steps given below will show that there is a Gaussian process {Zv�v ∈ V },

which is independent of Dn, having the same law as {Bn(gv)� v ∈ V } and having
the two key properties

EPn

(
sup
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|Xv −Zv|
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)
= oPn(δn/�n)�(H.19)

EPn

(
sup
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|Zv −Zπ(v)|
)

= o(δn/�n)�(H.20)

The claim of the lemma then follows by setting {B̄n(gv)� v ∈ V } = {Zv�v ∈ V }
and then noting that

EPn

(
sup
v∈V

|Xv −Zv|
∣∣Dn

)
= oPn(δn/�n)

holds by the triangle inequality for the sup norm and (H.18)–(H.20). Note that
the last display is equivalent to (H.15). We now prove these assertions in the
followings steps.
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Step 2. In this step, we construct the process Zv on points v ∈ V0, and show
that (H.19) holds. In what follows, we use the notation (Xv)v∈V0 to denote a Kn

vector collecting Xv with indices v ∈ V0. We have that conditional on the data
Dn,

(Xv)v∈V0 = Ω̂1/2
n N � N ∼ N(0� I)�

where N is independent of Dn and
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We then set (Zv)v∈V0 = Ω1/2
n N for Ω = EPn[pip

′
i] and the same N as defined

above.
Before proceeding further, we note that by construction the process {Zv�v ∈

V0} is independent of the data Dn. This is facilitated by suitably enlarging the
probability space as needed.32

Since the support of K is compact and points of the grid V0 are equally
spaced, we have that
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Using the boundedness assumptions of the lemma, we have that
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where Ū is the upper bound on U and
¯
f is the lower bound on the density fn,

both of which do not depend on n.
The application of Rudelson’s (1999) law of large numbers for operators

yields
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The application of the Gaussian maximal inequality quoted in Lemma 13 gives
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32Given the space (A′� A′�P′
n) that carries Dn and given a different space (A′′� A′′�P′′

n) that car-
ries {Zv�v ∈ V0} as well as its complete version {Zv�v ∈ V}, we can take (A� A�Pn) as the product
of the two spaces, thereby maintaining independence between the data and the constructed pro-
cess. Since {Zv�v ∈ V} constructed below takes values in a separable metric space, it suffices to
take (A′′� A′′�P′′

n) as the canonical probability space, as noted in Appendix A.
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Since (Xv)v∈V0 − (Zv)v∈V0 = (Ω̂1/2
n −Ω1/2

n )′N , we have that
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where the last inequality follows by a useful matrix inequality derived in
Chetverikov (2011). Putting bounds together and using logKn � logn gives
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where the last condition holds by the conditions on the bandwidth.
Step 3. In this step, we complete the construction of the process {Zv�v ∈ V }.

We have defined the process Zv for all v ∈ V0. We want to embed these random
variables into a path of a Gaussian process {Zv�v ∈ V }, whose covariance func-
tion is given by (v� v̄) 
→ EPn[gvgv̄]. We want to maintain the independence of
the process from Dn. The construction follows by Lemma 11 in Belloni, Cher-
nozhukov, and Fernandez-Val (2011). This lemma requires that a version of
{Zv�v ∈ V } has a.s. uniformly continuous sample paths, which follows from the
Gaussian maximal inequalities and entropy calculations similar to those given
in Step 3 in the proof of Lemma 7. Indeed, we can conclude that

σ(Zv −Zv̄)≤ ‖v − v̄‖C(1 + h−1
n

)
�

which establishes total boundedness of V under the standard deviation pseudo-
metric. Moreover, application of the Gaussian maximal inequality Lemma 13
to Zv gives
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By a standard argument (e.g., van der Vaart and Wellner (1996)), these facts
imply that the paths of Zv are a.s. uniformly continuous.33

The last claim (H.20) follows from the preceding display, the choice of mesh
width ε, and the inequality:

EPn

(
sup
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|Zv −Zπ(v)|
)

≤EPn

(
sup
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|Zv −Zv̄|
)

= o(δn/�n)� Q.E.D.

33Note, however, that the process depends on n, and the statement here is a nonasymptotic
statement, holding for any n. This property should not be confused with asymptotic equicontinu-
ity, which does not hold here.
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APPENDIX I: ASYMPTOTIC LINEAR REPRESENTATION FOR SERIES
ESTIMATOR OF A CONDITIONAL MEAN

In this section, we use the primitive conditions set out in Example 5 of
the main text to verify the required asymptotically linear representation for√
n(β̂n − βn) using Newey (1997). This representation is also condition (b) of

Theorem 7. We now reproduce the imposed conditions from the example for
clarity. We note that it is also possible to develop similar conditions for non-
linear estimators; see, for example, Theorem 1(d) of Horowitz and Mammen
(2004).

We have that θn(v) = EPn[Yi|Vi = v], assumed to be a continuous function.
There is an i.i.d. sample (Yi�Vi)� i = 1� � � � � n, with V ⊆ support(Vi) ⊆ [0�1]d
for each n. Here d does not depend on n, but all other parameters, unless
stated otherwise, can depend on n. Then we have θn(v) = pn(v)

′βn +An(v) for
pn : support(Vi) 
→ RKn representing the series functions, βn is the coefficient
of the best least squares approximation to θn(v) in the population, and An(v)
is the approximation error. The number of series terms Kn depends on n.

