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A1. DERIVING THE TECHNOLOGY OF SKILL FORMATION
FROM ITS PRIMITIVES

A1.1. A Model of Skill Formation

IN THE MODELS PRESENTED in this section of the appendix and in Cunha,
Heckman, Lochner, and Masterov (2006) and Cunha and Heckman (2007),
parents make decisions about investments in their children. We ignore how
the parents get to be who they are and the decisions of the children about their
own children.

Suppose that there are two periods in a child’s life, 1 and 2, before the child
becomes an adult. Adulthood comprises distinct third and fourth periods in
the overlapping generations model. The adult works for two periods after the
two periods of childhood. Models based on the analysis of Becker and Tomes
(1986) assume only one period of childhood. We assume that there are two
kinds of skills denoted by C and N . The framework can be modified to accom-
modate health. (See Heckman (2007).) θC�t is cognitive skill at time t. θN�t is
noncognitive skill at time t. Our treatment of ability is in contrast to the view of
the traditional literature on human capital formation that views IQ as innate
ability. In our analysis, IQ is just another skill. What differentiates IQ from
other cognitive and noncognitive skills is that IQ is subject to accumulation
during critical periods. That is, parental and social interventions can increase
the IQ of the child, but they can do so successfully only for a limited time in
the life of the child.

Let Ik�t denote parental investments in child skill k at period t, k ∈ {C�N}
and t ∈ {1�2}. Let Y3 be the level of human capital as the child starts adult-
hood. It depends on both components of (θC�3� θN�3). The parents fully control
investment in the child. A richer model incorporates, among other features, in-
vestment decisions of the child as influenced by the parent through preference
formation processes (see Carneiro, Cunha, and Heckman (2003)).

We first describe how skills evolve over time. Assume that each agent is born
with initial conditions θ1 = (θC�1� θN�1). These can be determined by parental
environments. At each stage t let θt = (θC�t� θN�t) denote the vector of skill
or ability stocks. Thus we ignore parental environmental inputs which are in-
cluded in the model in the text. The technology of production of skill k at
period t is (suppressing the other inputs)

θk�t+1 = fk�t(θt� Ik�t)(A1.1)

for k ∈ {C�N} and t ∈ {1�2}. We assume that fk�t is twice continuously differen-
tiable, increasing, and concave. In this model, stocks of both skills and abilities
produce next period skills and affect the productivity of investments. Cognitive
skills can promote the formation of noncognitive skills and vice versa.

Let (θC�3� θN�3) denote the level of skills when adult. We define adult human
capital Y3 of the child as a combination of different adult skills:

Y3 = g(θC�3� θN�3)�(A1.2)
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The function g is assumed to be continuously differentiable and increasing in
(θC�3� θN�3). This model assumes that there is no comparative advantage in the
labor market or in other aspects of life.1

Equation (2.6) in the text is obtained by assuming φY =φ2�C =φ2�N = φ1�C =
φ1�N , IC�1 = IN�1 = I1, and IC�2 = IN�2 = I2 (so investments are general in nature)
to derive equation (2.6), and substituting recursively to obtain θC�3 and θN�3 us-
ing (2.3)–(2.5), θC�1 and θN�1, θC�P and θN�P are initial conditions. An alternative
approach is as follows.

To fix ideas, consider the following specialization of our model. Ignore the
effect of initial conditions and assume that first period skills are just due to first
period investment:

θC�2 = fC�1(θ1� IC�1)= IC�1

and

θN�2 = fN�1(θ1� IN�1)= IN�1�

where IC�1 and IN�1 are scalars. For the second period technologies, assume a
CES structure

θC�3 = fC�2(θ2� IC�2)(A1.3)

= {γ2�C�1(θC�2)
φ2�C + γ2�C�2(θN�2)

φ2�C + γ2�C�3(IC�2)
φ2�C }1/φ2�C �

where γ2�C�1 ≥ 0�γ2�C�2 ≥ 0�γ2�C�3 ≥ 0�

γ2�C�1 + γ2�C�2 + γ2�C�3 = 1

and

θN�3 = fN�2(θ2� IN�2)(A1.4)

= {γ2�N�1(θC�2)
φ2�N + γ2�N�2(θN�2)

φ2�N + γ2�N�3(IN�2)
φ2�N }1/φ2�N �

where γ2�N�1 ≥ 0�γ2�N�2 ≥ 0�γ2�N�3 ≥ 0�

γ2�N�1 + γ2�N�2 + γ2�N�3 = 1�

where 1/(1 −φ2�C) is the elasticity of substitution in the inputs producing θC�3

and 1/(1 −φ2�N) is the elasticity of substitution of inputs in producing θN�3

where φ2�C ∈ (−∞�1] and φ2�N ∈ (−∞�1]. Notice that IN�2 and IC�2 are direct
complements with (θC�2� θN�2) irrespective of the substitution parameters φ2�C

and φ2�N , except in limiting cases.

1Thus we rule out one potentially important avenue of compensation that agents can specialize
in tasks that do not require the skills in which they are deficient. Cunha, Heckman, Lochner, and
Masterov (2006) considered a more general task function that captures the notion that different
tasks require different combinations of skills and abilities. See also the main text of the paper and
Cunha and Heckman (2009).
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The CES technology is well known and has convenient properties. It im-
poses direct complementarity even though inputs may be more or less substi-
tutable depending on the share parameters or the elasticity of substitution. We
distinguish between direct complementarity (positive cross-partials) and CES
substitution/complementarity. Focusing on the technology for producing θC�3,
when φ2�C = 1, the inputs are perfect substitutes in the intuitive use of that
term (the elasticity of substitution is infinite). The inputs θC�2, θN�2, and IC�2
can be ordered by their relative productivity in producing θC�3. The higher
γ2�C�1 and γ2�C�2, the higher the productivity of θC�2 and θN�2, respectively. When
φ2�C = −∞, the elasticity of substitution is zero. All inputs are required in the
same proportion to produce a given level of output so there are no possibilities
for technical substitution, and

θC�3 = min{θC�2� θN�2� IC�2}�
In this technology, early investments are a bottleneck for later investments.
Compensation for adverse early environments through late investments is im-
possible.

The evidence from numerous studies reviewed in Cunha, Heckman, Loch-
ner, and Masterov (2006), Cunha and Heckman (2007), and Heckman (2007,
2008) shows that IQ is no longer malleable after ages 8–10. Taken at face value,
this implies that if θC is IQ, for all values of IC�2, θC�3 = θC�2. Period 1 is a critical
period for IQ but not necessarily for other skills and abilities. More generally,
period 1 is a critical period if

∂θC�t+1

∂IC�t
= 0 for t > 1�

For parameterization (A1.3), this is obtained by imposing γ2�C�3 = 0.
The evidence on adolescent interventions surveyed in Cunha, Heckman,

Lochner, and Masterov (2006) shows substantial positive results for such inter-
ventions on noncognitive skills (θN�3) and at most modest gains for cognitive
skills. Technologies (A1.3) and (A1.4) rationalize this pattern. Since the popu-
lations targeted by adolescent intervention studies tend to come from families
with poor backgrounds, we would expect IC�1 and IN�1 to be below average.
Thus, θC�2 and θN�2 will be below average. Adolescent interventions make IC�2
and IN�2 relatively large for the treatment group in comparison to the control
group in the intervention experiments. At stage 2, θC�3 (cognitive ability) is
essentially the same in the control and treatment groups, while θN�3 (noncog-
nitive ability) is higher for the treated group. Large values of (γ2�C�1 + γ2�C�2)
(associated with a small coefficient on IC�2) and small values of (γ2�N�1 + γ2�N�2)
(so the coefficient on IN�2 is large) produce this pattern. Another case that
rationalizes the evidence is when φ2�C → −∞ and φ2�N = 1. Under these con-
ditions,

θC�3 = min{θC�2� θN�2� IC�2}�(A1.5)



COGNITIVE AND NONCOGNITIVE SKILL FORMATION 5

while

θN�3 = γ2�N�1θN�2 + γ2�N�2θN�2 + γ2�N�3IN�2�(A1.6)

The attainable period 2 stock of cognitive skill (θC�3) is limited by the mini-
mum value of θC�2, θN�2, and IC�2. In this case, any level of investment in period 2
such that IC�2 > min{θC�2� θN�2} is ineffective in incrementing the stock of cog-
nitive skills. Period 1 is a bottleneck period. Unless sufficient skill investments
are made in θC in period 1, it is not possible to raise skill θC in period 2. This
phenomenon does not appear in the production of the noncognitive skill, pro-
vided that γ2�N�3 > 0. More generally, the larger φ2�N and the larger γ2�N�3, the
more productive is investment IN�2 in producing θN�3.

To complete the CES example, assume that adult human capital Y3 is a CES
function of the two skills accumulated at stage two:

Y3 = {ρ(θC�3)
φY + (1 − ρ)(θN�3)

φY }1/φY �(A1.7)

where ρ ∈ [0�1], and φY ∈ (−∞�1]. In this parameterization, 1/(1 −φY) is
the elasticity of substitution across different skills in the production of adult
human capital. Equation (A1.7) reminds us that the market, or life in general,
requires use of multiple skills. Being smart is not the sole determinant of suc-
cess. In the general case with multiple tasks, different tasks require both skills
in different proportions. One way to remedy early skill deficits is to make com-
pensatory investments. Another way is to motivate people from disadvantaged
environments to pursue tasks that do not require the skill that deprived early
environments do not produce. A richer theory would account for this choice of
tasks and its implications for remediation.2 For the sake of simplifying the ar-
gument, we work with equation (A1.7) that captures the notion that skills can
trade off against each other in producing effective people. Highly motivated,
but not very bright, people may be just as effective as bright but unmotivated
people. That is one of the lessons from the GED program. (See Heckman and
Rubinstein (2001) and Heckman, Stixrud, and Urzua (2006).)

The analysis is simplified by assuming that investments are general in nature:
IC�1 = IN�1 = I1, IC�2 = IN�2 = I2.3 Cunha and Heckman (2007) developed the
more general case of skill-specific investments which requires more notational
complexity.

