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1. TECHNICAL APPENDIX 1

THIS APPENDIX DEMONSTRATES how the optimal allocation in the bond-
enforcement model can be decentralized into a competitive equilibrium with
either national default risk or resident default risk. Under national default risk,
the government makes the default choice, while under resident default risk,
consumers make the default choice. In the literature, Kehoe and Perri (2002)
argued that national default risk is more realistic because governments play an
important role in collecting and repaying foreign debt. Wright (2006) argued
that resident default risk is also important from historical observation. In this
appendix, instead of taking a stand on which default risk is more important, we
show that our bond-enforcement model can be decentralized in either way.

We first present the general setup of the decentralized models with either
national default risk or resident default risk. Then we decentralize the bond-
enforcement model through a tax on contract repayments under national de-
fault risk. The role of such tax is to make consumers endogenize the effect of
private overborrowing on the economy-wide debt limits faced by the govern-
ment. Last, we show the decentralization through a subsidy on international
debt payments under resident default risk. The subsidy on international debt
payments lowers the consumer’s default incentive and so restores borrowing to
the centralized borrowing level in the benchmark case. Given that we have a
production economy, the capital stock is also distorted under the decentralized
model. We therefore need a tax on capital returns to implement the optimal
capital stock in the decentralized models, as in Kehoe and Perri (2002).

1.1. General Decentralization Setup

In each country, there are three types of agents: a representative firm, a con-
tinuum of consumers, and a government. The representative firm uses capital
and labor to produce with the Cobb–Douglas production function as speci-
fied in the paper. The consumers, with identical preferences and wealth, make
decisions over consumption, investment, domestic borrowing, and foreign bor-
rowing. The government collects taxes from and makes lump-sum transfer to
the domestic consumers.

Domestic financial markets feature a complete set of assets and domestic
contracts have full enforceability. In contrast, international financial markets
offer only one noncontingent bond and international contracts have limited
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enforceability. The modeling choices are motivated by the empirical observa-
tion that international capital flow mainly takes the form of debt,1 and within a
country there are richer forms of borrowing and lending. Furthermore, there is
no international court to enforce the international financial contracts, as com-
monly argued in the literature.

1.1.1. National Default Risk

In this case, the representative consumer decides how much to borrow do-
mestically and internationally. The government collects the domestic con-
sumers’ repayments to international lenders and chooses whether to default
by comparing the defaulting welfare with the nondefaulting welfare. The in-
ternational lenders cannot price-discriminate among borrowing countries and
charge the risk-free rate on the loans. With limited enforceability of debt con-
tracts, the international lenders will impose borrowing limits to ensure that all
the debt allowed will be repaid with certainty. The government imposes taxes
or subsidies on debt repayments (both domestic and international) and cap-
ital returns to ensure that aggregate private borrowing meets such sovereign
borrowing limits.

More specifically, each consumer maximizes the expected utility, given by

U(s0)=
∞∑
t=0

∑
at

βtπ(at)u(c(at))�(1.1)

subject to the sequential budget constraints

c(at)+ k(at)+
∑
at+1|at

qH(a
t� at+1)bH(a

t� at+1)+ b(at)

≤w(at)+ (1 − τk(a
t))rk(a

t)k(at−1)

+ (1 + τb(a
t))[bH(a

t−1� at)+Rb(at−1)] + T(at)

and the no-Ponzi constraints

bH(a
t� at+1)≥ −D� b(at)≥ −D�

where bH(a
t� at+1) denotes the domestic Arrow securities, qH(a

t� at+1) denotes
the price of these securities, b(at) denotes the foreign assets or bonds, w(at)
denotes the wage rate, rk(at) denotes the return to capital, τb(at) denotes the
tax or subsidy on debt repayments, and τk(a

t) denotes the tax on the return to
capital. Since there is no aggregate uncertainty in the model, the world interest
rate R is constant over time.

1Kraay, Loayza, Servėn, and Ventura (2005) documented that roughly three-quarters of net
north–south capital flow takes the form of net lending.
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A representative firm chooses capital and labor so that marginal products
and marginal costs are equalized for each input, that is,

w(at)= (1 − α)atk(a
t−1)α�

rk(a
t)= αatk(a

t−1)α−1 + 1 − δ�

The government chooses to default if the default welfare Ṽ AUT is higher than
the nondefaulting welfare U(st), as defined in equation (1.1). The default value
is given by2

Ṽ AUT(at�k(at−1)�bH(a
t−1� at)) = max

∞∑
m=t

∑
am

βm−tπ(am|at)u(c(am))�

subject to

c(am)+ k(am)+
∑

am+1|am
qH(a

m�am+1)bH(a
m�am+1)

≤w(am)+ rk(a
m)k(am−1)+ bH(a

m−1� am)�

The assumptions on the international lenders ensure no default in equilibrium
because the country cannot borrow the amount at which they have incentive to
default. Note that the domestic consumers are homogenous, which implies that
bH(a

t−1� at) is zero in equilibrium. The borrowing limits that the international
lenders impose depend on the shock realization and the accumulated capital
stock.

DEFINITION 1.1: A competitive equilibrium under national default risk under
a sequence of taxes {τb(at)� τk(a

t)} is a set of allocations {c(at)� bH(a
t� at+1)�

b(at)� k(at)}, transfers T(at), and prices {w(at)� rk(a
t)� qH(a

t� at+1)� R} such
that the following conditions are satisfied:

(i) Given the prices, taxes, and transfers, each consumer in a country
chooses {c(at)� bH(a

t� at+1)� b(at)� k(at)} to maximize the utility subject to
the budget constraints and the no-Ponzi constraints.

(ii) The representative firm’s first-order conditions are satisfied.
(iii) The no-default condition is satisfied at any at : U(at)≥ Ṽ AUT(at�k(at−1),

bH(a
t−1� at)).