Recall that we have imposed the following technical conditions in the main
text:

Uniformly in n:
(i) pn are either B-splines of a fixed order or trigonometric series terms

or any other terms pn = (pn1� � � � �pnKn)
′ such that ‖pn(v)‖ � ζn = √

Kn for all
v ∈ support(Vi), ‖pn(v)‖ � ζ ′

n ≥ 1 for all v ∈ V , and log lip(pn)� logKn;
(ii) the mapping v 
→ θn(v) is sufficiently smooth, namely supv∈V |An(v)| �

K−s
n for some s > 0;
(iii) limn→∞(logn)c

√
nK−s

n = 0 for each c > 034;
(iv) for εi = Yi −EPn[Yi|Vi], EPn[ε2

i |Vi = v] is bounded away from zero uni-
formly in v ∈ support(Vi);

(v) eigenvalues of Qn = EPn[pn(Vi)pn(Vi)
′] are bounded away from zero

and from above;
(vi) EPn[|εi|4|Vi = v] is bounded from above uniformly in v ∈ support(Vi);

(vii) limn→∞(logn)cK5
n/n = 0 for each c > 0.

We impose condition (i) directly through the choice of basis functions. Con-
dition (ii) is a standard condition on the error of the series approximation and
is the same as Assumption A3 of Newey (1997), which also was used by Chen
(2007). Condition (v) is Assumption 2(i) of Newey (1997). The constant s will
depend on the choice of basis functions. For example, if splines are used, then
s = α/d, where α is the number of continuous derivatives of θn(v) and d is
the dimension of v. Restrictions on Kn in conditions (iii) and (vii) require that
α > 5d/2. Conditions (i), (vi), and (vii) and Theorem 7, namely Corollary 1,

34This condition, which is based on Newey (1997), can be relaxed to (logn)cK−s+1
n → 0 and

(logn)c
√
nK−s

n /ζ ′
n → 0, using the recent results of Belloni, Chernozhukov, and Kato (2010) for

least squares series estimators.
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ensure that the constraint on the growth rate for the number of series terms is
satisfied.

Define Sn ≡ E[ε2
i pn(Vi)pn(Vi)

′] and Ωn ≡ Q−1
n SnQ

−1
n . Arguments based on

Newey (1997) give the following lemma, which verifies the linear expansion
required in condition (b) of Theorem 7 with δn = 1/ logn.

LEMMA 14—Asymptotically Linear Representation of the Series Estimator:
Suppose conditions (i)–(vii) hold. Then we have the asymptotically linear repre-
sentation

Ω−1/2
n

√
n(β̂n −βn)=Ω−1/2

n Q−1
n

1√
n

n∑
i=1

pn(Zi)εi + oPn(1/ logn)�

PROOF: As in Newey (1997), we have the representation, with probability
approaching 1,

β̂n −βn = n−1Q̂−1
n

n∑
i=1

pn(Vi)εi + νn�(I.1)

where Q̂n ≡ En[pn(Vi)pn(Vi)
′], εi ≡ Yi − EPn[Y |V = Vi], and νn ≡ n−1Q̂−1

n ×∑n

i=1 pn(Vi)An(Vi), where An(v) := θn(v)−pn(v)
′βn. As shown in the proof of

Theorem 1 of Newey (1997), we have ‖νn‖ = OPn(K
−s
n ). In addition, write

R̄n := [Q̂−1
n −Q−1

n

]
n−1

n∑
i=1

pn(Vi)εi

= Q−1
n [Qn − Q̂n]n−1Q̂−1

n

n∑
i=1

pn(Vi)εi�

Then it follows from the proof of Theorem 1 of Newey (1997) that

‖R̄n‖ =OPn(ζnKn/n)�

where ζn = √
Kn by condition (i). Combining the results above gives

β̂n −βn = n−1Q−1
n

n∑
i=1

pn(Vi)εi +Rn�(I.2)

where the remainder term Rn satisfies

‖Rn‖ =OPn

(
K3/2

n

n
+K−s

n

)
�
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Note that by condition (iv), eigenvalues of S−1
n are bounded above. In other

words, using the notation in Corollary 1 in the main text, we have that τn � 1.
Then

Ω−1/2
n

√
n(β̂n −βn)= n−1/2

n∑
i=1

ui�n + rn�(I.3)

where

ui�n :=Ω−1/2
n Q−1

n pn(Vi)εi(I.4)

and the new remainder term rn satisfies

‖rn‖ =OPn

[
n1/2
(
K3/2

n /n+K−s
n

)]
�

Therefore, rn =OPn(1/ logn) if

(logn)n1/2
(
K3/2

n /n+K−s
n

)→ 0�(I.5)

which is satisfied under conditions (iii) and (vii), and we have proved the
lemma. Q.E.D.

APPENDIX J: ASYMPTOTIC LINEAR REPRESENTATION FOR THE LOCAL
POLYNOMIAL ESTIMATOR OF A CONDITIONAL MEAN

In this section, we provide details of Example 7 that were omitted in Ap-
pendix F. Results obtained in Kong, Linton, and Xia (2010) give the following
lemma, which verifies the linear expansion required in condition (b) of Theo-
rem 8 with δn = 1/ logn.

