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There are results in the paper that were not fully discussed or fully proven. This
Supplementary Material contains material that was omitted or mentioned. We organize
this appendix in the same way as the sections in the main paper.

APPENDIX A: SUPPLEMENTARY MATERIAL FOR SECTION 5
A.1. Proof of Lemma 1
Observe first that

E[V|S, H'] — E[V|H']
L (PUSIV) (Pr(SIVE)
_WZ< PI(S) 1)”%( PI(S) 1)'

The right hand side of the above equality has the same sign as
d, (Pr(S|V2) DD Pr(S|V,->q;)
J J

+2q;<Pr<S|V3> > g - ZPr(SW,-)q;)

J J
= g5 (Pr(SIV2) — Pr(SIVD)) + g’ (Pr(SIV2) — Pr(S|VA3))
+245(q; (Pr(SIV3) — Pr(SIV) + gy (Pr(SIV3) — Pr(S[12)))).

Q.E.D.

A.2. Proof of Lemma 2

The proof follows by Lemma 1: By the symmetry assumption on the priors
(¢} = 43), equation (2) is negative (positive) at ¢ = 1 if and only if (Pr(S|V3) —
Pr(S1V1))(g5+2q;)q; is less (greater) than 0; the latter is equivalent to S having
a negative (positive) bias. Q.E.D.

A.3. Proof of Lemma 3

The claim follows from E[V |H'1—E[V]1=V[(1—¢q| —q})+2¢5]1-V = V(g5 —
q1)- Q.E.D.
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A.4. Proof of Lemma 9

The proof is analogous to the derivation in the proof of Lemma 1. To show
the lemma note that

E[V|S, H'] —askt=Vq2<Pr(S|V2) - B )

Pr(S) Pr(buy|H?)

+2V%(PV(SIVa) Bs )

Pr(S)  Pr(buy|H")

The right hand side of the above expression has the same sign as

612<PF(S|V2) D Bigi—B2) Pr(S|V,->q;>
J )

+2q; (Pr(S|V3>ZB,-qj — Bs ZPr(SIV,-)q;)
J J

= q192(B1 Pr(SIV2) — B2 Pr(S|11))
+ q2q3(B3 Pr(S|V2) — B2 Pr(S|V3))
+2q5(q:1(B1 Pr(SIV3) — B3 Pr(S[1))
+ q2(B2 Pr(S|V3) — B3 Pr(S112))). Q.E.D.

A.5. Necessity of the Bounds on Noise Trading

In the paper, we claimed that the bounds on noise trading are also necessary
for some cases. The following proposition outlines these scenarios.

PROPOSITION 3a: (i) Suppose that S buy herds and that there is at most one
U-shaped signal. Then p < min{u', u},}, where u' is defined in Lemma 8 and
W, is defined in (12).

(ii) Suppose that S acts as a buy contrarian and there is at most one hill-shaped
signal. Then p < min{u’, w3 }, where u'is defined in Lemma 8 and W}, is defined
in (13).

PROOF: We shall prove (i); the proof of (ii) is analogous. Assume S buy
herds. Then S sells initially. It follows from Lemma 5 that pu < pu'.

To show that u < w},, first note that by Proposition 2, S must be nU-shaped.
Next consider the different possibilities separately.

Case A—There is no signal S’ # S such that Pr(S'|V3) > Pr(§’'|V,). Then it
must be that u,(S") =1 for all " and, therefore, it must be that u < u;, =1.

Case B—There is a signal S" # S such that Pr(S'|V3) > Pr(§'|V,). Since S is
U-shaped, it must be that Pr(S|V3) > Pr(S|V,) and Pr(S”|V;) < Pr(S"|V,) for
S”# 8,8 This implies that w,(S”) =1 and hence u,(S") = uj,.
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Now there are two cases. First, if u,(S") also equals 1, then clearly u;, =1
and the claim is trivially true.

Second, assume that u,(S") = u;, < 1. Since S buy herds at H’, to show that
w < min{u’, uy,}, it suffices to show that " also buys whenever S buys (the
alternative is that S’ does not buy so that u,(S") =1 > u;,). When §’ buys,
E[V|S’, H'] — ask’ > 0. Suppose S’ does not buy. As the sign of E[V|S’, H'] —
ask’ is given by equation (11), it must then hold that

(S1) q1921B1 Pr(S'[V2) — B2 Pr(S V)1 + q2qs[ B2 Pr(S'|V3) — B3 Pr(S'|V2)]
+2q1q31 B, Pr(S'|V3) — B3 Pr(S'[V1)]1 < 0.

Also, since there is at most one U-shaped signal, it must be that
(52) Pr(S'(V3) > Pr(S'|V2) > Pr(S'|V1).

By Proposition 1, this implies that S" does not sell. By supposition, S’ does not
buy and, therefore, S is the only buyer at H* ($” is selling). Since § is nU-
shaped, we must also have B} > B% > B5. This, together with (S2), implies that
the first and the third terms in (S1) are positive. Furthermore, the second term
has the same sign as

(S3) y(Pr(S'|V3) — Pr(S'[V2)) + w(Pr(S[V2) Pr(S'|V3) — Pr(S|V3) Pr(S'[12)).

