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SUPPLEMENT TO “CONSTRUCTING OPTIMAL INSTRUMENTS BY
FIRST-STAGE PREDICTION AVERAGING”: AUXILIARY APPENDIX
(Econometrica, Vol. 78, No. 2, March 2010, 697-718)

BY GUIDO KUERSTEINER AND RYO OKUI

This appendix contains detailed proofs for the results given in the main paper. For
ease of reference, we repeat formal assumptions, some key definitions, and statements
of propositions and theorems.

1. DEFINITIONS

FOR EASE OF REFERENCE, we repeat the definitions and formulas that appear
in the main text. Enumerations that appear only in this document are refer-
enced by numbers preceded by “A.” The definitions of the estimators are re-
peated first. The model averaging two-stage least squares (MA2SLS) estimator
is

(22)  B=X'PW)X) ' X' P(W)y.
The definition of (2.2) can be extended to the LIML estimator. Let

A\m — min (y_XB),Pm(y_XB)
B (y—XB)(y—XB)

and define /i(W) = ZZ:I wm/im. The MALIML estimator, ,é, of B then is de-
fined as

(23) B=(XPW)X —AW)X'X) (X' PW)y— AW)X'y).

Similarly we consider a modification to Fuller’s (1977) estimator. Let

o

(1— A,

A= " N—m _
(1_Am)

m (04 2

1—
N-—-m

where « is a constant. The model averaging Fuller estimator (MAFuller) then
is defined as

(24) B=XPW)X —AW)X'X) " (X'P(W)y— AW)X'y).

The choice of model weights I is based on an approximation to the higher
order MSE of B. Following Donald and Newey (2001) (see also Nagar (1959)),
we approximate the MSE conditional on the exogenous variable z, E[(8 —
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2 G. KUERSTEINER AND R. OKUI
Bo)(B — Bo)'|z], by o2 H~! + S(W), where

(41)  NB—B)(B—Bo) =0W)+FW),
E[QW)|z1= o?H '+ S(W) + T(W),

H={ff/N,and (*(W)+T(W))/tr(S(W)) =0,(1) as N — oo. However, be-
cause of the possibility of bias elimination by setting K'W = 0, we need to con-
sider an expansion that contains additional higher order terms for the MA2SLS
case. We show the asymptotic properties of the MA2SLS, MALIML, and MA-
Fuller estimators under the assumptions in Section A.

Next we discuss the estimation of S(W). Let B denote some preliminary
estimator of B and define the residuals &€ = y — X 3. As pointed out in Donald

and Newey (2001), it is important that 8 does not depend on the weighting
vector, W. We use the 2SLS estimator with the number of instruments selected
by the first-stage Mallows criterion in simulations for MA2SLS, and use the

corresponding LIML and Fuller estimator for MALIML and MAFuller. Let H
be some estimator of H = f’f/n. Let &t be some preliminary residual vector of

the first-stage regression. Let i, = itH ' \. Define
6> =¢€€/N, &,=u\u,/N, 0o\,=1u,é/N.

Let & = (Py —P,)XH A and U = (&}, ..., aM)(@l,..., &)  Let I' be the
M x M matrix whose (i, j) element is min(i, j) and let K = (1,2, ..., M)'. The
criterion S, (W) for choosing the weights for MA2SLS is

S (K'W)Y ~ (WTW) KW .
2.5 S\(W) = b —
(2.5) (W) =a, N + D) N N

) 2<W/UW — 6X(M —2K'W + WTW))
+ o] N

AN

with a, = 77, b, = o207 + 07, and BA,N = NH'ByH'\, where By can be
estimated by

By = (”2 +dG,. 6+ — Zf,AL’,GH 6uef

I n 2, Aian NS
+ =Y (fiol A o), + i crf)

i=1

'Note that # is the preliminary residual vector, but @”'s are the vectors of the differences of
the residuals.
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in which f = P, X with m — oo (m may be chosen by the first-stage Mallows
criterion) and o, = i’’'é/N. When the weights are only allowed to be positive,
we can use the simpler criterion

€

26  Somy=a KW, &z(W/UW — GHM —2K'W + WTW))
. - N

that does not account for the smaller orders terms involving b , and LA?A, ~. For
MALIML and MAFuller, we choose W based on the criterion

. W TW
27  SiW)=(al6; - a')i)T
e W UOW — 63(M —2K'W +W'TW)
g .
¢ N

A. REGULARITY CONDITIONS AND FORMAL RESULTS

ASSUMPTION 1: {y;, X;, z;} are i.id., E[€|z;] = 0 > 0, and E[||n;||*|z:] and
E[|e;|*|z;] are bounded.

ASSUMPTION 2: (i) H = E[f,f/] exists and is nonsingular. (ii) for some a >
1/2,

sup mza(sup Nf( - Pm)f)\/N) =0,(1).

m<M AMA=1

(iii) Let N, be the set of positive integers. There exists a subset ] C N with a finite
number of elements such that sup,,_;sup,, X'f' (P — Ppi1)fA/N =0 wpal and
forall m ¢ J, it follows that

inf et (sup NF (P — Prit) fA/N) ~0 wpal.

me¢l,m<M NA=1

ASSUMPTION 3: (i) Let u;, be the ath element of u;. Then E[€'u},|z;] are con-
stant and bounded for all a and r,s > 0 and r + s <5. Let 0, = E[u;€;|z;] and
3, = Eluu}|z;]. (ii) Z,,Zy are nonsingular wpal. (iii) max;y Py ; — , 0, where

Py i signifies the (i, i)th element of Py. (iv) f; is bounded.

ASSUMPTION 4: Let W+ = (lwynl, ..., |lwunl). The following conditions
hold: 1,,W =1; W €, for all N where I} = {x = (x1,...)| Yo, |x;] < Cyy < 00}
for some constant Cp, M < N; and, as N — oo and M — oo,
KW+ =YY |w,lm — oco. For some sequence L < M such that L — oo
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as N — oo and L¢ J, where J is defined in Assumption 2(iii) it follows that
SUP;; j<r. | D et Wl = O(1/+/N) as N — cc.

ASSUMPTION 5: It holds either that (i) K'W*/~/N =" |w,|m/vN = 0
or (i) KW+/N =" |\w,|m/N — 0and M/N — 0.

ASSUMPTION 6: The eigenvalues of E[Z; ;Z, ;] are bounded away from zero
uniformly in k. Let H, = E[fiZ NE(Z:Z, ) 'ElfiZ, ;) and H = ELfif/1.
Then |H, — H|| = O(k™>) for k — oo. E[|€;|*|z] and E[|u;,|®|z] are uniformly
bounded in z for all a.

ASSUMPTION 7: B € O, where O is a compact subset of R.

ASSUMPTION 8: For some a, sup,, _,, m*** (sup,,,_, N'f' (P — Ppi1) fA/N) =
0,(1). -

ASSUMPTION 9: H — H = 0,(1), 62— 02 =0,(1), 67 — g} =0,(1), O)c —
ore = 0,(1),and By — By = 0,(1).

ASSUMPTION 10: Let « be as defined in Assumption 8. For some 0 < ¢ <
min(1/(2a), 1) and 8 such that 2ae > 8 > 0, it holds that M = O (N 1+9/Cat1),
For some & > (1+ 8)/(1 — 2ae), it holds that E(|u;|*") < oo. Further assume
that 63 — o = 0,(N %/,

THEOREM A.1: Suppose that Assumptions 1-3 are satisfied. Define pu;(W) =
Ele:u)P;(W) and (W) = (ui(W), ..., un(W)). If W satisfies Assumptions 4
and 5(i), then, for B defined in (2.2) (MA2SLS), the decomposition given by (A.8)
holds with

N
D (P()) .
SW)y=H" (Cum[ei, €is Ui, u:]i:lT T Uue‘f;e%
+ (O-ezzu + UUGO—L/te)(I/V/]\]ﬂ
N N
. Y HPW) Y fiPu(W)
— = By + Elefu] = T =l N Elei
LU= PO)uW) W)U = PW)f
N N

+

Uezf/(l - P(W)])V(I _P(W))f)Hl’
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where d = dim(B) and

(A1) By= 2(0321, +do,o, +— Zfa H'o.f,
1 N
+ N ;(fla-l;eHilflo-L/te + (Tuffi/Hlauffi/)> °

A number of special cases lead to simplifications of the above result. If
Cumle;, €;, u;, u'] =0 and E[efu,-] =0, as would be the case if €; and u; were
jointly Gaussian, the following result is obtained.

COROLLARY A.1: Suppose that the same conditions as in Theorem A.1 hold,
and that in addition Cumle;, €;, u;, u;] = 0 and E[€?u;]1 = 0. Then, for B defined
in (2.2) (MA2SLYS), the decomposition given by (A.8) holds with

wirw) Kw

_ , (K'W)y? 2
(A2) S(W)— ( ueY ¢ N +( Eu+ Oyue ue) N N BN
sz/(l—P(W))(I—P(W))f)H 1
¢ N

where By, is as defined before.