LEMMA 15—Asymptotically Linear Representation of the Local Polynomial
Estimator: Suppose conditions (i)–(vi) hold. Then we have the asymptotically
linear representation, uniformly in v = (z� j) ∈ V ⊆ Z × J ,(

nhd
n

)1/2(
θ̂n(v)− θn(v)

)= Gn(gv)+ oP(1/ logn)�

PROOF: We first verify Assumptions A1–A7 in Kong, Linton, and Xia (2010;
KLX hereafter). In our example, ρ(y;θ) = 1

2(y − θ)2 using the notation in
KLX. Then ϕ(y;θ) in Assumptions A1 and A2 in KLX is ϕ(y;θ)= ϕ(y−θ) =
−(y − θ). Then Assumption A1 is satisfied since the probability density func-
tion (p.d.f.) of Ui is bounded and Ui is a bounded random vector. Assumption
A2 is trivially satisfied since ϕ(u) = −u. Assumption A3 follows since K(·)
has compact support and is twice continuously differentiable. Assumption A4
holds by condition (ii) since Xi and Xj are independent in our example (i 
= j).
Assumption A5 is implied directly by condition (i). Since we have i.i.d. data,
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mixing coefficients (γ[k] using the notation of KLX) are identically zeros for
any k ≥ 1. The regression error Ui is assumed to be bounded, so that ν1 in KLX
can be arbitrarily large. Hence, to verify Assumption A6 of KLX, it suffices to
check that for some ν2 > 2, hn → 0, nhd

n/ logn → ∞, hd+2(p+1)
n / logn < ∞, and

n−1(nhd
n/ logn)ν2/8dn logn/M(2)

n → ∞, where dn = (nhd
n/ logn)−1/2 and M(2)

n =
M1/4(nhd

n/ logn)−1/2 for some M > 2, by choosing λ2 = 1/2 and λ1 = 3/4 on
page 1540 in KLX. By choosing a sufficiently large ν2 (at least greater than 8),
then n−1(nhd

n)
ν2/8 → ∞ holds. Then condition (vi) implies Assumption A6. Fi-

nally, condition (iv) implies Assumption A7 since we have i.i.d. data. Thus, we
have verified all the conditions in KLX.

Let δn = 1/ logn. Then it follows from Corollary 1 and Lemmas 8 and 10 of
KLX that

θ̂n(z� j)− θn(z� j) = 1
nhd

nf (z)
e′

1S
−1
p

n∑
i=1

(
e′
jUi

)
Kh(Zi − z)up

(
Zi − z

hn

)
(J.1)

+Bn(z� j)+Rn(z� j)�

where e1 is an |Ap| × 1 vector whose first element is 1 and all others are 0’s, Sp

is a |Ap| × |Ap| matrix such that Sp = {∫ zu(zv)′ du :u ∈Ap�v ∈ Ap}, up(z) is a
|Ap| × 1 vector such that up(z) = {zu :u ∈ Ap},

Bn(z� j)= O
(
hp+1
n

)
� and Rn(z� j)= oP

(
δn

(nhd
n)

1/2

)

uniformly in (z� j) ∈ V . The exact form of Bn(z� j) is given in equation (12) of
KLX. The result that Bn(z� j) = O(hp+1

n ) uniformly in (z� j) follows from the
standard argument based on Taylor expansion given in Fan and Gijbels (1996),
KLX, or Masry (1996). The condition that nhd+2(p+1)

n → 0 at a polynomial rate
in n corresponds to the undersmoothing condition. Now the lemma follows
from (J.1) immediately since K(z/h)≡ e′

1S
−1
p Kh(z)up(z/h) is a kernel of order

(p+ 1) (see Section 3.2.2 of Fan and Gijbels (1996)). Q.E.D.

APPENDIX K: LOCAL ASYMPTOTIC POWER COMPARISONS

We have shown in the main text that the test of H0 :θna ≤ θn0 of the form

reject H0 if θna > θ̂n0(p)

can reject all local alternatives θna that are more distant than σ̄nān. We now
provide a couple of examples of local alternatives against which our test has
nontrivial power, but for which the CvM statistic of Andrews and Shi (2013;
henceforth AS) does not. See also Armstrong (2011) for a comprehensive anal-
ysis of power properties of the KS (Kolmogorov–Smirnov) statistic of AS. It is
evident from the results of AS on local asymptotic power that there are also
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models for which their CvM statistic will have power against some n−1/2 alter-
natives, whereas our approach will not.35 We conclude that neither approach
dominates.

We consider two examples in which

Yi = θn(Vi)+Ui�

where Ui are i.i.d. with E[Ui|Vi] = 0 and Vi are i.i.d. random variables uniformly
distributed on [−1�1]. Suppose that for all v ∈ [−1�1], we have

θ∗ ≤E[Yi|Vi = v]
or, equivalently

θ∗ ≤ θ0 = min
v∈[−1�1]

θn(v)�

In the examples below, we consider two specifications of the bounding function
θn(v), each with

min
v∈[−1�1]

θn(v)= 0�

and we analyze asymptotic power against a local alternative θna > θ0.
Following AS, consider the CvM test statistic

Tn(θ) :=
∫ [

n1/2 mn(g;θ)
σ̂n(g;θ)∨ ε

]2

−
dQ(g)(K.1)

for some ε > 0, where [u]− := −u1(u < 0) and θ is the parameter value being
tested. In the present context, we have

mn(g;θ) := 1
n

n∑
i=1

(Yi − θ)g(Vi)�

where g ∈ G are instrument functions used to transform the conditional mo-
ment inequality E[Y − θ|V = v] almost everywhere v ∈ V to unconditional
inequalities, and Q(·) is a measure on the space G of instrument functions as
described in AS, Section 3.4. σ̂n(g;θ) is a uniformly consistent estimator for
σn(g;θ), the standard deviation of n1/2mn(g;θ).