By (S2), the first term in the last expression is positive; furthermore, since §
is nU, we have m? = Pr(S|V3) > Pr(S|V3). Since u,(S’) < 1, we must have that
M?(S') < 1is negative. But —uM?(S’) is the second term in the last expression
and it is thus positive. Consequently, (S3) is positive. Therefore, the second
term in (S1) must also be positive. Therefore, S’ must be buying at any H' at
which § buys and thus uj, < 1 is unique. Q.E.D.

APPENDIX B: SUPPLEMENTARY MATERIAL FOR SECTION 6

PROOF OF LEMMA 5: (i) By standard results on MLRP and stochastic domi-
nance, it must be that E[V'|S,;] < E[V/|S,]. By a similar reasoning, at any history
H', E[V|S,, H'] < E[V|S),, H'] if the following MLRP condition holds at H":
for any S, < S, and any V], <V},

Pr(SulVi, H) _ Pr(SxlVi, HY)

S4 .
e Y O G0

To show this, note first that Pr(V|H*, S) = Pr(V[S)Pr(H!|V')/ Yoy Pr(V'[S) x
Pr(H'|V"). Then we have by the following manipulations that the MLRP con-
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s PHSEIVE) PRSIV . .. .
dition FEtms > FEtns implies the MLRP condition (S4) atany H":

Pr(SilVD) Pr(SulVi) > Pr(Si[Vy) Pr(S, V1)
< Pr(ViIS) Pr(VilSy) > Pr(VylSp) Pr(VISk)
Pr(VilS) Pr(H' V) Pr(V,lS,) Pr(H'[V})
> Pr(V|S)Pr(H' V) Y Pr(V[S,) Pr(H'|V)
\4 Y

Pr(ValS)Pr(H' Vi) Pr(VilSy) Pr(H' V)
D Pr(VIS)Pr(H' V) Y Pr(V|S,) Pr(H'|V)
\4 \4

< Pr(VIH', S)Pr(V,H', i) > Pr(Vy | H', S) Pr(V|H', S,,).

(ii) Suppose contrary to the claim, that an informed trader with signal S;
does not sell at some history H'. Then by part (i), no informed trader sells
at H'. This implies that at history H', bid’ = E[}|H']. But since, by part (i),
E[V|H'] exceeds E[V|S,, H'], we have bid’ > E[}V|S;, H']. Hence, an informed
trader with signal S, sells at H'. This is a contradiction.

The proof that informed traders with signal S; always buy is analogous.

(iii) First we show that Pr(S,|V]) > Pr(S;|V3). Suppose otherwise; thus
Pr(S:|V1) < Pr(8:|V3). Then the two MLRP conditions Pr(S;|V}) Pr(S;|V3) >
Pr(S:1V1) Pr(Si[V4) and Pr(SyV;) Pr(S:|V5) > Pr(Ss|V;) Pr(Si|V3) imply, respec-
tively, that Pr(S;|V1) < Pr(S,|V3) and Pr(Ss|V1) < Pr(Ss|V3). Hence, since
Pr(S,[V1) < Pr(S|V5), we have Yo Pr(S;[V3) > 3o Pr(Si|V1). But this con-
tradicts 37 | Pr(S;|V;) =1 for every j.

The same argument can be applied to show that Pr(S;|V}) > Pr($;|V2)
and Pr($;|V3) > Pr(S1|V3), and also in the reverse direction for Pr(S;|V]) <
Pr(S:[V2) < Pr(S;(V3).

(iv) Consider any arbitrary history H and any two values V; < V. By (ii),
type S; always sells and type S; always buys. There are thus two cases for a
buy at H': either only S; types buy or S, and S; types buy. In the former case,
Bi = v+ nPr(S;|V;). As §; is strictly increasing, there exits & > 0 such that
B, — B; > €. In the latter case,

B — Bl = w(Pr(S3|V3) + Pr($|V3) — Pr(Ss|V)) — Pr(S:| 1))
= p(1=Pr(Si V) — (1 = Pr($i[VD))
= w(Pr(811V)) — Pr(S:[V4)).
Since S, is strictly decreasing, there exists an ¢ > 0 such that 8] — B8] > &.

By a similar reasoning it can be shown that there must exist &£ > 0 so that
ol — o) > e O.E.D.
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APPENDIX C: SUPPLEMENTARY MATERIAL FOR SECTION 8

PROPOSITION 6a: Assume MLRP. Consider any finite history H" = (a', ...,
a’~") at which the priors in the two markets coincide: q; = q; , fori=1,2, 3. Sup-
pose that H" is followed by s > 0 sales; denote this historyby H' = (a', ..., a""™").
If o1/03 > 01,/ 03,0, then E[V|H'] < E,[V|H'].

PROOF: First, note that, by (38) in the proof of Proposition 6, we have
(85) 030, — 03,00 = —p?pi; + wy(Pr(S|V2) — Pr(S|V3)) <0,
0,010 — 03,01 > 0301, — 03,071.