Another interesting case arises when W is constrained such that w,, € [0, 1].
We have the following result.

COROLLARY A.2: Suppose that the same conditions as in Theorem A.1 hold
and that in addition w,, € [0, 1] for all m. Then, for B defined in (2.2) (MA2SLYS),
the decomposition given by (A.8) holds with

K/ 2 /l—v
(A3)  SW)=H"" (o-uea;e% 025+ ) U

N N
o Y FPW) > fiPu(W)
— =B+ Elefu] = N + = N Eleiu)]

A —P(W))(I—P(W))f) o

N
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where By is as defined before. Moreover, ignoring terms of order O,(K'W)
(= 0,((K'W)*)), to first order

’ 2 ’ — —
s s(W):Hl(aqu;E(K;V) 4ol P(W)])V(I P(W))f)Hl_

A last special case arises when the constraint K'W = 0 is imposed on the
weights.

COROLLARY A.3: Suppose that the same conditions as in Theorem A.1 hold
and that in addition Cuml(e;, €;, u;, u;] = 0 and E[€u,] = 0. Furthermore, im-
pose K'W = 0. Then, for B defined in (2.2) (MA2SLS), the decomposition given
by (A.8) holds with

(AS) SW)=H"! ((onu + auea;s)(W;Vﬂ
L sz/(l -PW)Hd - P(W))f)H{
€ N

REMARK A.1: We note that this result covers the Nagar (1959) estima-
tor, where M = N, w,, = N/(N — k) for k = m, wy = —k/(N — k), and
w,, = 0 otherwise for some k such that kK — oo and k/ VN — 0. First, we verify
that all the conditions of the corollary are satisfied, where fo:l W, = (N +
k)/(N — k), which is uniformly bounded if k = o(N), K'W =1, 1),,W =1,
S |walm =2Nk/(N — k) — oo, and ¥V _ |w,|m/~/N = 2+/Nk/(N —
k) — 0. Further, SUp;g7 i< | an:l w,| = 0 by taking L < k. Next, note that
WTW =k/(1-k/N)>?—k?*)N(1—-k/N)*>and f'(I — P(IW))(I —P(W))f =
f'(I —Py)f/(1—k/N)? noting that Py = I. If we use Wy to denote the Nagar
weights, then S(Wy) = H'((623, + 040, )k/N + o2 f' (I — P)f/N)H™' +
o(S(Wy)). The lead term is the same as the result in Proposition 3 of Donald
and Newey (2001).

The next theorem gives the approximate MSE of the MALIML and MA-
Fuller estimators.

THEOREM A.2: Suppose that Assumptions 1-4, 5(ii), 6, and 7 are satisfied.
Let v; = u; — (0yc/0?)€;. Define 3, =3, — 0,0, pe(W) = (o1 (W), ...,
won(W)Y, and p, (W) = Ele?v,1P;(W). If W satisfies Assumption 4, then,
for B defined in (2.3) (MALIML) and fB defined in (2.4) (MAFuller), the de-
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composition given by (A.8) holds with

ﬂwvzH*(ﬁzE%?f+¢fa_P“m§’_”WWf

N
> (Pa(W))?

7 i=1
+ Cumle;, €, v;, V] N

[ =PWW))u,(W)
N

(W)U - P(W))f) o
N

+i+1-

where

K'Ww
N

al N
{=D_fiPsW)EIEV]/IN ~ > fiEl€]]/N.
i=1 '

When Cuml(e;, €;, v;, v}] = 0 and E[€*v;] = 0, we have

W TwW J' U —=PWHUT —-PW)f
+ o; N

(A.6) SUV):fr4QﬁEU

The following theorem demonstrates that model averaging can achieve a
smaller MSE than that achieved by sequential instrument selection. Define
thesets Quy ={W e lj|\W1ly =1}, Qc={W e ||W1ly=1,w, c[-1,1],Ym <
M}, QP = {W S 11|W,1M =1; w,, € [O, 1],\7’m < M}, and QB = {W S 11|W/].M =

1, K'W =0}.

THEOREM A.3: Assume that Assumptions 1-5 hold. Let v, = NH™! x
f'( —P,)fH'A/N. Assume that there exists a nonstochastic function C(a)
such that sup,,_, . Yma+a)/Ym = C(a) wpal as N, m — oo for some & > 0. As-

sume that C(a) = (1 + a) > + o(|a|**).
(i) For S\(W) given by (A.2), it follows that

min S,(W)
Webr 9 wpal
min S, (W) '

We!)sq
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Letting Wy be the weights with w,, = N/(N — m), wy = —m/(N — m), and
w; = 0 for j # m, where m is chosen to minimize S,(W ), it follows that
min S, (W)
Welg

Sy (Wy)
(ii) For S,(W) given by (A.6), it follows that
min S,(W)

WE.QP

min S,(W)

Welyq

<1 wpal.

<1 wpal.

The next theorem is about the optimality of the estimated criterion function.
It is a generalization of the result established by Li (1987).

THEOREM A4 LetAssumptlons 1-10 hold. For 2 = Qy, Qg, O¢, or Qp and

= argming.., S (W), where S (W) is defined in either (2.5) or (2.7), it follows

that
S\(W)
A. _on) .
AD - s
we

Last, we present the theorem that shows that the pseudo R* converges in
probability to the population R

THEOREM A.5: Assume that Assumptions 1-5 hold. Suppose that
dim(B) =1. Let

- (X'P(W)X)?
T XPWPW)HYX - X' X'

If Y lwl = o0(1) and E(X;) =0, then

52 E(f})
"E(fH+a2

A.l. Lemmas

The MA2SLS estimator has the form of vN(8 — B) = H'h. We de-
fine h = f'e/v/N and H = f'f/N. The following Lemma A.1 is the key de-
vice to compute the Nagar-type MSE of MA2SLS. This lemma is similar to
Lemma A.1 in Donald and Newey (2001), but with the important difference
that the expansion is valid to higher order and covers the case of higher order
unbiased estimators.



CONSTRUCTING OPTIMAL INSTRUMENTS 9

LEMMA A.1: If there is a decomposition h=h+T"+ Z" h=h+T", H =
H+TH 4+ 7% and

hi' — hWH'TH — THH hid = AW) + ZAW),

such that T" = 0,(1), h = O,(1), and H = O,(1), the determinant of H is
bounded away from zero with probability 1, py y = tr(S(W)), and py y = 0,(1),

IT"1P = 0,(pw)s 12" =0,(pw), 1271 =0,(pw),
ZAW)=o0,(pwn)s ELAW)|zl = 0*H +HS(W)H + 0,(pw.n)s
then
(A8)  N(B—Bi)(B—Bo)=0W)+#W),
E[QW)|zl=a2H™' + S(W) + T(W),
FWY+TW)/tr(SW))=0,(1), as KW' — oo, N— oc.

REMARK A.2: The technical difference between our lemma and that of
Donald and Newey is that we consider the interaction between 7" and T
in the expansion and we do not require that ||7"|| - || T || is small.

PROOF OF LEMMA A.1: The proof follows steps taken by Donald and Newey
(2001). We observe that

H'h=H'"h—-H'(H-HH 'h+H"(H—-H)H"(H - H)Hh.
Noting that F1~— H=T" 4+ Z" |T"|* = 0,(pwn), I1Z¥]| = 0,(pw.n), and
h=h+Z"=h+o0,(pwx),we have

H'h=H'"h—H 'T"H 'h+0,(pwy).
Let 7=h— T"H~'h. Then

FH = AW)+ Z W)+ T"H 'hin H ' T"

= AW) + 0,(pw.x)

by ZA(W) =o0,(pwy) and | T#|| = 0,(pw x)- It follows that

NB-BYB—B) =H"(AW)+0,(pwny)H ™" +0,(pw.n)

=H"AW)H "+ 0,(pw.).

Therefore, we get the desired result. Q.E.D.
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LEMMA A.2: Let I' be the N x N matrix where I}; = min(i, j). Then I' is
positive definite.

PROOF: Define the vectors b; y = (05, 1y, where 1; is the j x 1 vector
of 1s and 0; is defined similarly. Then

r= Zb,Nb]N,

and for any y € RY it follows that y'I'y = Zf;l (¥'b;x)* > 0 and the equality
holds if and only if y = 0. This shows that I" is positive definite. QE.D.

LEMMA A.3: Let I' be defined as in Lemma A.2. If, for some sequence L <
M, L — oo, L ¢ J for J defined in Assumption 2(iii), sup;,; ,_; | 3 ),_, Wnl =

OP(l/«/ﬁ) as M — oo, and W'y, =1 for any M, then it follows that W' I'W —
oo as M — oo.