We can show that Tn(θ) = T̃n(θ)+ op(1)� where

T̃n(θ) :=
∫ [

βn(θ�g)/
(
σn(g;θ)∨ ε

)+w(θ�g)
]2

− dQ(g)�

35For the formal results, see AS, Section 7, Theorem 4. In the examples that follow, their
Assumption LA3′ is violated, as is also the case in the example covered in their Section 13.5.
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where w(θ�g) is a mean-zero Gaussian process and βn(θ�g) is a deterministic
function of the form

βn(θ�g) ≡ √
nE
{[
θn(Vi)− θ

]
g(Vi)

}
�

For any θ, the testing procedure based on the CvM statistic rejects H0 :θ ≤ θn0

if

Tn(θ) > c(θ�1 − α)�

where c(θ�1 − α) is a generalized moment selection (GMS) critical value that
satisfies

c(θ�1 − α) = (1 − α)-quantile of
(∫ [

ϕn(θ�g)/
(
σn(g;θ)∨ ε

)
+w(θ�g)

]2

− dQ(g)

)
+ op(1)

and ϕn(θ�g) is a GMS function that satisfies 0 ≤ ϕn(θ�g) ≤ βn(θ�g) with prob-
ability approaching 1 whenever βn(θ�g) ≥ 0; see AS, Section 4.4, for further
details. Relative to T̃n(θ), in the integrand of the expression above, ϕn(θ�g) is
replaced with βn(θ�g). Hence if

sup
g∈G

[
βn(θna� g)

]
− → 0

for the sequence of local alternatives θna, then

lim inf
n→∞

P
(
Tn(θna) > c(θna�1 − α)

)≤ α�

since asymptotically c(θna�1 − α) exceeds the (1 − α)-quantile of T̃n(θ). It fol-
lows that the CvM test has only trivial power against such a sequence of al-
ternatives. The same conclusion holds using plug-in asymptotic critical values,
since these are no smaller than GMS critical values.

In the following two examples, we now verify that supg∈G[βn(θna� g)]− → 0.
We assume that instrument functions g are either indicators of boxes or cubes,
defined in AS, Section 3.3, and hence bounded between 0 and 1.

EXAMPLE K.1—Unique, Well Defined Optimum: Let the function θ(·) be
specified as

θn(v)= |v|a

for some a≥ 1.
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Let us now proceed to bound, using that 0 ≤ g ≤ 1,[
βn(θna� g)

]
− = √

n
[
E
{[
θn(Vi)− θna

]
g(Vi)

}]
−

≤ √
nE
{[
θn(Vi)− θna

]
−
}

= √
n

∫ 1

−1

(
θna − |v|a)1{|v|a ≤ θna

}
dv

= 2
√
n

∫ 1

0

(
θna − va

)
1
{
v ≤ θ1/a

na

}
dv

= 2a
a+ 1

√
nθ(a+1)/a

na

≡ βn�

Note that

θna = o
(
n−a/[2(a+1)]) ⇒ βn → 0�

Thus, in this case the asymptotic rejection probability of the CvM test for the
local alternative θna is bounded above by α. On the other hand, by Theorems
1 and 2 of the main text, our test rejects all local alternatives θna that are more
distant than σ̄nān with probably at least α asymptotically. It suffices to find a
sequence of local alternatives θna such that θna = o(n−a/[2(a+1)]) but θna � σ̄nān.

For instance, consider the case where a = 2. Then
√
nθ3/2

na → 0 ⇒ βn → 0�

that is, θna = o(n−1/3) ⇒ βn → 0, so the CvM test has trivial asymptotic power
against θna. In contrast, since this is a very smooth case, our approach can
achieve σ̄nān = O(n−δ) for some δ that can be close to 1/2, for instance, by
using a series estimator with a slowly growing number of terms, or a higher
order kernel or local polynomial estimator. Our test would then be able to
reject any θna that converges to zero faster than n−1/3 but more slowly than n−δ.

EXAMPLE K.2—Deviation With Small Support: Now suppose that the form
of the conditional mean function, θn(v)≡ E[Yi|Vi = v], is given by

θn(v) := θ̄(v)− τa
n

(
φ(v/τn)−φ(0)

)
�

where τn is a sequence of positive constants converging to zero and φ(·) is the
standard normal density function. Let θ̄(v) be minimized at zero so that

θ0 = min
v∈[−1�1]

θn(v) = min
v∈[−1�1]

θ̄(v) = 0�
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Let the alternative be θ̃na ≡ τa
nφ(0). Again, the behavior of the AS statistic is

driven by [βn(θ̃na� g)]−, which we bound from above as[
βn(θ̃na� g)

]
− = √

n
[
E
{[
θn(Vi)− θ̃na

]
g(Vi)

}]
−

≤ √
nE
{
τa
nφ(Vi/τn)

}
=

√
n

2

∫ 1

−1
τa
nφ(v/τn)dv

≤
√
n

2
τa+1
n ≡ βn�

Consider the case a= 2. If τn = o(n−1/6), then βn → 0, so that again the CvM
test has only trivial asymptotic power. If τn = n−1/6−c/2 for some small positive
constant c, then θ̃na ≡ n−1/3−cφ(0). Note that

f (v) := τ2
nφ(v/τn) ⇒ f ′′(v)= φ′′(v/τn)≤φ′′ <∞

for some constant φ′′. Hence, if θ̄(v) is twice continuously differentiable, we
can use a series or kernel estimator to estimate θn(v) uniformly at the rate of
(logn)dn−2/5 for some d > 0, leading to nontrivial power against alternatives
θ̃na for sufficiently small c.