(iv) The government’s budget constraints are satisfied:

T(at)= τk(a
t)rk(a

t)k(at−1)− τb(a
t)[bH(a

t−1� at)+Rb(at−1)]�

2For simplicity we assume that there is no output drop after default, but all the arguments will
go through with the output drop.
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(v) The domestic Arrow-security markets clear, that is, bH(a
t� at+1)= 0.

(vi) The international bond markets clear, that is,
∫
b(at)dμ = 0, where μ

denotes the invariant distribution of countries in the world.

PROPOSITION 1.1: There exists a sequence of taxes {τb(at)� τk(a
t)} such that

the optimal allocation in the bond-enforcement model can be supported as a com-
petitive equilibrium under national default risk.

PROOF: The proof is constructive. The key of the proof is to construct a set
of taxes under the decentralized model and to show that the necessary and
sufficient conditions that characterize the decentralized model coincide with
those of the centralized model.

We start by characterizing our benchmark bond-enforcement model. Let
γ(at) be the Lagrangian multiplier of the enforcement constraint in the cen-
tralized model, and let M(at) be the sum of the Lagrangian multipliers, that is,
M(at) = 1 + γ(s0)+ · · · + γ(at). In equilibrium, the first-order conditions of a
country are the Euler equations for capital and international borrowing, which
are given by

uc(a
t)= β

∑
at+1

π(at+1|at)

[
M(at+1)

M(at)
uc(a

t+1)(Fk(a
t+1)+ 1 − δ)(1.2)

− γ(at+1)

M(at)
V AUT
k (at+1)

]
�

uc(a
t)= βR

∑
at+1

π(at+1|at)

[
M(at+1)

M(at)
uc(a

t+1)

]
�(1.3)

and the transversality conditions for capital and international borrowing, which
are given by

lim
T→∞

βTuc(a
T )M(aT )k(aT )= 0�(1.4)

lim
T→∞

βTuc(a
T )M(aT )b(aT )= 0�(1.5)

For the decentralized model with national default risk, the Euler equations
for capital and international borrowing are given by

uc(a
t)= β

∑
at+1

π(at+1|at)(1 − τk(a
t+1))uc(a

t+1)rk(a
t+1)�(1.6)

uc(a
t)= βR

∑
at+1

π(at+1|at)(1 + τb(a
t+1))uc(a

t+1)�(1.7)
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The Euler equation for domestic borrowing is given by

uc(a
t)qH(a

t� at+1)= βπ(at+1|at)(1 + τb(a
t+1))uc(a

t+1)�(1.8)

The transversality conditions for capital, domestic Arrow securities, and inter-
national bonds are given by

lim
T→∞

βTuc(a
T )k(aT )= 0�(1.9)

lim
T→∞

∑
aT

βTuc(a
T )qH(a

T �aT+1)bH(a
T �aT+1)= 0�(1.10)

lim
T→∞

βTuc(a
T )b(aT )= 0�(1.11)

To implement the optimal allocation in the bond-enforcement model, we set
the tax on borrowings as

τb(a
t)= γ(at)

M(at−1)
�

Note that τb(at) ≥ 0 since the Langrange multiplier is nonnegative. If the en-
forcement constraint is slack, that is, γ(at+1) = 0, then the tax on the domestic
and international repayments is also zero. At the same time, the government
also needs to levy taxes on capital returns to implement the optimal capital
stock in the bond-enforcement model. The tax on capital returns is set as

τk(a
t)= τb(a

t)

uc(at)rk(at)
(V AUT

k (at)− uc(a
t)rk(a

t))�

It is easy to show that V AUT
k (at)≥ uc(a

t)rk(a
t), which implies τk(at) ≥ 0.

The transversality conditions (1.4) and (1.5) in the bond-enforcement model
imply the transversality conditions (1.9) and (1.11) in the decentralized prob-
lem since the multiplier M(aT) is positive. Also the transversality condition
(1.10) holds since in equilibrium bH(a

t� at+1)= 0 for any (at� at+1) by construc-
tion. It is also easy to check that the optimal solution in the bond-enforcement
model satisfies the budget constraints and the market clearing conditions of
the competitive equilibrium. Q.E.D.

1.1.2. Resident Default Risk

With resident default risk, consumers not only borrow and lend domesti-
cally and internationally, but also make default choices on their foreign debt.
As is assumed in the case with national default, the international lenders can-
not discriminate between borrowers by charging different prices. To ensure
repayment, they will impose individual borrowing limits which depend on the
country’s shock realization and the individual accumulated capital stock. The
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government chooses the tax (or subsidy) on international debt services τb, the
capital return tax on the nondefaulters τk, and the capital return tax on the
defaulters τ̃k to implement the optimal allocation in the bond-enforcement
model.

Each consumer maximizes the lifetime expected utility

∞∑
t=0

∑
at

βtπ(at)u(c(at))

subject to the sequential budget constraints

c(at)+ k(at)+
∑

qH(a
t� at+1)bH(a

t� at+1)+ b(at)

≤w(at)+ (1 − τk(a
t))rk(a

t)k(at−1)+ bH(a
t−1� at)

+ (1 − τb(a
t))Rb(at−1)+ T(at)�

the enforcement constraints
∞∑
m=t

∑
am

βm−tπ(am|at)u(c(am))≥ V̂ AUT(at�k(at−1)�bH(a
t−1� at))�

and the no-Ponzi constraints

bH(a
t� at+1)≥ −D� b(at)≥ −D�

In particular, V̂ AUT denotes the default value, given by

V̂ AUT(at�k(at−1)�bH(a
t+1� at))= max

∞∑
m=t

∑
am

βm−tπ(am|at)u(c(am))�

subject to

c(am)+ k(am)+
∑

qH(a
m�am+1)bH(a

m�am+1)

≤w(am)+ rk(a
m)(1 − τ̃k(a

m))k(am−1)

+ bH(a
m−1� am)+ T̃ (am)�

Note that T(at) and T̃ (at) denote the lump-sum transfers to nondefaulters and
defaulters, respectively.