PROOF: For L <M and L — oo it follows by the assumption that

M J
e mf(Zw > )
m=1 j#l. sk m=j+1
< inf Z Wy, |+ sup Zwm
jelj<L m—jt1 J#T <L =1

such that inf,; J=L Il i Wnl=1-0 ,(1/+/N). Now let C; be the number
of elements in J such that

(£ 5 (50)

m=j+1 jeJ,j<L \m=j+1

> (L —Cp)(1—0,(1/V/N))*

Since L — oo and Cj is bounded and does not depend on L or N, the result
follows. QE.D.

LEMMA A.4: If, for some sequence L < M, L — oo, for J defined in As-
sumption 2(iii), L ¢ J, and Sup;g7 i< | > Wl = O(1/+/N) as M — oo, then

M m 2,2
Zm:l,m¢f (Zs:l wm) m—=— 0.
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PROOF: Note that

> (z)

m=1,m¢J

A L)

m=1,m¢J m=L+1,m¢J] \ s=
)2

sup
Jjglj<L

L M
<O(/N)Y m™+Cy Y m™—0,

m=1 m=L+1

S,

s=1

IA

1 m=L+1,m¢J \ s=1

where the last inequality follows from the fact that Y. | |w,,| < Ciy < oo uni-
formly in N by Assumption 4. Then ZZ:L L1m** — 0 because L — oo and
M m™ < oo uniformly in M. Q.E.D.

In what follows, } |, and ) _,; signify >N and YN, Zjv:] ji> Tespectively.

LEMMA A.5: Suppose that Assumptions 1-3 are satisfied. Then we have the
following equalities:
() tr(P(W)) =" w,m=K'W (Hansen (2007, Lemma 1.1)).
(i) X,(Pu(W) =0, (K'W*).
(i) Y., Pu(W)P;(W) = (K'W)* 4+ 0,(K'W™).
(V) Yo, PsOVP;(W) = Yo S wawmin(,m) + 0, (K'W) =
W TW +o0,(K'W).
(V) 2w Pi(W)=0O,(N — K'W).
(i) h = f'e/N =0,(1) and H = f'f/N = O,(1) (Donald and Newey
(2001, Lemma A.2 (v))).

PROOF: We do not provide the proofs of parts (i) and (vi), as the proofs are
available in Hansen (2007) and Donald and Newey (2001). For part (ii), first
we note that A; < B;; if A < B, which implies that P, ;; < Py ; for / < M. Then
Assumption 3 and Lemma A.5(i) imply

N
Z(PII(W) Z Z wlPl i m,ii

N

=3

i=1 m,

Ma

wm||w1|PI it m,ii

.\
Il
-
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M N M
< max(Py, i) (Z |wz|) DO lwnl P
m=1

i=1 m=1

< Cmax(Py, ;) tr P(W™)
= Op(l)(K,W+) = Op(K,W+):

where fozl |lw;| < Cy for some C;; < oo was used and the bound holds uni-
formly for all N by Assumption 4. Also these results imply

S PaW)Pi(W) =Y " Pu(W) Y Py(W) = > (Py(W))?
i J i

i#]
=(K'W) +o0,(KW™T),

which shows part (iii).
To show part (iv), first we observe that

Zpij(W)Pij(W) =tr(P(W)P(W)) — Z(Pu(W))z-

i#] i

Now tr(P(W)P(W)) = anlzl Zfil w,,w;min(/, m) by Lemma 1.2 of Hansen
(2007). Thus, by combining this result with part (ii) of this lemma, we get

M M
> PyWHPy(W) =" wywymin(l, m) + 0,(K'W™).
i#] m=1 I=1

For part (v), note that

Y Py(W) =1, P(W)ly — tr(P(W)),
i#]

where 1), P, 1y < 1)1y = N by the fact that P, is an idempotent matrix. Then
note that

1, P(W)ly —tr(P(W)) = 1, P(W)1y| — tr(P(W))

M
< w1y Puly| — tr(P(W))

m=1
<CN-KW
such that Y, Py(W) = O,(N — K'W) = O,(N). Q.E.D.
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Lete,(W)=f'U—-PW))I —PW))f/N and A(W) =tr(es(W)).

LEMMA A.6: Suppose that Assumptions 1-3, 4, and 5(i) are satisfied. Then the
following statements hold:
(i) AW)=o0,(1).
(i) f'(I = PW))e/v/N = 0,(AW)').
(iii)) E[u'P(W)e|z] = 0, K'W.
(iv) E[uP(W)e€ PW)u|z]l = 0y, (K'W) 4+ (023, + 0uea., (W' TW) +
Cuml(e;, €;, u;, /]y (Pi(W))>
(V) E[f'ee PW)ulzl =Y, fiPi(W)E[eiu,] = O, (K'W™).
(vi) Let g(W):W — Rwith g(W) > 0be a function of W such that g(W) —
oo as N — oo. Then /g(W)A(W) /N = O,(g(W)/N + A(W)).
(vii) E[ThiH'W'f/N|z] = Y, f:f{H 'Ele’u;]f//N* = O,(1/N) (Donald
and Newey (2001, Lemma A.3 (vii))).
(viii) E[f'(I — P(W))ee€P(W)u/N|z] = f'd — PWHu(W)/N =
0,((K'W*)/N + AW)).
(ix) E[f'ee fH'w'P(W)u|z]/N*=0,(1/N)+ o3, K'W/N.
(x) Elf'ee POV)uH " (' f + [0)|21/N* = 0,(1/N) + (K'W/N)(E, fi ¥
ol H' o, fi/N+Y, fioc. H ' fiog|_/N).
(xi) E[u'P(W)ee fH- 1(uf + f'w)|zl/N* = O,(1/N) + (K'W/N) x
(doweo.,, 4+ 0w Y fIH  ouf]/N).
(xii) W' I'W <CK'W+.

PrOOF: Let y,, =tr(f'({ — P,)f)/N. By construction ¥,, > 0. Write
tr(f' (L — POV)I — P(W))[)/N = W' AW,

where

L 2
NSRS
< 2
\S) [\S)
v

It follows that

(A9) WAW = (Z (Z w) (¥m — ?mﬂ)) +¥m

1 \s=1

M-1 m 2
( Z (Z ws) (:};m - ?erl)) + ’;/M + Op(l)a
m=1,m¢J

s=1
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where the second equality holds by Assumption 2(iii) such that

W' AW < Z (Zm:w)mero,,(l): Z_j (Xm: ) Y

m=1,m¢J m=1,m¢J =1

<sup(m V) Z <iw> m,

<M
" m=1,m¢J

where sup,,_,, (m**¥,,) = O,(1) by Assumption 2(ii). For a sequence L < M,
L — oo, and L/N < M/N — 0 satistying Assumption 4(ii) it follows that
> o tmer (O wy)?m ™% = o(1) by Lemma A.4. This implies that tr(f'(/ —
PW))U —=PWW))/N=AW)=0,1).

Next, we observe that E[f'(I — P(W))e/~/N]=0 and

E[f’(I—P(W))e ed-pPIV)f Z]
VN VN
_ 2PV - P(W))f
¢ N

=ale (W).

Therefore, f'(I — P(W))e/~'N = O,(A(W)'?) by the Chebyshev inequality.
This shows part (ii).
For part (iii),
N
E[W'P(W)elz] =Y Pi(W)E[u;s]

i=1

= gy tr(PW)) =0, K'W.

To give part (iv), observe that E[u,P;(W)e;ePu(W)u;] = 0 if one of
(i, J, k, 1) is different from all the rest. Also E[e?u;u;}] is bounded by Assump-
tion 1. Therefore, we have

E[uW'P(W)e€ P(W)u|z]
= Z(PH(W))zE[e wi] + > E[u:Py(W )€€ Py(W)u|z]

i#]
+ ZE[u,-P,-,-(W)GjEisz(W)M}|Z]
i#]
+ Y E[uPy(W)e; P(W)uj|z]
i#]
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= E[]uuj] Y (Pu(W))* + 0ue0,,. Y P W)Py(W)
i i#]
+ (030 + 0uel,) Y Py(W)Py(W)
i#f

= Cumle;, €, u;, u;.] Z(Pii(W))z + U'usUL,,E(K,W)Z

+ (023, + 0T, )W TW)

by Lemma A.5(iii) and (iv) and noting that Cuml(e;, €;, u;, u;] = E[e?u;u}] —
023, - 20,0),.
Assumption 1 also implies

E[f'eeP(W)ulzl=Y_ fiPy(W)Elei€u;]= >  fiPy(W)E[€ u]]
i,j,k i

and, furthermore, together with Assumption 3,

which gives part (v).
To prove part (vi), first we consider the function of a: g(W)/a + a for a e R,
which is convex and the minimum value of which is 2,/g(W) with the mini-

mizer a = \/g(W). If A(W) =0, then ((/AW)/N)/(g(W)/N + A(W)) =0
and for A(W) #£0,

<Y 1P| - il - IEL€]u]l| = O (K'W™),

1

> fiPu(W)El€ u)]

JAW)/N ( gW) )‘1 1
A.10 = AW)N — =0
(A.10) g§W)/N+AW) \JAW)N VA =2 (W) -

as g(W) — oo.