APPENDIX L: RESULTS OF ADDITIONAL MONTE CARLO EXPERIMENTS

In this section, we present the results of some additional Monte Carlo exper-
iments to further illustrate the finite-sample performance of our method. We
consider two types of additional data-generating processes (DGPs). The first
set of DGPs, DGP5–DGP8, are motivated by Manski and Pepper (2009) and
were discussed briefly in Example B of the main text. The second set, DGP9–
DGP12, are from Section 10.3 of AS.

L.1. Monte Carlo Designs

In DGP5–DGP8, we consider the lower bound on θ∗ =E[Yi(t)|Vi = v] under
the monotone instrumental variable (MIV) assumption, where t is a treatment,
Yi(t) is the corresponding potential outcome, and Vi is a monotone instrumen-
tal variable. The lower bound on E[Yi(t)|Vi = v] can be written as

max
u≤v

E
[
Yi · 1{Zi = t} + y0 · 1{Zi 
= t}|Vi = u

]
�(L.1)

where Yi is the observed outcome, Zi is a realized treatment, and y0 is the left
end point of the support of Yi; see Manski and Pepper (2009). The parameter
of interest is θ∗ =E[Yi(1)|Vi = 1�5].
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In DGP5, V0 = V and the MIV assumption has no identifying power. In other
words, the bound-generating function is flat on V , in which case the bias of the
analog estimator is most acute; see Manski and Pepper (2009). In DGP6, the
MIV assumption has identifying power and V0 is a strict subset of V . In DGP7–
DGP8, we set V0 to be a singleton set.

Specifically, for DGP5–DGP8 we generated 1000 independent samples as

Vi ∼ Unif[−2�2]� Zi = 1
{
ϕ0(Vi)+ εi > 0

}
� and

Yi = min
{
max

{−0�5�σ0(Vi)Ui

}
�0�5

}
�

where εi ∼ N(0�1), Ui ∼ N(0�1), σ0(Vi) = 0�1 × |Vi|, and (Vi�Ui) are statisti-
cally independent (i = 1� � � � � n). The bounding function has the form

θ(v) := E
[
Yi · 1{Zi = 1} + y0 · 1{Zi 
= 1}|Vi = v

]
= −0�5�

[−ϕ0(v)
]
�

where �(·) is the standard normal cumulative distribution function. For
DGP5, we set ϕ0(v) ≡ 0. In this case, the bounding function is completely flat
(θl(v) = −0�25 for each v ∈ V = [−2�1�5]). For DGP6, an alternative specifi-
cation is considered:

ϕ0(v)= v1(v ≤ 1)+ 1(v > 1)�

In this case, v 
→ θ(v) is strictly increasing on [−2�1] and is flat on [1�2], and
V0 = [1�1�5] is a strict subset of V = [−2�1�5]. For DGP7, we consider

ϕ0(v)= −2v2�

In this case, v 
→ θl(v) has a unique maximum at v = 0; thus, V0 = {0} is single-
ton. For DGP8, we consider

ϕ0(v)= −10v2�

In this case, v 
→ θ(v) has a unique maximum at v = 0 and is more peaked
than that of DGP7. Figures S.1 and S.2, and Figures S.3 and S.4, show data
realizations and bounding functions for DGP1–DGP4 described in Section 7
of the main text, and DGP5–DGP8 described above, respectively.

DGP9–DGP12 use the bounding functions in Section 10.3 of AS. DGP9 and
DGP10 feature a roughly plateau-shaped bounding function given by

θ(v) :=Lφ
(
v10
)

(L.2)

instead of θ(v) := Lφ(v) as in Section 7 of the main text. DGP11 and DGP12
use the roughly double-plateau-shaped bounding function

θ(v) :=L · max
{
φ
(
(v− 1�5)10

)
�φ
(
(v + 1�5)10

)}
�(L.3)
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FIGURE S.1.—Simulated data and bounding functions: DGP1 and DGP2.
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FIGURE S.2.—Simulated data and bounding functions: DGP3 and DGP4.
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FIGURE S.3.—Simulated data and bounding functions: DGP5 and DGP6.



40 V. CHERNOZHUKOV, S. LEE, AND A. M. ROSEN

FIGURE S.4.—Simulated data and bounding functions: DGP7 and DGP8.
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Specifically, we generated 1000 independent samples from the model,

Vi ∼ Unif[−2�2]� Ui = min
{
max{−3�σŨi}�3

}
� and

Yi = θ(Vi)+Ui�

where Ũi ∼N(0�1), with L and σ as follows:

DGP9 and DGP11: L = 1 and σ = 0�1�

DGP10 and DGP12: L= 5 and σ = 0�1�

Figure S.5 illustrates the bounding function and data realizations for DGP9
and DGP10; Figure S.6 provides the same for DGP11 and DGP12. Interest
again lies in inference on θ0 = supv∈V θ(v), which in these DGPs is θ0 =Lφ(0).