With common investment goods, we can solve out for θC�2 and θN�2 in terms
of I1 to simplify (A1.3) and (A1.4) to reach

θC�3 = {(γ2�C�1 + γ2�C�2)(I1)
φ2�C + γ2�C�3(I2)

φ2�C }1/φ2�C(A1.8)

2See the Appendix in Cunha, Heckman, Lochner, and Masterov (2006).
3Thus when a parent buys a book in the first period of childhood, this book may be an invest-

ment in all kinds of skills. It is an investment in cognitive skills, as it helps the child get exposure to
language and new words. It can also be an investment in noncognitive skills if the book contains
a message on the importance of being persistent and patient.
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and

θN�3 = {(γ2�N�1 + γ2�N�2)(I1)
φ2�N + γ2�N�3(I2)

φ2�N }1/φ2�N �(A1.9)

If we then substitute these expressions into the production function for adult
human capital (A1.7), we obtain

Y3 = {
ρ[γ̃C(I1)

φ2�C + γ2�C�3(I2)
φ2�C ]φY /φ2�C(A1.10)

+ (1 − ρ)[γ̃N(I1)
φ2�N + γ2�N�3(I2)

φ2�N ]φY /φ2�N
}1/φY �

where γ̃C = γ2�C�1 + γ2�C�2 and γ̃N = γ2�N�1 + γ2�N�2. Equation (A1.10) expresses
adult human capital as a function of the entire sequence of childhood invest-
ments in human capital. Current investments in human capital are combined
with the existing stocks of skills to produce the stock of next period skills.

A convenient formulation of the problem arises if it is assumed that φ2�C =
φ2�N = φY = φ so that CES substitution among inputs in producing outputs
and CES substitution among skills in producing human capital are the same.
This produces the familiar-looking CES expression for adult human capital
stocks:

Y3 = {τ1I
φ
1 + τ2I

φ
2 }1/φ�(A1.11)

where τ1 = ργ̃C +(1−ρ)γ̃N , τ2 = ργ2�C�3 +(1−ρ)γ2�N�3, and φ =φ2�N = φ2�C =
φY . The parameter τ1 is a skill multiplier. It arises in part because I1 affects the
accumulation of θC�2 and θN�2. These stocks of skills in turn affect the produc-
tivity of I2 in forming θC�3 and θN�3. Thus τ1 captures the net effect of I1 on
Y3 through both self-productivity and direct complementarity.4 1

1−φ
is a mea-

sure of how easy it is to substitute between I1 and I2, where the substitution
arises from both the task performance (human capital) function in equation
(A1.7) and the technology of skill formation. Within the CES technology, φ is
a measure of the ease of substitution of inputs. In this analytically convenient
case, the parameter φ plays a dual role. First, it informs us how easily one can
substitute across different skills to produce one unit of adult human capital Y3.

4Direct complementarity between I1 and I2 arises if

∂2Y3

∂I1 ∂I2
> 0�

Since φ< 1, I1 and I2 are direct complements, because

sign
(

∂2Y3

∂I1 ∂I2

)
= sign(1 −φ)�

This definition of complementarity is to be distinguished from the notion based on the elasticity
of substitution between I1 and I2, which is 1

1−φ
. When φ < 0, I1 and I2 are sometimes called

complements. When φ> 0, I1 and I2 are sometimes called substitutes. I1 and I2 are always direct
complements, but if 1 >φ> 0, they are CES substitutes.
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Second, it also represents the degree of complementarity (or substitutability)
between early and late investments in producing skills. In this second role, the
parameter φ dictates how easy it is to compensate for low levels of stage 1 skills
in producing late skills.

In principle, compensation can come through two channels: (i) through skill
investment or (ii) through choice of market activities, substituting deficits in
one skill by the relative abundance in the other through choice of tasks. We do
not develop the second channel of compensation in this appendix, deferring it
to later work. It is discussed in Carneiro, Cunha, and Heckman (2003).

When φ is small, low levels of early investment I1 are not easily remediated
by later investment I2 in producing human capital. The other face of CES com-
plementarity is that when φ is small, high early investments should be followed
with high late investments. In the extreme case when φ → −∞, (A1.11) con-
verges to Y3 = min{I1� I2}. We analyzed this case in Cunha, Heckman, Lochner,
and Masterov (2006). The Leontief case contrasts sharply with the case of per-
fect CES substitutes, which arises when φ = 1: Y3 = τ1I1 +τI2. If we impose the
further restriction that τ1 = 1

2 , we generate the model that is implicitly assumed
in the existing literature on human capital investments that collapses childhood
into a single period. In this special case, only the total amount of human capital
investments, regardless of how it is distributed across childhood periods, deter-
mines adult human capital. In the case of perfect CES substitutes, it is possible
in a physical productivity sense to compensate for early investment deficits by
later investments, although it may not be economically efficient to do so.

We can rewrite (A1.11) as

Y3 = I1{τ1 + τ2ω
φ}1/φ�

where ω = I2/I1. Fixing I1 (early investment), an increase in ω is the same as
an increase in I2. The marginal productivity of late investment is

∂Y3

∂ω
= τ2I1{τ1 + τ2ω

φ}(1−φ)/φωφ−1�

For ω > 1 and τ1 < 1, marginal productivity is increasing in φ and τ2. Thus,
provided that late investments are greater than earlier investments, the more
substitutable I2 is with I1 (the higher φ) and the lower is the skill multiplier τ1,
the more productive are late investments.

A1.2. How the Flourishing of Noncognitive Traits With the Stage of the Life
Cycle Can Raise the Elasticity of Substitution for Noncognitive

Skills at Later Stages Compared to Earlier Stages

Suppose that there is one cognitive skill θC�t at each stage of the life cycle, but
it can change over time.5 Initially, there is one noncognitive skill θN1�1, which

5In truth, there are at least two. See Borghans, Duckworth, Heckman, and ter Weel (2008).
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can change over time, but a second noncognitive skill trait emerges in period
2: θN2�2. The technology changes with the stage of the life cycle and has an
expanding set of arguments:

θC�2 = fC�1
(
θC�1� θN1�1� IC�1

)
�

θN1�2 = fN1�1

(
θC�1� θN1�1� IN1�1

)
�

In the second period, a new trait emerges (θN2�2):

θC�3 = fC�2
(
θC�2� θN1�2� θN2�2� IC�2

)
�

θN1�3 = fN1�2

(
θC�2� θN1�2� θN2�2� IN1�2

)
�

θN2�3 = fN2�3

(
θC�2� θN1�2� θN2�2� IN2�2

)
�

The emergence of the new trait and new investment options associated with
the trait increases the possibility of substitution against the initial trait (θN1�2)
in period 2 and rationalizes the increase in substitutability of noncognitive skills
over the life cycle. This analysis suggests that it might be fruitful to disaggregate
noncognitive skills by stage of the life cycle and model evolving technologies,
but we leave that task to another occasion.

A2. INVESTMENTS AS A FUNCTION OF INPUTS

Suppose that parents cannot borrow or lend, so at every period t� they use
their income yt to consume or invest in their children. The objective of parents
is to maximize lifetime utility, which depends on consumption streams (ct)

T
t=1

and the adult skill levels θC�T+1 and θN�T+1� In this case, parental investments in
skill k and period t� Ik�t� should depend on parental skills, θP , child’s skills at
the beginning of period t� θt , parental income, yt , and the innovation, πt .

Our approach exploits the fact that investments in skills are themselves com-
binations of many intermediate inputs. Suppose that there are M2�k�t inputs in
the production of investments in skill k at period t� Following the notation es-
tablished in Section 3.1 in the text, let Z2�k�t�j denote the intermediate inputs.
Let hk�t denote the production function of parental investments in skill k at
period t:

Ik�t = hk�t

(
Z2�k�t�1�Z2�k�t�2� � � � �Z2�k�t�M2�k�t

)
�

where hk�t is increasing and concave in (Z2�k�t�1�Z2�k�t�2� � � � �Z2�k�t�M2�t�k). From
the point of view of the parent, she can solve this problem in two stages.
In the first stage, she decides how much to consume and how much to in-
vest. Let I∗

k�t = gk�t(θt� θP�πt� yt) denote the investment level chosen by the
parent. Then, in the second stage, she decides how much to buy in inputs
(Z2�k�t�1�Z2�k�t�2� � � � �Z2�k�t�M2�k�t ) to produce exactly Ik�t units of investment. Let
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pk�t�j denote the price of intermediate input Z2�k�t�j� In this case, the second
stage problem of the parent can be written as

min
Mk�t�j∑
j=1

pk�t�jZ2�k�t�j

subject to hk�t(Z2�k�t�1�Z2�k�t�2� � � � �Z2�k�t�M2�k�t ) = Ik�t � The solution to this prob-
lem is the set of conditional demand functions

Z2�k�t�j = at�k�j(Ik�t�pk�t)�

where pk�t = (pk�t�1� � � � �pk�t�Mk�t�j
)� For example, if pk�t = 1� hk�t(Z2�k�t) =∏M2�k�t

j=1 Z
α̃2�k�t�j
2�k�t�j with α̃2�k�t�j ≥ 0, and

∑M2�t�k
j=1 α̃2�k�t�j ≤ 1� then

Z2�k�t�j = α2�k�t�jIk�t for all j�(A2.1)

where α2�k�t�j = α̃2�k�t�j/
∑M2�k�t

l=1 α̃2�k�t�l� If the intermediate inputs are measured
with error, so that the observed input is Z2�k�t�j = Z∗

2�k�t�j + ε2�t�k�j� then

Z2�k�t�j = α2�k�t�jIk�t + ε2�k�t�j�

which is exactly our measurement equation in Section 3.1. This reformulation
of the problem shows that the measurement equations for investments can
be derived as conditional demand functions for intermediate inputs. Further-
more, when the investment production function hk�t is Cobb–Douglas, the fac-
tor loadings in the measurement equations are the share parameters of the
intermediary inputs. Cunha and Heckman (2008) develop other cases.

A3. PROOFS OF THEOREMS

A3.1. Proof of Theorem 1

Under the assumptions that E[ω1 | θ�ω2] = 0 and that ω2 ⊥⊥ θ, we obtain

E[iW1e
iζ·W2]

E[eiζ·W2] = E[i(θ+ω1)e
iζ·W2]

E[eiζ·W2] = E[i(θ+E[ω1 | θ�ω2])eiζ·W2]
E[eiζ·W2]

= E[iθeiζ·W2]
E[eiζ·W2] = E[iθeiζ·(θ+ω2)]

E[eiζ·(θ+ω2)] = E[iθeiζ·θ]E[eiζ·ω2]
E[eiζ·θ]E[eiζ·ω2]

= E[iθeiζ·θ]
E[eiζ·θ] = ∇ζE[eiζ·θ]

E[eiζ·θ]
= ∇ζ ln(E[eiζ·θ])�
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Substituting this expression into the expression for pθ(θ) in Theorem 1, we
obtain

(2π)−L

∫
e−iχ·θ exp

(∫ χ

0
∇ζ ln(E[eiζ·θ]) · dζ

)
dχ

= (2π)−L

∫
e−iχ·θ exp

(
ln(E[eiχ·θ])− ln(E[ei0·θ]))dχ

= (2π)−L

∫
e−iχ·θ exp

(
ln(E[eiχ·θ]))dχ

= (2π)−L

∫
e−iχ·θE[eiχ·θ]dχ�

where we have used the fact that the path integral of the gradient of a scalar
field gives the scalar field itself and that ln(E[ei0·θ]) = ln(E[1]) = 0. Note that
the integral obtained is invariant to the piecewise smooth path that is selected.
The last integral is equal to pθ(θ) since the inverse Fourier transform of the
characteristic function E[eiζ·θ] yields the density of θ. Q.E.D.

