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BY EDUARDO FAINGOLD AND YULIY SANNIKOV

We show that, in the reputation games in the main paper (Section 7), if a continuous-
time public randomization device is available, then a Markov perfect equilibrium in
publicly randomized strategies exists under Conditions 1 and 4.

AS EXPLAINED IN REMARK 7 in Section 7 of the main paper, when Condi-
tion 1 holds but Condition 2 fails, some reputation games may fail to have a
sequential equilibrium in continuous time (even when the action sets are finite
and mixed strategies are allowed). In this supplement, we enlarge the model
of Section 7 to allow the players to condition their behavior on the outcomes
of a continuous-time public randomization device. In this augmented game, an
equilibrium is guaranteed to exist under Conditions 1 and 4.

Before turning to the formalism of continuous-time public randomization,
we draw an analogy with discrete time so as to attach a meaning to our
continuous-time mixtures. In a discrete-time game, there is a well defined or-
der of events within each period: first, the outcome of the randomization de-
vice is realized and publicly observed, then players take their actions simulta-
neously, then the signals are realized and publicly observed, and, finally, the
players update their beliefs. Heuristically, in our continuous-time game it is
also possible to capture a similar order of events as follows: at any time ¢, sup-
pose the current value of the small players’ posterior on the behavioral type
is ¢. Then the following order of events occurs:

(i) The outcome of the randomization device is realized and publicly ob-
served.

(i) The normal type chooses an action a and, simultaneously, each small
player i chooses an action b, which gives rise to a distribution b.

(iii) The public signal dX = u(a, b) dt + o(b) dZ is realized.

(iv) Players receive their flow payoffs rg(a, b) dt and rh(a, b', b) dt.

(v) The posterior is updated to ¢ + d¢.
Thus, calculated at the stage prior to the realization of the randomization de-
vice, the expected flow payoff of the normal type is

rg(m)dt,

where m € A(A x A(B)) designates the distribution over action profiles in-
duced by the randomization device.! Also, from the viewpoint of the normal

! As usual, the function g is linearly extended to A(A x A(B)).
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type, the change in posterior beliefs, d ¢, has mean and variance given by

(7, ¢)
1-¢

respectively, where

dt and I*(m,¢)dt,

r’m¢)= / ly(a, b, $)|*m(da x db).
AxA(B)

Then, following the logic of Sections 6 and 7, in a sequential equilibrium in
which the players use a publicly randomized strategy o, = m(¢,) € A(A X
A(B)) in which the actions are determined by the small players’ posterior belief
after every history, we expect the value function U : (0, 1) — R of the normal
type to solve the differential equation

2U'(¢) n 2r(U(¢) — g(m(4)))
1-¢ r:(m(¢),¢) ’

(S1) U'(p) =
with

(S2)  (a,b) eN(¢, (1 —$)U'(p)/r) Y(a,b) e suppm(h),

since in equilibrium the incentive constraints must hold following each realiza-
tion of the randomization device.
This motivates the following definition.

DEFINITION: A Markov perfect equilibrium with public randomization is
a measurable function 7:(0,1) — A(A x A(B)) for which there exists a
bounded differentiable function U : (0, 1) — R that has an absolutely continu-
ous derivative and satisfies (S1) and (S2) almost everywhere. Function U is the
value function of the normal type and, for each prior p € (0, 1) on the behav-
ioral type, U(p) is the expected discounted payoff of the normal type under the
equilibrium 7 and the prior p.

Although in this definition we have ultimately assumed (S1) and (S2), we
do believe it is possible to derive these conditions, as we did in the setting
without public randomization of Section 7. However, this would require a rich
mathematical framework in which it were possible to formulate an exact law
of large numbers for a continuum of independent and identically distributed
random variables. Various such frameworks have been provided in the large
games literature and we believe it is possible to extend such frameworks to deal
with our dynamic setting in continuous time as well.> Providing this extension,
however, is beyond the scope of our paper.

2See Sun (1998) and Khan and Sun (1999) for an approach based on hyperfinite Loeb spaces,
and Al-Najjar (2009) for an approach based on finitely additive probability measures.
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Finally, we note that neither the existence problem nor the issue of random-
ization in continuous time is new to our paper. Public randomization was used
by Harris, Reny, and Robson (1995) to establish the existence of subgame per-
fect equilibria in extensive-form games with continuum of actions. In the exper-
imentation literature, Bolton and Harris (1999) made use of continuous-time
randomization to obtain the existence of Markov perfect equilibria. Like us,
they define Markov perfect equilibria directly using a differential equation for
the value. The heuristic derivation presented above follows that paper closely.

The main result of this supplement is the following proposition:

PROPOSITION: Under Conditions 1 and 4, a Markov perfect equilibrium with
public randomization exists.

PROOF: It is enough to show that the differential inclusion

(S3) U'(p)e A($,U(¢),U'(d)) ae.

has a bounded solution, where A: (0, 1) = R is the correspondence defined by

A(d,u,u)
def { 2u'  2r(u—g(m) |7 e A(A x A(B)) such that }

:1f¢+ I2(m, ¢) |suppm SN (b, d(1—p)u'/r)
Y(¢p,u,u)e(0,1) x R%

Indeed, if such a solution exists, then for each ¢, we can find 7(¢) satisfy-

ing (S1) and (S2), by the definition of A/. Moreover, such 7(¢) can be chosen

measurably as a function of ¢, by a standard measurable selection argument.
We proceed with the proof that (S3) has a bounded solution.