L.2. Simulation Results

To evaluate the relative performance of our inference method in DGP5–
DGP8, we used our method with cubic B-splines with knots equally spaced over
the sample quantiles of Vi, and we also implemented one of the inference meth-
ods proposed by AS, specifically their Cramér–von Mises-type (CvM) statis-
tic with PA/Asy and GMS/Asy critical values. Implementation details for our
method with B-splines are the same as in Section 7.2 of the main text. Tun-
ing parameters for CvM were chosen exactly as in AS (see Section 9).36 We
considered sample sizes n = 250, n = 500, and n = 1000.

The coverage probability is evaluated at the true lower bound θ0 (with the
nominal level of 95%), and the false coverage probability (FCP) is evaluated
at a θ value outside the identified set. For DGP5, we set θ = θ0 − 0�03; for
DGP6 and DGP7, θ = θ0 − 0�05; for DGP8, θ = θ0 − 0�07. These points are
chosen differently across different DGPs to ensure that the FCPs have similar
values. This type of FCP was reported in AS, along with a so-called CP correc-
tion (similar to size correction in testing). We did not do CP correction in our
reported results. There were 1000 replications for each experiment. Table S.I
summarizes the results of Monte Carlo experiments. CLR and AS refer to our
inference method and that of AS, respectively.

First, we consider Monte Carlo results for DGP5. The discrepancies between
nominal and actual coverage probabilities are not large across all methods,
implying that all of them perform well in finite samples. For DGP5, since the
true arg max set V0 is equal to V , an estimated V0 should be the entire set V .
Thus the simulation results are the same whether or not we estimate V0, since
for most of simulation draws, V̂n = V . Similar conclusions hold for AS with

36In DGP5–DGP8, our Monte Carlo design differs from that of AS, and alternative choices
of tuning parameters could perform more or less favorably in our design. We did not examine
sensitivity to the choice of tuning parameters for their method.
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FIGURE S.5.—Simulated data and bounding functions: DGP9 and DGP10.
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FIGURE S.6.—Simulated data and bounding functions: DGP11 and DGP12.
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TABLE S.I

RESULTS FOR MONTE CARLO EXPERIMENTSa

Critical Value
DGP Sample Size Estimating Vn? Cov. Prob. False Cov. Prob.

CLR With Series Estimation Using B-Splines
5 250 No 0�914 0�709
5 250 Yes 0�914 0�709
5 500 No 0�935 0�622
5 500 Yes 0�935 0�622
5 1000 No 0�947 0�418
5 1000 Yes 0�947 0�418

6 250 No 0�953 0�681
6 250 Yes 0�942 0�633
6 500 No 0�967 0�548
6 500 Yes 0�941 0�470
6 1000 No 0�973 0�298
6 1000 Yes 0�957 0�210

7 250 No 0�991 0�899
7 250 Yes 0�980 0�841
7 500 No 0�996 0�821
7 500 Yes 0�994 0�697
7 1000 No 0�987 0�490
7 1000 Yes 0�965 0�369

8 250 No 0�999 0�981
8 250 Yes 0�996 0�966
8 500 No 1�000 0�984
8 500 Yes 0�999 0�951
8 1000 No 0�998 0�909
8 1000 Yes 0�995 0�787

AS With CvM-Type Statistic
5 250 PA/Asy 0�951 0�544
5 250 GMS/Asy 0�945 0�537
5 500 PA/Asy 0�949 0�306
5 500 GMS/Asy 0�945 0�305
5 1000 PA/Asy 0�962 0�068
5 1000 GMS/Asy 0�956 0�068

6 250 PA/Asy 1�000 0�941
6 250 GMS/Asy 0�990 0�802
6 500 PA/Asy 1�000 0�908
6 500 GMS/Asy 0�980 0�674
6 1000 PA/Asy 1�000 0�744
6 1000 GMS/Asy 0�980 0�341

(Continues)
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TABLE S.I—Continued

Critical Value
DGP Sample Size Estimating Vn? Cov. Prob. False Cov. Prob.

7 250 PA/Asy 1�000 1�000
7 250 GMS/Asy 0�997 0�948
7 500 PA/Asy 1�000 0�997
7 500 GMS/Asy 0�997 0�916
7 1000 PA/Asy 1�000 0�993
7 1000 GMS/Asy 0�997 0�823

8 250 PA/Asy 1�000 1�000
8 250 GMS/Asy 1�000 0�988
8 500 PA/Asy 1�000 1�000
8 500 GMS/Asy 0�999 0�972
8 1000 PA/Asy 1�000 1�000
8 1000 GMS/Asy 1�000 0�942

aCLR and AS refer to our inference methods and those of Andrews and Shi (2013), respectively. There were 1000
replications per experiment.

CvM between PA/Asy and GMS/Asy critical values. In terms of false coverage
probability, CvM with either critical value performs better than our method.