The firm’s problem is standard and is characterized by the first-order condi-
tions

w(at) = (1 − α)atk(a
t−1)α�

rk(a
t)= αatk(a

t−1)α−1 + 1 − δ�
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DEFINITION 1.2: A competitive equilibrium under resident default risk with a
sequence of taxes {τk(at)� τ̃k(a

t)� τb(a
t)} is a set of allocations {c(at)� bH(a

t�
bt+1)� b(a

t)� k(at)} and prices {w(at)� rk(a
t)� qH(a

t� at+1)� R} such that the
following conditions are satisfied:

(i) Given the taxes, transfers, and prices, each consumer in each country
chooses {c(at)� bH(a

t� at+1)� b(a
t)� k(at)} to maximize the utility subject to the

budget constraints, the enforcement constraints, and the no-Ponzi constraints.
(ii) The firm’s optimality conditions are satisfied.

(iii) The government’s budget constraints are satisfied, that is,

T(at)= τk(s
t)rk(s

t)k(st−1)+ τb(s
t)Rb(st−1)�

T̃ (at)= τ̃k(s
t)rk(s

t)k(st−1)�

(iv) The domestic Arrow-security markets clear, that is, bH(a
t� at+1)= 0.

(v) The international bonds markets clear, that is,
∫
b(at)dμ= 0.

PROPOSITION 1.2: There exists a sequence of taxes {τk(at)� τ̃k(a
t)� τb(a

t)}
such that the optimal allocation in the bond-enforcement model can be supported
as a competitive equilibrium under resident default risk.

PROOF: The proof is constructive. The characterizations of the bond-
enforcement model are the same as the previous case. We here characterize
the decentralized problem with resident default. Let γH(a

t) be the Langrange
multiplier of the enforcement constraint. The sum of the Langrange multiplier
is defined as

MH(a
t)= 1 + γH(a

0)+ · · · + γH(a
t)�

The Euler equations for capital, international borrowing, and domestic bor-
rowing are given by

uc(a
t)= β

∑
at+1

π(at+1|at)

[
MH(a

t+1)

MH(at)
uc(a

t+1)rk(a
t+1)(1 − τk(a

t+1))(1.12)

− γH(a
t+1)

MH(at)
V̂ AUT
k (at+1)

]
�

uc(a
t)= βR

∑
at+1

π(at+1|at)

[
MH(a

t+1)

MH(at)
(1 − τb(a

t+1))uc(a
t+1)

]
�(1.13)

uc(a
t)qH(a

t� at+1)= β

[
MH(a

t+1)

MH(at)
uc(a

t+1)− γH(a
t+1)

MH(at)
V̂ AUT
b (at+1)

]
�(1.14)
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We set the subsidy on borrowings τb, the Langrange multiple γH , and the tax
on capital returns τk and τ̃k as

τb(a
t)= γH(a

t)

MH(at)

V̂ AUT
b (at)

uc(at)
�

(1 − τb(a
t))

(
1 + γH(a

t)

MH(at)

)
= 1 + γ(at)

M(at)
�

τk(a
t)= τb(a

t)�

1 − τ̃k(a
t)= γ(at+1)/M(at)

γ(at+1)/M(at)+ τb(at)
(1 − τb(a

t))�

Note that by construction τb(a
t) ≥ 0 since V̂ AUT

b (at) > 0 and uc(a
t) ≥ 0.

Therefore, the government subsidizes international borrowing. If the enforce-
ment constraint is slack at period t, that is, γH(a

t) = 0, the subsidy is zero.
In addition, the tax on defaulter’s capital returns is higher than that on non-
defaulter’s capital returns, which provides incentive for the domestic con-
sumers to repay their foreign debt.

By construction, the Euler conditions of capital and international borrow-
ing are identical in the bond-enforcement model and in the decentralized
model. Furthermore, the Euler condition of domestic borrowing implies that
the domestic risk-free rate is the same as the world risk-free rate, which makes
the consumers indifferent between borrowing domestically and internationally.
The transversality conditions of the decentralized model can be shown using
similar arguments in the case of national default. It is easy to check that the op-
timal solution in the bond-enforcement model satisfies the budget constraints
and the market clearing conditions of the competitive equilibrium. Q.E.D.

2. TECHNICAL APPENDIX 2

This appendix describes two alternative strategies to compute the bond-
enforcement model. The first strategy invokes the classic technique proposed
by Abreu, Pearce, and Stacchetti (1990) (henceforth APS technique) to restate
the original dynamic problem in a recursive formulation. The second strategy
replaces the enforcement constraints in the original problem with the borrow-
ing constraints. The classic technique discussed in Stokey, Lucas, and Prescott
(1989) (henceforth SLP) can be invoked to show that the transformed problem
has a recursive formulation. Both strategies make the dynamic programming
technique applicable in the computation. We demonstrate the validity of both
computational approaches so that readers can refer to the solution strategy
with which that they are more familiar.

To make this appendix self-contained, we start by presenting the dynamic
problem in the bond-enforcement model. An allocation x = {c(at)�k(at)�
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b(at)}∞
t=0 specifies a sequence of consumption, capital, and bond holdings.