A3.2. Proof of Theorem 2

We can use Theorem 1 in Hu and Schennach (2008) (hereafter HS) to prove
that the distribution of θ is identified, after setting x = Z1, y = Z3, z = Z2,
and x∗ = θ in the notation of that paper. We can show that Assumption 2 in
the present paper is equivalent to Assumption 2 in HS. If Z1�Z2, and Z3 are
mutually independent conditional on θ, then we have, in particular, the two
equalities

pZ3|Z1�Z2�θ(Z3 | Z1�Z2� θ) = pZ3|θ(Z3 | θ)�
pZ1|Z2�θ(Z1 |Z2� θ) = pZ1|θ(Z1 | θ)�

which constitute the HS Assumption 2. Conversely, by the definition of condi-
tional densities and HS Assumption 2,

pZ3�Z1�Z2|θ(Z3�Z1�Z2 | θ)
= pZ3|Z1�Z2�θ(Z3 |Z1�Z2� θ)pZ1|Z2�θ(Z1 |Z2� θ)pZ2|θ(Z2 | θ)
= pZ3|θ(Z3 | θ)pZ1|θ(Z1 | θ)pZ2|θ(Z2 | θ)�

which states that Z1�Z2, and Z3 are mutually independent conditional on θ.
Hence the two assumptions are equivalent. Q.E.D.

A3.3. A More Explicit Discussion of the Analysis of Section 3.6.2

We assume that suitable repeated measurements of (θP� {θt� Ik�t� yt}Tt=1),
k ∈ {C�N}, are available to identify their (joint) distribution. In our applica-
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tion, we assume that yt is perfectly measured (i.e., its “repeated” measurements
can be set equal to each other). We also make the following assumptions:

ASSUMPTION 1: The random variables πt , νk�t , Ik�t , θk�t , and yt , k ∈ {C�N},
are scalar while θP may be vector-valued.6

ASSUMPTION 2: (i) πt is independent from (yt−2� yt−1� yt� θP) and (ii) νk�t is
independent from (θt� Ik�t� θP� yt).

REMARK: Given our dynamic model structure, component (ii) of Assump-
tion 2 essentially implies that νk�t must be independent over time and indepen-
dent from πt .7

ASSUMPTION 3: Ik�t is continuously distributed conditional on (θk�t� θP� yt)
with a density f (Ik�t | θt� θP� yt) that is uniformly Lipschitz in Ik�t for all (θt� θP� yt)
in their joint support.

ASSUMPTION 4: For any π̄ in the support of πt , E[D(θt� θP� yt� π̄)Δ(θt� θP�
yt) | yt−2� yt−1� θP� yt] = 0 ⇒ Δ(θt� θP� yt)= 0, where D(θt� θP� yt� π̄)= f (qk�t(θt�
θP� yt� π̄) | θt� θP� yt). (This is a completeness condition in Chernozhukov, Im-
bens, and Newey (2007).)

ASSUMPTION 5: (i) qk�t(θt� θP� yt�πt) is strictly increasing in πt and
(ii) fk�s(θt� Ik�t� θP�πt� νk�t) is strictly increasing in νk�t .

ASSUMPTION 6: The distributions of πt and νk�t are normalized to be uniform.8

Consider our investment policy equation:

Ik�t = qk�t(θt� θP� yt�πt)�

By Assumption 2, yt−2 and yt−1 are valid instruments for θt ≡ (θC�t� θN�t) be-
cause πt is independent from yt−2 and yt−1 and because yt−1 has an effect on θt

through

θk�t = fk�s(θt−1� Ik�t−1� θP� νk�t−1�πt−1)

= fk�s(θt−1� qk�t−1(θt−1� θP� yt−1�πt−1)�θP�πt−1� νk�t−1)

and similarly for yt−2, by induction. The variables θP� yt can instrument for
themselves since πt is independent from θP� yt as well.

6The vector-valued θk�t and yt are trivial to allow for, as long as the total dimension of all the
lags of yt used as instruments for θk�t is the same as the dimension of θk�t .

7Except for very contrived cases.
8One may select any of the alternative normalizations discussed in Matzkin (2003, 2007).
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Under Assumptions 3 and 4, Theorem 3.2 in Chernozhukov, Imbens, and
Newey (2007) implies that the function qk�t(θt� θP� yt� τ) solves the equation

P[Ik�t ≤ qk�t(θt� θP� yt� τ) | (yt−2� yt−1� θP� yt)] = τ(A3.1)

for any τ ∈ [0�1] is unique (i.e., identified).
Next, we note that equation (A3.1) is also satisfied after setting Ik�t =

qk�t(θt� θP� yt�πt), where πt is uniformly distributed on [0�1]. This follows from

P[qk�t(θt� θP� yt�πt)≤ qk�t(θt� θP� yt� τ) | (yt−2� yt−1� θP� yt)]
= P[πt ≤ τ | (yt−2� yt−1� θP� yt)]

since qk�t(θt� θP� yt�πt) is monotone in πt by Assumption 5. Then

P[πt ≤ τ | (yt−2� yt−1� θP� yt)] = P[πt ≤ τ] = τ

by Assumptions 2 and 6, as desired. It follows that qk�t(θt� θP� yt�πt) is identi-
fied.

Once the function qk�t has been identified, one can obtain q−1
k�t(θt� θP� yt� Ik�t),

the inverse of qk�t(θt� θP� yt�πt) with respect to its last argument, thanks to
Assumption 5. After substituting πt = q−1

k�t(θt� θP� yt� Ik�t), we can rewrite the
technology function as

θk�t+1 = fk�s(θt� Ik�t� θP�q
−1
k�t(θt� θP� yt� Ik�t)� νk�t)

≡ f rf
k�t(θt� Ik�t� θP� yt� νk�t)�

By Assumption 2, νk�t is independent from (θt� Ik�t� θP� yt) and by Assump-
tion 5, f rf

k�t(θt� Ik�t� θP� yt� νk�t) is monotone in νk�t , which has a uniform dis-
tribution by Assumption 6. By standard arguments (see Matzkin (2003,
2007)), it follows that element k (= C�N) of the vector-valued function
f rf(θt� Ik�t� θP� yt� τ) is identified from the τ-quantile of θk�t+1 conditional on
θt� Ik�t� θP� yt .

To identify the technology fk�s, we need to disentangle the direct effect of
θt� It� θP on θt+1 from their indirect effect through πt = q−1

k�t(θt� θP� yt� Ik�t). To
accomplish this, we exploit our knowledge of q−1

k�t(θt� θP� yt� Ik�t) to identify the
technology through the equality

fk�s(θt� Ik�t� θP�πt� νk�t)= f rf
k�t(θt� Ik�t� θP� yt� νk�t)|yt :q−1

k�t
(θt �θP �yt �Ik�t )=πt

�

where, on the right-hand side, we set yt to a specific value such that the cor-
responding implied value of πt matches its value on the left-hand side. This
does not necessarily require q−1

k�t(θt� θP� yt� Ik�t) to be invertible with respect
to yt , since we merely need at least one suitable value of yt for each given
(θt� θP� Ik�t�πt) and not necessarily a one-to-one mapping. Such a value yt nec-
essarily exists for any given θt� Ik�t� θP�πt because, for a fixed θt� Ik�t� θP , the
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variations in πt are entirely due to yt , since πt = q−1
k�t(θt� θP� yt� Ik�t). Hence, by

construction, any value of πt in its support conditional on θt� Ik�t� θP is reach-
able via a suitable choice of yt .

A4. IDENTIFICATION OF FACTOR LOADINGS FOR THE CASE WITH
UNOBSERVED HETEROGENEITY

Suppose that the relationship between adult outcomes Z4�j with skills
(θC�T+1� θN�T+1) and unobserved heterogeneity π can be written as

Z4�j = μ4�j + α4�C�jθC�T+1 + α4�N�jθN�T+1 + α4�π�jπ + ε4�j

for j = 1�2� � � � � J�

Normalize α4�π�1 = 1� If J ≥ 3, we can identify the entire model as long as one
of the following two conditions holds:

(i) The loading α4�π�j = 1 for j ∈ {2�3}.
(ii) For some period t� Cov(θk�t�π) = 0 for k ∈ {C�N}.

To see why we need one of these two conditions, suppose that we have J = 3
and we normalize α4�π�1 = 1� Consider the covariances

Cov(Z4�j�Z1�C�t�1) = α4�C�j Cov(θC�t� θC�T+1)+ α4�N�j Cov(θC�t� θN�T+1)

+ α4�π�j Cov(θC�t�π)�

Cov(Z4�j�Z1�N�t�1) = α4�C�j Cov(θN�t� θC�T+1)+ α4�N�j Cov(θN�t� θN�T+1)

+ α4�π�j Cov(θN�t�π)�

Cov(Z4�j�Z2�C�t�1) = α4�C�j Cov(It� θC�T+1)+ α4�N�j Cov(It� θN�T+1)

+ α4�π�j Cov(It�π)�

We can identify Cov(θC�t� θC�T+1) from the Cov(Z1�C�t�1�Z1�C�T+1�1)� The same
line of argument applies to Cov(θC�t� θN�T+1)� Cov(θN�t� θC�T+1)� Cov(θN�t�
θN�T+1)� Cov(It� θC�T+1)� and Cov(It� θN�T+1)� The factor loadings
{α4�C�j� α4�N�j}3

j=1 and {α4�π�j}3
j=2 as well as the covariances Cov(θC�t�π)�

Cov(θN�t�π)� and Cov(It�π) need to be identified. We then have 11 unknowns
and 9 equations. Adding terms such as Cov(Z4�j�Z1�C�t+1�1) is not helpful be-
cause they would add other unknown quantities such as Cov(θC�t+1�π). We
need two extra normalizations. This can be accomplished, for example, by im-
posing the restriction α4�π�j = 1 for j ∈ {2�3} or Cov(θk�0�π) = 0 for k ∈ {C�N},
provided that rank conditions hold.