Also, since for herding, we require E[V|S, H'] < bid', it follows from (37)
that

qéq}[crzm,o — 02,,01] + C];(];[Oho'z,o — 03,,07]
+ 2q§q}[0301,o — 03,,01] > 0.
But then by (S5), we have
(S6) 0201,, — 02,001 > 0.

Since E[V'|H'] —E,[V|H'] has the same sign as the expression in (43), by simple
expansion of this expression we have that if b = 0, then E[V |H'] —E,[VV'|H'] has
the same sign as

s—1
—1—
qéq{{(azm,o — 02,,01) 2(0'20'1,0)s T(02,00'1)7}

7=0

s—1
+ q;q;{[(%o'z,a) — (03,002)] Z(azoz,o)“l-%ag,oaz)*}

=0
s—1
+ 2439 { (0301,0 — 03,,01) 2(0'30'1,0)s17(0'30'1)7}~
7=0

Rearranging, E[V |H'] — E,[VV|H'] has the same sign as

s—1
2(0'20'1,0)3_1_7(02,00'1)7
=0
(87) e [0201,0 — 02,001]

1
2(03(72,0)5 "(03,002)"
=0

+ qq (0302, — 03,,07]
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s—1
2(030'1,0)S_1_T(0'30'1)7
ror =0

+2q30, 03071, — 03,,01].

11—
Z((Ta(fz,o)s "(03,002)"
=0

Further manipulations show that
s
g
— >
( 03 )

s—1
& Y 0 e, (0103) ((0103,) T = (0301,) ) > 0.
=0

s—1

11—
2(0-20-1,0)3 7(0-2,00-1)7
=0

s—1

-
2(0'30'2,0)3 "(03,002)"
7=0

Also, by assumption we have Z—; > % Therefore, we must have
3,0

© ()

Similar manipulations show that

s—1
2(0'20'1,0)57177(0'2,00'1)7
7=0

s—1 )

11—
2(03(72,0)3 (03,,02)"
7=0

s—1
X:((T3(T1,o)s_1_7(<73<71)T
7=0

s—1

11—
Z(Usffz,o)s "(03,002)"
7=0

s—1
& Y 005, (0102) ((0201,0) 7T = (010,) 7 7) > 0.
=0
This together with (S6), implies that

s—1
2(0'30'1,0)"'7177(0'30'1)T
7=0

(S9) (%) <= .
2
2(0'30'2,0)5_1_7(0'3,00'2)T

=0
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Also, since E[V|S, H'] — bid" > 0,

(S10) qqu(a ) (02010 — 02,011 + G545[ 0302, — 03,,07]
3

+2q3q1< ) [0-30-10_0-3 00-1] <O
(%))

Then it follows from (S10), together with 2 > 22/ (S6), (S8), and (S9), that

the expression in (S7) is negative. Thus E[V|H ! ] - E o[V IH'] <0 and the result
follows. Q.E.D.

APPENDIX D: SUPPLEMENTARY MATERIAL FOR SECTION 9

We prove Lemma 7 and Theorem 3 of Section 9 in a more general setup
than that described in the main body of the paper. This more general setup is
of independent interest, as it allows for uncertainties other than those relating
to the value of the asset.

Specifically, suppose that there are N > 3 states, where each state represents
all exogenous variables that might influence the prices, and assume that there
are N signals. Without any loss of generality, order the states such that 1} <
V, <--- < Vy, where V; denotes the value of the asset in state j=1,..., N.
Note that here, in contrast to the model in the text, we allow for the possibility
that the asset has the same values in different states to reflect the idea that
there may be factors, other than the value of the asset, that may influence
prices. In particular, we assume that the asset can have at most I < N different
values. We denote the (public) probability of state j at date ¢ by g; and denote
the likelihood of signal S in state j by Pr(S|j).

We also restrict ourselves to a symmetric structure with respect to the values
and the initial beliefs on the distribution of values of the asset, as in the three
state model of the paper. Formally, we assume that the values are distributed
on a symmetrical grid; thus V; € {0,V,...,(I = 1)V} forall j=1,...,N and
V > 0. Further, for any r =1, ..., 1, let C, := {j|V; = (r — 1)V} be the set of
states with valuations (r — 1)V and let ¢, := |C,| be the number of states with
valuation (r—1)V. Assume (i) gj = qy,,_; forevery j < N/2 and (i) ¢, = ¢/ 11,
for every r <1/2.

We say that signal S is negatively biased if for all j < 5, we have Pr(S|j) <
Pr(SIN +1—).

Notice that when ¢, =1 for all r (hence I = N), this setup is identical to the
one in the main text.

We first prove that any informed type buys initially if it has a negative bias
and if there are enough noise traders.