Given the world interest rate R and the initial state s0 = (a0�k0� b0), a country
chooses allocation x to solve the original problem,

max
x

U(x)=
∞∑
t=0

∑
at

βtπ(at)u(c(at))�

subject to

c(at)+ k(at)+ b(at)≤ atk(a
t−1)α + (1 − δ)k(at−1)+Rb(at−1)�(2.1)

c(at)�k(at)≥ 0� b(at) ≥ −D�(2.2)

U(at+1�x) ≥ V AUT(at+1�k(at)) ∀at+1�(2.3)

where U(at+1�x) denotes the continuation utility under allocation x from at+1

onward and V AUT denotes the autarky utility.

2.1. The APS Approach

The original problem can be restated in the recursive formulation

W (a�k�b)= max
c�k′�b′ u(c)+β

∑
a′|a

π(a′|a)W (a′�k′� b′)�

subject to

c + k′ + b′ ≤ akα + (1 − δ)k+Rb�(2.4)

c�k′ ≥ 0� b′ ≥ −D�(2.5)

W (a′�k′� b′)≥ V AUT(a′�k′) ∀a′�(2.6)

The basic logic of this recursive formulation is similar to that in Abreu,
Pearce, and Stacchetti (1990), with one key difference in that our problem
is dynamic rather than repeated. Capital and bond holdings are endogenous
state variables that alter the set of feasible allocations in the following period.
Thus, they not only affect the current utility, but also the future prospects in
the continuation of the dynamic problem. Nonetheless, we show that the origi-
nal problem can be restated in such a recursive formulation following Atkeson
(1991). His environment has a complete set of assets and private information,
while our environment has incomplete markets and complete information. De-
spite these differences, the adaptation of his approach is straightforward and
is presented in the first subsection.

We also offer a detailed computation algorithm in the second subsection. An
unusual feature of this algorithm is that the set of “viable” states that permit a
nonempty set of feasible allocations depends on the continuation welfare W in
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each iteration. It is sufficient start with a W0 sufficiently high and a set of viable
states S0 sufficiently large. We provide a proof to demonstrate the validity of
the computation algorithm.

2.1.1. Equivalence Between Two Problems

We start with some definitions. Define the domain S =A×K×B, where A,
K, and B all have finite supports. Define a country’s utility possibility corre-
spondence V on domain S to be, for each initial value of s ∈ S, the set of pay-
offs which the country can obtain from allocations that satisfy constraints (2.1),
(2.2), and (2.3). That is, for each s ∈ S,

V (s)= {U(x)|x satisfies constraints (2.1)–(2.3) and (a0�k0� b0)= s}�
Let domain S be such that the correspondence V is nonempty valued. Note
that such a domain exists. An example is when B only includes nonnegative
numbers, V AUT(a�k) ∈ V (a�k�b) for all (a�k�b) with b ≥ 0.

Let G be any correspondence defined over domain S. Assume that G(s) is
nonempty valued and uniformly bounded for all s ∈ S. Let z = (c�k′� b′) denote
a vector of current controls. A function Uc is said to be a continuation value
function with respect to G if it is a selection from the correspondence G, that
is, Uc : S → R with Uc(s) ∈G(s) for all s.

DEFINITION 2.1: The pair (z�Uc) of current controls and a continuation
value function with respect to G is admissible with respect to G at s if it sat-
isfies the conditions

c + k′ + b′ ≤ akα + (1 − δ)k+Rb�(2.7)

c�k′ ≥ 0� b′ ≥ −D�(2.8)

Uc(a′�k′� b′)≥ V AUT(a′�k′) for any a′�(2.9)

Denote the payoff to the country generated by a pair (z�Uc) by E(z�Uc)(s),
where

E(z�Uc)(s)= u(c)+β
∑
a′|a

π(a′|a)Uc(s′)�

Denote the set of payoffs that can be generated by pairs (z�Uc) admissible
with respect to G at s by B(G)(s), where

B(G)(s)= {E(z�Uc)(s)|(z�Uc) admissible w.r.t. G at s}�
DEFINITION 2.2: The correspondence G is self-generating if for all s ∈ S,

G(s)⊆ B(G)(s).

PROPOSITION 2.1—Self-Generating: If G is self-generating, then for all s ∈ S,
B(G)(s)⊆ V (s).
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PROOF: This is a standard APS proof. For each v ∈ B(G)(s), we construct an
allocation x(v) such that U(x(v)) = v and x(v) satisfies constraints (2.1)–(2.3).
We proceed in three steps. The first step constructs the allocation x(v). The
second step verifies that U(x(v)) = v. The third step shows that the allocation
x(v) satisfies constraints (2.1)–(2.3).

Step 1. Choose any v ∈ B(G)(s0) for some s0. There is an admissible
pair (z(s0)�U

c(s0)) such that E(z(s0)�U
c(s0)) = v. Let x(s0;v) = z(s0) and

w(s1;v) = Uc(s0)(s1), where s1 = {s0� s1} and s1 = (a1�k1� b1) for each a1 and
(k1� b1) specified in z. Since the pair is admissible with respect to (w.r.t.) a self-
generating G, we have w(s1;v) ∈ G(s1) ⊆ B(G)(s1). Thus, there is an admis-
sible pair (z(s1)�U

c(s1)) such that E(z(s1)�U
c(s1)) = w(s1;v). Let x(s1;v) =

z(s1) and w(s2;v) = Uc(s1)(s2). Repeat this procedure to construct the alloca-
tion x(v)= {x(st;v)}∞

t=0.
Step 2. We need to show that U(x(v)) = v for any v ∈ G(s0) for some s0.