A5. THE LIKELIHOOD IN THE NOTATION OF THE TEXT

We now develop the likelihood function for our model using the formal nota-
tion used in the text. We present the specification for the model that generates
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the estimates in Table V, used in the simulations. The likelihood for the other
models can be constructed along similar lines. Let pθ(θ) denote the density
of θ. For simplicity and notational consistency with the text, we use θ. In con-
structing the estimates we use lnθ (i.e., the log of each component of θ) in
the measurement and anchoring equations and use θ in the technology. Al-
though we do not directly observe θ, we observe measurements on it, Z, with
realization z. Let z1�k�t�j�h denote measurement j associated with the skill fac-
tor θk�t for person h ∈ {1� � � � �H} in period t. Let z2�k�t�j�h represent measure-
ment j associated with the investment factor Ik�t for person h in period t� Let
z3�k�1�j�h contain the information from measurement j on parental skill θk�P . Let
z4�T+1�j�h represent the vector of measurements on outcome j (e.g., schooling,
earnings, and crime). Let εl�k�t�j�h denote the measurement error associated
with the measurement zl�k�t�j�h, l = 1�2, let ε3�k�1�j�h denote the measurement
error associated with z3�k�1�j�h, and let ε4�T+1�j�h denote the measurement error
associated with z4�T+1�j�h. Let pεl�k�t�j�h denote the density function of εl�k�t�j�h,
l = 1�2. The densities of the other errors are defined in a parallel fashion. In
this notation, we can write the likelihood in terms of ingredients that we can
measure or identify:

p(z) =
H∏
h=1

∫
· · ·

∫
pθ(θ)(A5.1)

×
∏

k∈{C�N}

{
T∏
t=1

[M1�k�t∏
j=1

pε1�k�t�j�h(z1�k�t�h −μ1�k�t�j − α1�k�t�jθk�t)

×
M2�k�t∏
j=1

pε2�k�t�j�h

(
z2�k�t�j�h −μ2�k�t�j

− α2�k�t�jgk�t(θC�t� θN�t�π�θC�P� θN�P)− α2�k�t�jζk�t
)

×pζk�t (ζk�t) dθk�t dζk�t

]

×
M3�k�1∏
j=1

pε3�k�1�j�h(z3�k�1�j�h −μ3�k�1�j − α3�k�1�jθk�P)dθk�P

}

×
M4�T+1∏
j=1

p(z4�j�h) dθC�T+1 dθN�T+1 dπ�

where

p(z4�j�h)= pε4�j�h(z4�j�h −μ4�j − α4�C�jθC�T+1 − α4�N�jθN�T+1 − α4�π�jπ)

for j = 1� � � � � J1
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and

p(z4�j�h)= [
1 − Fε4�j (μ4�j + α4�C�jθC�T+1 + α4�N�jθN�T+1 + α4�π�jπ)

]z4�j�h

× [
Fε4�j (μ4�j + α4�C�jθC�T+1 + α4�N�jθN�T+1 + α4�π�jπ)

]1−z4�j�h

for j = J1 + 1� � � � � J�

In practice, we assume that gk�t is linear in the variables. The likelihood is max-
imized subject to parametric versions of technology constraints (2.1) and the
normalizations on the measurements discussed in Section 3.1. We assume that
the measurement error εl�k�t�j�h is classical, and independent of θ. This assump-
tion greatly reduces the number of terms needed to form the likelihood.9

In principle, one can estimate the parameters of the model, the parameters
of the technology, and the pθ(θ) by maximizing (A5.1) directly. To do that, one
can approximate p(z) by computing the integrals numerically in a determinis-
tic fashion. However, if the number of integrals is very large, a serious practical
problem arises. The number of points required to evaluate the integrals is very
large. For example, if there are three latent variables and four time periods, so
that T = 4, then dim(θ) = 12 and one has to compute an integral of dimen-
sion 12 to obtain the function p(z)� This requires computing approximately
17 million points of evaluation for each individual h if we pick four points of
evaluation for each integral. The rate of convergence of the numerical approx-
imation decreases with dim(θ). To obtain good approximations of p(z) even
in the case with three factors and four time periods, we would need more than
four points of evaluation for each integral.

We avoid this problem by relying on nonlinear filtering methods. They facili-
tate the approximation of the likelihood by recursive methods, greatly reducing
the computational burden. Further details on how we implement nonlinear fil-
tering are presented in the next section.

A6. NONLINEAR FILTERING10

Let the vector θt denote the unobserved state vector which evolves according
to the transition equation

θt+1 = f (θt)+ηt+1�(A6.1)

9Our analysis establishes that we can identify models with correlated measurement errors.
However, the computational cost for such a model is substantial and we do not do that in this
paper. Furthermore, Cunha and Heckman (2008) test and do not reject the null hypothesis that
the measurement errors are uncorrelated.

10The notation in this section is self-contained and not closely related to the notation in the
text or the notation in other parts of the Appendix. It is generic notation used in the filtering
literature, and to connect with that literature, we use it here.
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We denote by Nθ the dimension of θt� The vector ηt of dimension Nθ is the
process noise that drives the dynamic system. It is assumed to be indepen-
dently distributed over time with E(ηt) = 0 and Var(ηt) = Ht � Let zt denote
the vector of dimension Nz of observable variables which are related to the
state θt via the measurement equations

zt = h(θt)+ εt�(A6.2)

where εt is the observation noise, which is a vector of dimension Nz . The noise
εt is assumed to be independent random variables with E(εt) = 0 and
Var(εt)= Et . The functions f : RNθ → R

Nθ and h : RNθ → R
Nz are possibly non-

linear.11 The goal of nonlinear filtering is to estimate the density of θt con-
ditional on the history zt = (z1� � � � � zt)� which we denote by p(θt | zt)� As
discussed in Arulampalam, Ristic, and Gordon (2004), the conceptual solution
of nonlinear filtering is simple. Break the problem into a prediction step and
an update step, and then proceed recursively. The prediction step generates
p(θt | zt−1) given knowledge of p(θt−1 | zt−1)� This is accomplished by applying
the Chapman–Kolmogorov equation:

p(θt | zt−1)=
∫

p(θt | θt−1)p(θt−1 | zt−1)dθt−1�

where p(θt | θt−1) is the density of θt conditional on θt−1� The update step
computes p(θt | zt) given p(θt | zt−1) via the Bayes rule:

p(θt | zt)= p(zt | θt)p(θt | zt−1)

p(zt | zt−1)
�

A simple solution to the filtering problem exists when the functions f and h
are linear and separable in each of their arguments, the unobserved state θt is
Gaussian, and the noise terms εt , ηt are Gaussian, independent random vari-
ables. In this case, one can use the Kalman filter to derive the equations used
in the prediction and update steps analytically. However, simple departures
of this framework (e.g., f is nonlinear) make the Kalman filter unsuitable. It
is possible to adapt this approach by considering the first-order Taylor series
approximation of the function f and then applying the standard Kalman filter
prediction and update rules. This is known in the filtering literature as the ex-
tended Kalman filter (EKF). The problem with this approach is that the EKF
generally generates biased expressions for means and variances.

11A more general formulation is one in which these functions are nonseparable and indexed by
time, and there are observable covariates xt and wt which affect the measurement or the transi-
tion equation, so that zt = ht(xt� θt� εt) and θt+1 = gt(wt� θt�ηt). These are important extensions,
but in this appendix we discuss a simpler formulation because it covers the model estimated in
this paper. See Cunha (2008) for a discussion on the more general case.
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More recently, researchers have used general particle filtering techniques.12

However, in the context of panel data with a large cross-section dimension, the
particle filter can be computationally costly. Furthermore, the particle filter
may not be a good tool if the goal of the researcher is to estimate the (parame-
ters of the) functions f or h, especially when these functions are time invariant
(see discussion in Maskell (2004)).

Another approach is to consider the unscented Kalman filter (UKF) as pro-
posed by Julier and Uhlmann (1997). The crucial assumption in this algorithm
is that both p(θt | zt) and p(θt+1 | zt) can be accurately approximated by the
density of a normal random variable with mean

at+k�t =E(θt+k | zt)

and variance

Σt+k�t = Var(θt+k | zt)

for k ∈ {0�1}. Because of this assumption, the only objects that have to undergo
the prediction and update steps are the means and variances of the approxi-
mating normal distribution, just as in the standard Kalman filter algorithm.

Obviously, in some situations the normal approximation may not be a good
one. It is possible that nonlinear functions of normally distributed random vari-
ables generate random variables that have densities that are not symmetric
around their means or have many modes, which would be inconsistent with a
normal approximation. We introduce a more flexible approach which considers
approximations that use mixture of normals:

p(θt+k | zt)�
L∑
l=1

τl�tφ(θt;al�t+k�t�Σl�t+k�t)�

where φ(θt;al�t+k�t�Σl�t+k�t) is the probability density function of a normal ran-
dom variable with mean al�t+k�t and variance Σl�t+k�t� for k ∈ {0�1}. The weights
τl�t are such that τl�t ∈ [0�1] and

∑L

l τl�t = 1� Under this formulation, within
each stage, we break the filtering problem into parallel problems and obtain
the final result at the end.

A6.1. The Update Step

First, we compute the update density for each element of the mixture.
Namely, let ẑl�t denote the predicted measurement by the lth element of the
mixture:

ẑl�t = El(zt | zt−1)= El[h(θt) | zt−1] +El[εt | zt−1] =El[h(θt) | zt−1]�(A6.3)

12See, for example, Doucet, de Freitas, and Gordon (2001) and Fernandez-Villaverde and
Rubio-Ramirez (2006).
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Below, we show how to compute the moment displayed above. For now, con-
sider the updating equations

al�t�t = al�t�t−1 +Kl�t(zt − ẑl�t)�(A6.4a)

Σl�t�t = Σl�t�t−1 −Kl�tFl�tK
′
l�t �(A6.4b)

where

Kl�t = Cov[θt� zt | zt−1]F−1
l�t(A6.4c)

and

Fl�t = Var[h(θt� εt) | zt−1]�(A6.4d)

We can then approximate the posterior density p(θt | zt) with a linear com-
bination of densities φ(θt;al�t�t�Σl�t�t) with weights given by

τr�t = τr�t−1φ(zt; ẑr�t � Fr�t)
L∑
l=1

τl�t−1φ(zt; ẑl�t � Fl�t)

� r ∈ {1� � � � �L}�(A6.4e)

A6.2. The Prediction Step

With knowledge of a good approximation for the density p(θt | zt) expressed
as the mixture of normals and knowledge of the transition equation (A6.1) one
can approximately compute the one-step-ahead prediction density p(θt+1 | zt)
also expressed as a mixture of normals. More precisely, let

al�t+1�t =El(θt+1 | zt)=El(f (θt)+ηt+1 | zt)=El(f (θt) | zt)�(A6.5)

Σl�t+1�t = Varl[θt+1 | zt] = Var(f (θt)+ηt+1 | zt)(A6.6)

= Var(f (θt) | zt)+ Ht+1�

Then an approximation to p(θt+1 | zt) is given by

p(θt+1 | zt)≈
L∑
l=1

τl�tφ(zt;al�t+1�t�Σl�t+1�t)�

A6.3. Unscented Transform

A difficulty arises in the implementation of the filtering because in the pre-
diction and update stages one has to compute integrals that involve nonlinear
transformations of random variables whose distributions are approximated by
mixtures of normals. The unscented transform (UT) is a convenient tool to
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compute the mean and variance of a random variable that undergoes a nonlin-
ear transformation. For example, consider computing the expressions (A6.5)
and (A6.6). Then, by definition,

al�t+1�t =
∫

f (θt)φ(θt;al�t�t�Σl�t�t) dθt�(A6.7)

Σl�t+1�t =
∫
(f (θt)− al�t+1�t)(f (θt)− al�t+1�t)

′(A6.8)

×φ(θt;al�t�t�Σl�t�t) dθt−1 + Ht+1�

The expressions (A6.7) and (A6.8) involve the computation of Nθ integrals.
One way to proceed is to consider the product of integrals estimated by quadra-
ture. The difficulty with this approach is that as Nθ becomes larger, the number
of evaluations increases exponentially.

