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APPENDIX S.A: LOCALLY LIPSCHITZ PREFERENCES

WE CONSIDER A PREFERENCE = that admits a monotonic, continuous, nor-
malized, Bernoullian representation (/, u), and introduce a novel axiom that
is equivalent to the assertion that I is locally Lipschitz.! Recall that x;, € X
denotes the certainty equivalent of act s € F.

AXIOM 1—Locally Bounded Improvements: For every h € F™, there are y €
X and g € F with g(s) = h(s) for all s such that, for all (h") C F and (\") C
[0, 1] with h" — h and A" | 0,

Mg+ (1=A)R" < X'y + (1= A")xum  eventually.

To gain intuition, focus on the constant sequence with A" = . Since prefer-
ences are Bernoullian, the individual’s evaluation of Ay + (1 — A)x,, changes
linearly with A. On the other hand, her evaluation of Ag 4+ (1 — A)h may im-
prove in arbitrary nonlinear (though continuous) ways as A increases from 0 to
1 (recall that g is pointwise preferred to /). The axiom states that when A is
close to 0, this improvement is comparable to the linear change in preference
that applies to Ay + (1 — A)x;, (which may still be very rapid, if y is much pre-
ferred to x;). Hence, it imposes a bound on the instantaneous rate of change
in preferences as a function of A. Furthermore, this bound is required to be
uniform in a neighborhood of 4.

PROPOSITION S1: Let = be a preference that admits a monotonic, continuous,
Bernoullian, normalized representation (I, u). Then = satisfies Axiom 1 if and
only if I is locally Lipschitz in the interior of its domain.

PROOF: If. Functionally, the displayed equation in Axiom 1 is equivalent to
(S1)  I(AN'[uog—uoh"]+uoh"
=I(Nuog+ (1—A)uoh”) <I(X'u(y)+ (1 —A")u(x"))
=Nu(y)+ (1= A")u(x") = N"[u(y) —I(uoh")]+I(uo h").
'That is, for every a € int By(3, u(X)), there are & > 0 and L > 0 such that [I(b) — I(c)| <
L|Ib - c|| for all b, ¢ € By(3, u(X)) with |b — a|| < & and ||c — a| < «.
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Notice that the second equality uses the assumption that I is normalized. Since
uoh” — uo h in the sup norm, for every ¢ € (0, min,[u(g(s)) — u(h(s))]) and
for n large enough, max; |u(A(s)) — u(h"(s))| < ming[u(g(s)) — u(h(s))] — &,
so that, for every s, u(h"(s)) = u(h(s)) + [u(h*(s)) — u(h(s))] < u(h(s)) +
ming[u(g(s")) — u(h(s'))] — & <u(h(s)) +u(g(s)) — u(h(s)) —e=u(g(s)) —
e. In other words, u(g(s)) — u(h"(s)) > ¢ for all s and all n large enough.
Moreover, for n large enough, A\"e 4+ h" € By(3, u(X)). Since I is monotonic,
rearranging terms yields

I(Me+uoh™y—I(uoh"

o <u(y)—I(uoh") eventually.

Again because u o h" — u o h, eventually I (1o h") > I(u o h) — &, so finally

I(Me+uoh™y —I(uoh"
/\n

<u(y)—I(uoh)+e¢e eventually.

This implies that for a suitable ¢ > 0, I°(uo h; &) <u(y) —I(uoh) 4+ & < oo.

To sum up, for every 4 such that u o h € int Bo(3, u(X)), there are ¢ > 0
and y € X such that I°(uo h; &) <u(y) —I(uoh)+ & < oco. Since [ is mono-
tonic, by Proposition 4 in Rockafellar (1980), [ is directionally Lipschitzian; by
Theorem 3 therein, the Clarke—Rockafeller derivative of I in the direction a
at u o h, denoted I"(u o h; a), equals liminf,_, I°(u o h; b). Since I°(u o h; )
is monotonic because I is, this implies that, for all a such that a(s) < ¢,
I'(uo h;a) <I°(uo h;e) < oco. Therefore, the constant function 0 is in the
interior of {a:I"(u o h; a) < co}. Again by Theorem 3 in Rockafellar (1980),
this implies that I is directionally Lipschitz with respect to the vector 0; as
noted on page 267 therein, it is “an easy fact to verify” that this is equivalent to
the assertion that 7 is locally Lipschitz at u o A.