For part (viii), let Q(W) = I — P(W) with (i, j)th element denoted by Q; (W)
and, for some a and b, let f; , = f,(z;) and w;,(W) = E[€?u;]1P;;(W). Now the
(a, b)th element of E[f'(I — P(W))e€e' P(W)u|z] satisfies

'E[Z [1aQiy (W)€ e Py (W )uy, ‘Z:|

i)kl

Z ﬁ,aQij(W)E[E?”jb]ij(W) '
Lj

= £, Q) (W)| =< [, QW) QW) ful 2| wiy (W (W2,
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where the inequality is the Cauchy—Schwarz inequality. Now |f.Q(W)Q(W ) f,|'* =
O,((NA(W))"/?) by the definition of A(W). For some constant C, |u, (W)
wy(W)| < CY_,(Py(W))* by Assumption 1 and applying Lemma A.5(ii), we
have |w, (W)u,(W)| = 0,(K'W™). Therefore, we have

E[f'(I—P(W))ee PW)u/N|z|
=O0,((NAW))'"*)o,(NVK'W+)O,(1/N)

= 0,(AW) VKW /VN)
=0,(K'W")/N + A(W)),

where the last equality follows from the fact that
AW PVKWH VN < (KWH)/N + A(W)) /2

by (A.10). In addition if we define w;(W) = E[e’u;1P;(W) and u(W) =
(WY, ..., ua(W)'), then

E[f(I—PW))ee P(W)u/N|z] = f'(I - P(W))u(W)/N.
For part (ix), we have the decomposition
Elf'e€ fH'u'P(W)u|Z]/N*
= Z fif H'El€ u;u]P;(W)/N*
+2)  fif{H ' Ele;u,)Ele;u;1Py(W)/N*
i#]

+ > fif(H ' E[€1E[uu}1P;(W)/N*.
i#j

The boundedness of f;f/H ' P;(W) implies that

> fif{H ' El€uu)P;(W)/N> = O,(1/N).

Let f,; be the ath element of f;. Then we have

<Y [wal(£,Pufu)/N?

m=1

< D lwul(fif)/N? = O,(1/N).

m=1

> fuifaiPy(W)/N?
iJ
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This implies that

> fif{H Ele] Ele;u 1Py (W) /N
i£]

=Y _ fif{H'Ele;u;)Ele;u}|P;(W) /N

iJ
— > fif{H'Elea\Eleu;1Py(W)/N*
=0O,(1/N).
Last, we have

> fif{H E[)E[u;u1P;(W) /N
i#]

= (Zfiﬂ)H_lafzu (ZP,~,-(W)> / N?
i J
=Y fifiH '3, Py(W)/N?

=a’3,K'W/N+O0,(1/N).

Therefore, we have

Elf'ee fH'u'P(W)u|Z]/N*= 0’3, K'W/N + O,(1/N).

For part (x), using again Lemma A.5(v) as before,
E[f'ee€ P(W)uH 'u' f|z]/N*
=Y fiPi(W)Ele u;H ' u|z]f, /N’

+ Y f:Py(W)Ele;uJH ' E[u;e;]f//N*
i#]
+02 ) fiPy(W)E[WH 'u;|z1f|/N?
i#j
+ 02y fiPuW)EWH uf /N
i#j
=0,(1/N)+Y_ fiP;(W)Ele;u)]H " E[u;€;1f,/N*
i#]
=0y (1N + (K'W/N) ) _ fio, H™ e fi/ N

17
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and

E[f'ee P(W)uH ™" f'u|z]/N*
=Y fiPs(W)EleuH " fiu|z]/N?
+ > fiPy(W)Ele;u)H " f,E[u€;]/ N
i#]

+ ‘7622:fiPij(W)E[M,J‘F]f,»u;-lz]/N2
2]

+ 0l Y fiPuOV)Elu;H ™ fud)2)/N?
i#]

=0,(1/N)+Y_ fiP;(W)Ele;u|H™' f.E[u}e;]/N*
i#]

=0,(1/N)+(K'W)/N > fio, H ' f,0,,/N.

For part (xi), with the same arguments, it holds that

E[u'P(W)ee fH™ f'u|z]/N*
=Y Py(W)E[€u.f,H 'u;f!|z]/N?
+ Y Py(W)Eleu)f{H ' f,Elue] /N
i#j

+ 02 Py(W)Elw;f{H™ fiui)| 2]/ N?
i#]

+ Y " Py(W)Elue;|f{H" fE[uje;]/N*
i#j

1\ KW 1,

:OP<N)+TO-MO—”EN;]‘;H fz
1\ Kw 1 /
0P<ﬁ)+Taufa-uetr(H lﬁ Zﬁﬁ)

1 K'W
0‘D<N) + dTO'uEO';E
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and arguments similar to before give
E[uP(W)ee fH'u'f|z]/N*?

=0,(1/N)+ > _ P;(W)Ele;ujlf{H " Eluwe]f,/N*
i#]

1\ Kw 1 o
:OP(N)+T(TMENZ]‘;H 10-usfi-

For part (xii), note that

M /M 2
WIW = Z(Z w,->
m=1 \j=m
M M M
<D > willY w
m=1 j=m j=m
=<

M
CZ |wy,|lm=CK'WH,

m=1

where the second inequality follows from the condition sup,_,, | S Wl <
C)1 < oo, which holds uniformly in M. O.E.D.

LEMMA A.7: Assume that Assumptions 1, 2, 3, and 4 hold. Let
(A1l) EW)=t(f'd—PW)f/N).
Let py y =tr(S(W)), where S(W) is defined in (A.6). Then we have
(EW))’=0,(pwn).
We note that the result holds when S(W) is defined in (A.2).

REMARK A.3: Considering the set J in Assumption 2 is important because
the optimal weighting vector has a structure such that w; does not converge to 0
if f'(P, — P,.1)f/N = 0. Thus, the optimal weighting vector does not satisfy

sup,; | Ziz] w,| = O(1/+/N) in general.

PROOF OF LEMMA A.7: Lety,, =tr(f'(I —P,)f/N) andlet A be the M x M
matrix whose (i, j)th element is min(y;, ¥;) = ¥maxi,j)- Let e; be the first unit
vector. We write

EW)=W'Ae,, AW)=W'AW.
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LetW,=(wy,...,w.,0...,0)and W, =(0,...,0, w1, ..., wy). We have the
decomposition

(E(W))* =W, Ae,e, AW, + 2W/ Ae e, AW, + W, Ae e, AW,

AW) = W] AW, + 2W AW, + W, AW;.

First, we consider

L1/ 2 L 2
W/ AW, = Z(Z ws) (¥; = ¥ix1) + (Z ws) YL
j=1 s=1
i 2 L 2
= Z Zws (¥; — vi+1) + (Z%) Y. wpal

jel.j<L \s=1 s=1

> (5’/—5’/+1)+5’L> wpal

jél,j<L—1

A
S8
Ao
2
— _——
| s
T S~ S~
[\ )
N

=0,(1/N).
By Lemma A3, W/ I'W — oo so that
W/ AW, = O,(1/N) =o(W'TW/N) = o(pw.n).

Since |W] AW,| < (W] AW)*(W) AW,)"/* by the Cauchy-Schwarz inequality,
we have A(W) = W) AW, + o0,(pw,v). Next, we consider
W, Ae e, AW, = (W/ Ae,)*
< (W AW1)(€ Aey)
= (W{AWO% = OP(W{AWO = Op(pW,N);

where the inequality is that of Cauchy-Schwarz. We examine the order of
W, Ae,e; AW,. We observe that

M j M
W) Ae, = Z ( Z ws) ¥Yj — ¥j+1) + ( Z ws) Ym

j=L+1 \s=L+1 s=L+1
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and

M j 2 M 2
W AW, = ) (Z w) <%~—&H1>+(Z ws> -
s: 1

j=L+1 \s=L+1
These formulas imply that

Wy Ae, — Wy AWs

Rl

j=L+1 \s=L+1

oo
(EA)- ()
E(E (5 o

+o0,(pwn),

(20 (30)

We observe that, by the Cauchy-Schwarz inequality,
M j i 2
J=L+1 \s=L+1 s=L+1
M j 2
=< (Z (Z ws) (';’j - 3~’j+1)>
Jj=L+1 \s=L+1

(£ (-(5)) 050

<WJAW, - C(yL — Ym) + 0,(pw.n) = 0,(Pw.N)

~<x

=L
L

where

Yu < Cyu =0,(pwn).

since W, AW, = O(pw,n) and y. — ¥y = 0,(1). It therefore follows that

(W, Ae, — Wy AW»)? = 0,(pw n).
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Therefore,
W) Aeiei AWy = (W) AW, + W, Ae, — W) AW,)?
< 2Wh AWL)? + 2(W, Aey — W) AW3)? = 0, (pw.n).-
Last, by the Cauchy-Schwarz inequality, we have
W/ Aee\ AW, = 0,(pw.n).
To sum up, we have

(E(W))* =W, Ae e, AW, + 2W, Ae e} AW, + W, Ae e, AW,

= OP(pWJV)' QED
LEMMA A.8: If Assumptions 1-8 hold and O = Qy = {W € [[|W'l, =1},
where M satisfies the constraints in Assumption 10 and W = (wy, ..., wy), it

follows that
Bt $,07) = 0,(N 2241,
where Sy(W) = NS(W)A and S(W) is defined in (A.2).

