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This supplement shows that the characterization of the maxmin payoff and pos-
ture (Theorem 1) continues to apply when the solution concept is strengthened from
first-order knowledge of rationality to iterated conditional dominance, or when the
continuous-time bargaining protocol of the text is replaced by any discrete-time bar-
gaining protocol with sufficiently frequent offers. However, the characterization does
not apply with both iterated conditional dominance and discrete-time bargaining, as the
fact that (complete-information) discrete-time bargaining is solvable by iterated condi-
tional dominance implies that the predictions of the model with iterated conditional
dominance and discrete-time bargaining depend on the order and relative frequency of
offers.1

ITERATED CONDITIONAL DOMINANCE

THIS SECTION SHOWS that Theorem 1 continues to hold under a natural notion
of iterated conditional dominance. Because the model has incomplete infor-
mation and is not a multistage game with observed actions (as players do not
observe each other’s choice of demand paths on the integers), no off-the-shelf
version of iterated conditional dominance is applicable, and even the simplest
version that is applicable requires some new notation.

For integer t, let σi(h
t) be the element of Δ(U t) prescribed by strategy σi at

date (t�0) and history ht . I first introduce the idea that a triple (ht�u�t�
1 �u�t�

2 )
is “σi-coherent” if u�t�

i ∈ suppσi(h
�t�) and at ht the path of realized demands

between �t� and t coincides with (u�t�
1 �u�t�

2 ).

DEFINITION 8: A triple (ht�u�t�
1 �u�t�

2 ) is σi-coherent if u�t�
i ∈ suppσi(h

�t�)
and (u�t�

1 (τ)�u�t�
2 (τ)) = (u1(τ)�u2(τ)) for all τ ∈ [�t�� t], where ht = (u1(τ)�

u2(τ))τ≤t . A history ht is σi-coherent if there exist demand paths (u�t�
1 �u�t�

2 ) such
that (ht�u�t�

1 �u�t�
2 ) is σi-coherent.

For any strategy profile (σ1�σ2) and any triple (ht�u�t�
1 �u�t�

2 ) such that
(u�t�

1 (τ)�u�t�
2 (τ)) = (u1(τ)�u2(τ)) for all τ ∈ [�t�� t], where ht = (u1(τ)�

1Informally, there is a race between the number of rounds of iterated conditional dominance
and the frequency of offers. I conjecture that for any number of rounds of iterated conditional
dominance, the maxmin payoff and posture in discrete-time bargaining converge (in the sense of
Proposition 6) to the maxmin payoff and posture in continuous-time bargaining as offers become
frequent. This is consistent with Rubinstein bargaining, where the round at which any demand
other than 0 or 1 is deleted goes to infinity as the time between offers vanishes (so that iterated
conditional dominance has no “bite” in the continuous-time limit). I thank Jeff Ely for helpful
comments on this point.
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u2(τ))τ≤t , each player i’s expected payoff under strategy profile (σi�σj) condi-
tional on reaching the triple (ht�u�t�

1 �u�t�
2 ) is well defined and is denoted

ui

(
σi�σj|ht�u�t�

1 �u�t�
2

)
�

I also write ui(σi�σj|ht) for player i’s expected payoff conditional on reaching
ht at date (t�0) for integer t.

I now define iterated conditional dominance. Informally, the idea is that a
strategy is conditionally dominated if it is either strictly dominated or is “con-
ditionally weakly dominated.” The difference between the definition of iter-
ated conditional dominance for the two players reflects the fact that player 1
is committed to strategy γ with probability ε and, therefore, that player 2 is
restricted to assigning probability at least ε to strategy γ at histories that are
consistent with γ. Note that the support of the γ-offsetting belief πγ

2 includes
strategies that are iteratively conditionally dominated, as it is easy to verify that
any strategy of player 1 that ever accepts a demand of 1 is iteratively condition-
ally dominated.

DEFINITION 9: For any posture γ and set of bargaining phase strategy pro-
files Ω = Ω1 ×Ω2 ⊆ Σ1 ×Σ2, a strategy σ1 ∈ Σ1 is conditionally dominated with
respect to (γ�Ω) if either of the following conditions hold:

• There exists a strategy σ ′
1 ∈ Σ1 such that

u1

(
σ ′

1�π1

)
> u1(σ1�π1)

for all beliefs π1 ∈ Δ(Ω2).
• There exists a strategy σ ′

1 ∈ Σ1 such that

u1

(
σ ′

1�π1|ht�u�t�
1 �u�t�

2

) ≥ u1

(
σ1�π1|ht�u�t�

1 �u�t�
2

)
for all σ1-coherent (ht�u�t�

1 �u�t�
2 ) and all beliefs π1 ∈ Δ(Ω2), with strict inequal-

ity for some σ1-coherent (ht�u�t�
1 �u�t�

2 ) and some belief π1 ∈ Δ(Ω2).
A strategy σ2 ∈ Σ2 is conditionally dominated with respect to (γ�Ω) if either

of the following conditions hold:
• There exists a strategy σ ′

2 ∈ Σ2 such that

u2

(
σ ′

2�π2

)
> u2(σ2�π2)

for all beliefs π2 ∈ Δ(Ω1 ∪ {γ}) such that π2(γ)≥ ε with strict inequality only if
γ ∈ Ω1.

• There exists a strategy σ ′
2 ∈ Σ2 such that

u2

(
σ ′

2�π2|ht�u�t�
1 �u�t�

2

) ≥ u2

(
σ2�π2|ht�u�t�

1 �u�t�
2

)
for all σ2-coherent (ht�u�t�

1 �u�t�
2 ) that are inconsistent with γ and all beliefs

π2 ∈ Δ(Ω1), with strict inequality for some σ2-coherent (ht�u�t�
1 �u�t�

2 ) that is
inconsistent with γ and some belief π2 ∈ Δ(Ω1).
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A set of bargaining phase strategy profiles Ω = Ω1 × Ω2 ⊆ Σ1 × Σ2 is closed
under conditional dominance given posture γ if every σi ∈ Ωi is conditionally
undominated (i.e., not conditionally dominated) with respect to (γ�Ω). The
set of iteratively conditionally undominated strategies given posture γ is

ΩICD(γ) ≡
⋃

{Ω :Ω is closed

under conditional dominance given posture γ}�
Player 1’s maxmin payoff under iterated conditional dominance given posture γ
is

uICD
1 (γ)≡ sup

σ1

inf
σ2∈ΩICD

2 (γ)

u1(σ1�σ2)�

Player 1’s maxmin payoff under iterated conditional dominance is

uICD
1 ≡ sup

γ

uICD
1 (γ)�

A posture γICD is a maxmin posture under iterated conditional dominance if
there exists a sequence of postures {γn} such that γn(t)→ γICD(t) for all t ∈ R+
and uICD

1 (γn)→ uICD
1 .

This version of iterated conditional dominance is stronger than rationaliz-
ability in that ΩICD(γ)⊆ΩRAT(γ) for any posture γ. This can be seen by noting
that every set Ω that is closed under conditional dominance is also closed un-
der rationalizability, because rationalizability is equivalent to imposing only
the first of the two conditions in the definition of conditional dominance (for
both player 1 and player 2). An immediate consequence of this observation is
that the maxmin payoff under iterated conditional dominance is weakly greater
than the maxmin payoff (under first-order knowledge of rationality), that is,
uICD

1 ≥ u∗
1. In fact, the two payoffs are equal, as are the corresponding maxmin

postures.

PROPOSITION 5: Player 1’s maxmin payoff under iterated conditional domi-
nance equals her maxmin payoff, and the unique maxmin posture under iterated
conditional dominance is the unique maxmin posture; that is, uICD

1 = u∗
1 and the

unique maxmin posture under iterated conditional dominance is γICD = γ∗.

The rest of this section is devoted to proving Proposition 5. The proof builds
on that of Proposition 4. This is because it can be shown that the set of itera-
tively conditionally undominated strategies and the set of rationalizable strate-
gies are identical up to strategies that are “exceptional” in the following sense.