From the above construction, we have E(z(s0)�U
c(s0)) = v, that is,

v = u(c)+β
∑
a1

π(a1|a0)Uc(s0)(s1)�(2.10)

From the original problem, we have

U(x(v))= u(c)+β
∑
a1

π(a1|a0)U(x(v|s1))�(2.11)

where x(v|s1) = {x(st;v)}∞
t=1 denotes the infinite sequence of allocations from

history s1 onward. Taking the difference between (2.10) and (2.11), we have

v−U(x(v)) = β
∑
a1

π(a1|a0)
[
Uc(s0)(s1)−U(x(v|s1))

]
�

This implies

v−U(x(v)) ≤ β sup
v1∈B(G)(s1)

∣∣v1 −U(x(v|s1))
∣∣�

Since this holds for all v ∈ B(G)(s0), we have

sup
v∈B(G)(s0)

∣∣v−U(x(v))
∣∣ ≤ β sup

v1∈B(G)(s1)

∣∣v1 −U(x(v|s1))
∣∣�

Since β< 1, and B(G) is uniformly bounded under the uniform bound on G(s)
and the bound on u, we have v = U(x(v)) for any v ∈ B(G)(s) for some s.
(Note that u is bounded since there exists a maximum of k given concavity of
the production function; the consumption therefore will be bounded. A rigor-
ous proof can be found in SLP.)

Step 3. It is easy to see that the constructed x(v) for any v ∈ B(G)(s) for
some s satisfies conditions (2.1)–(2.3). Q.E.D.
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PROPOSITION 2.2—Factorization: V (s)= B(V )(s) for all s.

PROOF: We show that the utility possibility correspondence V is self-
generating, which, by Proposition 2.1, gives us the result that V = B(V ).
Let v ∈ V (s) be a payoff generated by the allocation x(v) which satisfies
constraints (2.1)–(2.3). Construct (z(s)�Uc(s)) as follows: z(s) = x0(v) and
Uc(s)(s1) = U(x(v|s1)). Thus, E(z(s)�Uc(s)) = v. Obviously, all the con-
straints of (2.7)–(2.9) are satisfied. Q.E.D.

The optimal welfare in the original problem W (s) is defined as

W (s)= sup
v∈V (s)

v�

From Propositions 2.1 and 2.2, W (s) is characterized by the program

W (s)= sup
(z�Uc)

u(c)+β
∑
a′ |a

π(a′|a)Uc(s)(s′)�(P)

subject to the constraint that (z�Uc) is admissible with respect to V at s.
We next prove that the optimal welfare W exists and W (s) ∈ V (s) for any s

by demonstrating that V (s) is compact in Proposition 2.3. Moreover, if Ûc

solves the (P) program, it must be the case that Ûc = W if W is continuous.
Given that the domain S has finite support, we can work directly with the vector
Ud = (Uc(s1)�U

c(s2)� � � � �U
c(sN)), with N = #A× #K × #B.

LEMMA 2.1: If G has a compact graph, then B(G) has a compact graph.

PROOF: First, we prove that B(G) has a bounded graph. Let G be a cor-
respondence with a compact graph. Under constraints (2.1) and (2.2), control
variables, including consumption, capital, and bond holding, are bounded from
both above and below. The state variables (a�k�b) are bounded since the state
space is finite. Therefore, the pair of (z�Ud), admissible with respect to G at
some s is contained in a bounded subset of a finite dimensional Euclidean
space. In addition, the E operator is continuous, which implies B(G) has a
bounded graph.

We now prove that B(G) also has a closed graph. Let {vn� sn}∞
n=1 be a se-

quence in the graph of B(G) that converges to a point (v� s). By the defi-
nition of B(G), there exists a sequence of pairs of controls and a continua-
tion value function {zn�Ud

n }∞
n=1, where (zn�U

d
n ) is admissible with respect to G

at sn and has payoff E(zn�Ud
n )(sn) = vn. Because the space of admissible con-

trols and continuation value functions is bounded, this sequence of pairs con-
verges to some limit point, denoted by (z�Ud). By the continuity of E, we
have E(z�Ud) = v. The set of feasible controls under constraints (2.7)–(2.9)
is closed. Thus, z satisfies constraints (2.7)–(2.9). Moreover, Ud ∈ G since G
has a compact graph. Thus (v� s) is in the graph of B(G). Q.E.D.



SOLVING THE FELDSTEIN–HORIOKA PUZZLE 13

LEMMA 2.2: If graph(G1) ⊆ graph(G2), then graph(B(G1)) ⊆
graph(B(G2))�

PROOF: The constraints that define B(G1) are contained in those that define
B(G2). Q.E.D.

PROPOSITION 2.3: V has a compact graph.

PROOF: V has a bounded graph because u is bounded. We need to
show that V has a closed graph. Define the correspondence V1 to sat-
isfy graph(V1) = closure(graph(V ))� By definition, graph(V ) ⊆ graph(V1).
By Lemma 2.2, graph(B(V )) ⊆ graph(B(V1)). By Propositions 2.1 and 2.2,
graph(V ) = graph(B(V )) ⊆ graph(B(V1)). By Lemma 2.1, graph(B(V1)) is
closed. Because graph(V1) is the smallest closed set containing graph(V ),
graph(V1) ⊆ graph(B(V1)), which implies that V1 is self-generating. By Propo-
sition 2.1, graph(V1) ⊆ graph(V ). Therefore, V has a closed and thus compact
graph. Q.E.D.

PROPOSITION 2.4: V and W are continuous.