PROOF: Consider a sequence W, where wy =2, wyy = —1, and w; =0 for
J#M,2M and M = LNI/(2“+~“J. Clearly, 'W =1 and W € [, for all N such
that W e £2. We note that K'W = 0. It follows that

- W IT'w
S)L(W) == )\/Hi] <b0(1\7—)
n Uezf’(l - PW))U — P(W))f>H1A,
N
where
W) 2
N N
and

tr(f'(I — P(W))(I — POV))f)
N

=4Yy — 3%
— OP(M7201) — OP(N7201/(201+1))’

where ¥y, = tr(f'(I — P,,)f/N). This argument shows that infy.,S,(W) <
CN—Za/(Za-Fl).
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To show that the rate is sharp, suppose that there is an & > 0 such that

inf S,(W) = O, (N 20+,
wen P

Take any W such that, for M = | N1+9/Qe+D | 'where 0 < § < /2,

(I — POV — P(W v\
(A.12) tr<f( ( )z)v( ( ))f>:Z<Zwi) (¥ = Vi) + Y

j=1 \i=1

— Op (N(72a(l+s))/(2a+1)) ,

where we use formula (A.9). Let Jy, be the set of integers jsuch that 1 < j <M
for which j**'(y; — ¥;11) > 0. By the assumptions of the lemma, wpal, #Jy =
O(M) as M — oo, where #J, is the cardinality of J,,. It follows that

> (i wf)zwj =Y (Zw) i

jely \ i=1 Jjely

i 2
J

> 0(N<—<2a+1><1+5>>/<2a+1>) Z <Z wl_) ,
i=1

jelm

which together with (A.12) implies that

Z (Z w; ) N( 2a(e— 8)+1+5)/(2a+])) _ O(M)

jelm
Now, since
(A13) OM)=>"1

jelm

(%) o)) ()

and by the Cauchy-Schwarz inequality,

2 ()= (5(Ew)) (5(Em))

M 12
(x5

jely \i=j+1
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it follows that (A.13) can only hold if liminfy ) iy (Zf‘i i1 w;)?/M > 0. Then,
for some 1 > 0 and N large enough, it follows that

M M 2
wrw = Z( > wm> > Mn = O(N+/Carb)
j=0

m=j+1

such that W/ I'W/N = O(N2+®/Ca+by " which implies that S,(W)
O(N(2e+0/2atDy = 3 contradiction to the assumption that infy ., S, (W)
O,(N2(+e)/Cetly — This argument establishes that infy .o S\(W) =
O, (N 20/@ty g a sharp bound. Q.E.D.

LEMMA A.9: Let

g s KW s (WTW) KW 4
S\(W)=NH (a,, N +b, 5 - By
n &ezf’(l —P(W)])V(I —P(W))f>1:11)\'

If Assumptions 1-9 hold, then for ( as defined in Lemma A.8, it follows that

sup S\
we S)\(W)
where S\(W) = XNS(W)A and S(W) is defined in (A.2).

1= Op(l)a

PROOF: We define the subset (2, = {W € [j| — o0 < liminfy K'W <
limsup, K'W < oo}. Note that

K'W/N (K'W)*/N
A.14 S 0 and S _—
AL swp Sy e, Sy(W)

by Lemma A.8 and the fact that {W € [;|K'W = 0} € (2,. It now follows imme-
diately that

-0

A oA _ N (K'W)?/N
NH Yo, H'-H'a,H )Y\ sup —————— =0,(1)
e, S,OV)

with the same argument holding for the term ByK'W /N . Define

(W'TI'w)
N

Gezf’(l _P(W)])V(I_P(W))f>H1A

Sy, (W)y=XNH"" <b¢,

+
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and note that S, o,(W) > NH'b,H 'A(W'T'W)/N as well as S, o,(Wy) >
GINH'f'(I—P(W))I — P(W))fH'A/N. Thus, we have
“u (W'T'W)/N
weans,  S\(W)
(W' Iw)/N Svo, (W)
< sup sup
weono, Sna,(W)  weana, SA(W)
1 Sro, (W)
< sup ,
NH=b,H'X yeono, Sy(W)

where SUPyconn, Sr.0,(Wy) /S, (Wy) — 1 by (A.14). This implies that

A A 'r N
NH'b,H'—H 'b,H )X sup M:op(l).

WeOnQ, Sy(W)
Now consider

N(H6 _H_l(réz)f’(l—1”(W))(1—1”(W))f1;,_1)L

N
w2 I =PI — POV))f (- — HY
€ N b
where
up IN(H™'62 = H™'o2)f'(I — POW))(I — P(W))fH'A/N|
Wen, S/\(W)
_ 2
< AN 62 = H o) sup — L= POV Al
wea |(I — P(W))fH-'A/V/N|?

= Op(l),

where

(I —POW))f/V/N|?
=0,(1
e | (I — POW ) FH- A /N2 p()

by Assumption 2. Together, these arguments show that

up S\w)
Wen, Sy(W)

1=0,01).
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For W € 2N 0, where Q5 = (W € [;|liminfy |K'W| = oo}, it follows that

sup IKWI/N -0
Wennnf (K/W)Z/N

such that for

(K'W)? Tb (W'IT'w)
N

+ sz/(l —PWNHU-PWW)f
€ N

Shos(Wy) = NH™! |:ao'

e,

it follows that

SA,gg(W)

—= 51 as N — oo.
S\(W)

sup
WennQf

Then similar arguments as before can be used to show that

Sy (W)
su —1=0,(1).
weam, SY(W) p(D
Since (2, U 0Q5) N Q2 = (, this establishes the claimed result. O.E.D.

LEMMA A.10: Let Assumptions 1-10 hold. Then it follows that

S\w)
S\(W)

sup 1—,0,
We

where S,(W) = XS(W)X and S(W) is defined in (A.2).

PROOF: Without loss of generality assume that f; is a scalar and VH ! =1
so that o7 = 2. First consider

| = POW ) f/NN|* = £ =Py f/N
=[Py — POW)) /YN
and note that

f'd—=Py)f/N=0,(M>*)
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by Assumption 2. Together with Lemma A.8, this implies that

||<PM PO FINNIP = I = PW)) f/V/N|?
We!) SA(W)

sup f'(I — Py)f/N

Wef

inf S,(W)
Wen

— Op (M—ZaNZa/(2a+1)) — 0]7 (N—Zaﬁ/(2a+l)) — Op(l).

Combining these results with Lemma A.9, it is then sufficient to show that
supl | (P — POV)X/VN|* [ (Ps = POV f/VN |
we

— (M =2K'W + W' TW)/N|/S\(W) =0,(1).

We note that in this expressmn we replace &2 by o2, which is ]ustlﬁed by
the same arguments as in the proof of Lemma A.9 as long as 62 — o2 =
0,(N Dy because, under the assumptions of the lemma, it then follows
that (62 — 02)M/N = 0,(N72/?tD) = ¢, (infycn Sy (W)) and the remain-
ing terms involving o2 can be handled in the same way as in the proof of
Lemma A.9. Now note that

| Py = POW)X/VN|* = || Py = POV ) f/VN |
= [Py — POV))u/'N|” +2u (Py — P(W))(Py — P(W))f/N.
It follows that
E[u'(Py — P(W))(Py — POW))u/N|z]
= a2 (tr(Py) — 2tre(P(W)) + tr(P(W)P(W)))/N
=0X(M -2K'W +W'T'W)/N
and
E[u/ (Py — P(W))(Py — P(W))f/N|z] =
Moreover, we have the bound
|| Py — PW))u|” = 62(M —2K'W + W' T'W)|
<|u'Pyu—o-M|

+sup |u'Piu — o, ]I(ZZIU),I +ZZ|wJ |w1|>

j=M j=1 I=1
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where Z]Ail |lw;| < Cyy uniformly in M is used. It follows for some 9 > 1 from
Whittle (1960, Theorem 2) that for some constant C,

Ellu'Pju — 02j"|2] < CEl|u/ P(tx(P;P)))” = CEu; ')

and thus for any n > 0 and some constant C, not necessarily the same as above,

wen

sup || (Py — P(W)ull*> — oy(M —2K'W + W' TW)|/N

P

r[ inf S,(W) g 7’}
We

Ellu'Pyu— o2M|*|z] Ellu'Pu— o?j|*"|z]
- ni?NZﬂN—4a19/(2a+l) 3CZ ﬁNZﬁN 4ad/(2a+1)

Elu;’F(M? + M)
7P N29 N —4ad/Qat1)

— O(N(1+5—1‘1‘(1—5))/2a+1) — 0(1)

Next, consider

M
Z wiwju,(PM - Pmax(i,j))f/N ’

i.j=1

P(W)I —P(W)f/N| =

where

M
Zwiwju/(P max(z;) f/N

i.j=1

M i B
sZ(Zw,) |t/ (Pisy — P)f/N].