DEFINITION 10: A strategy σi ∈ Σi is exceptional given posture γ if either of
the following conditions hold:
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• i ∈ {1�2} and σi ever accepts a demand of 1, rejects a demand of 0, makes
a demand of 0 or a path of demands converging to 0 (i.e., limτ↑t ui(τ) = 0), or
makes a demand of 1 at every successor of some history ht .

• i = 1 and σi ever accepts a demand u2(t) ≥ 1 − e−r(t∗−t)γ(t∗) > 0 at
any history ht consistent with γ with t ≤ t∗, rejects a demand u2(t) ≤ 1 −
e−r(t∗−t)γ(t∗) < 1 at any history ht consistent with γ with t ≤ t∗, or demands
γ(t∗) at any history ht∗ consistent with γ.

The relationship between iterated conditional dominance and rationalizabil-
ity is formalized in the following lemma, which is a key step in the proof of
Proposition 5.

LEMMA 5: For any posture γ, every strategy that is rationalizable and nonex-
ceptional given posture γ is also iteratively conditionally undominated given pos-
ture γ.

The proof of the lemma uses the concept of a unique optimal action: an
action (accepting, rejecting, or choosing a demand path for the next integer)
is the unique optimal action at a triple (ht�u�t�

1 �u�t�
2 ) under a belief πi if every

strategy σi that maximizes ui(σi�πi|ht�u�t�
1 �u�t�

2 ) prescribes that action at his-
tory ht (where the arguments (u�t�

1 �u�t�
2 ) are omitted in the case of choosing a

demand path for the next integer).

PROOF OF LEMMA 5: Fix a posture γ. For the duration of the proof, I omit
the modifier “given posture γ.” To prove the lemma, I show that for every
nonexceptional strategy σi and every σi-coherent history ht that is inconsis-
tent with γ, there exist demand paths (u�t�

1 �u�t�
2 ) and belief πi with support on

strategies that are rationalizable and nonexceptional such that (ht�u�t�
1 �u�t�

2 ) is
σi-coherent and σi prescribes the unique optimal action at (ht�u�t�

1 �u�t�
2 ) un-

der belief π2. If i = 1, this conclusion also holds at σi-coherent histories that
are consistent with γ. This implies that the second of the two conditions in the
definition of conditional dominance can never hold if σi is nonexceptional for
i = 1�2. Therefore, every nonexceptional strategy that is conditionally domi-
nated is also strictly dominated, and hence every nonexceptional strategy that
is rationalizable is also iteratively conditionally undominated.

I start by establishing a statement with the important implication that, start-
ing from a history that is inconsistent with γ, any continuation strategy is part
of a rationalizable strategy.

STEP 1: Any strategy σ1 ∈ Σ1 that demands γ(t) and rejects player 2’s de-
mand at every history ht that is consistent with γ is rationalizable. Any strategy
σ2 ∈ Σ2 that demands 1 and accepts at (and not before) the more favorable of
dates (t∗�−1) and (t∗�1) if player 1 follows γ until time t∗ is rationalizable.
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PROOF: By the proof of Lemma 4, strategy π̇γ
2 is rationalizable for player 1

and strategy σγ
2 is rationalizable for player 2. Now if strategies σ1 and σ2 are as

in the statement, then σ1 ∈ Σ∗
1(σ

γ
2 ) and σ2 ∈ Σ∗

2(π̇
γ
2 ), so σ1 and σ2 are rational-

izable as well. Q.E.D.

STEP 2: For i = 1�2, if a strategy σi is nonexceptional and a history ht is σi-
coherent and inconsistent with γ, then there exist demand paths (u�t�

1 �u�t�
2 ) and a

belief πi with support on strategies that are rationalizable and nonexceptional such
that (ht�u�t�

1 �u�t�
2 ) is σi-coherent and σi prescribes the unique optimal action at

(ht�u�t�
1 �u�t�

2 ) under belief πi.

PROOF: Fix a nonexceptional strategy σi and a history ht that is σi-coherent
and inconsistent with γ. Step 1 implies that any continuation strategy of player
j is part of a rationalizable strategy. Hence, the restriction that πi has sup-
port on strategies that are rationalizable and nonexceptional implies only that
continuation strategies are nonexceptional.

Suppose that σi accepts at ht . Then the fact that σi is nonexceptional and ht

is σi-coherent imply that ui(t) > 0 and uj(t) < 1. Let (u�t�
1 �u�t�

2 ) specify that the
players continue to demand ui(t) and uj(t) until �t�, and let πi assign proba-
bility 1 to a rationalizable strategy under which at every successor history of
ht player j demands 1+uj(t)

2 (after time �t�) and rejects any strictly positive de-
mand; such a strategy exists by the previous paragraph, and is clearly nonexcep-
tional (in particular, player j always chooses demand paths that always make
demands u2(τ) ∈ (0�1)). Then it is clear that accepting at ht is the optimal
action at (ht�u�t�

1 �u�t�
2 ) under belief πi.2

Suppose that σi rejects at ht . Then the facts that σi is nonexceptional and ht

is σi-coherent imply that ui(t) > 0 and uj(t) > 0. Let πi assign probability 1 to
a rationalizable and nonexceptional strategy under which player j reduces his
demand to uj(t)/2 by some time τ such that

e−r(τ−t)

(
1 − uj(t)

2

)
> 1 − uj(t);

subsequently demands uj(t)/2 forever; and rejects player i’s demand at every
successor history of ht unless player i demands 0 (or let (u�t�

1 �u�t�
2 ) specify that

player j’s demand follows such a path, in case there is no integer between t
and τ). Choose any (u�t�

1 �u�t�
2 ) such that (ht�u�t�

1 �u�t�
2 ) is σi-coherent and player

j’s demands follow such a path. Now rejecting until time τ and then accepting
(while never demanding 0) is strictly better for player i under belief πi than is

2Note that the possibility that player i could reject at ht but accept “immediately” after ht

is ruled out by the assumption that the probability that a player accepts by date (t�1) is right-
continuous in t.
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accepting at ht , so rejecting is the unique optimal action at (ht�u�t�
1 �u�t�

2 ) under
belief πi.

Finally, suppose that t is an integer and that σi chooses demand path ut
i at ht .

The fact that σi is nonexceptional implies that ut
i(τ) > 0 for all τ ∈ [t� t+1) and

that limτ↑t+1 u
t
i(τ) > 0. Let πi assign probability 1 to a rationalizable and nonex-

ceptional strategy under which player j demands 1 − e−r limτ↑t+1 u
t
i (τ)

2 at ht and at
every successor history of ht ; accepts at date (t + 1�−1) if ui(τ)= ut

i(τ) for all
τ ∈ [t� t + 1); and otherwise rejects any strictly positive demand at every suc-
cessor history of ht . Now choosing demand path ut

i at ht and rejecting player
j’s demand until time t+1 yields payoff e−r limτ↑t+1 u

t
i(τ) under belief πi, while

every other continuation strategy yields payoff at most e−r limτ↑t+1 u
t
i (τ)

2 under be-
lief πi, so choosing demand path ut

i is the unique optimal action at ht under
belief πi. Q.E.D.

STEP 3: If strategy σ1 ∈ Σ1 is nonexceptional and a history ht is σ1-coherent
and consistent with γ, then there exist demand paths (u�t�

1 �u�t�
2 ) and a belief

π1 with support on strategies that are rationalizable and nonexceptional such
that (ht�u�t�

1 �u�t�
2 ) is σ1-coherent and σ1 prescribes the unique optimal action at

(ht�u�t�
1 �u�t�

2 ) under belief π1.

PROOF: If t > t∗, then if player 2 plays a rationalizable and nonexceptional
strategy σ2 that accepts at time t∗ under strategy profile (γ�σ2) (which exists),
then player 2’s continuation play starting from ht is restricted only by the re-
quirement that it is nonexceptional. Hence, the proof in this case is just like
the proof of Step 2. I therefore assume that t ≤ t∗.

Suppose that σ1 accepts at ht . Then the fact that σ1 is nonexceptional, ht

is σ1-coherent and consistent with γ, and t ≤ t∗ implies that u1(t) > 0 and
u2(t) < 1 − e−r(t∗−t)γ(t∗). Define the strategy σ̈2 ∈ Σ2 as follows:

• If hτ is consistent with γ, then demand 1 until time �t∗ + 1�, subse-
quently demand 1

2 , reject all positive demands until the more favorable of dates
(t∗�−1) and (t∗�1), and subsequently accept all demands of less than 1.