LEMMAT: Let S be negatively biased. Then E[V'|S] < E[V']. Hence, there exists
i € (0, 1] such that S sells at the initial history if u < u'.
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PROOF: Without loss of generality, we present the proof only for the case
when the number of value classes [ is even so that I = 2k for some inte-
ger k. Then by the symmetry of the prior, E[}']=V(2k —1)/2. Also, E[V|S] =
1% Zfil(r — 1) Pr(r|S), where Pr(r|S) = Z,-Ec, Pr(j|S). Thus, we need to show

2k 1

(S11) Z(r—l)Pr(r|S)<2k2_ .

r=1

Next, since (a) Pr(S|j) > Pr(SIN + 1 — j), (b) ¢j = qy,,_;» and (¢) ¢, = ¢ri14s
we have Pr(r|S) > Pr(2k + 1 — r|S) for all r < (2k + 1)/2. Using this and
ZL Pr(r|S) =1, we have Zle Pr(rlS) > 1> S Pr(r|S). Therefore,

r=k+1

2k
(S12) (k=14 ) Pr(r|S) < (k—1)+ % = ZkT_l

r=k+1

Then by (S11), it is sufficient to show that
k 2k 2k
(S13) Y r=DPr(rS)+ > (r=DPr(rlS) < (k= 1)+ >_ Pr(r$).

r=1 r=k+1 r=k+1

But the second term on the left hand side of (S13) satisfies

2k
> (r=1)Pr(r$)

r=k+1
2k 2k
=Y Pr(riS)+ Y (r=2)Pr(r|$)
r=k+1 r=k+1

2k
< > Pr(r|S) + (k— D Pr(k +1|S)

r=k+1

+ [(k — 1) Pr(k +2|S) + Pr(k — 115)]

[k — 1) Pr(k +3|S) +2Pr(k — 2|$)] + - -
+ [(k —1)Pr(2k|S) + (k — 1) Pr(1|$)]

2k 2k k
= D Pr(rS)+ (k—1) D Pr(riS)+ Y _(k —r)Pr(r|$).
r=1

r=k+1 r=k+1
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Therefore, the left hand side of (S13) is less than

k 2k
D r=DPrrIS) + Y Pr(r|S)

r=1 r=k+1

2k k
+(k=1) Y Pr(rIS)+ > _(k —r)Pr(r|S)

r=k+1 r=1
2k

=(k—1+ > PrrlS).

r=k+1

This demonstrates that (S13) holds. Hence we must have that E[}'|S] < E[V].
To complete the proof of the lemma we also need to show that there exists
w' € (0,1] such that E[V|S] < bid" if u < u'. As in Lemma 5, this follows im-
mediately from E[}/|S] < E[V/] and from lim,,_, E[/'] —bid" = 0. This completes
the proof of Lemma I. Q.E.D.

Next, we turn to the switching of behavior. In our main characterization re-
sults for the three state—three signal case to obtain switching by a herding type,
we assumed that the signal is more likely when the value is highest than when
the asset has the middle value; for the switching by a contrarian type we as-
sumed that the signal is more likely when the value is lowest than when the
asset has the middle value. The analogues of those conditions to the current
setting with N states and I liquidation values are

(S14)  Pr(S|j) > Pr(S|i) foralljeC,ieCry,
(S15) Pr(S|j) < Pr(S]i) forallje Cy,ie(C,.

In the three state case, a negatively biased signal that satisfies (S14) is nU-
shaped and a negatively biased signal that satisfies (S15) is nhill-shaped.

Next we show that if the probability of informed trading is sufficiently
small, then conditions (S14) and (S15) can be used to establish the following
lemma.

LEMMA II: (i) Let S satisfy (S14). Then there exists w;, € (0, 1] such that
BiPr(S|j) — B;.Pr(S|i) >0forallie C;_y,jeCy, t,and H'.

(ii) Let S satisfy (S15). Then there exists w;,. € (0, 1] such that B:Pr(S|j) —
,85. Pr(S|i) >0 forallie Cy,je C,, t,and H'.

PROOF: We show (i); the argument for (ii) follows analogously. Fix any j €
C; and i € C;_,. For any date ¢ and history H’, let S* be a set of signal types
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that buy at history H'. Since

B PI(S|j) — B.Pr(Sli) = (v ey Pr(S/|i>> Pr(SIj)

S'est

— (7+ i3 Z PF(S/|])> Pr(S|l)7

Sest

it follows that B! Pr(S|j) — B;Pr(Sli) >0 is equivalent to

(S16)  Pr(S|j) — Pr(S|i) > & <Z Pr(S'|j) Pr(S|i) — > Pr(S'|i) Pr(S|j)>.

S'est S'est

By (S14), the left hand side of (S16) is positive. Also, since there is a finite
number of signals, the expression in parentheses on right hand side of (S16) is
uniformly bounded in ¢. Therefore, there must exist u;, € (0, 1] such that for
any u < u3,, (S16) holds for all t and H'. Q.E.D.

Next, we state our first characterization result in this general setup (it is
equivalent to Lemma 7 when I = N).

LEMMA III: (i) Suppose S is negatively biased and satisfies (S14), and let the
following condition hold:

(S17) ‘?’s > 0 3H"such that q;/q; < eforallj € C;y U Crand
1 ¢ C],l U C[.
Then there exists a j,;, € (0, 1] such that S buy herds if u < wpy,.
(ii) Suppose S is negatively biased and satisfies (S15), and let the following
condition hold:

(S18) Ve > 03H" such that q;/q; < e forall j € C;UCyand i ¢ C, U C,.
Then there exists a . € (0, 1] such that S is a buy contrarian if u < ..