Let K, = NW1=#/Ce+D] Then

M-1/ i 2
z(z w) WPt — PN
i=1 \ j=1

Su
s S\(W)

(A.15)

Ky i 2
Z(Zw/) |t/ (Piy1 — P) f/N]|

i=1 \ j=1
= Su
e S,\(W)

+o0,(1)
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because

M-1 i 2
Z (Z wj) |t/ (Piyy — P) f/N]

Prl su i=Kp+1 \ j=1
>
P S\(W) K

)

>

M-1 i 2

sup ) (ij) |t/ (Piy — P)) f/N]|

<Pr Wel i g, +1\ j=1

- inf S, (W)
wel

)

M
CE[u?] Y (f'(Pyi— P)f/N)’
J=Kn+1
nﬂNﬂN—4aﬁ/(2a+l) ’

IA

where the inequality follows from Markov’s inequality, Lemma A.8, the fact
that | }~°_, w;| is uniformly bounded on (2, and Theorem 1 of Whittle (1960),
which implies that

(A.16) E[|u’(P,-+1 - P,~)f/N|2‘9|z] < CE[|u;’IN7*(f'(Piys — P)f/N)”.

Now note that

M
CE[w®] Y (f'(Pi1—P)f/N)’
J=Kn+1
nﬁNﬂN—4m‘)‘/(2a+1)

- CE[u[”1(f'(I = Px,) f/N)"M
- nﬁNﬁN—4aﬁ/(2a+l)
— Op (KfzaﬁM/NﬁN4m9/(2a+l))

_ —2(1—&)a®)/(2a+1)—F+(148)/(2a+1)+4ad / (2a+1)
=0,(N )

= Op(1)7

which establishes (A.15). We thus turn to the lead term on the right hand side
of (A.15). By the Cauchy-Schwarz inequality, we have

[t/ (Piyy — P) f/N| < (f (Piy1 — Pi)f/N)l/z(u,(PiH — Pi)u/N)l/z-



30 G. KUERSTEINER AND R. OKUI

It now follows that

Ko [ i 2
(A17) Z(Z u)j> |/ (Piys — P) f/N|

i=1 \ j=1

K, 1/2
(Z (Z w) (Pt — P)f/N>

i=1 \j=1

i=1

. 1/2
(Z(Zw) U (Piyy —P»u/N)
. i 2 1/2
<sup Zw,) (Z(Zw,) f’(Pi+1—Pi)f/N>

=M i=1 \ j=1

K, / i 2 12
(Z(Zw,)u(P,+1 P)u/N) ,

Jj=1

where sup,_,, (>, w;)> < C}, < 0o uniformly in M such that

Kn i 2 172
(A.18) (Z(Z wj) u'(Pig —Pi)u/N)

i=1 \ j=1

i 2 K 1/2
< sup (Z |wj|) (Z W (Prt — P»u/N)
j=1

i=1

1/2

C( (PKn+1 —Pl)”/N)

where W e [, was used to bound supW(Z;.:1 lw;|)?. Let 2y C 2 be the se-
quence of subsets of sequences in (2 for which w; = 0 for all i > N. Clearly,

Ky i 2
Z(Z w/’) |u'(Piyy — P) f/N|

i=1 \ j=1
A.19 S
(A-19) " sup S\(W)

Ky i 2
Z(Zuh) [t/ (Piy1 — Py) f/N|

_w i=1 \ j=1
e S\(W)
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Now fix an arbitrary w > 0 and define the sequence of sets

Zﬂ (Z w,-) f'(Piv — POfIN

i=1 \ j=1

<w

Dhn= {W €y N (—2ate/2)/2at1) = }

and let QﬁN be the complement of (2, y in 2y such that 2y = (Qy N2 y) U
2y N 0 y). We note that (2, y depends on the realizations for the instru-
ments z.

As was demonstrated in the proof of Lemma A.9, as N tends to infinity,
S\(W)>a*XNH'f'(I — P(W))I — P(W))fH™'A/N. Also note that

Kn

; 2
fU—~PW)UI ~POV)f/N = Z(Z w,—) f'(Piui — P)f/N.

i=1 \ j=1

Therefore, for N sufficiently large,

Kn i 2
Z(Z w/’) |t/ (Piy1 — P) f/N]|

i=1 \ j=1
sup
wenynof Sy(W)

Kn i 2
> (Z wj) |t/ (Piy — P))f/N]|

i=1 \ j=1

) (Z w,-) f'(Pia — P)f/N

i=1 \ j=1

<

C
weynaf

C(”/(PKMH - Pl)u/N)l/2

K, ; 2 1727
inf (Z(Zw,) (P —Pi)f/N)

C
weannofy \ 'S \'\5

where

172

( > <Z w]-> 2f/(Pm —P) f/N)

ielg, \ j=1

> Vo

inf
fel (—a+e/4)/2a+1)
weaynaf N
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by the construction of (2, y. It then follows that

Kn

; 2
> (Z w,-) |/ (Pis1 — P)f/N]|
j=1

i=1

(A.20) sup

C
weonnaf

Sy(W)

< C(u/(PKnH - Pl)U/N)l/Z
- ﬂN(—a+S/4)/(2a+1)

Second,

Kn i 2
(a2l sup )] <Z w,-) [/(Pes = P)f/N < oN2ere/2/ e

WE.QNO.QI’N i=1 j=1

by the definition of (2; y such that

Kn i 2
Z(Z wj) |t/ (Pips — P)f/N|

i=1 \ j=1
A22 su
A2 Sw S:(W)

Ko [ i 2
sup Z(Zw,) |u'(Piy1 — P)) f/N]

weonn y 5

<
- inf S,(W)
Wef

Jj=1

C(u' (Pg,+1 — Pl)u/N)l/2
inf S,(W)
wWe

< /wN(7a+s/4)/(2a+1)

It now follows for any random function gy (W) that

sup gN(W)=max< sup gn(W), sup gN(W)>

WE.QN WE.QNQ.Q]’N WE_QNQ_QlCN

< sup gvW)+ sup gy(W).

WeQnn N wenynof
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Thus, setting gy (W) = Zfi”l(Z;:l w)?|u (Pyy — P)f/N|/S\(W) and us-

ing (A.19), (A.20), and (A.22), one obtains the bound

Kn i 2
> (Z w,-) |t/ (Piy — P))f/N]|
i=1 \ j=1

(A.23)

We) S/\(W)

< C(u,(PK,,+] - P1)U/N)1/2
- \/EN(fa+s/4)/(2a+l)

] CQ (P, — Pyu/N)»
N( ate/4)/(2a+1) n .
e S

It then follows that for any n; > 0 that

|

Ky i 2
Z(Z w,~> | (Piyy — P f/N]|
i=1 \ j=1

e S, (W) -m

|

1 C(E[u (P41 —Pl)u/N|Z])1/2

= ﬁ N (—ate/2)/Qatl)
/ 1/2
4 (Elu (PK’}\J;iz_a/iizﬁ/Nlﬂ) / 0p(N(—a+£/4)/(2a+l))’

where the inequality uses Markov’s inequality, (A.23), and Lemma A.8. Next,

note that
C(E[u (Pk,+1 — P)u/N|z])'?
(A.24) N(7a+s/2)/(2a+])

_ 1 /K —D/N
_«/5 N (—a+8/2)/(2a+1)

— 0(N(—8/2—8/2)/(2a+1)) — 0(1)

and

/ 12 -
E[u'Px,, u/N|z] "0, (NCetedicen)
— Op (K;/ZN(7a+s/4)/(2a+1)71/2)

= Op(N(—Za—£/4)/(2a+l)) — 0p(N—2a/(2a+1))
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such that

(Elu'(Pk,+1 — Pl)u/N|Z])l/20
N—Za/(2a+1)

(A.25) p (N ey = o (1).