• If hτ is inconsistent with γ, then demand 1+u2(t)

2 and reject all positive de-
mands.

Note that σ̈2 ∈ Σ∗
2(γ), so σ̈2 is rationalizable. In addition, σ̈2 is clearly nonex-

ceptional. Let π1 assign probability 1 to σ̈2, and let (u�t�
1 �u�t�

2 ) specify that
player 1 demands u1(τ) = γ(τ) for all τ ∈ [t� �t�) and that player 2 contin-
ues to demand u2(t) until �t�. Then accepting at (ht�u�t�

1 �u�t�
2 ) yields payoff

1 − u2(t) under belief π1, while any strategy that rejects at (ht�u�t�
1 �u�t�

2 ) yields
strictly less. So accepting is the unique optimal action at (ht�u�t�

1 �u�t�
2 ) under

belief π1.
Suppose that σ1 rejects at ht . Then the fact that σ1 is nonexceptional,

ht is σ1-coherent and consistent with γ, and t ≤ t∗ implies that u1(t) > 0 and
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u2(t) > 1−e−r(t∗−t)γ(t∗). Let σ̈2, π1, and (u�t�
1 �u�t�

2 ) be as above, with the modifi-

cation that σ̈2 demands 1 − e−r(t∗−t)γ(t∗)
2 rather than 1+u2(t)

2 at histories hτ that are
inconsistent with γ.3 Then rejecting and following strategy γ at (ht�u�t�

1 �u�t�
2 )

yields payoff e−r(t∗−t)γ(t∗) under belief π1, while any strategy that rejects at
(ht�u�t�

1 �u�t�
2 ) yields strictly less. So rejecting is the unique optimal action at

(ht�u�t�
1 �u�t�

2 ) under belief π1.
Finally, suppose that t is an integer and that σ1 chooses demand path ut

1
at ht . Since ut

1 and γ are continuous on [t� t + 1), there are three cases.
Case 1. ut

1(τ)= γ(τ) for all τ ∈ [t� t + 1).
Case 2. ut

1(t)= γ(t) but ut
1(τ) �= γ(τ) for some τ ∈ [t�min{t + 1� t∗}).

Case 3. ut
1(t) �= γ(t).

Start with Case 1. Here, the fact that σ1 is nonexceptional, ht is consistent
with γ, and t ≤ t∗ implies that, in fact, t+1 ≤ t∗, as σ1 never demands γ(t∗) at a
history ht∗ consistent with γ. Now for all η> 0, Step 1 implies that there exists
a rationalizable and nonexceptional strategy σ2 that demands 1 at all times
τ such that e−r(τ−(t+1)) ≥ η, accepts at (but not before) time t∗ under strategy
profile (γ�σ2), rejects all strictly positive demands at dates (t + 1�−1) and
earlier, rejects all strictly positive demands at dates after (t + 1�0) such that
u1(τ) �= γ(τ) for some τ < t + 1, and accepts all demands less than 1 at dates
after (t + 1�0) such that u1(τ)= γ(τ) for all τ < t + 1 but u1(t + 1) �= γ(t + 1).
Since e−r(t∗−(t+1))γ(t∗) < 1 (which follows from the definition of t∗), choosing
demand path ut

1 and then deviating from γ to a demand close to 1 at time t + 1
yields a strictly higher payoff under any belief that assigns probability 1 to such
a strategy than does choosing any other demand path, for η sufficiently small.

For Case 2, the fact that σ1 is nonexceptional, ht is consistent with γ, and
t ≤ t∗ implies that t < t∗. Let τ0 be the infimum over times τ ∈ [t�min{t +
1� t∗}) such that ut

1(τ) �= γ(τ). Now for all η > 0, Step 1 implies that there
exists a rationalizable and nonexceptional strategy σ2 that demands 1 at all
times τ such that e−r(τ−max{t+1�t∗}) ≥ η, accepts at (but not before) time t∗ under
strategy profile (γ�σ2), rejects all strictly positive demands at all histories that
are inconsistent with either γ or ut

1, and, for all k ∈ {0�1� � � � � � t+1−τ0
η

� − 1},
accepts at time τ0 + kη with probability ηk(1 − η) if u1(τ) = ut

1(τ) for all
τ ∈ [t� τ0 + kη], and accepts at date (t + 1�−1) with probability η�(t+1−τ0)/η� if
player 1’s demands are consistent with ut

1 on [t� t + 1). Since ut
1 is continuous,

player 1 receives a strictly higher payoff from choosing ut
1 and then rejecting

until time t + 1 than from mimicking γ, under the belief that player 2 plays
such a strategy for sufficiently small η (as player 1 strictly prefers to have her
demand accepted at any time prior to t∗ than at t∗, by definition of t∗). In
addition, player 1 receives a strictly higher payoff from choosing ut

1 than from

3This modification serves only to ensure that σ̈2 does not demand 1 forever after some history
and, thus, that σ̈2 is nonexceptional.
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choosing any demand path that coincides with ut
1 until some time τ ∈ [t� t + 1)

and then diverges from ut
1. Therefore, choosing demand path ut

1 is player 1’s
unique optimal action at ht under the belief that player 2 plays such a strategy
for sufficiently small η.

For Case 3, Step 1 implies that for all η > 0, there exists a rationalizable
and nonexceptional strategy σ2 that accepts at (but not before) time t∗ under
strategy profile (γ� t∗), rejects all strictly positive demands at all histories that
are inconsistent with γ, and, for all k ∈ {0�1� � � � � � 1

η
� − 2}, with probability

ηk(1 − η) demands 1 until time t + kη and reduces its demand to η by time
t + (k + 1)η, and with probability η�1/η� demands 1 until time t + 1 − η and
reduces its demand to η by time t + 1. Step 1 also implies that there exists
a rationalizable and nonexceptional strategy that accepts at (but not before)
time t∗ under strategy profile (γ� t∗), demands 1 − (

e−r limτ↑t+1 u
t
i (τ)

2 )η at ht and
at every successor history of ht ; accepts at date (t + 1�−1) if ui(τ) = ut

i(τ) for
all τ ∈ [t� t + 1); and otherwise rejects any strictly positive demand at every
successor history of ht (as in the last part of the proof of Step 2). Let π1 assign
probability 1 − η to player 2’s playing a strategy of the first kind and assign
probability η to player 2’s playing a strategy of the second kind. I claim that for
η sufficiently small, ut

1 is player 1’s unique optimal action at ht under belief π1.
To see this, first note that e−r(t∗−t)γ(t∗) < 1 implies that choosing ut

1 is strictly
better than choosing any demand path that coincides with γ until time t∗, for η
sufficiently small. Finally, any strategy that chooses a demand path other than
ut

1 that diverges from γ before time t∗ does no better than choosing demand
path ut

1 and rejecting until time t+1 in the event that player 2 plays a strategy of
the first kind, and does strictly worse in the event that player 2 plays a strategy
of the second kind. Therefore, choosing demand path ut

1 is player 1’s unique
optimal action at ht under belief π1, for η> 0 sufficiently small. Q.E.D.

I now complete the proof of the lemma. By the definition of conditional
dominance and Step 2, strategy σ2 can be conditionally dominated (with re-
spect to some (γ�Ω)) by strategy σ ′

2 only if either σ ′
2 strictly dominates σ2

(with respect to (γ�Ω); i.e., if the first condition in the definition of condi-
tionally dominance with respect to (γ�Ω) holds) or σ ′

2 agrees with σ2 at all
σ2-coherent histories that are inconsistent with γ. But, again by the definition
of conditional dominance, if σ ′

2 conditionally dominates σ2 and agrees with σ2

at all σ2-coherent histories that are inconsistent with γ, then σ ′
2 must strictly

dominate σ2. The same argument applies for player 1, noting that Steps 2 and 3
imply that a strategy σ1 can be conditionally dominated by a strategy σ ′

1 only if
σ ′

1 strictly dominates σ1 or if σ ′
1 agrees with σ1 at all σ1-coherent histories ht ,

whether or not ht is consistent with γ (which is needed for the argument given
the difference in the definitions of conditional dominance for players 1 and 2).
Therefore, for i = 1�2, if σi is nonexceptional, then it cannot be conditionally
dominated unless it is also strictly dominated. Finally, if σi is rationalizable
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and nonexceptional, then it is not strictly dominated with respect to (γ�ΩRAT),
hence, it is not conditionally dominated with respect to (γ�ΩRAT), and, hence,
it also is not conditionally dominated with respect to the smaller set (γ�ΩICD).
This proves that every rationalizable and nonexceptional strategy is iteratively
conditionally undominated. Q.E.D.