PROOF: We show part (i); part (ii) follows analogously. Assume that u <
pon = min{ul,, uf,}, where ut, and uj, are, respectively, the bounds on the
size of the informed traders given in Lemmas I and II. Since S is negatively
biased and w < u,,, by Lemma I, S sells at the initial history.

Analogously to Lemma 9, by simple calculations, it can be shown that for
any history H,, E[V'|S, H'] — ask’ has the same sign as

(519 Y- V»pf"’?’ (B! Pr(SIj) — BLPr(SIi)),

i<j Iplfl
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where p, = ). . q; is the probability that the valuation is (r — 1)) for all r.
Consider now all terms in (S19) that pertain to both C; and C;_;. These are

CONDID I qq’ = (B PrCSI)) ~ B Pr(SIO.

]EC[ ZECI 1

Since w < u;,, by Lemma II, there exists an n > 0 such that BiPr(S|j) —
,8;. Pr(S|i) > m foralli e C;_y, j € C;. Thus

21)  (20)=7-3 Y = 64 _

jeCy ieC;. 1P1P1 1

Furthermore, note that E[V |H'] > p;_ V(I — 2) + piV({ — 1). Also, by the
symmetries assumed, it must be that E[}] < V(I — 2). Therefore, E[V|H'] —
EVI>pilV—A—p;—pi- )VUI=2)=V> ., q;=VU=2)>.c.0c, , q;- This
together with (S17) and finiteness of the state space imply that there exists a
history H' such that the following two conditions hold:

(S22)  EVIH'> E[V],
$23) Y -V (giprcsi) - B PRSI > — .
1

i<j, -1
i,j¢Cr1UCr

The latter, together with (S21), implies that at such a history (S19)> 0. Thus,
by (S22), type S buy herds at H‘. This completes the proof of
Lemma III. Q.E.D.

Notice that the above result is the analogue of Lemma 4 for our current
setup with N and I values. Also, properties (S17) and (S18) are, respectively,
analogous to (3) and (4) for our setup.

As with (3) and (4), conditions (S17) and (S18) are assumptions on endoge-
nous variables. One restriction on the information structure that ensures these
properties is MLRP. In particular, with MLRP, one can show (as in the three
state case) that the probability of a buy is increasing in the liquidation values
and the probability of a sale is decreasing in the liquidation values; these rela-
tionships in turn ensure (S17) and (S18).

LEMMA 1V: Suppose that the signals satisfy MLRP and assume that S| < --- <
Sxn. Then there exists 6 < 1 such that for all i,j with i < j and all t, we have
Bi/Bj <éand oj/o} < 6.

PROOF: We will show only B} < B5 < --- < BY; the result for ¢; follows anal-
ogously. To show the former, observe that with MLRP signals, expectations
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are ordered in signals: E[V'|H', §;] > E[V'|H", S;] if i > j. Thus, if signal type S;
buys, so will all §; > §; and for any 7 and any i < j, B; — Bj has the same sign as

N N
D Pr(SI1j) = D Pr(Sili)
1=k 1=k

k—1 k-1
=1- Z Pr(S;|i) — (1 — Z Pr(SIU))
=1 =1

k—1 k—1

=Y "Pr(S)li) — Y _Pr(S)|j) forsomek <N.

=1 =1

Since MLRP implies first order stochastic dominance and there are a finite
number of signals it follows that there exists & > 0 such that Z;‘: Pr(S;|i) —

;:11 Pr($;|j) > & for all k and i < j. But then B;/B} <1 — &. This completes
the proof of Lemma IV. Q.E.D.

THEOREM 3a: Assume that signals satisfy MLRP and let signal S be negatively
biased.

(@) If Pr(S|Vy_1) < Pr(S|Vy), then there exists wp;, € (0, 1] such that S buy
herds if < pp.

(b) If Pr(S|V1) < Pr(S|V,), then there exists wp;, € (0, 1] such that S is a buy
contrarian if p < Wpy,.

Note that Theorem 3a is more general than Theorem 3, as it applies to the
general setup depicted in this Supplemental Material.

PROOF OF THEOREM 3a: (a) It remains to be shown that histories exists
such that (S17) holds. Consider the infinite path consisting of only buys at every
date. By MLRP and Lemma IV, there must exist é € (0, 1) such that for every

Hl gt
H' and for any i and j with i < j, we have B!/B! < 8. Since Z;H = g—fj—;, it
k k Tk

then follows that g;/qj converges to zero along this infinite path of buys, for all
i¢ C;_1UCrand j e C;_UC,. This together with Lemma III(i) concludes the

proof for the existence of buy herding.
Part (b) follows analogously. Q.E.D.

APPENDIX E: SUPPLEMENTARY MATERIAL FOR SECTION 10

In this section, we show how AZ’s composition uncertainty can be accommo-
dated within our N-state framework of the last section and why the types that
herd in this setup also have U-shaped signals.