Using (A.24) and (A.25) then establishes that

K i 2
> (Z wj) |4/ (Piss — P)f/N|
Pr|: su =

i=1
s S\(W)

> 1M 'zj| =o(1)+o0,(1).
This completes the proof of the lemma. Q.E.D.

A.2. Proofs of Theorems and Corollaries

PROOF OF THEOREM A.1: The MA2SLS estimator has the form
VNGB -PBy)=H"h, H=XPW)X/N,
h=XPW)e/vN.

Also H and h are decomposed as
h=h+T!+ T},
T!=—f'(I—PW))e/YN, T!=uPW)e/vN,
H=H+TF+ T + T + 7",
TH=—f'(I—-PW)f/N, TH=Wf+fu)/N,
Ty =u'P(W)u/N,
Z"=(wd —PW)f+fU—PW))u)/N.

We show that the conditions of Lemma A.1 are satisfied and S(1/) has the
form given in the theorem. Let py y = tr(S(W)). Differently from Donald
and Newey (2001), we extend the MA2SLS to order K'W/N. It is impor-
tant to point out that since W can contain negative weights, it is possible that
(K'W)?/N is not the dominating term in S(W). For example, K'W =0 is al-
lowed. However, K'W /N = O(S(W)) by construction.

Now &2 =0,(1) and H = O,(1) by Lemma A.5(vi). As

T"=T!+ T'=—f (I - P(W))e/v'N +u'P(W)e/vN,
Lemma A.6(ii) and (iii) implies that
T/ =0,(AW)'7?)
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and

(A26) T :0,,<max(|K/W|,\/(W/FW)W“Z(PZ‘I‘(W))Z)/*/N)’

SO

T"=0,(AW)'?)

+ 0P<max<|K,W|7 \/(W,FW) + Z(Plt(W))z)/\/N>7

where A(W) = 0,(1) by Lemma A.6(i), K’W/«/N =o0(1) by |K/W|/\/N <
K'W*/JN = o(1), Y.(Pi(W))* = 0,(K'W*) by Lemma A.5(ii), and
W'IT'W = O(K'W+) by Lemma A.6(xii). Therefore T" = 0,(1). Next, we ob-
serve T = O(Z(W)) by the definition. Lemmas A.6(i) and A.7 imply that
TH =o0,(1); T = 0,(1/+/N) by the central limit theorem (CLT). A similar
argument for 73 implies

(A27) T!=0, <max<|K/W|, \/(W/FW) + Z(P,,-(W))Z> / N).

Now we analyze
TP IT = O (AW PE (W) = 0, (pw.n)
by Lemma A.7. It holds that
1T - 1T = Op(AW) 2 /VN) = 0,(pw.)
because, by Lemma A.6(vi), one can take g(W) = N (tr(S(W)) — A(W)). From

Lemma A.3, it follows that W/I'W — oo as N — oo. This implies that g(W) —
oo. Then, by Lemma A.6(vi), it follows that

w
AW)2 /N = 0,,(% + A(W)) =0, (tr(SW))) = 0,(pw.n).

Next,

W7 1T

=0, (A(W)m max(|K’W|, \/(W/FW> + Z(&(W))Z) /N)
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=0, (max(lK/Wl, \/ W' ITW) + Z(RAW))Z) / N)

= Op(pW,N)

by Lemma A.6(i), (A.27), and the fact (as noted before) that T¥ =
O(tr(S(W))). Next, (A.26) and the definition of 7} imply that

170 - 1T

=0, (E W) max(|K’W|, \/ (WTW) + Zmﬁ(W»Z) / m)

= OP(A(W)U2 max<|K/W|, \/(W/FW) + Z(P,—,—(W))2>/\/N>
by Lemma A.7. By similar arguments as before, it follows from Lemma A.6(vi)
that
AW)PIK'WI/VN < (K'W)/N +AW) = O(pw.n)

and A(W)'? = 0,(1) such that 0,(A(W)"?K'W/~/N) = 0,(pw.n) as required.
Lemma A.6(vi) gives

AWy \/(W’FW) +Y Py [VN

W' ITW)+ Y (Pa(W))?

:0p< Nl +A(W)> =Op(pW,N)-

Thus, we have || T} - | T} || = 0,(pw,n). From (A.26) it follows that
IT 11T =0, (max(ﬂcwu \/(WTW) + Z(Pii<w>>2> /N),

where K'W/N = O(tr(S(W))) and J(WTW)+Y (Ps(W))?*N =
0,(tr(S(W))). By (A.26) and (A.27), it follows that

N7 - 1T

=0, (max<|K/W|2, ((W’FW) + Z(Pﬁ(W))2>>/N3/2)

=0,(pwnN)
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because (K'WI|/NY2 = o(py) and ((WTW) + Y (Pi(W)A)/N =
O, (pw.x). Similarly, | T2 21T = 0,(pw.n), ITHITE | = 0,(pw.n), and
ITH 2N TH | = 0, (pw.x)- For | T |2, we have

171> =0,(E(W)*)=0,(pwy) byLemmaA.7,

1T = 0,(1/N) = 0,(pw.n),
2
17511 = 0,,<<max<|K/W|, \/ (WTW)+ Z(Pii(W))2> / N) )

=0p(PW,N),

so that by the Cauchy-Schwarz inequality, |77 (> = 0, (pwn)-

As || Z"| =0 in our case, || Z"|| = 0,(pw,n). The last part, which we need to
show being equal to 0,(pw n), is | Z7|. Now Z* =uw' (I — P(W))f/N + f'( —
P(W))u/N and both terms are O,(A(W)"?//N)=0,(g(W)/N + AW)) =
0,(pw,) for g(W)=N(tr(S(W)) — A(W)) by Lemma A.6(vi). Therefore, we
have |27 = 0,(pw.N)-

Note that we have shown H = H + 0,(1) and h=h +0,(1). Lemma A.1
can now be applied, where the discussion above indicates

3 ! 3
ZYW)=—hT/"H™' (Z T],H> - (Z TJ.H) H'T!'W
j=1 j=1

3 ! 3
_ T]hh/H—l (Z T]H) _ (Z T]H) H—lhT]h/
j=1 j=1

—hTYH'T{" = T{'"H' T} I

~ TyWH T — T H WY

3 ’
—(Th 4+ T} (T + THYH™! (Z T].H)
j=1

3
— (Z TjH)H‘l(T{‘ + TIY(T! + Tl
j=1

= op(pW,N)
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and

AW)=(h+T!+TH(h+T! + T}y

3 ! 3
— hi'H™! (Z TjH> - (Z TJ.H)thh’
j=1 j=1

—hT)HNTY + Ty —(TF + T/HH' T} W

- TWH (T + 1)) — (T + T, )H'hT}".
Now we calculate the expectation of each term in /AI(W). First of all,
E[hl|z] = E[f'e€'f|z] = o?H. Second, E[hT"|z] = E[—f'ee (I — P(W))f/

N\zl = —o2f'(I — P(W))f/N. Similarly, E[T'|z] = —c?f'(I — P(W))f/N.
Third,

E[hT!|z] = E[f'e€ P(W)u/N|z]
= Ele;u1] Y _ f/Pu(W)/N = O,(K'W*/N)

by Lemma A.6(v). This implies that E[T)'h'|Z] = O,(K'W/N) too. Fourth,
E[Tlthh’Iz]
ZE[f/([—P(W))ee'(I —P(W))f‘z]
N
_ sz/(I—P(W))(I—P(W))f
€ N N

Fifth,
E[T!'TV|z]
=—E[f'I—P(W))ee P(W)u/N|z|
=—f'U-PW)n(W)/N

by Lemma A.6(viii). Again, we have E[TIT"|z] = —uw(W) I — P(W))f/N.
Sixth,

E[T!TY|z] = E|: uP(W)ee P(W)u ‘Zj|

N
K'W)? wWITrw
= a’uea;e( N ) + (a3, + a'uéo-;é)¥

+Cumle;, €, u, u] Y _(Pa(W))?
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by Lemma A.6(iv). Seventh,

’ ’ -1 £ _
E[hh/HlTlle]=—E[f€EfH rd P(W))f)z}

N2
_ L fU—POV)S
R L8

Also, we have E[THH'hIW|Z] = —o?f'(I — P(W))f/N. Lemma A.6(vii) im-
plies

E[WWH'T]|zZ]=E
[ 2 12] [ N

-0 )

and E[TH'hl'|z] = Op(1/N). Also,

hWH (U f + f'u) ‘z]

/ / —1,,/
E[hH'TH 2] =E[f“fH ”P(W)”‘z]

N2

K'wW 1
=g+ o(y)

by Lemma A.6(ix). Next,
E[hTH'TH|z]