Only if. Conversely, suppose [ is Lipschitz near u o 4. Since # is interior, I is
monotonic and normalized, and I°(u o A; -) is continuous, there is & > 0 such
that I°(uo h; &) <u(y) —I(uoh) — ¢ for some y € X. Then, for all (h") — h
and (A") | 0, eventually

I(N'[ed+uoh"|+(1—AYuoh™) —I(uoh")
/\n
_I(N'e+uoh")—I(uoh")
= o

<u(y)—I(uoh)—e.

Now choose n large enough so that max; |u(h(s)) — u(h"(s))| < 5. Then a for-
tiori, for every s, u(h(s)) — u(h"(s)) < 3, thatis, u(h(s)) < u(h"(s)) + 5 and,
therefore, u(h(s)) + 5 < u(h"(s)) + . Because h is interior, there is & € (0, 5

such that u o h 4+ 6 = u o g for some g € F; for such g, the above argument
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implies that u(g(s)) < u(h"(s)) + ¢ for all s, and of course g(s) > A(s) for all
s. By monotonicity, conclude that, for all n sufficiently large,

IT(Nuog+ (1 —AYuoh™) —I(uoh™)
/\n

<u(y)—I(uoh)—e.

Finally, by choosing n large enough, we can ensure that I (uoh") < I(uoh)+e¢
and, therefore,

I Nuog+ (1 —=AYuoh”)y —I(uoh") -
/\n

u(y) —I(uoh").

Rearranging terms yields Eq. (S1), so the axiom holds. Q.E.D.

APPENDIX S.B: NICE MBL PREFERENCES

PROPOSITION S2: A monotonic, isotone, and concave function I : By(3, I') —
R (for some interval I') is nice everywhere in the interior of its domain.

PROOF: Recall that a monotone concave [ is locally Lipschitz; furthermore,
dl coincides with the superdifferential of I (e.g., Rockafellar (1980, p. 278))
and it is monotone in the sense that

(S2) Ve, eintBy(3,I),Q€dl(c),Q €dl(c), Qc—c)=Q(c—c).>

Fix ¢ € intBy(3, ') and suppose that Q, € dI(c’). Then, for every c €
1ntBo(Z I') and every Q € dI(c), Q(c — ¢’) <0. Since ¢ is interior, the set
I'=rn {y e R:y > c'(s) Vs} is nonempty. Moreover, for any y € I" and for
all Q e dl (15y), Q(15y — ¢’) <0. But since y — ¢'(s) > 0 for all s and since [ is
monotonic, this requires that JI (15y) = {Q,} for all y € I.

In particular, pick a, B € I with & > B. Since [ is isotone, I (1sa) > I(158).
By the mean-value theorem (Lebourg (1979)), there must be w € (0, 1) and
Q e dl(plsa + (1 — w)1sB) = dl([pa + (1 — p)Blls) such that I(1sa) —
I(15B8) = Q(1sa — 158) = Q(1s5)(a — B). But pa + (1 —w)B € I', so O = O,
and, therefore, I (15a) = I(138)—a contradiction. Therefore, I must be nice
at c. Q.E.D.

We now provide an axiom for MBL preferences that ensures niceness. There
are obvious similarities with Axiom 1.

2Since 41 is the superdifferential of I, Q(c' — ¢) > I1(¢') — I(c) and Q'(c — ¢') > I(c) — I(¢).
Summing these inequalities yields the inequality in the text.
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AXIOM 2—Nonnegligible Worsenings at h: There are y € X with y < h and
g € F with g(s) < h(s) for all s such that, for all (h*) C F and (A") C [0, 1] with
h*— hand \" | 0,

Ng+(1=A)R" < X'y + (1= A")xpm  eventually.

This axiom rules out the possibility that preferences may be “flat” when mov-
ing from 4 toward pointwise less desirable acts g. We argue as for Axiom 1: the
individual’s evaluation of Ay 4+ (1 — A)x;, changes linearly with A, whereas her
evaluation of Ag + (1 — A)h may worsen in arbitrary nonlinear ways as A in-
creases from 0 to 1. Axiom 2 states that when A is close to 0, this worsening is
comparable to the linear decrease in preference that applies to Ay + (1 — A)x,
(which may still be very slow, if y is almost as good as x},).