Another approach, discussed in Judd (1998), is to consider monomial rules.
The unscented transform proposed by Julier and Uhlmann (1997) is a mono-
mial rule that approximates the expressions (A6.7) and (A6.8). To do so, one
picks deterministically 2Nθ + 1 points xn�l�t�t and corresponding weights wn�l�t�

n = 0�1� � � � �2Nθ. Let Σ1/2
l�t�t denote the square root of the positive definite

(Nθ × Nθ) matrix Σl�t�t � Let Σ1/2
l�t�t(n� :) denote the nth row of Σ1/2

l�t�t . Let κ ∈ R

such that κ+Nθ �= 0� The UT proposes the points

xn�l�t�t =

⎧⎪⎨
⎪⎩
al�t�t� for n = 0,

al�t�t + (Nθ + κ)1/2Σ1/2
l�t�t(n� :)� for n = 1� � � � �Nθ,

al�t�t − (Nθ + κ)1/2Σ1/2
l�t�t(n� :)� for n =Nθ + 1� � � � �2Nθ,

(A6.9)

and the weights

wn�l�t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ

Nθ + κ
� for n = 0,

1
2(Nθ + κ)

� for n = 1� � � � �Nθ,

1
2(Nθ + κ)

� for n =Nθ + 1� � � � �2Nθ.

We approximate El[f (θt) | zt] and Varl[f (θt) | zt] by computing

al�t+1�t =El[f (θt) | zt] ≈
2Nθ∑
n=0

wn�l�tf (xn�l�t�t)
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and

Σl�t�t = Var[f (θt) | zt]

≈
2Nθ∑
n=0

wn�l�t[f (xn�l�t�t)− al�t+1�t][f (xn�l�t�t)− al�t+1�t]′ + Ht+1�

A6.4. Implementation of Nonlinear Filtering

Let p(z) denote the likelihood (4.1). The following representation is always
valid:

p(z)= p(z1)

T∏
t=1

p(zt+1 | zt)�(A6.10)

The idea is to use the nonlinear filtering to obtain a recursive algorithm which
we can use to calculate p(zt+1 | zt). To see how, note that we assume that

p(θ1)≈
L∑
l=1

τl�0φ(θ1;al�1�0�Σl�1�0)�

It follows that

p(z1)≈
L∑
l=1

τl�0φ(z1; ẑ1�Fl�1)�

where ẑ1 and Fl�1 are defined in (A6.3) and (A6.4d). Now, applying (A6.4a),
(A6.4b), (A6.4c), and (A6.4e) allows us to obtain al�1�1, Σl�1�1� and τl�1 which
are really helpful because now we can characterize the posterior density as

p(θ1 | z1)≈
L∑
l=1

τl�1φ(θ1;al�1�1�Σl�1�1)�

We then apply the prediction steps to obtain al�2�1 and Σl�2�1� With knowledge
of these quantities, we can approximate the predicted density as

p(θ2 | z1)≈
L∑
l=1

τl�1φ(θ2;al�2�1�Σl�2�1)�

Now we complete the cycle, because by using (A6.3)–(A6.4d), we can compute
ẑ2 and Fl�2� with which we can compute

p(z2 | z1)≈
L∑
l=1

τl�1φ(z2; ẑ2�Fl�2)�
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Furthermore, we use (A6.4e) to update the weights τl�2� By proceeding in a
recursive manner, we can construct the right-hand side of (A6.10), which is
just equal to the likelihood.

A7. IMPLEMENTATION OF ANCHORING

A7.1. Linear Anchoring

To fix ideas, let Z4�1 denote a continuous outcome that can be written as a
linear, separable function of period T +1 cognitive and noncognitive skills. Let
θN�T+1 and θC�T+1 denote the stocks of noncognitive and cognitive skills of the
agent upon completion of childhood. π denotes the heterogeneity component.
Then

Z4�1 = μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + α4�π�1π + ε4�1�

We define linear anchoring functions

gN�1(lnθN�T+1)= μ4�1 + α4�N�1 lnθN�T+1�

gC�1(lnθC�T+1)= μ4�1 + α4�C�1 lnθC�T+1�

We rewrite the technology as

lnθk�t+1 = − μ4�1

α4�k�1
+ 1

α4�k�1

× fk�s[eμ4�1+α4�C�1 lnθC�t � eμ4�1+α4�N�1 lnθN�t � eln Ik�t � elnθP �π�ηk�t]
for k ∈ {C�N}�

where lnθP = (lnθC�P� lnθN�P), and α4�k�1 �= 0.

A7.2. Nonlinear Anchoring

Let Z∗
4�1 denote the net benefit of graduating from high school. Let θN�T+1

and θC�T+1 denote the stocks of noncognitive and cognitive skills of the agent
at the end of childhood. We assume that

Z∗
4�1 = μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + α4�π�1π + ε4�1�

We do not observe Z∗
4�1, but the variable Z4�1 which is defined as

Z4�1 =

⎧⎪⎨
⎪⎩

0� if μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1

+ α4�π�1π + ε4�1 ≤ 0,

1� otherwise.
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We can define the anchoring functions in terms of probabilities. Assuming that
ε4�1 ∼N(0�1), it follows that

Pr(Z4�1 = 1 | μ4�1� lnθN�T+1� lnθC�T+1�π)

=�(μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + α4�π�1π)�

For any θk�T we can define the anchoring functions gk�1 for k= C�N as

gC�1(lnθC�T+1)

=
∫

�(μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + α4�π�1π)

×p(lnθN�T+1�π)d lnθN�T+1 dπ

and

gN�1(lnθN�T+1)

=
∫

�(μ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + α4�π�1π)

×p(lnθC�T+1�π)d lnθC�T+1 dπ�

where μ4�1 can depend on covariates on which we condition. If lnθk�T+1 ∼
N(0�σ2

θk�T+1
) for k ∈ {C�N} and π ∼ N(0�σ2

π), we obtain

gC�1(lnθC�T+1)

= �

(
μ4�1 + α4�C�1 lnθC�T+1√

1 + α2
4�N�1σ

2
θN�T+1

+ α2
4�π�1σ

2
π + 2α4�N�1α4�π�1 Cov(π� lnθN�T+1)

)
�

gN�1(lnθN�T+1)

= �

(
μ4�1 + α4�N�1 lnθN�T+1√

1 + α2
4�C�1σ

2
θC�T+1

+ α2
4�π�1σ

2
π + 2α4�C�1α4�π�1 Cov(π� lnθC�T+1)

)
�

We seek to estimate the technologies f̃k�s in terms of the anchored factors:

f̃k�s(gC�1(lnθC�t)� gN�1(lnθN�t)� Ik�t� θP�π�ηk�t)(A7.1)

= gk�1

[
fk�s

(
g−1
C�1(gC�1(lnθC�t))� g

−1
N�1(gN�1(lnθN�t))� Ik�t� θP�π�ηk�t

)]
�

k ∈ {C�N}�
The implementation of (A7.1) is not without problems. Note that g−1(x) is

the inverse of a c.d.f. function. It will be defined as long as x ∈ [0�1]� However,
there is no guarantee that fk�s(gC�1(θC�t)� gN�1(θN�t)� Ik�t� θP�π�ηk�t) ∈ [0�1].
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We confront this problem by proposing slightly modified nonlinear anchoring
functions:

gC�1(lnθC�T+1)

=
�

(
μ4�1 + α4�C�1 lnθC�T+1√

1 + α2
4�N�1σ

2
θN�T+1

+ α2
4�π�1σ

2
π + 2α4�N�1α4�π�1 Cov(π� lnθN�T+1)

)

1 −�

(
μ4�1 + α4�C�1 lnθC�T+1√

1 + α2
4�N�1σ

2
θN�T+1

+ α2
4�π�1σ

2
π + 2α4�N�1α4�π�1 Cov(π� lnθN�T+1)

)

and

gN�1(θN�T+1)

=
�

(
μ4�1 + α4�N�1 lnθN�T+1√

1 + α2
4�C�1σ

2
θC�T+1

+ α2
4�π�1σ

2
π + 2α4�C�1α4�π�1 Cov(π� lnθC�T+1)

)

1 −�

(
μ4�1 + α4�N�1 lnθN�T+1√

1 + α2
4�C�1σ

2
θC�T+1

+ α2
4�π�1σ

2
π + 2α4�C�1α4�π�1 Cov(π� lnθC�T+1)

) �

If we define ln θ̃k�1 = gk�1(lnθk), then

lnθk = g−1
k�1(ln θ̃k�1)=�−1

(
ln θ̃k�1

1 + ln θ̃k�1

)

and because by definition ln θ̃k�1 ≥ 0� it follows that ln θ̃k�1/(1 + ln θ̃k�1) ∈ [0�1]�

A7.3. Adjusting the Likelihood

Finally, we need to include the anchoring equations in the likelihood. To that
end, let z4�j�h denote the jth anchoring outcome for person h. Note that, for j ∈
{1� � � � � J1}, we have linear equations. In this case, we can write the contribution
of measurement z4�j�h, j = 1� � � � � J1, as

p(z4�j�h) = pε4�j�h(z4�j�h −μ4�j − α4�C�j lnθC�T+1

− α4�N�j lnθN�T+1 − α4�π�jπ)�

For j ∈ {J1 + 1� � � � � J} we have discrete dependent variables. In our case, they
are binary dependent variables. We write the contribution of measurement
Z4�j�h for j = J1 + 1� � � � � J as

p(z4�j�h) = [
1 − Fε4�j (μ4�j + α4�C�j lnθC�T+1

+ α4�N�j lnθN�T+1 + α4�π�jπ)
]z4�j�h
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× [
Fε4�j (μ4�j + α4�C�j lnθC�T+1

+ α4�N�j lnθN�T+1 + α4�π�jπ)
]1−z4�j�h �

A8. A LIMITED MONTE CARLO STUDY OF THE EMPIRICAL
MODEL OF SECTION 4.2.5

We assume T = 8 periods and N = 2200, which is our sample size. We use
two measures for each factor and they are written as in (3.1)–(3.3). This is
very conservative, because we have many more measures for parental invest-
ments than only two. We performed 10 simulations, because this is a very time-
consuming algorithm. Results are for a model with one latent factor. We do
not report the estimates of the intercept parameter.