I now prove Proposition 5.

PROOF OF PROPOSITION 5: As was the case for Proposition 4, it suffices to
show that uICD

1 (γ) = γ(t∗) for every posture γ. The proof proceeds by approx-
imating the γ-offsetting belief πγ

2 with beliefs {πγ
2 (η)}η>0 that have support on

rationalizable and nonexceptional strategies only (unlike the offsetting belief
πγ

2 itself, which assigns positive probability to the exceptional strategy γ̃), and
by approximating the γ-offsetting strategy σγ

2 with nonexceptional strategies
{σγ

2 (η)}η>0 such that σγ
2 (η) ∈ Σ∗

2(π
γ
2 (η)) for all η > 0. Lemma 5 then implies

that the strategy σγ
2 (η) is iteratively conditionally undominated for all η > 0.

Finally, as η→ 0,

sup
σ1

u1

(
σ1�σ

γ
2 (η)

) → u∗
1(γ)�

which implies that uICD
1 (γ) ≤ u∗

1(γ). Since uICD
1 (γ) ≥ u∗

1(γ) is immediate be-
cause ΩICD(γ)⊆ΩRAT(γ), this shows that uICD

1 (γ)= u∗
1(γ)= γ(t∗), completing

the proof of the proposition.
I now present an argument that leads to the construction of the beliefs

{πγ
2 (η)}η>0 and strategies {σγ

2 (η)}η>0. I start by defining the strategies of
player 1 that receive positive weight under belief πγ

2 (η). Fix t ∈ (0� t∗) and
η ∈ (0� 1

2). Let

η′ ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
η�

r(t∗ − t)

3
�
γ(t∗)

2

}
� if γ

(
t∗

)
> 0,

min
{
η�

r(t∗ − t)

3

}
� if γ

(
t∗

) = 0,

and let γ̃(t�η) be the strategy that demands u1(τ) = γ(τ) for all τ ∈ [0� t);
demands

u1(τ)= t +η′/r − τ

η′/r
γ(t)+

(
1 − t +η′/r − τ

η′/r

)(
1 −η′)

for all τ ∈ [t� t +η′/r]; demands

u1(τ)= t + 2η′/r − τ

η′/r

(
1 −η′) +

(
1 − t + 2η′/r − τ

η′/r

)
η′



10 ALEXANDER WOLITZKY

for all τ ∈ [t+η′/r� t+2η′/r]; demands u1(τ)= η′ if τ > t+2η′/r; and accepts
a demand of player 2 if and only if it equals 0. Intuitively, γ̃(t�η) mimics γ until
time t and then quickly rises to almost 1 before quickly falling to almost 0,
where “quickly” and “almost 0” are both measured by η (the point of having
η′ rather than η in the formulas will become clear shortly).

I claim that γ̃(t�η) is iteratively conditionally undominated. To see this, ob-
serve that γ̃(t�η) is a best response to any strategy σ2 with the following prop-
erties:

• σ2 demands 1 and accepts at (and not before) date (t∗�−1) if player 1
follows γ until time t∗.

• If hτ is inconsistent with γ but consistent with γ̃(t�η), then σ2 demands 1
and accepts if and only if τ ≥ t +η′/r.

• If hτ is inconsistent with both γ and γ̃(t�η), then σ2 demands 1 and rejects
player 1’s demand.

This follows because playing γ̃(t�η) against such a strategy σ2 yields payoff

e−rt−η′(
1 −η′)�

while the only other positive payoff that can be obtained against strategy σ2 is

e−rt∗γ
(
t∗

) ≤ e−rt∗�

and e−rt−η′
(1 − η′) ≥ e−rt∗ because η′ ≤ min{ 1

2 �
r(t∗−t)

3 } (as can be easily
checked). Now, by Step 1 of the proof of Lemma 5, there exists a rational-
izable strategy σ2 of this form, so γ̃(t�η) is rationalizable. In addition, γ̃(t�η)
is nonexceptional, because γ(t) > 0 for all t ∈ [0� t∗) (recalling the definition
of γ∗) and γ̃(t�η) always demands η′ �= γ(t∗) at time t∗, so Lemma 5 implies
that γ̃(t�η) is iteratively conditionally undominated.

I now introduce versions of some of the key objects of Section 3.2, indexed
by η. Let

λ(t�η) = rv(t)− v′(t)
e−2η′(1 −η′)− v(t)

if v is differentiable at t and v(t) < e−2η′
(1 −η′), and let λ(t�η) = 0 otherwise;

and let

p(t�η)= v(t�−1)− v(t)

e−2η′(1 −η′)− v(t)

if v(t) < v(t�−1) ≤ e−2η′
(1 − η′), and let p(t�η) = 0 otherwise. Define T̃ (η),

T(η), t∗(η), λ̂(t�η), and p̂(t�η) as in Section 3.2, with λ(t�η) and p(t�η)
replacing λ(t) and p(t) in the definitions. Note that as η → 0, λ(t�η) ↓ λ(t)

and p(t�η) ↓ p(t) for all t ∈ R+. Hence, λ̂(t�η) ↓ λ(t), p̂(t�η) ↓ p(t), T̃ (η) ↑
T̃ , T(η) ↑ T , and t∗(η) ↑ t∗.



REPUTATIONAL BARGAINING 11

Let μγ(η) be the belief that player 1 rejects all nonzero demands of player 2
and that her path of demands begins by following γ(t) and then switches to
following γ̃(t�η) at time t with hazard rate λ̂(t�η) and discrete probability
p̂(t�η), for all t < t∗(η).4 Let μγ�t(η) be the belief that coincides with μγ(η)
until date (t�−1) and subsequently coincides with the belief that player 1 fol-
lows γ. Let πγ

2 (η) put probability ε on strategy γ and put probability 1 − ε on
strategy μγ�t∗(η). Let σγ

2 (η) be some best response to πγ
2 (η) with the following

properties:
• σγ

2 (η) demands 1 at all times t such that t ≤ t∗ and e−rt ≥ η.
• σγ

2 (η) rejects player 1’s demand at those histories that are consistent with
πγ

2 (η), where accepting and rejecting are both optimal actions.
• σγ

2 (η) rejects all positive demands at histories that are inconsistent with γ.
• σγ

2 (η) is nonexceptional.
It is clear that such a strategy exists. Furthermore, any such strategy is ratio-

nalizable, by Step 1 of the proof of Lemma 5, and hence any such strategy is
iteratively conditionally undominated, by Lemma 5.