In AZ’s setup, there are three liquidation values 0, 1/2, and 1, as in their
basic example. When the liquidation values are 0 and 1, there are two lev-
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els of informativeness of the market W and P. Thus, there are five states
0, W), (0,P),1/2,(1, P), and (1, W), and we enumerate them by 1,2, 3,4,
and 5, respectively. Thus, in terms of the notation from the previous section
of this Supplemental Material, I =3,V =1/2, and N = 5. We also denote the
states with valuation i by C;. Therefore, C, = {(0, W), (0, P)}, C,,» = {1/2}, and
Cl = {(17 W)7 (1aP)}

In terms of the private information of the traders, AZ’s description is as fol-
lows. There are two kinds of informed traders. All have a common partition
of the liquidation values given by {(0, 1), 1/2}. When values 0 or 1 are real-
ized, the two types have different precisions with respect to the two valuations.
Specifically, high “quality” type 4 has precision p, and low “quality” type [ has
precision p;, with 1 > p, > p, > 1/2. Thus, in this model there five signals. We
denote the signal that confirms valuation 1/2 by S;, let S; and S5 be the signals
that high quality traders receive, and let S, and S, be the signals that low qual-
ity types receive. Finally, the proportion of different kinds of traders depends
on the informativeness of the market; in particular, the likelihood of quality
type i = h, [ occurring in market j is given by u!, i € {h, [} and j € {W, P}, with
wy =+ =

Using our notation, we can then describe the information structure as fol-
lows:

0, W) 0, P) 1/2 (1,P) 1, w)
Pr(S|i) i=1 i=2 i=3 i=4 i=5
w P P w
S M—hph ﬂph 0 ﬂ(1—}?/1) M—h(l—Ph)
n m m m
w P P w
S M—lpz M—lpl 0 M—l(l—l’l) M—l(l—Pl)
I i M i
S 0 0 1 0 0
w P P w
I o
ss Ea-py BEa-py o B Y p
m n n
w w w w
ss Bra—py Bra—py o0 B p, B p,
n n n n

To demonstrate buy herding, consider signals S; and S, (sell herding argu-
ments are analogous and involve considering S, and Ss). These signals are U-
shaped in the sense that Pr(S;|j) > Pr(S;|k) for every i =1,2, j € C, U C;, and
k € C, . By appealing to the arguments of the previous section, the U-shaped
nature of signals S; and S, allows us to establish buy herding as follows.

Take the case of S; and suppose that §; does not buy herd. Note also that
S, is negatively biased (in the generalized sense defined in the last section,
Pr(S;lj) > Pr(8:116 — j) for each j = 1, 2) and satisfies (S14). Therefore, if (S17)
holds, Lemma III applies and types S; buy herd when there are a sufficient
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number of noise traders—a contradiction. The last step is to construct histories
that satisfy (S17).

The proof of (S17) is as in Proposition 3. (Since S; is a hill-shaped signal, it
corresponds to Case D2 of that proof.') Specifically, one constructs a two-stage
history. During the first stage, the actions are such that g;/q; for i € Gy, j € Cy
decrease while gj/q;, for i € Cy, j € C, do not change (during this stage, the
actions correspond to those that S; will take). The second stage, involves buys
only. During this stage, g;/q; for each i € Cy, j € C; decreases while g;/g; for
i € Cy, j € Cy, may increase. Finally, the lengths of the two stages are chosen
appropriately so that (S17) holds (if the second stage is long enough, then g;/g;
for each i € Gy, j € C, is sufficiently small, and if the length of the first stage is
sufficiently long relative to the second stage, then g;/q; for each i € Gy, j € Ci 2
is sufficiently small).

APPENDIX F: SUPPLEMENTARY MATERIAL FOR SECTION 11
E1. Simple History Dependence

The order of trades and traders does not affect the price path as long as the
model primitives do not allow any type of trader to change behavior. Clearly,
herding or contrarian behavior involves such a change of behavior; changes
from buying to holding or from selling to holding also qualify as a change of
behavior.

Without changes in behavior, it suffices to study the order imbalance (num-
ber of buys minus number of sales) to determine prices, but with changes, the
order of arrival matters a great deal. Consider the following numerical exam-
ple? of an MLRP signal structure with an nU-shaped S,:

PrSIV) W 1 ;4
40 4 1209
¢ 9 9 243V =(0,10,20),
) 2 72
49 490 12,250 Pr(V) = (1/6,2/3,1/6).
g 0 9 12007
} 10 12,250

For illustrative purposes, assume that the first 15 traders are all informed and
each signal S;, i =1, 2, 3, is received by 5 of the first 15 traders. Next, we com-
pare the price paths for different arrival orders of these traders.

!This subcase proves the existence of the histories that yield (S17) for the case with two U-/hill-
shaped signals with opposing biases and a hill-/U-shaped signal with a zero bias, and it is the case
for which our results formally subsume AZ’s example of event uncertainty.

2We chose the numbers so that there can be herding after a small number of trades.
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Series 1—The arrival order is 5 x §;-5 x $,-5 x §; (meaning the first five
receive Sy, the next five receive S,, and the last five receive S;). The S; types,
who move first, all sell and thus the price drops. The S, types also sell and the S;
types buy. Computations show that after these 15 trades the public expectation
will drop from 10 to 0.15.