PROOF: We have shown that V has a compact graph, which implies that V
is upper hemicontinuous. We need to show now that V is lower hemicontinu-
ous. Let v ∈ V (s) and (z�Ud) be a pair admissible with respect to V at s with
E(z�Ud)(s) = v. Take ε > 0. Since the payoff function E is continuous in all
its arguments, we can find δ1 > 0 and δ2 > 0 such that for all z1 = (c1� b

′
1�k

′
1)

with |b′
1 − b′| < δ1� |k′

1 − k′| < δ2 and c1 = akα + (1 − δ)k + Rb − b′
1 − k′

1, we
have |E(z1�U

d)(s)−E(z�Ud)(s)|< ε/2. Furthermore, for one such particular
z1 = (c1� b

′
1�k

′
1), we may find a δ3 > 0 such that for all s1 with |s1 − s| < δ3, we

have |E(z1�U
d)(s1)−E(z1�U

d)(s)|< ε/2. By the triangle inequality, for all s1

with |s1 − s| < δ3, |E(z1�U
d)(s1) − E(z�Ud)(s)| < ε. Furthermore, (z1�U

d) is
admissible with respect to V at s1. Therefore, V is lower hemicontinuous. Thus,
we prove that V is continuous and so is W . Q.E.D.

PROPOSITION 2.5: If the value function W is continuous, then the continuation
value function Ûc , which solves the program (P), satisfies Ûc = W .

PROOF: The proof proceeds by contradiction. Let (z� Ûc) be an admissi-
ble pair with Ûc(s)(s′) < W (s′) for some s and s′. Construct an alternative
pair (z̃�W ) for this s as follows. We first set k̃′ = k′. We then set b̃′ to solve∑

a′ |a π(a
′|a)W (s̃′) = ∑

a′ |a π(a
′|a)Ûc(s′). Such a b̃′ exists since W is contin-

uous. Furthermore, b̃′ < b′. Finally, we set c̃ = c + b′ − b̃′. This pair (z̃�W )
is admissible with respect to V because it satisfies constraints (2.7)–(2.9) and
W (s̃′) ∈ V (s̃′) for any s̃′. Moreover, E(z̃�W )(s) > E(z� Û)(s), which contra-
dicts with the assumption that Û is optimal. Thus, Û = W . Q.E.D.
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2.1.2. Computation Algorithm

We now describe the computation algorithm to solve the recursive problem.
An unusual feature of this algorithm is that the set of “viable” states that permit
a nonempty set of feasible allocations depends on the continuation welfare W
in each iteration. It is sufficient to start with a W0 sufficiently high and a set
of viable states S0 sufficiently large. Specifically, we set S0 to include all the
states under which the set of allocations (c�k′� b′) that satisfy constraints (2.4)
and (2.5) is nonempty. We set W0 on S0 as the optimal welfare in the P-problem
under constraints (2.4) and (2.5).

We then construct a sequence of the sets of viable states and the associated
optimal welfare functions recursively. For each n ≥ 1, we construct Sn to in-
clude all the states that permit a nonempty set of feasible allocations that satisfy
constraints (2.4), (2.5), and Wn−1(a�k�b)≥ V AUT(a�k). For each (a�k�b) ∈ Sn,
the corresponding optimal welfare Wn is

Wn(a�k�b) = TWn−1(a�k�b)(2.12)

= max
c�k′�b′ u(c)+β

∑
a′|a

π(a′|a)Wn−1(a
′�k′� b′)

over the set of feasible allocations under (a�k�b).
Given our construction of S0 and W0, we have S1 ⊆ S0 and W1 ≤ W0 on S1.

Clearly, the set of viable states Sn decreases as Wn−1 decreases because the set
of feasible allocations decreases. This in turn leads to a lower welfare func-
tion Wn. Thus, both sequences of {Sn} and {Wn} are decreasing. Since the state
space has finite supports and is compact, the decreasing sequence {Sn} con-
verges to a limit S in finite iterations. That is, there exists an N such that Sn = S
for any n ≥ N . On domain S, the decreasing sequence {Wn}∞

n+N converges to a
limit, denoted by W .

We next establish that the limits S and W correspond to the set of viable
states and the optimal welfare in the original problem. W o denotes the op-
timal welfare in the original problem, and So denotes the set of initial states
(a0�k0� b0) under which there is a nonempty set of allocations x that satisfies
constraints (2.1), (2.2), (2.3), and U(x) ≥ V AUT(a0�k0). The following theorem
proves that W =W o and S = So.

PROPOSITION 2.6: The limits W and S of the sequences {Wn} and {Sn} con-
structed above are the same as So and W o in the original problem.

PROOF: We start by proving S ⊆ So. For any s ∈ S associated with W (s), we
can construct an infinite sequence of allocations x using the self-generating
property of W . This sequence of allocations clearly satisfies constraints (2.1),
(2.2), (2.3), and U(x) =W (s)≥ V AUT(a�k). Thus, we have s ∈ So.

We next prove that So ⊆ S by induction. For any s ∈ So, it is clear that s ∈ S0

by our construction. We need to show that s ∈ S1. Equivalently, we need to
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show that W0(s) ≥ V AUT(a�k). Since s ∈ So, there exists a sequence of allo-
cations x that satisfy constraints (2.1), (2.2), (2.3), and U(x) ≥ V AUT(a�k).
Let z(s) = x(s0) and Uc(s)(s1) = U(x|s1). Thus, (z�Uc) is feasible under
the P-problem for computing W0. Thus, W0(s) ≥ U(x), which implies that
W0(s) ≥ V AUT(a�k). We then show that if s ∈ Sn−1, then s ∈ Sn with similar
arguments. Therefore, we have S = So and then W =W o also follows. Q.E.D.

The computation algorithm is straightforward. For any interest rate R, we
construct the sequences of {Sn} and {Wn} as described above and find the lim-
its S and W . Under the optimal decision rules associated with W , we compute
the invariant distribution and the excess demand in the bond markets under a
given interest rate R. We finally update the interest rate and repeat the above
process until the bond markets clear.