I claim that as η→ 0, the time at which agreement is reached under strategy
profile (γ�σγ

2 (η)) converges to t∗, uniformly over possible choices of σγ
2 (η)

satisfying the above properties. To see this, observe that, as in Section 3.2,
if v(t) < e−2η′

(1 − η′), then λ(t�η) and p(t�η) are the rate and probabil-
ity of player 1 switching to γ̃(t�η) that make player 2 indifferent between
accepting and rejecting γ, and, under belief πγ

2 (η), player 2 believes that
player 1 switches to γ̃(t�η) with rate and probability λ(t�η) and p(t�η) if
v(t) < e−2η′

(1 −η′) and t < t∗(η). Furthermore, since γ(t) is positive and con-
tinuous on [0� t∗), it follows that

lim inf
η→0

{
t :v(t)≥ e−2η′(

1 −η′)} = t∗�

Hence, for small η, player 2 is indifferent between accepting and rejecting γ
until close to time min{t∗� t∗(η)}, and, therefore, σγ

2 (η) specifies that he rejects
until close to time min{t∗� t∗(η)}. Since t∗(η) → t∗, this shows that the time at
which agreement is reached under strategy profile (γ�σγ

2 (η)) converges to t∗.
The proof is nearly complete. Strategy σγ

2 (η) is iteratively conditionally un-
dominated for all η > 0. When facing strategy σγ

2 (η), the highest payoff that
player 1 can receive when player 2 accepts at a history that is consistent with γ
converges to γ(t∗) as η→ 0. Furthermore, for any η> 0, the most player 2 ac-
cepts at a history that is inconsistent with γ is η′; and the highest payoff player 1
can receive by accepting a demand of player 2 is η (since σγ

2 (η) demands 1 at

4There is a technical problem here because it is not clear that μγ(η) can be written as a finite-
dimensional distribution over Σ1, that is, as an element of Δ(Σ1). However, it should be clear
that μγ(η) can in turn be approximated by a finite-dimensional distribution over Σ1 in a way that
suffices for the proof.
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all times t such that e−rt ≥ η). It follows that

uICD
1 (γ) ≤ lim

η→0
sup
σ1

u1

(
σ1�σ

γ
2 (η)

) = max
{
γ
(
t∗

)
� lim
η→0

η′� lim
η→0

η
}

= max
{
γ
(
t∗

)
�0�0

} = γ
(
t∗

)
�

completing the proof. Q.E.D.

DISCRETE-TIME BARGAINING WITH FREQUENT OFFERS

This section shows that Theorem 1 continues to hold when the continuous-
time bargaining protocol of the text is replaced by any discrete-time bargain-
ing protocol with sufficiently frequent offers. More precisely, for any sequence
of discrete-time bargaining games that converges to continuous time (in that
each player may make an offer close to any given time), the corresponding
sequence of maxmin payoffs and postures converges to the continuous-time
maxmin payoff and posture given by Theorem 1. Abreu and Gul (2000) pro-
vided a similar independence-of-procedures result for sequential equilibrium
outcomes of reputational bargaining. Because my result concerns maxmin pay-
offs and postures rather than equilibria, my proof is very different from Abreu
and Gul’s.

Formally, replace the (continuous time) bargaining phase of Section 2 with
the following procedure: There is a (commonly known) function g : R+ →
{0�1�2} that specifies who makes an offer at each time. If g(t) = 0, no player
takes an action at time t. If g(t) = i ∈ {1�2}, then player i makes a demand
ui(t) ∈ [0�1] at time t and player j immediately accepts or rejects. If player j
accepts, the game ends with payoffs (e−rtui(t)� e

−rt(1 − ui(t))); if player j re-
jects, the game continues. Let Igi = {t :g(t)= i}, and assume that Igi ∩[0� t] is fi-
nite for all t and that Igi is infinite. The announcement phase is correspondingly
modified so that player 1 announces a posture γ : Igi → [0�1], and if player 1
becomes committed to posture γ (which continues to occur with probability ε),
she demands γ(t) at time t and rejects all of player 2’s demands. I refer to the
function g as a discrete-time bargaining game.

I now define convergence to continuous time. This definition is very simi-
lar to that of Abreu and Gul (2000), as is the above model of discrete-time
bargaining and the corresponding notation.

DEFINITION 11: A sequence of discrete-time bargaining games {gn} con-
verges to continuous time if for all Δ> 0, there exists N such that for all n ≥N ,
t ∈ R+, and i ∈ {1�2}, Igni ∩ [t� t +Δ] �= ∅.

The maxmin payoff and posture in a discrete-time bargaining game are de-
fined exactly as in Section 2. Let u∗�g

1 be player 1’s maxmin payoff in discrete-
time bargaining game g and let u

∗�g
1 (γ) be player 1’s maxmin payoff given
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posture γ in g. The independence-of-procedures result states that for any se-
quence of discrete-time bargaining games converging to continuous time, the
corresponding sequence of maxmin payoffs {u∗�gn

1 } converges to u∗
1 and any cor-

responding sequence of postures {γgn} such that u∗�gn
1 (γgn) → u∗

1 “converges”
to γ∗, where u∗

1 and γ∗ are the maxmin payoff and posture identified in The-
orem 1. The nature of the convergence of the sequence {γgn} to γ∗ is slightly
delicate. For example, there may be (infinitely many) times t ∈ R+ such that
limn→∞ γgn(t) exists and is greater than γ∗(t), because these demands may be
“nonserious” (in that they are followed immediately by lower demands).5 Thus,
rather than stating the convergence in terms of {γgn} and γ∗, I state it in terms
of the corresponding continuation values of player 2, which are the economi-
cally more important variables. Formally, given a posture γgn in discrete-time
bargaining game gn, let

vgn(t)≡ max
τ≥t:τ∈Ign1

e−r(τ−t)
(
1 − γgn(τ)

)
�

Let v∗(t) = max{1 − ert/(1 − logε)�0}, the continuation value correspond-
ing to γ∗ in the continuous-time model of Section 2. The independence-of-
procedures result is as follows:

PROPOSITION 6: Let {gn} be a sequence of discrete-time bargaining games con-
verging to continuous time. Then u

∗�gn
1 → u∗

1, and if {γgn} is a sequence of postures
with γgn a posture in gn and u

∗�gn
1 (γgn)→ u∗

1, then vgn(t)→ v∗(t) for all t ∈ R+.

The key fact behind the proof of Proposition 6 is that for any sequence of
discrete-time postures {γgn} converging to some continuous-time posture γ,
limn→∞ u

∗�gn
1 (γgn) = limn→∞ u∗

1(γ
gn) (where u∗

1(γ
gn) is the maxmin payoff given

a natural embedding of γgn in continuous time, defined formally in the proof).
This fact is proved by constructing a belief that is similar to the γgn -offsetting
belief in each discrete-time game gn and then showing that these beliefs con-
verge to the γ-offsetting belief in the limiting continuous-time game.

PROOF OF PROPOSITION 6: Observe that a posture γ in discrete-time bar-
gaining game g induces a “continuous-time posture” γ̂ (i.e., a map from
R+ → [0�1]) according to γ̂(t) = γ(min{τ ≥ t :τ ∈ I

g
i }); that is, γ̂’s time-t de-

mand is simply γ’s next demand in g. I henceforth refer to a posture γ in g as
also being a continuous-time posture, with the understanding that I mean the
posture γ̂ defined above.

However, γ may not be a posture in the continuous-time bargaining game
of Section 2, because it may be discontinuous at a noninteger time. To

5The reason this complication does not arise in Theorem 1 is that the assumption that γ is
continuous at noninteger times rules out nonserious demands.
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avoid this problem, I now introduce a modified version of the continuous-
time bargaining game of Section 2. Formally, let the continuous-time bar-
gaining game gcts be defined as in Section 2, with the following modifica-
tions: Most importantly, omit the requirement that player i’s demand path
ut
i : [t� t + 1) → [0�1] (which is still chosen at integer times t) is continuous.

Second, specify that the payoffs if player i accepts player j’s offer at date
(t�−1) are (e−rt(1 − lim infτ↑t uj(τ))� e

−rt lim infτ↑t uj(τ)) (because limτ↑t uj(τ)
may now fail to exist). Third, add a fourth date (t�2) to each instant of time t.
At date (t�2), each player i announces accept or reject, and, if player i ac-
cepts player j’s offer at date (t�2), the game ends with payoffs (e−rt(1 −
lim infτ↓t uj(τ))� e

−rt lim infτ↓t uj(τ)). Adding the date (t�2) ensures that each
player has a well defined best response to her belief, even though uj(t) may
now fail to be right-continuous. One can check that the analysis of Sec-
tions 3 and 4, including Lemmas 1–3 and Theorem 1, continue to apply to the
game gcts, with the exception that in gcts, the maxmin posture γ∗ is not, in fact,
unique; however, every maxmin posture corresponds to the continuation value
function v∗ (by the same argument as in Step 1 of the proof of Theorem 1).6

Because of this, for the remainder of the proof I slightly abuse notation by writ-
ing u∗

1(γ) for player 1’s maxmin payoff given posture γ in the game gcts, rather
than in the model of Section 2. Importantly, u∗