We now move to DGP6–DGP8. In DGP6, the true arg max set V0 is [1�1�5],
and in DGP7 and DGP8, V0 is a singleton set. In these cases, the true arg max
set V0 is a strict subset of V . Hence, we expect that it is important to esti-
mate V0. On average, for DGP6, the estimated sets were [−0�793�1�5] when
n = 250, [−0�359�1�5] when n = 500, and [−0�074�1�5] when n = 1000; for
DGP7, the estimated sets were [−0�951�0�943] when n = 250, [−0�797�0�798]
when n = 500, and [−0�684�0�680] when n = 1000; for DGP8, the estimated
sets were [−1�197�0�871] when n = 250, [−0�662�0�645] when n = 500, and
[−0�403�0�402] when n = 1000.

Hence, an average estimated set is larger than V0; however, it is still a strict
subset of V and gets smaller as n gets larger. For all the methods, the Monte
Carlo results are consistent with asymptotic theory. Unlike in DGP5, the CLR
method performs better than the AS method in terms of false coverage proba-
bility.37 As can be seen from the table, the CLR method performs better when
V0 is estimated in terms of making the coverage probability less conservative
and also of making the false coverage probability smaller. Similar gains are ob-
tained for the CvM with GMS/Asy critical values, relative to that with PA/Asy
critical values.

We now turn to DGP9–DGP12. AS, Section 10.3, reported results for their
approach using their CvM and KS statistics, and we refer the reader to their pa-
per for results using their method. They also included results for our approach

37As in Section 7, this conclusion will remain valid even with CP correction as in AS, since our
method performs better in DGP6–DGP8, where we have overcoverage.
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TABLE S.II

RESULTS FOR MONTE CARLO EXPERIMENTS (CLR WITH SERIES ESTIMATION USING
B-SPLINES)a

DGP
Sample

Size
Critical Value

Estimating Vn?
Ave. Smoothing

Parameter
Cov.
Prob.

False Cov.
Prob.

Ave. Argmax Set

Min. Max.

9 500 No 35�680 0�920 0�562 −1�799 1�792
9 500 Yes 35�680 0�870 0�475 −1�001 1�001
9 1000 No 39�662 0�937 0�487 −1�801 1�797
9 1000 Yes 39�662 0�913 0�380 −0�977 0�977

10 500 No 39�090 0�887 0�534 −1�799 1�792
10 500 Yes 39�090 0�825 0�428 −0�912 0�912
10 1000 No 41�228 0�920 0�477 −1�801 1�797
10 1000 Yes 41�228 0�891 0�351 −0�902 0�903

11 500 No 35�810 0�880 0�462 −1�799 1�792
11 500 Yes 35�810 0�853 0�399 −1�799 1�792
11 1000 No 40�793 0�937 0�374 −1�801 1�797
11 1000 Yes 40�793 0�912 0�299 −1�801 1�797

12 500 No 39�474 0�836 0�459 −1�799 1�792
12 500 Yes 39�474 0�811 0�386 −1�799 1�792
12 1000 No 42�224 0�917 0�367 −1�801 1�797
12 1000 Yes 42�224 0�885 0�294 −1�801 1�797

aDGP9–DGP12 correspond to DGP1–DGP4 in Andrews and Shi (2013, Section 10.3). The last two columns report
the average values of the minimum and maximum of the arg max set. The estimated set is allowed to be disconnected
and so the interval between the minimum and maximum of the arg max set is just an outer set for the estimated arg max
set.

using B-splines and local-linear estimation of the bounding function. Here we
provide further investigation of the performance of our method in additional
Monte Carlo simulations.

From Figures S.5 and S.6, we see that the bounding function is very nearly
flat in some regions, including areas close to V0, and also has very large deriva-
tives a bit farther away from V0. The functions are smooth, but the steep deriva-
tives mimic discontinuity points and are challenging for nonparametric estima-
tion methods. The AS approach does not rely on smoothness of the bounding
function and performs better in most—though not all—of the comparisons of
AS. The performance of our approach improves with the sample size, as ex-
pected.

Our Monte Carlo experiments for DGP9–DGP12 further examine the per-
formance of our method in such a setup. In all experiments, we report coverage
probabilities (CPs) at θ0 = Lφ(0) and FCPs at θ0 − 0�02 as in AS. We provide
results for sample sizes n = 500 and n = 1000, both with and without estima-
tion of the contact set. In Table S.II, we report the results of series estimation
via B-splines. We used cubic B-splines and our implementation was identical to
that described in Section 7 of the main text. Compared to the results in Table I
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of the main text for DGP1–DGP4, we see that the average number of series
terms is much higher. This is due to a higher number of terms selected during
cross-validation, presumably because of the regions with very large derivatives.
Our coverage probabilities are below the nominal level, but they improve with
the sample size, as in AS, ranging from 0.885 to 0.937 across DGPs at n = 1000.
Moreover, we see that our method using V = V rather than V = V̂n actually per-
forms better in this setup.