Series 2—5 x §1-5 x §3-5 x S,. Here the outcome is the same as in the pre-
vious series with §; traders selling, S; types’ buying, and finally the S, types
selling. The public expectation also drops from 10 to 0.15.

Series 3—5 x §3-5 x $,-5 x S;. The S5 traders move first and buy. The S,
types will now behave differently from the previous two series and will be buy
herding. The public expectation now rises to about 13.5. Finally, the five S,
type sell and then the public expectation drops to 10.31.

The difference between the outcome for Series 3 with those of Series 1 and 2
illustrates how the arrival order of traders matters: since there are S, types
who trade, this type’s change in trading mode (from selling to buying) strongly
affects the price path.

Note, however, that even if there are no S, types directly involved in trading,
the market maker has to consider the possibility that this type trades and thus
has to account for this type’s change of trading mode. To illustrate this, we next
compare the outcome when the same number of buys and sales occurs, but in
different orders.

Series 4—20 buys followed by 20 sales. After 20 buys, the public expectation
is 15.36; after 20 subsequent sales, it is 3.12.

Series 5—20 sales followed by 20 buys. After 20 sales, the public expectation
is 1.16 x 10~%; after 20 subsequent buys, it is 10.0064.

In summary, the S, type can change trading modes in response to observing
the order flow; thus the order flow affects prices and the frequency of different
types of future trades. In the short run, the fluctuations may thus be influenced
by the precise order of trades.

E2. Price Sensitivity

To further elaborate on the price sensitivity induced by herding, we simulate
price paths (Figure 1) using the following MLRP specification:

(S24) wp, = 0.7656 = Wy,

Pr(SIV) Vi 12 Vs
wi=0.9215, g 40,049 4 .
! 49,000 49
V=(0,10,20), . 8051 9 243
Pr(V) = (1/10,4/5,1/10), 49,000 490 12,250
¢ 0 9 12,007
. kd

10 12,250
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FIGURE 1.—lIllustrations of the sensitivity in prices paths with and without herding.

In the left panel, there are two relevant price paths: the first (in gray) is for
a setting with u = u,, — &, e = 1/10,000; in other words, there is just enough
noise so that herding is possible. The second price path (in red) is for u = sy,
so that there cannot be herding.® The entry series for the graph is as follows:
first, there is a long series of S; types, who all buy; this is followed by a group
of S, types and eventually by some S; types. The point when S, types start
entering is clearly marked; the S; types enter at the point when both curves
peak. The point at which herding starts is marked too.

The series is constructed so that there are S; types who enter during herding.
When the S, types enter, in the herding case, they buy; in the no-herding case,
they hold. Even with holds, however, prices increase (this is due to the U-
shaped c.s.d.).*

In the middle panel, we plot prices for the same specifications, this time for
a random sequence of traders; both series have the same sequence of traders,
but due to herding their actions may differ.’ In the right panel, we plot the
difference of the two rational price series from the middle panel. As the series
with herding prices has more noise (because u < w;), initially, the price for
the no-herding series is above the price of the herd series. Once herding starts
(here after 8 trades) and once an S, type enters, this relation flips, illustrating
that due to herding, prices move stronger in the direction of the herd than in
the no-herding case.

F3. Does Herding Hamper Learning?

To explore this issue, we use Monte Carlo simulations and compare the two
scenarios outlined when discussing price sensitivity. That is, for the first series,

3The third price path (in blue) is for the case of the opaque economy as described in Section 8.
For the opaque case, the differences in prices for the two levels of u are negligible.

4The same simulation for the case of the opaque economy as described in Section 8 results in
S, types selling and prices falling for both levels of .

SThere is also a series for the opaque economy (Section 8) which, not surprisingly, is entirely
below both rational series. Again, the opaque economy price series for w = wp, and = wp, —
are almost identical.
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there is just enough noise so that buy herding can be triggered, u = us, — &,
&~ 1/10,000. In the second series, herding cannot occur, because there is too
much informed trading, u = u},. We will refer to prices in the first setting
as herding prices, irrespective of whether or not herding actually occurred,;
we refer to prices in the second setting as no-herding prices. Comparing the
speeds of convergence for our two sets of simulations, we note the following
two observations:
(i) If the true value is V; or V5, then herding prices converge slower.

(ii) If the true value is V3, then convergence with herding is faster.

These observations are based on the following: For the simulations, we again
used the specification of the parameters given by (S24). Fixing the true lig-
uidation values, we then drew 650 traders at random (noise and informed)
assuming that w,, &~ 0.766. Since the proportion of the informed agents w is
large—approximately three-quarters for both simulations—the 650 trades are
almost always sufficient to obtain convergence to the true value. Next, we com-
puted the time series of the transaction prices for both the herding and the
no-herding case, and then recorded for each ¢ and for both cases the absolute
distance of the transaction price from the true value (which we know). We then
repeated this procedure a large number of times, and calculated for each ¢ and
for each case the average distance from the true value. Since prices converge
to the true value, these average distances decline in ¢. In the simulations, this
distance declines approximately exponentially to zero. Thus the slope of the
logarithm of the average distance measures the speed of convergence.