STEP 0—Quadratic Growth: Given any closed interval [p, q] C (0, 1), there
exists K > 0 such that

AP, u,u)| < KA+ W) Y(d,u,u) x[p,ql =g, 8l xR.

Given Conditions 1 and 4, this is immediate from Corollary B.1 of the main
paper.

STEP 1—Existence Away From 0 and 1: Given any closed interval [p, q] C
(0, 1), the differential inclusion has a C* solution on [p, q| that takes values in
the set of feasible payoffs [g, g]. This follows directly from an existence theorem
due to Bebernes and Kelley (1973) for boundary value problems for second-
order differential inclusions. Bebernes and Kelley (1973) sufficient condition
for existence is that the nonlinearity A satisfy the Nagumo condition. This con-
dition is implied by the quadratic growth condition from Step 0.
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STEP 2—A priori Bound on the Derivative: Given any closed interval [ p, q] C
(0, 1), there is a constant R > 0 such that every C? function U :[p, q] — R that
takes values in [g, g] and solves the differential inclusion on [ p, q] satisfies |U’| <
R Let L=(g—g)/(q— p) and choose R > 0 large enough so that

1 1+ R
(S4) —log g—&-

—_— >
2K 1+ L2

Let U:[p, q] — [g, &] be an arbitrary C? function that solves the differential
inclusion on the interval [ p, g]. Suppose, toward a contradiction, that U’(¢;) >
R for some ¢, € [p, q]. (The proof for the case U'(¢;) < —R is similar.) By the
mean value theorem, there is some J) € [p, q] such that U /(cﬁ) < L. Hence, we
can find an interval [¢g, ¢1] or [¢y, ¢g] such that U'(¢py) =L and U’ > 0 on
this interval. Thus,

2K 81512~
SU(GU($) d /‘“ ‘
_ U'($)d
. KA+Up ~|), VP4
<|U(p1) —U(d)| =g — g,

1 | 1+R*  (* wdv </U'("’1) vdv
r K(A+v?) 7 Juy KA+1v?)

where the second inequality follows from the differential inclusion and the
quadratic growth condition of Step 0. By (S4), the inequalities above yield a
contradiction.

STEP 3—Extension to (0, 1): For eachn,let U,:[1/n,1—1/n] — Rbe a C?
solution of the differential inclusion on [1/n,1 — 1/x] and let R, > 0 denote
the corresponding a priori bound on the derivative from Step 2. Fix n and
consider m > n. The restriction of U,, to [1/n,1 — 1/n] is a solution of the
differential inclusion that takes values in the set of feasible payoffson [1/n, 1 —
1/n]. Hence Step 2 applies and we have U, ()| < R, for all ¢ € [1/n,1 —
1/n], which implies a uniform bound on the second derivative U, because of
the quadratic growth condition. By the Arzela—Ascoli theorem, for every n,
the sequence (U,,),.-, has a subsequence that converges in the C' topology on
[1/n,1 — 1/n]. Hence, by a standard diagonalization argument, (U, ),-; has a
subsequence (U,, )~ that converges pointwise to some function U:(0,1) —
[g, g]- Moreover, on any closed subinterval J of (0, 1), the convergence takes

place in C'(J), thatis, U is C' and (U,,, U,,) — (U, U’) uniformly on /.

STEP 4—Absolute Continuity of U": First, note that (a) U, — U’ point-
wise, and (b) for every [p, g] C (0, 1), U, is Lipschitz continuous on [ p, g] uni-
formly over all k£ with n, > max{1/p, 1/(1—¢q)}. This is because by Step 2 there
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exists R > 0 such that for all £ with 1/n;, < min{p, 1 — g}, we have |U,;k| <R
on [p, gl, which implies a uniform bound on U,/ by the quadratic growth con-
dition of Step 0.

It follows that U’ is locally Lipschitz, and hence absolutely continuous.

STEP 5—U Is a Solution: Fix an arbitrary ¢ > 0 and a ¢, at which U"” exists.
Since A is upper hemicontinuous and (U,,, U,;k) — (U, U’) uniformly on a
neighborhood of ¢, (by Step 3), there exist 6 > 0 and K > 1 such that for all
k> K andall ¢ € (¢py— 6, ¢y + &) we have

A(¢, Un (), Uy, () C Ao, U(o), U'(d0)) + [—é, el.
Thus, for almost all ¢ € (¢g — 8, ¢+ 6) and all k > K,
(S5) U, (@) € A(do, U(o), U'(d0)) + [—¢, £].
On the other hand, for all # > 0 and k > 1, we have

U (do+h)— U 1 [ooth
(S0 th) —U, (do) 1 U ey d,
h h Jg, "k

This implies that for each £ > K and |h| < &,

U, (do+h) —U, (o)
h

€ A(d)()? U(d)()), U,(¢O)) + [_8, 8]

by the differential inclusion (S5) and the fact that A has closed convex values.
Thus, letting k — oo first and then /& — 0 yields

U"(¢o) € Ao, U(do), U'(do)) +[—¢, €l.
Finally, taking e to zero yields the desired result. Q.E.D.
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