Mas-Colell (1977) characterized preferences over consumption bundles (i.e.,
on R") represented by a (locally) Lipschitz and regular utility function; his no-
tion of regularity is related to niceness (cf. Mas-Colell (1977, p. 1411)); for
instance, if utility is continuously differentiable, the requirement is that its gra-
dient be nonvanishing on R’} . Mas-Colell’s axiom is not directly related to
ours.

PROPOSITION S3: Let = be an MBL preference with representation (1, u), and
assume that I is normalized. Then ‘= satisfies Axiom 2 at h € F™ if and only if I
is nice at uo h.

PROOF: If. As in the proof of Proposition S1, for g, y, (h"), (A") as in the
axiom,

I(A"[uog—uoh"|+uoh")
<X'[u(y)—I(uoh")]+1(uoh") eventually.

For n large, ||u o h" — u o h| < 1 and, therefore, u(h"(s)) — u(g(s)) =

[u(h"(s)) — uCh(s)] + u(h(s)) — u(g(s)) < 1 + max,[u(h(s)) — u(g(s))] =
8. Since h(s) > g(s) for all s, 6 > 0. Furthermore, as n — oo, eventually
AN'(=8) +uoh" € By(2, u(X)) and so, by monotonicity of 7,

I(A"(=8) +uoh”) < A[u(y) —I(uoh")]+1(uoh") eventually.
Rearranging gives

T(N'(=8)4+uoh™y—I(uoh")
/\n

<u(y)—I(uoh") eventually.
Since 4" — h and I is continuous, for every ¢ > 0, eventually /(v o h") > I(uo
h) — ¢ and so

TN (=8)+uoh™) —I(uoh"
)\n

<u(y)—I(uoh)+¢e eventually.
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Therefore, I°(u o h; —8) < u(y) — I(uo h) + &. Since this is true for all & > 0,
then I°(uo h; —8) <u(y) —I(uoh) <0 as y < h. But since I°(uo h; —8) =
MaXgegrwony (—0)Q(S) = —8 Mingpesruony Q(S) and every Q € 91 (u o h) is a pos-
itive measure because / is monotonic, the zero measure (J, cannot belong to
dl(uoh).

Only if. Conversely, suppose [ is nice at u o h. Since # is interior, there is
8> 0suchthat uoh — & =uo g for some g € F™. Since Qy ¢ Jl (uoh) and [
is monotonic, I°(u o h; —%8) < 0. Hence, for all sequences A" — 0 and 4" — h

acts), and for all & € (0, —1°(u o h; —18)), eventually
2

I()\"(-%S) —{—uoh") —I(uoh™

)\n

< —é&.

In particular, find y € X such that y < 4 and I(u o h) — u(y) < —%Io(u o
h; —38), which is possible because 4 is interior. Add —31°(u o h; —18) on both
sides of this inequality to conclude that I (u o h) — u(y) — 21°(uo h; —18) <
—I'(u 0 h; —36) and so eventually

1(10(-L9) o) - raom
/\n

1 1
<u(y)—I(uoh)+ EI(’(u o h; —55).

Also, for n large, I(u(h")) <I(u(h)) — 1I°(u o h; —36); conclude that, even-

tually,
1
I()\"(—E‘O‘) + uoh") —I(uoh™
o <u(y)—I(uoh").

Rewriting yields

(o] Loruer] o)
<X'[u(y) =I(uoh")]|+1(uoh") eventually.

Finally, if n is large enough, ||uoh" —uoh| < %8, so for all s, —%5 +u(h"(s)) =
—%8 + u(h(s)) + [u(h"(s)) — u(h(s))] > —6 + u(h(s)) = u(g(s)). Hence, fi-
nally, monotonicity implies

I(N'uog+(1—A"uoh")
<XN'u(y)—(1—=A")I(uoh") eventually,
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as required. Q.E.D.