1(γ) equals player 1’s maxmin
payoff given γ in both gcts and in the model of Section 2 when γ is a pos-
ture in the model of Section 2, but u∗

1(γ) is well defined for all γ : R+ → [0�1].
Similarly, I write u∗

1(v) for player 1’s maxmin payoff given continuation value
function v : R+ → [0�1]. This is well defined because u∗

1(γ) = mint≤T e
−rtγ(t)

by Lemma 3, T depends on γ only through v (by Lemma 1), and it can be eas-
ily verified that mint≤T e

−rtγ(t)= mint≤T e
−rt(1 − v(t)) (and thus depends on γ

only through v). A similar argument, which I omit, implies that one may write
u

∗�gn
1 (vgn) for player 1’s maxmin payoff given continuation value function vgn in

discrete-time bargaining game gn.
I now establish two lemmas, from which Proposition 6 follows. Their proofs

require some additional notation. Let Σg
i be the set of player i’s strategies in

gcts with the property that player i’s demand only changes at times t ∈ I
g
i , player

i only accepts player j’s offer at times t ∈ I
g
j , and player i’s action at time t only

depends on past play at times τ ∈ I
g
i ∪ I

g
j . One can equivalently view Σ

g
i as

player i’s strategy set in g itself. Thus, any belief π2 in g may also be viewed as
a belief in gcts (with supp(π2)⊆ Σ

g
i ).

6The reason I did not use the game gcts in Sections 3 and 4 is that it is difficult to interpret the
assumption that player i can accept the demand lim infτ↓t uj(τ) at time t, since the demand uj(τ)
has not yet been made at time t for all τ > t. Thus, I view the game gcts as a technical construct
for analyzing the limit of discrete-time games and not as an appealing model of continuous-time
bargaining in its own right.
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LEMMA 6: For any sequence of discrete-time bargaining games converging to
continuous time, {gn}, there exists a sequence of postures {γgn′} with γgn′ a posture
in gn and limn→∞ u

∗�gn
1 (γgn′) ≥ u∗

1.

PROOF: Let γgn′ be given by γgn′(t) = ( n
n+1)γ

∗(max{τ ≤ t :τ ∈ I
gn
1 }) for all

t ∈ R+, with the convention that max{τ ≤ t :τ ∈ I
gn
1 } ≡ 0 if the set {τ ≤ t :τ ∈

I
gn
1 } is empty. I first claim that limn→∞ u∗

1(γ
gn′) ≥ u∗

1.7 To show this, I first
establish that T̃ (γgn′) ≤ min{τ > T 1 :τ ∈ I

gn
1 } for all n, where T 1 is defined

as in the proof of Theorem 1. Since γ∗ (and thus γgn′) are nondecreasing,
supτ≥t e

−r(τ−t)(1 − γgn′(τ)) = 1 − γgn′(t). Therefore, by Lemma 1, T̃ (γgn′) sat-
isfies

exp

(
−

∫ T̃ (γgn ′)

0

r

(
n+ 1
n

− γ∗(max{τ ≤ t :τ ∈ I
gn
1 })

)
γ∗(max{τ ≤ t :τ ∈ I

gn
1 }) dt

)
(S1)

×
∏

t∈Ign1 ∩[0�T̃ (γgn ′))

γ∗(max{τ < t :τ ∈ I
gn
1 })

γ∗(t)
≥ ε�

Now

exp

(
−

∫ T̃ (γgn ′)

0

r

(
n+ 1
n

− γ∗(max{τ ≤ t :τ ∈ I
gn
1 })

)
γ∗(max{τ ≤ t :τ ∈ I

gn
1 }) dt

)
(S2)

×
∏

t∈Ign1 ∩[0�T̃ (γgn ′))

γ∗(max{τ < t :τ ∈ I
gn
1 })

γ∗(t)

≤ exp
(

−
∫ T̃ (γgn ′)

0

r(1 − γ∗(t))
γ∗(t)

dt

)
γ∗(0)

γ∗(max{τ < T̃ (γgn′) :τ ∈ I
gn
1 })

≤ exp
(

−
∫ max{τ<T̃ (γgn ′):τ∈Ign1 }

0

r(1 − γ∗(t))+ γ∗′(t)
γ∗(t)

dt

)
�

Observe that if T̃ (γgn′) > min{τ > T 1 :τ ∈ I
gn
1 }, then max{τ < T̃ (γgn′) :τ ∈

I
gn
1 } > T 1 and, therefore, (S2) is less than ε, which contradicts (S1). Hence,
T̃ (γgn′) ≤ min{τ > T 1 :τ ∈ I

gn
1 } for all n. In addition, γgn′(t) is nondecreasing

and γgn′(t) < 1 for all t, which implies that T(γgn′) = T̃ (γgn′). Therefore, by
Lemma 3, u∗

1(γ
gn′) = mint≤T̃ (γgn ′) e

−rtγgn′(t). Since T̃ (γgn′) ≤ min{τ > T 1 :τ ∈

7Theorem 1 implies that limn→∞ u∗
1(γ

gn ′) ≤ u∗
1, so this inequality must hold with equality. But

only the inequality is needed for the proof.
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I
gn
1 } for all n and {gn} converges to continuous time, limn→∞ T̃ (γgn′) ≤ T 1. In

addition, limn→∞ supt∈R+ |γgn′(t)− γ∗(t)| = 0, so it follows that

lim
n→∞

u∗
1

(
γgn′) = lim

n→∞
min

t≤T̃ (γgn ′)
e−rtγgn′(t)

≥ lim
n→∞

min
t≤T̃ (γgn ′)

e−rtγ∗(t)≥ min
t≤T 1

e−rtγ∗(t)= u∗
1�

Next, I claim that u∗�gn
1 (γgn) ≥ u∗

1(γ
gn) for any posture γgn in discrete-time

bargaining game gn. To see this, note that if supp(π2)⊆ Σ
gn
1 and σ2 ∈ Σ

∗�gn
2 (π2),

then σ2 ∈ Σ∗
2(π2) as well (i.e., there is no benefit to responding to a strategy

in Δ(Σ
gn
1 ) with a strategy outside of Σgn

2 ). Therefore, if π1 ∈ Π
γgn �gn
1 (i.e., if π1

is consistent with knowledge of rationality in gn), then π1 ∈ Π
γgn �gcts

1 ; that is,
Π

γgn �gn
1 ⊆ Π

γgn �gcts

1 . Now

u
∗�gn
1

(
γgn

) = sup
σ1∈Σgn

1

inf
π1∈Πγgn �gn

1

u1(σ1�π1)

≥ sup
σ1∈Σgn

1

inf
π1∈Πγgn �gcts

1

u1(σ1�π1)

= u1

(
γgn�σγgn

)
= u∗

1

(
γgn

)
�

where σγgn is as in Definition 5, and the second line follows because
Π

γgn �gn
1 ⊆ Π

γgn �gcts

1 ; the third line follows because u1(γ
gn�σγgn ) =

sup
σ1∈Σgcts

1
inf

π1∈Πγgn �gcts
1

u1(σ1�π1) by Lemma 3, and γgn ∈ Σ
gn
1 ⊆ Σ

gcts

1 ; and the

fourth line follows by Lemma 3.
Combining the above claims, it follows that limn→∞ u

∗�gn
1 (γgn′) ≥

limn→∞ u∗
1(γ

gn′)≥ u∗
1. Q.E.D.

LEMMA 7: For any sequence of discrete-time bargaining games converging to
continuous time {gn} and any sequence of functions {vgn} such that vgn is a con-
tinuation value function in gn and limn→∞ vgn(t) exists for all t ∈ R+, it follows
that limn→∞ u

∗�gn
1 (vgn) exists and equals limn→∞ u∗

1(v
gn).