Standard Error
Parameter True Value Mean Estimate (10 Simulations)

Eq. (4.2) κθ 0.4 0.4191 0.0942
κy 0.4 0.3658 0.0851

Technology γ1 (θt) 0.7 0.7178 0.1903
γ3 (investment) 0.4 0.4150 0.1437

φ −0.2 −0.2282 0.0472

Eq. (4.3) ρy 0.6 0.6236 0.0914
Eq. (4.4) ρπ 0.4 0.3638 0.0686

A9. DATA APPENDIX

A9.1. Survey Measures on Parental Investments

The measures regarding parental investments are those that describe the
quality of a child’s home environment that are included in the CNLSY/79
Home Observation Measurement of the Environment—Short Form (HOME-
SF). They are a subset of the measures used to construct the HOME scale
designed by Bradley and Caldwell (1980, 1984) to assess the emotional sup-
port and cognitive stimulation children receive through their home environ-
ment, planned events, and family surroundings. These measurements have
been used extensively as inputs to explain child characteristics and behaviors
(see, e.g., Todd and Wolpin (2005)). As discussed in Linver, Brooks-Gunn, and
Cabrera (2004), some of these items are not useful because they do not vary
much among families (i.e., more than 90–95% of all families have the same
response). Our empirical study uses measurements on the following parental
investments: How often child gets out of house, the number of books the child
has, how often the mother reads to the child, the number of soft/role play toys,
the number of push/pull toys, how often child eats with mom/dad, how often
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mom talks to child from work, number of magazines, whether the child has tape
recorder/CD player, how often child is taken to museum, whether the child has
musical instrument, whether the family receives daily newspaper, whether the
child receives special lessons/activities, whether the child is taken to musical
performances, how often the child sees family friends, the number of times
praised child last week, the number of times said positive things last week.

A9.2. Survey Measures on Child’s Cognitive Skills

We use several measures on the child’s cognitive skills. These measures vary
with the age of the child. Before age 4, we use the Motor and Social Develop-
ment Scale, the Parts of the Body Score, the Memory for Location Score, and
the Peabody Picture Vocabulary Test. We briefly describe them next.

The Motor and Social Development scale (MSD) was developed by the Na-
tional Center for Health Statistics to measure dimensions of the motor, social,
and cognitive development of young children from birth through the age of
47 months. The items were derived from standard measures of child develop-
ment (Bayley Scales of Infant Development, the Gesell Scale, Denver Devel-
opmental Screening Test), which have high reliability and validity as shown by
Poe (1986). The scale has been used in the National Health Interview Survey
(a large national health survey that included 2714 children up to age 4) and
in the third National Health and Nutrition Examination Survey (NHANES,
1988–1994). Analyses by Child Trends, a nonprofit, nonpartisan research or-
ganization, of the scale in the 1981 Child Health Supplement to the National
Health Interview Survey established the age ranges at which each item’s devel-
opmental milestone is generally reached by U.S. children, as shown in Peterson
and Moore (1987). Based on the child’s age, NLSY79 mothers answer 15 age-
appropriate items out of 48 motor and social development items. These items
have been used with a full spectrum of minority children with no apparent dif-
ficulty.

The NLSY79 Motor and Social Development assessment has eight com-
ponents (Parts A–H) that a mother completes contingent on the child’s
ages. Part A is appropriate for infants during the first 4 months of life (i.e.,
0–3 months) and the most advanced section, Part H, is addressed to children
between the ages of 22 and 47 months. All of the items are dichotomous
(scored either 0 or 1) and the total raw score for children of a particular age
is obtained by a simple summation (with a range 0–15) of the affirmative re-
sponses in the age-appropriate section.

The Parts of the Body assessment was completed by age-eligible NLSY79
children in 1986 and 1988 only. Developed by Kagan (1981), Parts of the Body
attempts to measure a 1- or 2-year-old child’s receptive vocabulary knowledge
of orally presented words as a means of estimating verbal intellectual devel-
opment. The interviewer names each of 10 body parts and asks the child to
point to that part of his or her body. The child’s score is computed by summing
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the items that a child correctly identifies. Thus, a minimum score is 0 and a
maximum score is 10. No proration was attempted since the later items in the
sequence are more difficult than the earlier items.

The Memory for Locations assessment was completed by age-eligible
NLSY79 children in 1986 and 1988 only. It was developed as a measure of
a child’s short-term memory and has been extensively used by Kagan (1981).
The child, aged 8 months through 3 years, watches as a figure is placed under
one of two to six cups. The cups are screened from a child’s view for 1–15 sec-
onds; the child is then asked to find the location of the figure. Items increase
in difficulty as the number of cups and/or the length of time during which the
cups are hidden from view increases. A child’s score is based on his or her
ability to select the cup hiding the figure.

The number of individual items that a child can potentially answer in this
assessment is contingent on the age of the child. Children between the ages of
8 and 23 months start with item 1, the easiest question; children who are at least
2 years of age begin with item 4, and children age 3 start with item 7. A child’s
score is based on the highest (most difficult) question answered. A child who
cannot answer the entry item receives a raw score of zero regardless of where
he or she enters.

The Body Parts and Memory for Locations assessments were no longer used
in the NLSY79 Child surveys following the 1988 Child data collection effort,
partly because of funding constraints and partly because of the greater diffi-
culty in administering them to children in a home setting. Interviewers found
it difficult to make an unambiguous determination as to whether a child was
unable to respond or whether he/she was just shy. It was sometimes difficult to
be definitive regarding the direction in which a child was pointing, either to-
ward a cup or toward a body part. More recent research by Mott, Baker, Ball,
Keck, and Lenhart (1998) suggests that these two assessments may be useful
independent predictors of cognitive development since Body Parts and Mem-
ory for Location scores in 1986 are highly significant predictors of Peabody
assessments in 1992. It appears that, in standard multivariate analyses, these
early child cognitive measures may indeed be useful predictors of aptitude and
achievement measures 6 years later.

Finally, starting at age 5, we use as measurements of cognitive skills the
Peabody Individual Achievement Test (PIAT), which is a wide-ranging mea-
sure of academic achievement of children aged 5 and over. It is widely used in
developmental research. Todd and Wolpin (2005) used the raw PIAT test score
as their measure of cognitive outcomes. The CNLSY/79 includes two subtests
from the full PIAT battery: PIAT Mathematics and PIAT Reading Recogni-
tion.13 The PIAT Mathematics measures a child’s attainment in mathematics
as taught in mainstream education. It consists of 84 multiple-choice items of

13We do not use the PIAT Reading Comprehension battery since it is not administered to the
children who score low in the PIAT Reading Recognition.



COGNITIVE AND NONCOGNITIVE SKILL FORMATION 27

increasing difficulty. It begins with basic skills such as recognizing numerals
and progresses to measuring advanced concepts in geometry and trigonome-
try. The PIAT Reading Recognition subtest measures word recognition and
pronunciation ability. Children read a word silently, then say it aloud. The test
contains 84 items, each with four options, which increase in difficulty from
preschool to high school levels. Skills assessed include the ability to match let-
ters, name names, and read single words aloud.

A9.3. Survey Measures on Child’s Noncognitive Skills

We use two systems of measurements on the child’s noncognitive skills. Up
to age 4, we use the Temperament Scale. Starting at age 4, we use the Behavior
Problem Index. We give a brief description of these measures next.

The Temperament Scale is based on Rothbart’s Infant Behavior Question-
naire, Campos, Barrett, Lamb, Goldsmith, and Stenberg (1983) and Kagan
(1981) compliance scale. Because the child’s temperament is partially a
parental perception, the behavioral style of children in the NLSY79 was mea-
sured by a set of maternal-report items. The maternal scale “How My Infant
Usually Acts” addresses the activity, predictability, fearfulness, positive affect,
and friendliness of infants below age 1. “How My Toddler Usually Acts” ad-
dresses the fearfulness, positive affect, and friendliness of 1-year-olds. “How
My Child Usually Acts” measures the compliance and attachment of 2- and
3-year-olds and, additionally, the friendliness of children aged 4–6.

As measurements of noncognitive skills we use components of the Behavior
Problem Index (BPI) created by Peterson and Zill (1986) and designed to mea-
sure the frequency, range, and type of childhood behavior problems for chil-
dren age 4 and over. The Behavior Problem score is based on responses from
the mothers to 28 questions about specific behaviors that children age 4 and
over may have exhibited in the previous 3 months. Three response categories
are used in the questionnaire: often true, sometimes true, and not true. In our
empirical analysis we use the following subscores of the behavioral problems
index: (i) antisocial, (ii) anxious/depressed, (iii) headstrong, (iv) hyperactive,
(v) peer problems. Among other characteristics, a child who scores low on the
antisocial subscore is a child who often cheats or tell lies, is cruel or mean to
others, and does not feel sorry for misbehaving. A child who displays a low
score on the anxious/depressed measurement is a child who experiences sud-
den changes in mood, feels no one loves him/her, is fearful, or feels worthless
or inferior. A child with low scores on the headstrong measurement is tense,
nervous, argues too much, and is disobedient at home, for example. Children
will score low on the hyperactivity subscale if they have difficulty concentrat-
ing, act without thinking, and are restless or overly active. Finally, a child will
be assigned a low score on the peer problem subscore if they have problems
getting along with others, are not liked by other children, and are not involved
with others. Tables A9-1–A9-3 present basic statistics for the data used in our
analysis.
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TABLE A9-3

MEASUREMENTS ON MATERNAL COGNITIVE AND NONCOGNITIVE SKILLS

Number of Standard
Observations Mean Error

Measurements on Maternal Cognitive Skills
Mom’s Arithmetic Reasoning Test Score 2207 0.172 0.933
Mom’s Word Knowledge Test Score 2207 0.302 0.822
Mom’s Paragraph Composition Test Score 2207 0.377 0.827
Mom’s Numerical Operations Test Score 2207 0.343 0.875
Mom’s Coding Speed Test Score 2207 0.468 0.879
Mom’s Mathematical Knowledge Test Score 2207 0.185 0.972