To further investigate the challenge of nonparametrically estimating a
bounding function with steep derivatives, we implemented our method with
a locally constant Nadaraya–Watson kernel estimator. The functions are in
fact nearly locally constant at most points, with the exception of the relatively
narrow regions with steep derivatives. The top half of Table S.III presents the
results with a bandwidth selected the same way as for the local-linear estimator
in Section 7.3, equation (7.3). When Vn is estimated, coverage probabilities in
these DGPs range from 0�903 to 0�923 when n = 500 and 0�926 to 0�945 when
n = 1000, becoming closer to the nominal level. The procedure exhibits good
power in all cases, with FCPs decreasing with the sample size. These results
are qualitatively similar to those reported in AS for the local-linear estimator.
We also include results when V is used instead of estimating the contact set.
This results in higher coverage probabilities for θ0, in most cases closer to the
nominal level, but also somewhat higher FCPs. Overall performance remains
reasonably good.

The bottom half of Table S.III gives results for locally constant kernel esti-
mation using an identical rule-of-thumb for bandwidth selection, h= ĥROT × ŝv,
but without applying an undersmoothing factor. The proofs of our asymp-
totic results use undersmoothing, but with a locally constant kernel estima-
tor this does not appear to be essential. Our exploratory Monte Carlo results
are very good, offering support to that view. Compared to the results with un-
dersmoothing, all coverage probabilities increase and all FCPs decrease. This
suggests that future research on the possibility of abandoning undersmoothing
may be warranted.

The overall results of this section support the conclusions reached in Sec-
tion 7 of the main text regarding comparisons to AS. In completely flat cases,
the AS method outperforms our method, whereas in nonflat cases, our method
outperforms the AS method. In this section, we also considered some interme-
diate cases. In DGP7, where the bounding function is partly flat, our method
performed favorably. More generally, there is a wide range of intermediate
cases that could be considered, and we would expect the approach of AS to
perform favorably in some cases too. Indeed, in DGP9–DGP12 from AS, the
bounding function exhibits areas with extremely steep derivatives. Their results
indicate that in these DGPs, their approach performs better at smaller sample
sizes (n = 100�250) than does our approach, which is based on nonparamet-
ric estimation methods. However, at larger sample sizes (n = 500�1000), even
with the very steep derivatives of DGP9–DGP12, our approach performs well,
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TABLE S.III

RESULTS FOR MONTE CARLO EXPERIMENTS (NADARAYA–WATSON KERNEL ESTIMATION)a

DGP
Sample

Size
Critical Value

Estimating Vn?
Ave. Smoothing

Parameter
Cov.
Prob.

False Cov.
Prob.

Ave. Argmax Set

Min. Max.

Using Bandwidth h = ĥROT × ŝv × n1/5 × n−2/7

9 500 No 0�206 0�944 0�496 −1�799 1�792
9 500 Yes 0�206 0�916 0�391 −0�955 0�954
9 1000 No 0�169 0�966 0�326 −1�801 1�796
9 1000 Yes 0�169 0�945 0�219 −0�941 0�940

10 500 No 0�166 0�945 0�523 −1�799 1�792
10 500 Yes 0�166 0�903 0�411 −0�879 0�880
10 1000 No 0�136 0�963 0�387 −1�801 1�796
10 1000 Yes 0�136 0�926 0�266 −0�868 0�868

11 500 No 0�195 0�938 0�403 −1�799 1�792
11 500 Yes 0�195 0�923 0�345 −1�799 1�792
11 1000 No 0�160 0�951 0�201 −1�801 1�796
11 1000 Yes 0�160 0�926 0�152 −1�801 1�796

12 500 No 0�169 0�937 0�439 −1�799 1�792
12 500 Yes 0�169 0�917 0�365 −1�799 1�792
12 1000 No 0�138 0�947 0�235 −1�801 1�796
12 1000 Yes 0�138 0�933 0�176 −1�801 1�796

Using Bandwidth h = ĥROT × ŝv (No Undersmoothing Factor)
9 500 No 0�351 0�968 0�470 −1�799 1�792
9 500 Yes 0�351 0�944 0�360 −0�908 0�907
9 1000 No 0�306 0�977 0�211 −1�801 1�796
9 1000 Yes 0�306 0�956 0�138 −0�885 0�884

10 500 No 0�283 0�959 0�520 −1�799 1�792
10 500 Yes 0�283 0�931 0�409 −0�839 0�839
10 1000 No 0�247 0�977 0�285 −1�801 1�796
10 1000 Yes 0�247 0�959 0�188 −0�828 0�828

11 500 No 0�333 0�955 0�316 −1�799 1�792
11 500 Yes 0�333 0�939 0�261 −1�799 1�792
11 1000 No 0�290 0�960 0�118 −1�801 1�796
11 1000 Yes 0�290 0�943 0�079 −1�801 1�796

12 500 No 0�287 0�956 0�376 −1�799 1�792
12 500 Yes 0�287 0�944 0�295 −1�799 1�792
12 1000 No 0�250 0�960 0�154 −1�801 1�796
12 1000 Yes 0�250 0�948 0�111 −1�801 1�796

aDGP9–DGP12 correspond to DGP1–DGP4 in Andrews and Shi (2013, Section 10.3). The last two columns report
the average values of the minimum and maximum of the arg max set. The estimated set is allowed to be disconnected
and so the interval between the minimum and maximum of the arg max set is just an outer set for the estimated arg max
set.
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and in a handful of cases (e.g., DGP10 with kernel estimation), can even per-
form favorably. The main conclusions we draw from the full range of Monte
Carlo experiments are that our inference method generally performs well both
in coverage probabilities, and false coverage probabilities, and that in terms
of a comparison between our approach and that of AS, each has their relative
advantages and neither approach dominates.
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