As the final step, we subtract at each ¢ the log averages for the no-herding
from the herding series. A positive number indicates that the herding series
is slower, that is, that the average herding price is further away from the true
value. Figure 2 plots these differences and the graphs are striking; they confirm
our two observations mentioned above.°

To see the intuition for the these observations, compare the effects of buy
herding on the herding and no-herding prices. First, when buy herding occurs,
S, types buy in the herding case and thus there are more buys with herding
than in the no-herding case. Second, in the case of a buy, prices in the herding
case tend to be higher than in the no-herding case. Since the no-herding prices
here are similar to or higher than those that arise in the opaque economy of
Section 8 (only S; types buy in both cases), this second effect follows from the
same reasoning used in the previous simulation to explain why, in the case of
a buy, prices in the rational world, when herding starts, exceed those in the
opaque economy (see Proposition 6.1(a)). Third, when there is a sale, prices in
the herding and no-herding cases are almost identical and unaffected by buy
herding. This is because in both cases only S; types sell: in the herding case,

®We have also made a formal analysis by regressing the log distance on time and, using the
Chow test, checking whether one slope is steeper than the other. The results were highly signifi-
cant.
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FIGURE 2.—The difference in speeds of convergence. Each graph plots the difference of the
negative of the average log distance of the transaction prices of the herding and no-herding case.
An up-sloping line thus indicates that for any ¢, herding prices are further from the true value
than no-herding prices. All graphs are scaled to fit the page. The underlying signal distribution is
listed in (S24).

this is so by definition, and in the no-herding case, the S, type’s expectation is
almost equal to the ask price (expression (11) is almost zero) and thus larger
than the bid price.’

Now it follows from the above that if the true value is V] or V5, herding
prices converge slower: during herding, herd buys move prices away from the
true value by a larger magnitude and there are more such buys than in the no-
herding case (sales have a similar effect in both cases). If, however, the true
value is 13, then once herding starts, prices in the herding case move up more
strongly because of the first two effects and thus they move faster toward the
true value. This leads to a higher speed of convergence in the herding case.
Figure 2 documents these three cases.

F4. The Probability of the Fastest Herd

The shortest sequence of trades that leads to buy herding is one with only
buys; this is the “fastest” herd. We now want to get a sense of how likely this
sequence is. Keeping the c.s.d. and the prior distribution fixed but varying the
proportion of informed trading, we compute first how many buys are needed
for buy herding to begin and then we determine how likely this sequence of
buys is. The same type of analysis applies to sell herding.

"The herding and no-herding price paths may also differ even if no buy herding occurs (if S,
types behave the same way in the two cases) because the proportions of informed trading u are
different for the two cases. In particular, when S, types do not buy herd, since u is smaller in the
herding case, each price movement in the herding price series is smaller than in the no-herding
case, and as a result, speed of convergence is slower in the former series. However, since for the
simulations, the difference between the values of w is small (¢ = 1/10,000), the consequence of
this effect is small relative to the first two effects mentioned above.
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FIGURE 3.—Trades needed for fastest herd the probabilities for these trades. The left panel
plots the value of expression (11), divided by g.g3, as a function of u, with u € (0, wp), and of
no-herd buys b. Whenever the bend curve crosses the 0 surface from below, herding is triggered.
The middle panel computes the minimum integer number of no-herd buys that would trigger
herding as a function of noise level u. The right panel computes two probabilities: the first is
the probability of having exactly the threshold number of buys at the beginning of trade (the
thresholds are taken from the middle panel) conditional on the true state being V3. The second
probability is the unconditional likelihood of this threshold number. The plots in the right panel
are functions of the w. The signal distribution that underlies these plots is listed in (S24).

As was explained before, S, types buy at any history H, if the expression
in (11) is positive. As the amount of informed trading increases from 0 to w,
there are then two opposing effects. First, as noise decreases, the positive term
in expression (11) (the second term) becomes smaller. This implies that for any
history, the difference between the market maker’s and the S, type’s expecta-
tion becomes smaller; thus to get buy herding, one needs more buys. Second,
as noise decreases, the informational content of past behavior (public informa-
tion) improves and this makes herding more likely. Formally, the first and third
terms in (11), (the negative terms) decline as u increases. This is because for

any i =2, 3,50 = LR and ZEUED — (Pr(S,|V]) — Pr(S5]V;))/B:* and thus,

wPr(S3IV)+y
since S;’s c.s.d. is decreasing, %;BD <0.

While we do not have an analytical result on the net effect of increasing u
from 0 to w,, in all numerical examples that we computed, the second effect
dominates. Thus as noise trading declines (u increases to w,;) it takes fewer
buys to trigger buy herding. Figure 3 plots the minimum number of such con-
secutive time-zero buys needed to trigger buy herding for our simulations. As
the amount of noise decreases, ex ante it gets more likely that these consecu-
tive buy trades occur. (Figure 3’s right panel illustrates these probabilities.)
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