Measurements on Maternal Noncognitive Skills
Mom’s Self-Esteem: “I am a person of worth” 2207 3.534 0.516
Mom’s Self-Esteem: “I have good qualities” 2207 3.382 0.530
Mom’s Self-Esteem: “I am a failure” 2207 3.477 0.580
Mom’s Self-Esteem: “I have nothing to be proud of” 2207 3.480 0.625
Mom’s Self-Esteem: “I have a positive attitude” 2207 3.200 0.576
Mom’s Self-Esteem: “I wish I had more self-respect” 2207 2.876 0.787
Mom’s Self-Esteem: “I feel useless at times” 2207 2.650 0.774
Mom’s Self-Esteem: “I sometimes think I am no good” 2207 3.005 0.808
Mom’s Rotter Score: “I have no control” 2207 2.897 1.156
Mom’s Rotter Score: “I make no plans for the future” 2207 2.543 1.159
Mom’s Rotter Score: “Luck is big factor in life” 2207 3.154 0.974
Mom’s Rotter Score: “Luck plays big role in my life” 2207 2.426 1.144

A10. ESTIMATED PARAMETERS FOR OUTCOME AND INVESTMENT EQUATIONS
AND INITIAL CONDITIONS; NORMALIZATIONS FOR

THE MEASUREMENT SYSTEM

TABLE A10-1

ESTIMATES OF THE ADULT OUTCOME EQUATIONSa

Linear Anchoring Model

Cognitive Skill Noncognitive Skill

Educational Attainment (Years of Schooling)b 1.007 (0.060) 0.993 (0.067)

Crime Participationc −0.123 (0.101) −0.463 (0.108)

Drug Consumptiond −0.055 (0.061) −0.341 (0.069)

Teenage Pregnancye −0.087 (0.091) −0.241 (0.113)

aStandard errors in parentheses.
bCompleted years of schooling by 19 years of age.
cEver on probation as reported in 2004.
dConsumption of marijuana and amphetamines.
eEver pregnant by 19 years of age.
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TABLE A10-5

POINT ESTIMATES (MODEL REPORTED IN TABLE IV)

φ1�C φ2�C φ1�N φ2�N

0.3135 −1�2433 −0�6100 −0�5507

Variance–Covariance Matrix of Elasticity Parameters
φ1�C φ2�C φ1�N φ2�N

0.0180 −0�0004 −0�0009 0�0010
−0.0004 0�0463 0�0001 −0�0021
−0.0009 0�0001 0�0155 0�0007

0.0010 −0�0021 0�0007 0�0288

Null Hypothesis Test Statistic Null Hypothesis Test Statistic
φ1�C = φ1�N 4�9056 φ1�N = φ2�C 2�5495
φ1�C = φ2�C 6�0959 φ1�N = φ2�N −0�2863
φ1�C = φ2�N 4�0806 φ2�C = φ2�N −2�4607

TABLE A10-6

ESTIMATES OF THE PARENTAL INVESTMENT EQUATIONa

Current Period Cognitive Skill 0.045
(0.028)

Current Period Noncognitive Skill 0.130
(0.027)

Maternal Cognitive Skill 0.124
(0.030)

Maternal Noncognitive Skill 0.164
(0.074)

Log Family Income 0.143
(0.026)

aStandard errors in parentheses.

TABLE A10-7

POINT ESTIMATES (MODEL REPORTED IN TABLE V)

φ1�C φ2�C φ1�N φ2�N

0.5317 −1�3000 −0�9596 −0�4713

Variance–Covariance Matrix of Elasticity Parameters
φ1�C φ2�C φ1�N φ2�N

0.0763 −0�0093 −0�0019 0�0022
−0.0093 0�1383 −0�0030 −0�0076
−0.0019 −0�0030 0�0270 0�0014

0.0022 −0�0076 0�0014 0�0487

Null Hypothesis Test Statistic Null Hypothesis Test Statistic
φ1�C = φ1�N 4�5561 φ1�N = φ2�C 0�8225
φ1�C = φ2�C 3�7927 φ1�N = φ2�N −1�8080
φ1�C = φ2�N 2�8891 φ2�C = φ2�N −1�8426
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A11. SENSITIVITY ANALYSES FOR A ONE-STAGE MODEL

A11.1. Sensitivity to Alternative Anchors

Table A11-1 compares the estimated parameter values and their standard er-
rors in an unanchored system against two anchored systems. The results from
the unanchored model are in column 1 of Table A11-1. From these columns, we
see that (i) both cognitive and noncognitive skills show strong persistence over
time; (ii) noncognitive skills affect the accumulation of the next period’s cog-
nitive skills, but noncognitive skills do not determine cognitive skills; (iii) the
estimated parental investment factor affects cognitive skills somewhat more
strongly than noncognitive skills; (iv) the mother’s cognitive ability affects the
child’s cognitive ability; (v) the mother’s noncognitive ability affects both cog-
nitive and noncognitive skills.

The estimated coefficients for the system of adult outcome equations associ-
ated with each system are reported in Table A11-2. An anchor sets the scale of
the factor, as discussed in the text. The elasticities of substitution between in-
vestments and stocks of skills are both below 1, with noncognitive investments
more substitutable across stages of the life cycle than cognitive investments.
This finding is consistent with the evidence on plasticity of noncognitive skills
and the lesser plasticity of cognitive skills discussed in Cunha, Heckman, Loch-
ner, and Masterov (2006), Cunha and Heckman (2007), and Heckman (2008).

To circumvent the problem that scales of test score are intrinsically arbi-
trary, we use two different anchors. The first anchor is years of education
completed by age 19 which is assumed to be a linear function of the factors
(results reported in column 2 of Table A11-1). The second anchor is a probit
model for high school graduation by age 19 (column 3). Compared to the unan-
chored case, the estimated elasticity of substitution for cognitive skills slightly
increases. The elasticity of substitution for noncognitive skills considerably de-
creases. However, both estimates are still below 1 (φC

∼= −1�03, φN
∼= −0�97).

When we use nonlinear anchoring, the estimated elasticities of substitution are
different (φC

∼= −1�21, φN
∼= −0�79), but the standard errors are also larger.

The qualitative conclusions of Table A11-1 survive.

A11.2. Relaxing the Normality Assumption

Thus far, we have assumed normality for the unobservables. We investigate
how our findings change when we allow for a more flexible representation of
the joint distribution of factors using a mixtures of normal model.14 However,

14We constrain variances to be the same across different elements of the mixture. The data
are not rich enough to afford identification of different variance–covariance matrices by mixture
components. When we allow for different variance–covariance matrices, the model does not con-
verge. When we penalize the likelihood to eliminate small values of the probability weights on
the mixture components, the estimated variance–covariance matrices turns out to be very similar.
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TABLE A11-1

COMPARISON OF DIFFERENT ANCHORING ALTERNATIVES; ONE DEVELOPMENT STAGE
MODEL; NO UNOBSERVED HETEROGENEITY (π); FACTORS NORMALLY DISTRIBUTEDa

(1) (2) (3)
Nonlinear Anchor

Linear Anchor (Probability of High
Unanchored (Years of Schooling) School Graduation)

The Technology of Cognitive Skill Formation
Current Period Cognitive Skills γ1�C�1 0�693 0�727 0�778

(Self-Productivity) (0�014) (0�012) (0�016)

Current Period Noncognitive Skills γ1�C�2 0�029 0�018 0�021
(Cross-Productivity) (0�004) (0�004) (0�007)

Current Period Investments γ1�C�3 0�238 0�222 0�179
(0�024) (0�022) (0�022)

Parental Cognitive Skills γ1�C�4 0�023 0�028 0�019
(0�006) (0�005) (0�006)

Parental Noncognitive Skills γ1�C�5 0�018 0�005 0�003
(0�007) (0�007) (0�009)

Complementarity Parameter φ1�C −1�173 −1�032 −1�214
(0�004) (0�002) (0�048)

Implied Elasticity of Substitution 1/(1 −φ1�C) 0�460 0�492 0�452

Variance of Shocks ηC�t δ2
η 0�103 0�105 0�067

(0�002) (0�002) (0�001)

The Technology of Noncognitive Skill Formation
Current Period Cognitive Skills γ1�N�1 0�000 0�000 0�000

(Cross-Productivity) (0�008) (0�009) (0�014)

Current Period Noncognitive Skills γ1�N�2 0�802 0�804 0�841
(Self-Productivity) (0�019) (0�020) (0�053)

Current Period Investments γ1�N�3 0�144 0�156 0�113
(0�019) (0�021) (0�021)

Parental Cognitive Skills γ1�N�4 0�000 0�000 0�000
(0�004) (0�004) (0�004)

Parental Noncognitive Skills γ1�N�5 0�054 0�040 0�046
(0�012) (0�013) (0�019)

Complementarity Parameter φ1�N −0�462 −0�972 −0�788
(0�101) (0�101) (0�154)

Implied Elasticity of Substitution 1/(1 −φ1�N) 0�684 0�507 0�559

Variance of Shocks ηN�t δ2
η 0�114 0�122 0�058

(0�002) (0�003) (0�001)

aStandard errors in parentheses.
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the added flexibility does not affect the estimates obtained from a model es-
timated under a more restrictive normality assumption. See the estimates re-
ported in Table A11-3.

A12. VARIANCE DECOMPOSITION

A12.1. Cognitive and Noncognitive Skills

We model educational attainment (years of schooling), Z4�1 in the notation
of Section 3.5, as a linear, separable function of observable characteristics X ,
cognitive skills, lnθC�T , noncognitive skills, lnθN�T , unobserved heterogeneity,
lnπ, and an error term ε4�1 as

Z4�1 = Xβ4�1 + α4�C�1 lnθC�T+1 + α4�N�1 lnθN�T+1 + lnπ + ε4�1�

where we normalize the loading on lnπ, α4�π�1 = 1 for identification purposes.
Note that the total residual variance is given by the term

R4�1 = α2
4�C�1 Var(lnθC�T+1)+ 2α4�C�1α4�N�1 Cov(lnθC�T+1� lnθN�T+1)

+ 2α4�C�1 Cov(lnθC�T+1� lnπ)+ α2
4�N�1 Var(lnθN�T+1)

+ 2α4�N�1 Cov(lnθN�T+1� lnπ)+ Var(lnπ)+ Var(ε4�1)�

We compute the share of R4�1 that is due to cognitive and noncognitive skills,
p4�1, as

p4�1 = [α2
4�C�1 Var(lnθC�T+1)+ 2α4�C�1α4�N�1 Cov(lnθC�T+1� lnθN�T+1)

+ α2
4�N�1 Var(lnθN�T+1)]/R4�1

≈ 34%�

We compute the share of R4�1 that is due exclusively to skill k, s4�k�1 as

s4�k�1 = α2
4�k�1 Var(lnθC�T+1)

R4�1
� k ∈ {C�N}�

We find that s4�C�1 ≈ 16% and s4�N�1 ≈ 12%�

A12.2. Parental Investment

To compute how much of total residual variance is due to parental invest-
ment, we proceed in two ways. First, we generate filtered estimates of parental
investments for each child i� i = 1� � � � �N� Let ln Îi�t denote the filtered invest-
ment for child i at period t� We then proceed by applying the Frisch–Waugh–
Lovell theorem. First, we regress