PROOF: Fix a sequence of continuation value functions {vgn} (with vgn a con-
tinuation value function in discrete-time game gn) converging pointwise to
some function v : R+ → [0�1]. I have already shown that u∗�gn

1 (γgn) ≥ u∗
1(γ

gn)
for any posture γgn in game gn or, equivalently, u∗�gn

1 (vgn) ≥ u∗
1(v

gn). This im-
mediately implies that limn→∞ u

∗�gn
1 (vgn)≥ lim supn→∞ u∗

1(v
gn) for every conver-

gent subsequence of {u∗�gn
1 (vgn)}. Hence, I must show that limn→∞ u

∗�gn
1 (vgn) ≤

lim infn→∞ u∗
1(v

gn) for every convergent subsequence of {u∗�gn
1 (vgn)}. I establish

this inequality by assuming that there exists η> 0 such that limn→∞ u
∗�gn
1 (vgn) >
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lim infn→∞ u∗
1(v

gn) + η for some convergent subsequence of {u∗�gn
1 (vgn)} and

then deriving a contradiction. The approach is first to define analogs of the
continuous-time γ-offsetting belief and the time T̃ (defined in Section 3.2) for
game gn, denoted πn

2 ∈ Σ
gn
2 and T̃ n ∈ R+, and then show that T̃ n → T̃ .

I must introduce some additional notation before defining the belief πn
2 . Let

tnext
gn

(i) = min{τ > t :τ ∈ I
gn
i } be the time of player i’s next demand at t. Given

continuation value function vgn and any corresponding posture γgn , let γ̃gn
n

be defined as follows: First, γ̃gn
n demands γ̃gn

n
(ht) = γgn(ht) for all t ∈ I

gn
1 .

Second, γ̃gn
n accepts player 2’s demand at time t ∈ I

gn
2 with probability

p̂n(t)≡ min
{
pn(t)

χn(t)
�1

}
�

where

pn(t)≡ max
τ<t:

τ∈Ign1 �τnext
gn (2)=t

er(t−τ)vgn(τ)− vgn(t)

1 − vgn(t)

if {τ < t :τ ∈ I
gn
1 � τnext

gn
(2) = t} is nonempty and vgn(τ) < 1 for all time τ in this

set, and pn(t)≡ 0 otherwise; and

χn(t)≡ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

τ<t:τ∈Ign2

(1 −pn(τ))− ε

∏
τ<t:τ∈Ign2

(1 −pn(τ))
�0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ �

Let T̃ n be the supremum over times t at which χn(tnext
gn

(2))p̂n(tnext
gn

(2)) =
pn(tnext

gn
(2)) and let

Tn ≡ sup arg max
t≥T̃ n:
t∈Ign1

e−rtvgn(t)�

By an argument similar to the proof of Lemma 2, if γgn(t) < η for some
t ≤ Tn, then there exists a belief π2 ∈ Δ(Σ

gn
1 ) and a strategy σ2 ∈ Σ

gn
2 such that

π2(γ
gn) ≥ ε, σ2 ∈ Σ

∗�gn
2 (π2), and the demand γgn(t) is accepted under strategy

profile (γgn�σ2). In particular, ugn
1 (γgn�σ2) < η. Thus, by the hypothesis that

limn→∞ u
∗�gn
1 (vgn) > lim infn→∞ u∗

1(v
gn) + η, there must exist N > 0 such that

γgn(t) ≥ η for all t ≤ Tn and all n >N , and hence vgn(t) ≤ 1 −η for all t ≤ Tn

and all n >N .
Let πn

2 assign probability ε to γgn and probability 1 − ε to γ̃gn
n, and fix

σn
2 ∈ Σ

∗�gn
2 (πn

2 ) with the property that σn
2 always demands 1 and rejects player

1’s demand at any history at which player 1 has deviated from γgn (which is
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possible because πn
2 assigns probability 0 to such histories, except for terminal

histories), as well as at any history at which player 2 is indifferent between ac-
cepting and rejecting player 1’s demand under belief πn

2 . Note that γgn is a best
response to σn

2 in gn. This implies that u∗�gn
1 (γgn)≤ u

gn
1 (γgn�σn

2 ) for all n. Thus,
to show that limn→∞ u

∗�gn
1 (vgn) ≤ lim infn→∞ u∗

1(v
gn)+η (the desired contradic-

tion), it suffices to show that limn→∞ u
gn
1 (γgn�σn

2 )≤ lim infn→∞ u∗
1(v

gn)+η.
Observe that pn(t) satisfies

exp
(−r(t − τ)

)(
pn(t)(1)+ (

1 −pn(t)
)
vgn(t)

) ≥ vgn(τ)

for all τ ≤ t such that τ ∈ I
gn
1 and τnext

gn
(2) = t. Hence, it is optimal for player 2

to reject player 1’s demand γ at any time τ at which χn(τnext
gn

(2))p̂n(τnext
gn

(2)) =
pn(τnext

gn
(2)) (under belief πn

2 ). Therefore, u
gn
1 (γgn�σn

2 ) ≤ mint≤Tn e−rt(1 −
vgn(t)). Now u∗

1(v
gn) = mint≤T(vgn ) e

−rt(1 − vgn(t)) and limn→∞ T̃ (vgn) = T̃ (v).
Hence, showing that limn→∞ T̃ n = T̃ (v) ≡ T̃ would imply that limn→∞ u

gn
1 (γgn�

σn
2 ) ≤ lim infn→∞ u∗

1(v
gn), yielding the desired contradiction. The remainder of

the proof shows that limn→∞ T̃ n = T̃ .
To see that limn→∞ T̃ n = T̃ , first fix t0 ≤ T̃ and note that for all δ > 0, there

exists N ′ > 0 such that for all t ≤ t0 and all n ≥ N ′, if gn(t) = 2, then min{τ ≤
t :τ ∈ I

gn
1 � τnext

gn
(2)= t} ≥ t−δ (if this set is nonempty). Next, since both e−rtv(t)

and e−rtvgn(t) are nonincreasing (as is easily checked) and vgn(t)→ v(t) for all
t ∈ R+, it follows that for all δ′ > 0, there exists δ > 0 such that t ≤ t0 and
τ ∈ [t − δ� t] implies that |er(τ−t)vgn(τ) − v(t�−1)| < δ′. Since 1 − v(t) ≥ η for
all t ≤ T̃ , combining these observations and letting S be the (countable) set of
discontinuity points of v(t), for all δ′ > 0, there exists N ′′ such that if t = snext

gn
(2)

for some s ∈ S ∩ [0� t0] and n ≥N ′′, then |pn(t)− v(t�−1)−v(t)

1−v(t)
|< δ′.8 Hence,

lim
n→∞

∏
s∈S∩[0�t0]

(
1 −pn

(
snext
gn

(2)
)) =

∏
s∈S∩[0�t0]

(
1 −p(s)

)
(S3)

for all t0 ≤ T̃ , where p is as in Section 3.2.
Finally, I establish that whenever v is continuous on an interval [t0� t∞] with

t∞ ≤ T̃ , then

lim
n→∞

∏
t∈Ign2 ∩[t0�t∞]

(
1 −pn(t)

) = exp
(

−
∫ t∞

t0

rv(t)− v′(t)
1 − v(t)

dt

)
(S4)

= exp
(

−
∫ t∞

t0

λ(t)dt

)
�

8S is countable because e−rtv(t) is nonincreasing, and monotone functions have at most count-
ably many discontinuities. Unlike in Section 3, S need not be a subset of N here.
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where λ is as in Section 3.2. I will prove this fact by showing that the limit
as n → ∞ of a first-order approximation of the logarithm of

∏
t∈Ign2 ∩[t0�t∞](1 −

pn(t)) equals − ∫ t∞
t0

rv(t)−v′(t)
1−v(t)

.
Let {t1�gn� t2�gn� � � � � tK(n)�gn} = {t ∈ [t0� t∞] :pn(t) > 0}, with tk�gn < tk+1�gn for

all k ∈ {1� � � � �K(n)− 1} and all n ∈ N, and let t0�gn = max{τ :τ ∈ I
gn
1 � τnext

gn
(2) =

t1�gn}. Note that K(n) is finite because I
gn
2 ∩ [t0� t∞] is finite, and that, in addi-

tion, tnext
k�gn

(1) < tk+1�gn for all k (where tnext
k�gn

(1) ≡ tnext
k�gn�gn

(1) to avoid redundant
notation). Furthermore, since e−rτvgn(τ) is nonincreasing, then

tnext
k�gn

(1) ∈ arg max
τ<tk+1�gn :