2.2. The SLP Approach

As is well known, models with limited enforcement friction present chal-
lenges to standard recursive methods because all future consumption enters
today’s enforcement constraints. Alvarez and Jermann (2000) responded to
this challenge by replacing the enforcement constraints with endogenous bor-
rowing constraints, which depend on only current states to make the problem
recursive. They prove the validity of this approach using the first-order condi-
tions. These conditions are both necessary and sufficient for optimality in their
pure exchange economy because autarky utilities depend on only exogenous
shocks and the feasible set is convex. In a production economy, however, the
feasible set is not necessarily convex because autarky utilities are also func-
tions of endogenous capital stocks. Thus, we must prove the equivalence be-
tween the enforcement constraints and the endogenous borrowing constraints
without invoking the first-order conditions.

We construct a transformed problem in which borrowing constraints are cho-
sen to replace the enforcement constraints in the original problem. The trans-
formed problem under a debt limit function B is constructed as

W (a0�k0� b0;B)= max
{c(at )�k(at )�b(at )}

∞∑
t=0

∑
at

βtπ(at)u(c(at))�(2.13)

subject to the budget constraints (2.1) and the borrowing constraints

b(at)≥ −B(at�k(a
t))�

where W denotes market welfare. The debt limit function B :A×K → F spec-
ifies the amount that a country can borrow given its current shock a ∈ A and
capital choice k ∈ K, where K has finite support and F ≡ [0�D]. The debt limit
function is noncontingent in the sense that it is independent of future shocks.
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This problem has an obvious recursive structure as shown in SLP and is easy
to compute. The key is to find the endogenous debt limit function B and to
establish the equivalence between the original problem and the transformed
problem.

2.2.1. Finding the Endogenous Debt Limit Function

Now we must find a debt limit function B∗(a�k′) for which any solution to the
transformed problem under B∗ is a solution to the original problem. Clearly, if
such a debt limit function exists, it might not be unique.3 The B∗ we construct
has the property that the function allows as much borrowing as possible, while
at the same time preventing countries from defaulting.

We define an operator T :F#A×#K → F#A×#K on the debt limit function:

TB(a�k′)≡ min
a′|π(a′|a)>0

{−b̃(a′) :W (a′�k′� b̃(a′);B)= V AUT(a�k′)
}

(2.14)

for any (a�k′)�

Given any debt limit function B, the operator T produces a new debt limit
function TB, which, for each (a�k′), specifies the maximum amount of debt
that can be supported without default under all future contingencies. We first
need to show that the operator T in (2.14) is well defined, which is established
with the following three lemmas.

LEMMA 2.3: For fixed (a�k�B), W (a�k�b;B) is continuous in b; for fixed
(a�k�b), W (a�k�b;B) is continuous in B.

LEMMA 2.4: For fixed (a�k�B), W (a�k�b;B) is strictly increasing in b.

LEMMA 2.5: Suppose that limb→−∞ W (a�k�b;B)= −∞ and limb→∞ W (a�k�

b;B) = ∞. Then there exists a unique b̃ such that

W (a�k� b̃;B)= V AUT(a�k) for fixed (a�k�B)�

Lemma 2.3 follows directly from the maximum theorem; Lemma 2.4 fol-
lows from the envelope theorem and the strict concavity of the utility function.
These two lemmas establish two properties of the market utility, that is, con-
tinuity and monotonicity with respect to bond holdings. These two properties
and the intermediate value theorem lead to Lemma 2.5, which asserts that
there exists one unique level of debt (a cutoff) at which countries are indiffer-
ent between the market utility and the autarky utility.

3Specifically, any debt limit function under which the feasible set of the transformed problem
is a subset of the feasible set of the original problem and includes the optimal solutions of the
original problem is a candidate for the transformed problem.
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For TB to be a borrowing limit function, we still need to show that it is
nonnegative for any (a�k′). For any future realization of a shock, consider the
market utility with (a′�k′� b′), where b′ equals zero bond holding. Clearly, then,
the market utility must be at least as high as the autarky utility because staying
in the market allows countries to smooth future consumption. Thus, the cutoff
bond must be smaller than or equal to zero.

LEMMA 2.6: If B(a�k′)≥ 0 for all (a�k′), then TB(a�k′)≥ 0 for all (a�k′).

For a country with shock a and capital decision k′, TB(a�k′) specifies the
maximum amount of borrowing that a country is willing to repay in all future
states. From the definition of TB, a corollary follows immediately:

COROLLARY 2.1: The value b′ ≥ −TB(a�k′) if and only if W (a′�k′� b′;B) ≥
V AUT(a′�k′) for any a′ following a.

We now show that the operator T is monotone and then use this property to
prove the existence of the borrowing limit function B.

LEMMA 2.7: For any two borrowing limit functions B1 and B2, if B1(a�k
′) ≤

B2(a�k
′) for all (a�k′), then TB1(a�k

′) ≤ TB2(a�k
′) for all (a�k′).

PROOF: By the definition of the operator T , we have that

TB1(a�k
′)= min

a′|π(a′|a)>0

{−b̃(a′;B1) :

W (a′�k′� b̃(a′;B1);B1) = V AUT(a′�k′)
}
�

TB2(a�k
′)= min

a′|π(a′|a)>0

{−b̃(a′;B2) :

W (a′�k′� b̃(a′;B2);B2) = V AUT(a′�k′)
}
�

By B1(a�k
′) ≤ B2(a�k

′) for all (a�k′), we have that W (a�k�b;B1) ≤ W (a�k�
b;B2) for any (a�k�b) since the feasible set under B1 is a subset of that un-
der B2. This means that b̃(a′;B1) ≥ b̃(a′;B2) for all the a′ and for any given
(a�k′). Thus, TB1(a�k

′)≤ TB2(a�k
′) for all (a�k′). Q.E.D.