Z4�1 = Xβ4�1 + νZ�4�1
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TABLE A11-3

ALLOWING FOR UNOBSERVED HETEROGENEITY AND FACTORS JOINT DISTRIBUTION IS
MIXTURE OF NORMALS; ONE DEVELOPMENT STAGE MODEL; LINEAR ANCHORING

ON EDUCATIONAL ATTAINMENT (YEARS OF SCHOOLING)a

(1) (2) (3)
No Unobserved Unobserved Unobserved
Heterogeneity Heterogeneity Heterogeneity and

and Normal and Normal Mixture of Normals
Distribution Distribution Distribution

The Technology of Cognitive Skill Formation
Current Period Cognitive Skills γ1�C�1 0�727 0�689 0�693

(Self-Productivity) (0�012) (0�014) (0�016)

Current Period Noncognitive γ1�C�2 0�018 0�003 0�004
Skills (Cross-Productivity) (0�004) (0�005) (0�007)

Current Period Investments γ1�C�3 0�222 0�275 0�267
(0�022) (0�022) (0�022)

Parental Cognitive Skills γ1�C�4 0�028 0�030 0�032
(0�005) (0�005) (0�007)

Parental Noncognitive Skills γ1�C�5 0�005 0�003 0�004
(0�007) (0�007) (0�008)

Complementarity Parameter φ1�C −1�032 −1�012 −0�987
(0�002) (0�002) (0�004)

Implied Elasticity of Substitution 1/(1 −φ1�C) 0�492 0�497 0�503

Variance of Shocks ηC�t δ2
η 0�105 0�097 0�093

(0�002) (0�002) (0�002)

The Technology of Noncognitive Skill Formation
Current Period Cognitive Skills γ1�N�1 0�000 0�000 0�001

(Cross-Productivity) (0�009) (0�010) (0�012)

Current Period Noncognitive γ1�N�2 0�804 0�787 0�794
Skills (Self-Productivity) (0�020) (0�022) (0�025)

Current Period Investments γ1�N�3 0�156 0�171 0�163
(0�021) (0�024) (0�024)

Parental Cognitive Skills γ1�N�4 0�000 0�000 0�001
(0�004) (0�004) (0�006)

Parental Noncognitive Skills γ1�N�5 0�040 0�042 0�041
(0�013) (0�014) (0�014)

Complementarity Parameter φ1�N −0�972 −0�751 −0�768
(0�101) (0�102) (0�123)

Implied Elasticity of Substitution 1/(1 −φ1�N) 0�507 0�571 0�566

Variance of Shocks ηN�t δ2
η 0�122 0�116 0�131

(0�003) (0�003) (0�004)

aStandard errors in parentheses.
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and obtain the residual

ν̂Z�4�1 =Z4�1 −Xβ̂4�1�

Then, for each period t we regress

ln Ît = Xκt + νI�t�

where κt is the coefficient on the regressors, and obtain the residual

ν̂I�t = ln Ît −Xζ̂t�

Finally, we regress

ν̂Z�4�1 =m(ν̂I�1� ν̂I�2�� � � � � ν̂I�T )+ ε4�1�

where the function m is a complete polynomial of degree 2. We find that the
R2 of such regression is around 15%�

A13. FURTHER SIMULATIONS OF THE MODEL

Suppose that the goal of society is to get the schooling of every child to the
same twelfth grade level. The required investments measure the power of ini-
tial endowments in determining inequality and the compensation through in-
vestment that is required to eliminate their influence. Let e(θ1�h) be the min-
imum cost of attaining 12 years of schooling for a child with endowment θ1�h.
Assuming no discounting, the problem is formally defined by

e(θ1�h) = min[I1�h + I2�h]
subject to a schooling constraint

S(θC�3�h� θN�3�h�πh)= 12�

where S maps end of childhood capabilities and other relevant factors (πh)
into schooling attainment, subject to the technology of capability formation
constraint

θk�t+1�h = fk�t(θC�t�h� θN�t�h� θC�P�h� θN�P�h� It�h�πh)

for k ∈ {C�N} and t ∈ {1�2}�
and the initial endowments of the child and her parents. We have estimated all
of the ingredient functions.15 We use the estimates reported in Table V.

15See Appendix A10 for the estimates of the schooling equation.
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FIGURE A13-1.—Percentage increase in total investments as a function of child initial condi-
tions of cognitive and noncognitive skills.

Figures A13-1 (for child endowments) and A13-2 (for parental endowments)
plot the percentage increase in investment over that required for a child
with mean parental and personal endowments to attain high school gradua-
tion.16 The shading in the graphs represents different values of investments.
The lightly shaded areas of the graph correspond to higher values. Eighty per-
cent more investment is required for children with the most disadvantaged
personal endowments (Figure A13-1). The corresponding figure for children
with the most disadvantaged parental endowments is 95% (Figure A13-2).
The negative percentages for children with high initial endowments is a mea-
sure of their advantage. From the analysis of Moon (2009), investments re-
ceived as a function of a child’s endowments are typically in reverse order from
what are required. Children born with advantageous endowments typically re-
ceive more parental investment than children from less advantaged environ-
ments.

16In graphing the investments as a function of the displayed endowments, we set the values of
other endowments at mean values.
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FIGURE A13-2.—Percentage increase in total investments as a function of maternal cognitive
and noncognitive skills.

A14. ANALYSIS OF ONE-SKILL (COGNITIVE) MODELS

A14.1. Implications of Estimates From a Two-Stage–One-Skill
Model of Investment

We examine the policy implications of a traditional model formulated
only in terms of cognitive skills. Our estimates of this model are reported
in Table A14-1. We consider the problem of maximizing aggregate edu-
cational attainment using the estimates from a model with only cognitive
skills. Figures A14-1 and A14-2 compare optimal early investments from the
cognitive-skill-only model (left) with investments from the model with both
skills (right). As in the figures reported in Section 4.3, less shaded regions of
the figures correspond to higher values for investment.

An empirical model of skill formation that focuses solely on cognitive skills
suggests that it is optimal to perpetuate and reinforce initial inequality. In Sec-
tion 4.3, we established that even in a one-skill model it is theoretically pos-
sible to obtain the result that is optimal to invest more in the early years of
the initially disadvantaged. However, the empirical estimates of the one-skill
model suggest the opposite. In contrast to the empirical implications of the
two-skill model reported in the text, investments are lower at the first stage of
the life cycle for those initially most disadvantaged (measured by initial endow-
ments) compared to the most advantaged. The cognition-only model ignores
the cross-productivity of noncognitive skills on cognitive skills and the mal-
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TABLE A14-1

TECHNOLOGY OF COGNITIVE SKILL FORMATION; MODEL WITH COGNITIVE SKILLS ONLY AND
TWO STAGES OF CHILDHOOD; ESTIMATED ALONG WITH INVESTMENT EQUATION WITH

LINEAR ANCHORING ON EDUCATIONAL ATTAINMENT (YEARS OF SCHOOLING); ALLOWING
FOR UNOBSERVED HETEROGENEITY (π); FACTORS NORMALLY DISTRIBUTEDa

Current Period Cognitive Skills γ1�C�1 0�303 γ2�C�1 0�448
(0�026) (0�015)

Current Period Investments γ1�C�3 0�319 γ2�C�3 0�098
(0�025) (0�015)

Parental Cognitive Skills γ1�C�4 0�378 γ2�C�4 0�454
(0�022) (0�017)

Complementarity Parameter φ1�C −0�180 φ2�C −0�781
(0�130) (0�096)

Implied Elasticity of Substitution 1/(1 −φ1�C) 0�847 1/(1 −φ2�C) 0�562

Variance of Shocks ηC�t δ2
η 0�193 δ2

η 0�050
(0�006) (0�002)

aStandard errors in parentheses.

FIGURE A14-1.—Optimal early investments by child initial cognitive skills and maternal cog-
nitive skills model with cognitive skill only (left) and the model with cognitive and noncognitive
skills (right).
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FIGURE A14-2.—Optimal late investments by child initial cognitive skills and maternal cog-
nitive skills model with cognitive skill only (left) and the model with cognitive and noncognitive
skills (right).

leability of noncognitive skills in the second stage of childhood. By ignoring
a central feature of the human skill formation process, a one-skill model pro-
duces misleading public policy conclusions.

A14.2. The Implications of Estimates From a Single-Stage–One-Skill
(Cognitive) Model of Investment

This appendix discusses implications of the estimates of the technology re-
ported in Table A14-2 that assumes a single cognitive skill and a single stage.
The model is comparable to the one whose estimates are reported in Ta-
ble A14-1, except that model has two stages while the model used to generate
Table A14-2 has only a single stage of the life cycle. The estimated elasticity
of substitution is lower than the first stage estimate reported in Table A14-1.
Estimated investment effects are comparable for the first stage of Table A14-1
and the corresponding parameter in Table A14-2. Estimated parental skill es-
timates are weaker.

This specification shows an even more dramatic efficiency–equity trade-off
for maximizing aggregate schooling than the specification discussed in Sec-
tion A14.1. See Figures A14-3 and A14-4. The left-hand side figures are based
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TABLE A14-2

TECHNOLOGY OF COGNITIVE SKILL FORMATION; MODEL WITH COGNITIVE SKILLS ONLY AND
ONE STAGE OF CHILDHOOD; LINEAR ANCHORING ON EDUCATIONAL ATTAINMENT (YEARS OF

SCHOOLING); ALLOWING FOR UNOBSERVED HETEROGENEITY (π) AND INVESTMENT;
FACTORS NORMALLY DISTRIBUTEDa

Current Period Cognitive Skills γ1�C�1 0�626
(0�013)

Current Period Investments γ1�C�3 0�293
(0�022)

Parental Cognitive Skills γ1�C�4 0�081
(0�009)

Complementarity Parameter φ1�C −0�701
(0�070)

Implied Elasticity of Substitution 1/(1 −φ1�C) 0�588

Variance of Shocks ηC�t δ2
η 0�081

(0�002)

aStandard errors in parentheses.

FIGURE A14-3.—Optimal early investments by child initial cognitive skills and maternal cog-
nitive skills model with cognitive skill only (right) and the model with cognitive and noncognitive
skills (right).
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FIGURE A14-4.—Optimal early investments by child initial cognitive skills and maternal cog-
nitive skills model with cognitive skill only (right) and the model with cognitive and noncognitive
skills (right).

on the model of Table A14-2. The right-hand side figures are based on the
model with estimates reported in Table V. Ignoring noncognitive skills and
multiple stages, it is socially optimal to perpetuate rather than remediate ini-
tial disadvantage, especially in the early stage of the child life cycle.
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