APPENDIX S.C: CALCULATIONS FOR EXAMPLE 4

Since [ is continuously differentiable, it is strictly differentiable; see Clarke
(1983, Corollary to Proposition 2.2.1). In particular, for all e € By(3), h" — h
and A" | 0, AT (AMe+ (1 — AR —I((1 — M)A — VI(h) - e. Hence,
if VI(h) - f > VI(h) - g, then for all sequences A" || 0 and A" | 0, eventually
WO + (1 =AMh") = 1((1 = XA > (AT (A"g + (1 = A)A") —
I((1—A")h™)], so Eq. (7) will hold for n large: hence, in this case f =} g. This
is, in particular, the case if h; > i, > 0.

To analyze Cases 2 and 3 of the example, note first that, for any pair f, g € F,
using the formula for the difference of two cubes, f = g iff

COMEDI AL 1)+ (Pg) + (P f)(P'-g)] = 0.

Now consider &, f, g, f., and g, as in the main text. The rankings A" f, + (1 —
AR = Ng, + (1 — A)h" and A" f, + (1 — A)k" 3= A"g, + (1 — A")k" are then
equivalent to

(S4) D PA[1+42e, -1+ 2]

i=1,2
X {[P"-/\"[3+8,1+8]+y]2—|-[P"-/\”[2—<9,2—<<;]—i-'y]2
+[P - N[B+e1+el+y][P-N[2—e2—¢]l+7y]} >0,
(S5) Y PA[1+42e, —1+42¢]

i=1,2
X {[Pi-/\"[2+8,2+8]+’)/]2+[Pi-/\n[1—8,3—8]+’)/]2
+ [P N2+&24el+y][P-A[1—¢&3—¢el+vy]}=0.

In Case 3 (y =0), divide Egs. (S4) and (S5) by (A")*, and set & = 0 to obtain
the conditions

Qp-D[A+2p)+4+2(1+2p)]
+(1=2p)[(1+2(1 = p))* +4+2(1+2(1 - p))] 20,
Qp—D[4+(1+201 - p)’ +2(1+2(1 - p))]
+(1=2p)[4+A+2p)* +2(1+2p)] > 0;

by inspection, the left-hand side (Lh.s.) of the second inequality is the nega-
tive of the L.h.s. of the first. Furthermore, the L.h.s. of the first condition equals
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Q2p—DI1+2p)* =1 +2(1 - p))*+42p —1)] > 0, because p > 3. There-
fore, for any n, when ¢ = 0, Eq. (S4) holds as a strict inequality, whereas the
inequality in Eq. (S5) fails. Hence, the same is true for any n when ¢ is positive
but small. Thus. f, #; g. for any ¢ > 0 if & = [0, 0].

In Case 2 (y > 0), first take € = 0. We claim that Eqs. (S4) and (S5) can
both hold only if they are, in fact, equalities. To see this, note that P' - [a, B] =
P? . [B, a] for any a, B € R; hence, when ¢ = 0 and & = [y, y], the Lh.s. of
Eq. (S5) can be rewritten as

S PN [P A2, 20+ 9]+ [PNB, 1T+ 9]

i=1,2
+ [P A2, 20+ [P A3 1+ v ]

It is apparent that this is the negative of the Lh.s. of Eq. (S4) when ¢ =0 and
h = [, ], except that we first use P? and then P!, rather than the opposite as
in Eq. (S4). This proves the claim.

Next, we claim that Eq. (§4) holds as a strict inequality, which proves the
assertion in the text that f )£} g. Since p > 1 and y > 0, the first and third terms
in braces are strictly greater for i = 1 than for i = 2. Since P?-[1,—1] = —P!.
[1, 1], the Lh.s. of Eq. (S4) is the difference of these terms that is multiplied by
P A"[1, —1] > 0 and, hence, it is strictly positive.

Finally, if & > 0 and since & = [y, y], we have VI(h) - (f +&)=VI(h)- f +
VI(h)-e=VI(h)-g+VI(h)-¢>VI(h)-g—VI(h)-e=VI(h)-(g—¢),
which, as noted above, implies that f, =} g..

As noted in footnote 11 in the main paper, here J/(0) contains only the zero
vector. However, consider the monotonic, locally Lipschitz functional J : R* —
R given by J(h) = min(I(h), h; + I[(h)). Then J(h) = I(h) for h € R? with
hy; >0, and 3J(0) = {[y,0]:y € [0, 1]} (Clarke (1983, Theorem 2.5.1)). Since
all mixtures in Eq. (8) are nonnegative when 4 € R? and ¢ < 1, even if g is
replaced with g — ¢ (cf. the definition of £"), the analysis in Example 4 applies
verbatim to J. In particular, for all € € [0, 1), now f+ & >¢«) § — &, but f +¢& %~
g — ¢ (the argument in the second paragraph of Example 4 does not apply
because J is not (continuously) differentiable at 0).