The endogenous debt limit function B∗ can be constructed for any (a�k′) as

B∗(a�k′)= lim
n→∞

TnB0(a�k
′)�(2.15)

where B0(a�k
′) = D for all (a�k′). The borrowing limit D is specified in the

spirit of the natural borrowing limit introduced by Aiyagari (1994). At each
point in time, if a country were at the borrowing limit, this limit should ensure
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nonnegative consumption. When the bond holding approaches this limit and
consumption approaches zero, the utility level goes to negative infinity. Thus,
for any feasible allocation, the short-sale constraint will never bind with the
presence of the enforcement constraints.

When we start with the borrowing limit function B0(a�k
′)=D for all (a�k′),

we know that 0 ≤ B1(a�k
′) = TB0(a�k

′) ≤ D = B0(a�k
′) for any (a�k′) be-

cause the short-sale constraint is not binding in the presence of the enforce-
ment constraints. Using the monotone property of operator T for any given
(a�k′), we have that

0 ≤ · · · ≤ TnB0(a�k
′)≤ · · · ≤ T 2B0(a�k

′)≤ B0(a�k
′)≤ D for any n�

Since any monotone sequence in the compact set converges to a limit in the
compact set, fixing any (a�k′), the sequence {B0(a�k

′)�TB0(a�k
′)�T 2B0(a�

k′)� � � �} will converge to a limit, denoted by B∗(a�k′); that is,

B∗(a�k′) = lim
n→∞

TnB0(a�k
′) for all (a�k′)�

2.2.2. Equivalence of Two Problems

PROPOSITION 2.7: Let B∗ be defined as in (2.15). Then an allocation is optimal
in the transformed problem if and only if it is optimal in the original problem.

PROOF: Here we prove the “only if” part of the theorem used in the study.
The “if” part of the theorem can be proved similarly. Denote the optimal allo-
cation in the transformed problem by xT = {cT (at)�kT (at)� bT (at)}. We need to
show that xT = {cT (at)�kT (at)� bT (at)} is also optimal in the original problem.

We first need to show that the allocation xT = {cT (at)�kT (at)� bT (at)} is fea-
sible in the original problem. The resource constraints are obviously satisfied.
The short-sale constraints are satisfied by monotonicity of operator T . We need
to show that the enforcement constraints are satisfied. To do that, we begin with
the fact that B∗(a�k′)≤ Bn(a�k

′)= TnB0(a�k
′) for any (a�k′) and all n. From

that, we have that

bT (at)≥ −Bn(at�k
T (at)) for all n�

By the corollary, we have that for any n,

W (at+1�kT (at)� bT (at);Bn−1)≥ V AUT(at+1�kT (at))

for any at+1 following at . From the continuity of W on B for fixed (a�k�b), we
have that

W (at+1�kT (at)� bT (at);B∗)≥ V AUT(at+1�kT (at))
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for any at+1 following at . Furthermore, by the optimality of xT in the trans-
formed problem, we have that

U(at+1�xT )= W (at+1�kT (at)� bT (at);B∗) for any at+1 following at�

From the above two inequalities, we have that

U(at+1�xT )≥ V AUT(at+1�kT (at)) for any at+1 following at�

Thus, the enforcement constraints are satisfied at each history node.
Second, we need to show that xT is optimal in the original problem.

We show this by contradiction. Assume there is another allocation xo =
{co(at)�ko(at)� bo(at)} which is feasible under the original problem (super-
script o indicates original) and delivers higher welfare than xT ; that is,

∞∑
t=0

∑
at

βtπ(at)u(co(at)) >

∞∑
t=0

∑
at

βtπ(at)u(cT (at))�(2.16)

We establish the contradiction by showing that xo is feasible in the trans-
formed problem. Obviously, the resource constraints in the transformed prob-
lem are satisfied. We need to show that bo(at) ≥ −B∗(at�k

o(at)). We do that
by induction. Clearly, bo(at) ≥ −B0(at�k

o(at)), where B0(a�k
′) = D for any

(a�k′), by construction of D. Thus, xo is feasible under the problem with the
borrowing limit B0 and we have that

W (at+1�ko(at)� bo(at);B0)≥U(at+1�xo) for any at+1 following at�

By the feasibility of xo in the original problem, we also have that

U(at+1�xo)≥ V AUT(at+1�ko(at)) for any at+1 following at�

From the above two inequalities, we conclude that

W (at+1�ko(at)� bo(at);B0)≥ V AUT(at+1�ko(at))

for any at+1 following at . Thus, bo(at)≥ −TB0(at�k
o(at)) from the corollary.

Repeating the above arguments, we have that bo(at) ≥ −TnB0(at�k
o(at))

for all n, which implies that bo(at) ≥ −B∗(at�k
o(at)) = − limn→∞ TnB0(at�

ko(at)). Thus, xo is feasible in the transformed problem.
From the optimality of xT and the feasibility of xo in the transformed prob-

lem, we have that

∞∑
t=0

∑
at

βtπ(at)u(cT (at)) >

∞∑
t=0

∑
at

βtπ(at)u(co(at))�
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which contradicts (2.16). Thus, the allocation xT is optimal in the original prob-
lem. Q.E.D.

The theorem shows that we can compute the transformed problem instead
of the complicated original one. We invoke the classic SLP approach to re-
state the transformed problem recursively. Thus, we use the dynamic program-
ming technique to solve the equilibrium as follows. We first guess a world
interest rate. Given this interest rate, we then look for the endogenous debt
limit function. We start with B0 = D and solve the transformed problem un-
der B0. Given W (a�k�b;B0), we then update the debt limit function according
to equation (2.14). We repeat these steps until the debt limit function con-
verges. We next compute the invariant distribution and the excess demand in
the bond markets. We finally update the interest rate and repeat the above
process until the bond markets clear.
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