τ∈Ign1 �τnext
gn (2)=tk+1�gn

er(tk+1�gn−τ)vgn(τ)

for all k ∈ {0�1� � � � �K(n)− 1}. Therefore,

K(n)∏
k=1

(
1 −pn(tk�gn)

) =
K(n)∏
k=1

min
τ<tk�gn :

τ∈Ign1 �τnext
gn (2)=tk�gn

1 − er(tk�gn−τ)vgn(τ)

1 − vgn(tk�gn)
(S5)

=
K(n)∏
k=1

min
τ<tk�gn :

τ∈Ign1 �τnext
gn (2)=tk�gn

1 − er(tk�gn−τ)vgn(τ)

1 − e−r(tnext
k�gn

(1)−tk)vgn(tnext
k�gn

(1))

=
(

K(n)−1∏
k=1

1 − er(tk+1�gn−tnext
k�gn

(1))vgn(tnext
k�gn

(1))

1 − e−r(tnext
k�gn

(1)−tk�gn )vgn(tnext
k�gn

(1))

)

× 1 − er(t1�gn−tnext
0�gn

(1))vgn(tnext
0�gn(1))

1 − e−r(tnext
K(n)�gn

(1)−tK(n)�gn )vgn(tnext
K(n)�gn

(1))
�

Next, taking a first-order Taylor approximation of log(1 − erxvgn(t)) at x = 0
yields

log
(
1 − erxvgn(t)

) = log
(
1 − vgn(t)

) − rxvgn(t)

1 − vgn(t)
+O

(
x2

)
�

Therefore, a first-order approximation of the logarithm of (S5) equals(
K(n)−1∑
k=1

−(tk+1�gn − tk�gn)
rvgn(tnext

k�gn
(1))

1 − vgn(tnext
k�gn

(1))

)

+ log
(
1 − er(t1�gn−tnext

0�gn
(1))vgn

(
tnext
0�gn(1)

))
− log

(
1 − e−r(tnext

K(n)�gn
(1)−tK(n)�gn )vgn

(
tnext
K(n)�gn

(1)
))
�
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I now show that

lim
n→∞

K(n)−1∑
k=1

−(tk+1�gn − tk�gn)
rvgn(tnext

k�gn
(1))

1 − vgn(tnext
k�gn

(1))
= −

∫ t∞

t0

rv(t)

1 − v(t)
dt(S6)

and

lim
n→∞

(
log

(
1 − er(t1�gn−tnext

0�gn
(1))vgn

(
tnext
0�gn(1)

))
(S7)

− log
(
1 − e−r(tnext

K(n)�gn
(1)−tK(n)�gn )vgn

(
tnext
K(n)�gn

(1)
)))

=
∫ t∞

t0

v′(t)
1 − v(t)

dt�

which completes the proof of (S4). Equation (S7) is immediate, because, since
v is continuous on [t0� t∞], both the left- and right-hand sides equal

log
(
1 − v(t0)

) − log
(
1 − v(t∞)

)
�

To establish (S6), let

f n(t)≡ exp
(

−r

(
1 +η

η

)
t

)
rvgn(t)

1 − vgn(t)

and let

f (t)≡ exp
(

−r

(
1 +η

η

)
t

)
rv(t)

1 − v(t)
�

For all n > N , it can be verified that both f n(t) and f (t) are nonincreasing
on the interval [t0� t∞], using the facts that e−rtvgn(t) and e−rtv(t) are nonin-
creasing, and that vgn(t) ≤ 1 − η for all n > N and t ≤ t∞ ≤ T̃ . Fix ζ > 0 and
m ∈ N. Because vgn(t) → v(t) for all t ∈ R+, there exists N ′′′ ≥ N such that for
all n >N ′′′, |f n(t)− f (t)|< ζ for all t in the set{

t0�
(m− 1)t0 + t∞

m
�
(m− 2)t0 + 2t∞

m
� � � � � t∞

}
�

Since both f n and f are nonincreasing on [t0� t∞], this implies that

∣∣f n(t)− f (t)
∣∣ < ζ + max

k∈{1�����K(n)−1}

(
f

(
(m− k)t0 + kt∞

m

)
− f

(
(m− k− 1)t0 + (k+ 1)t∞

m

))
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for all t ∈ [t0� t∞]. Since f is continuous on [t0� t∞], taking m → ∞ im-
plies that |f n(t) − f (t)| < 2ζ for all t ∈ [t0� t∞]. Therefore, | rvgn (t)

1−vgn (t)
− rv(t)

1−v(t)
| ≤

2ζ exp(r( 1+η

η
)t∞) for all t ∈ [t0� t∞]. Hence,

lim
n→∞

K(n)−1∑
k=1

−(tk+1�gn − tk�gn)
rvgn(tnext

k�gn
(1))

1 − vgn(tnext
k�gn

(1))

= lim
n→∞

K(n)−1∑
k=1

−(tk+1�gn − tk�gn)
rv(tnext

k�gn
(1))

1 − v(tnext
k�gn

(1))

= lim
n→∞

K(n)−1∑
k=1

−(tk+1�gn − tk�gn)
rv(tk�gn)

1 − v(tk�gn)

= −
∫ t∞

t0

rv(t)

1 − v(t)
dt�

where the first equality follows because
∑K(n)−1

k=1 (tk+1�gn − tk�gn) ≤ t∞ − t0 for all
n ∈ N, the second equality follows because tnext

k�gn
(1) ∈ [tk�gn� tk+1�gn] and v is con-

tinuous on [t0� t∞], and the third equality follows by definition of the (Riemann)
integral.

Combining (S3) and (S4), it follows that

lim
n→∞

∏
s∈Ign2 ∩[0�t]

(
1 −pn(s)

) = exp
(

−
∫ t

0
λ(s)ds

) ∏
s∈S∩[0�t]

(
1 −p(s)

)
for all t ≤ T̃ . This implies that limn→∞ T̃ n = T̃ , completing the proof of the
lemma. Q.E.D.

I now complete the proof of Proposition 6.
Let {gn} be a sequence of discrete-time bargaining games converging to

continuous time. Recall that u∗�gn
1 = supγgn u

∗�gn
1 (γgn). Thus, there exists a se-

quence of postures {γgn}, with γgn a posture in gn, such that limn→∞ |u∗�gn
1 −

u
∗�gn
1 (γgn)| = 0. Let {vgn} be the corresponding sequence of continuation value

functions. Because e−rtvgn(t) is nonincreasing and the space of monotone func-
tions from R+ → [0�1] is sequentially compact (by Helly’s selection theorem
or footnote 27), this sequence has a convergent subsequence {vgk} converging
to some v on R+.

I claim that v = v∗. Toward a contradiction, suppose not. Since v∗ is the
unique maxmin continuation value function in gcts, there exists η> 0 such that
u∗

1 > limk→∞ u∗
1(v

gk)+η. By Lemma 7, limk→∞ u
∗�gk
1 (vgk)= limk→∞ u∗

1(v
gk). Fi-

nally, by Lemma 6, there exists an alternative sequence of postures {γgk′} such
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that limk→∞ u
∗�gk
1 (γgk′) ≥ u∗

1. Combining these observations implies that there
exists K > 0 such that for all k≥K,

u
∗�gk
1

(
γgk′)> u∗

1 −η/3 > u∗
1

(
vgk

) + 2η/3 > u
∗�gk
1

(
vgk

) +η/3�

which contradicts the fact that limk→∞ |u∗�gk
1 − u

∗�gk
1 (γgk)| = 0. Therefore,

v = v∗. In addition, since this argument applies to any convergent subse-
quence of {vgn} and since every subsequence of {vgn} has a convergent sub-
subsequence, this implies that vgn → v∗ pointwise.

A similar contradiction argument shows that limk→∞ u
∗�gk
1 (vgk) = u∗

1 for any
convergent subsequence {vgk} ⊆ {vgn}. Since limk→∞ |u∗�gk

1 − u
∗�gk
1 (γgk)| = 0, it

follows that u∗�gk
1 → u∗

1, and since this argument applies to any convergent sub-
sequence of {vgn}, this implies that u∗�gn

1 → u∗
1. Q.E.D.
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