APPENDIX S.D: RELEVANT PRIORS: A BEHAVIORAL TEST

We conclude by showing that, given an interior act s, whether a probability
P eba;(23) belongs to the set C (/) can be ascertained without invoking Theo-
rems 6 or 7; indeed, using only the DM’s preferences. For the result, we need
a notion of lower certainty equivalent of an act f for the incomplete, discon-
tinuous preference =} (cf. the definition of C*(f) in GMM, p. 158).

DEFINITION S1: For any act f € F, a local lower certainty equivalent of f at
h e F™is a prize x;, € X such that, forall y € X, y < x,, implies f 3=} y and
y > X, implies f % y.
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Furthermore, fix P € ba; () and f € F, and suppose that f =" x;15, for
a collection of distinct prizes xi, ..., x, and a measurable partition E, ..., E,
of S. Then define

Xpf= P(El)xl +--- —f—P(E,,)X,,.

That is, xp ; € X is a mixture of the prizes xi,..., x, delivered by f, with
weights given by the probabilities that P assigns to each event E, ..., E,. We
then have the following corollary.

COROLLARY S4: For any P € ba,(3) and h € F™ such that I is nice at u o h,
P e C(h)ifand only if, forall f € F™, x,, < xp .

PROOF: We show that u(x fn) = minpccy P(uo f); thus, the condition in the
corollary states that P satisfies P(u o f) > minpcqy P (u o f) for all interior f,
so P(a) > minpcc, P(a) by linearity for all a € By(2), and P € C(h) then
follows from standard arguments.

If X is as in Definition S1, then minpccy P(uo f) > u(y) for all y < Xi) by
(1) in Theorem 6, and so minpec() P(u o f) > u(x,,). Conversely, for every y
with u(y) < minpccgy P(uo f), there are e > 0, y' € X, and f' € F with u(y’) =
u(y)+ e uof'=uof —eg and u(y) < minpec P(u o f'); then, by (ii) in
Theorem 7, since (f, y) is a spread of (f’, y), f =} y. This implies that y < Xppe
Hence, minpgccy P(uo f) < u(x;,) as well. O.E.D.

APPENDIX S.E: ADDITIONAL PROPERTIES OF =}
In addition to agreeing with = on X, provided I (1 o h) # {Qy}, =], satisfies
the following additional properties.

LEMMA SS5: The preference =} is a monotonic, independent preorder.

PROOF: Monotonicity and reflexivity are immediate from monotonicity of
=. Transitivity is immediate from the definition of =} and transitivity of =. It
remains to be shown that =} is independent; that is, for all k € 7 and u € (0, 1],
f=r giff uf + (1 — w)k = ng + (1 — w)k. Note that

N'[uf + (1= k] + (1= A")h"

(1= ) 1—an
= (A" 1— (A" k h"
(Ww)f+[1=( “)]{1—()\";0 o }

=X f+ (1- AR

with (A") | 0 and (k") — h, and similarly for g. Hence, if f =7 g, then
eventually A" f + (1 — A")A" 3= A"g + (1 — A")h"; repeating the argument for
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all (A"), (h") implies that uf + (1 — w)k =} ng + (1 — w)k. Conversely, if
uf + (1 —wk = ug + (1 — wk, define A" and h" so that

Npf + (1= wk]+ (1= A" = A"f + (1 — A")h":

this requires A= %, which is in [0, 1] for n large and converges to zero as
n — oo, and
(1=M)uoh"—A(1—puok

Uoh"= = ,
1—Ar

which is in By(3, u(X)) for n 1arge (recall that 4 is interior) and indeed such
that A" — h. Note that A" and 4" do not depend on f. Again, for n large,
Muf +(1—uw)k]+(1— XA = Aug+(1—pwk]+(1— AMYh" and, therefore,
by construction, A" f + (1 — A")A" = A"g 4+ (1 — A")h" and so, repeating for all
sequences, f = g. QO.E.D.
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