_ _E[f/ee/P(W)uH]\"{/(I —PW))f z:|

P = POV)S
H N

- %Z fiPi(W)E[€Xu)]
=0,(K'W*/N)E(W))
= Op(PW,N)
by Lemma A.6(v) and
E[hTH'TF|z]
=E|:f’e<s’P(W)uH‘1(u’f + f'u) ‘z:|

N?
1\ KW
ZOP(N)+ N

(¥ Sfett o+ S pe s,
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by Lemma A.6(x). Similarly, it follows that
E[T)WH'T|z]
_ E[ uPW)yee fH ' (u'f + f'u) ‘z]

NZ
1 K'w , 1 S '
=0p<ﬁ)+T<dUuEU'ue+(Tu5N2i:fiH 10'1,5](‘1-).
Therefore, we have

E[A(K)|z]

fA=POWNf LU =PIW)U = PIW)f
N € N

+El€{u ]y _ fiP«(W)/N +_ fiPs(W)E[€qu;]/N

_ 2 2
=0 H —20;

n f'd=PW)u) n p(WYd —PW)f n , (K'W)?
0-”60-1(5
N N N
+203w +Op(%) - 20-32L,K]/VW

K'w 1
N z(do-ueo-;s + N Xi:fio-;sH_la-uffil

1
+ oy LUt o+ Uuef{Hloueﬁ-’)>

+0,(pw.N)
_ o2t 4 2l U= PONU = POV)|
N
+Elequ] Y fiPuW)/N + ) fiPa(W)Ele]u;]/N

" [ =P )HuW) n pW)d —PW)f

N N
K'W)? w'ITrw
+GMU{,€( N) +(032u+0u60;6)( N )
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K'w
-2
N

1
<U€22u + da-ueo-,;e + N Xi:fio-;eHila-uefi/

1
TN Xi:(ﬁffﬁeH*]ﬁU;E + oueflfH'aMfi/)>

+0,(pwN),

where the last equality holds because 1/N = 0,(pw,n) and o,((A(W) x
K'W/N)"*) = 0,(pwn) by the fact that (A(W)K'W/N)'/* < K'W/N +
AW). Q.E.D.

We omit the proofs of Corollaries A.1 and A.3 because they are trivial given
Theorem A.1.

PROOF OF COROLLARY A.2: We note that in this case K'W = K'W+.
Thus, Y ,(P:(W))* = 0,(K'W) by Lemma A.5(ii) and f'Q(W)u(W)/N =
0,(K'W/N + A(W)) by Lemma A.6 (viii). Therefore, we have equation (A.3).

To derive equation (A.4), we note that

M M M

M M M
W'TW = ZZwiwj min(i, j) < Z Zwiwjj = Zwi ijj
i=1 j=1

i=1 j=1 i=1 j=1
=W1yK'W =K'W,
which means W' I'W = O(K'W). Moreover, Z?il fiPi(W) = O,(K'W) by
Lemma A.6(v). Therefore, we have equation (A.4). Q.E.D.

PROOF OF THEOREM A.3: The result is established by constructing a se-
quence in {2, that dominates the optimal choice in (2,,. By Corollary A.2, the
formula of S, (W) for MA2SLS when W € £2p is

KW | v
A( v ) +0.EZZZWjWi'YmaX(i,j)

j=1 i=1

with A = [VH 'o,|* (the other two terms in (A.2) can be ignored). Let
M, be the optimal number of instruments picked by the Donald and Newey
(2001) algorithm. For a € (0, 1),let M, = (1—a)M,, and M, = (1+a)M,,, and
choose W* such that it has only two nonzero elements wy, = wy, =0.5. Then
K'W* =M, and

[o.olNNe o}

Z Z W;W; Vmax(i,j) — 025’)’M1 + 075’)/M2

j=1 i=1
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Then
min S, (W)
Welp
min S,(W)
Wellsg
- S\(W™)
sq(qu)
_ AK'W*)?/N 4 020.25yy, + 020.75yy,
N A(qu)z/N + Uez’)/qu

AMy)*/(NoZym,,) +0.250ym, /Yuy,) +0.75(Vas, /Yy,
A(qu)z/(NO-GZ'YMW) + 1 ’

where y =limsup,,_, A(qu)2 /(Nyu,,) < oo because My, sets the rates of the
bias and the variance to be equal. The above expression is bounded by 1 if

0.25(var, /Yaey) + 0.75(Vary /¥aa,,) < 1.

By assumption, for N large enough, it follows that, with probability close to 1,

0-25(')/M1/7qu) + 0.75 (’YMZ/'}/MW)
=0.25(1—a)*+0.75(1 + a) " + o(|a|™).

Consider the function
h(a)=0.25(1—a) > 4+0.75(1 +a)™*,

where h(0) =1, dh(a)/da = 0.5a(1 — a) 2! — 1.5a(1 + a)~2*~! such that
dh(0)/da = —1a. This implies that for some a, possibly close to zero, i(a) < 1

and thus 0.25(yu, /vu,,) + 0.75(yu, / Yu,) < 1.
When W e (23, the formula of S,(W) for MA2SLS is

(W'TW) N
S\(W) = AT + ngzijﬁmaxu,/),

j=1 i=1

where A = NH (0?3, + 0,0, )H ™' A while the MSE for the Nagar estimator
with M instruments is AM /(N — M) + a?vyy. Let My be the choice of M that
minimizes S,(W) when W = Wy as defined in Remark A.1. For a € (0, 1),
let M\ = (1 —a)My and M, = (1 + a)My. Define w* = N/(N — My) and
choose W* such that W* has only three nonzero elements wy, = wy, = 1/2w*
and wy = —My/(N — My). For brevity write w; and w, instead of wy,
and wy,. Then w; + w, + wy =1 and K'W* = 0 such that W* € 2;. Note
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that W, I'Wy = ((w*)? 4+ 2w wy )My + wfVN =MyN/(N — My) and

WY TW* = wiM; + w;M, + 2w, w, M,
+ Wiy N + 2wy (w; M, + w,M,)
= wal + w%Mz + 2w, w. M, + wf\,N + 2wyw* My
= (w)* + 2wyw )My + wiN — (1/2)(w*)’aMy

such that W*I'W* < WI'Wy. In the same way it follows that, for W*,

oo o0

DO Wi Ymaipy =W var, + (W3 + 2wiw2) Y,

j=1 i=1
+ (wjz\] + 2wy (wy + w2)) yn
= (W) (ym, /4 + 3ym, /%) + (Wi + 2wyw*) yy.

Since the term (w3, + 2wyw*)yy is of smaller order than S,(Wy), the result
now follows if (ya, /4 43y, /4) /v, <1 wpal. But this follows from the same
arguments as for the proof of the first statement of the theorem.

For MALIML, the formula of S,(W) is

w'rw = &
S/\(W) = A(]\fi) + 0'62 ]2_1: ;ijiYmax(i,j)’
where A = NH (023, — ou.0, )H'A. Let M, be the optimal number of
instruments chosen by the Donald-Newey method. The MSE of the estimator
that uses M,, instruments is AM,,/N + oZvyy,,. For a € (0,1), let M, = (1 —
a)M,, and M, = (1 + a)M,,, and choose W* such that it has only two nonzero
elements wy, = wy, =0.5. The MSE of the estimator with W* is

A

We note that 0.75M, + 0.25M, = M,, — 0.5aM,, < M,,. Moreover, we have
0.257yy, +0.75yu, < yum,, by the same arguments as for the proof of the first
statement of the theorem. Therefore, the desired result is shown. Q.E.D.

PROOF OF THEOREM A.4: We follow the proof of Donald and Newey (2001,
Lemma A9). We first consider the case for S(W) defined in (A.2) and S (W)
defined in (2.5). Note that when 2 = 2 and (2 = (2, the optimal weight, W*,
is well defined and has a closed form (see the discussion in Section A.5). When
0 =0 or Qp, we note that S, (W) is continuous in W and {2 is a compact set,
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which implies that the optimal weight, W*, is well defined in this case too. Thus
infy .o SH(W) =S, (W*) for some W* € (2 holds. It then follows that

g i)

S\ (W) _1‘

0<1-
a S\(W)

————— <d4sup

Sy(W) WeQ
The result now follows from Lemma A.10. A

Next, we consider the case for S(W) defined in (A.6) and S,(W) defined
in (2.7) (the case for MALIML). We follow the steps taken in the above ar-
gument. First, we show that infy., S\ (W) = O,(N2*/@tD) The weighting
vector, W, where wy, = 1 and w; =0 for j # M for M = O(NV@tD) gives
S\(W) = 0,(N~2/?=+1)_The proof that this rate is sharp is exactly equiva-
lent to the corresponding part of the proof of Lemma A.8. We then show that
supy, o (S (W)/Sy(W)) —1=0,(1), where

S\(W)=NH" ((&3&5 - &jE)LJI\;W
n &zf/(l - P(W)Z)\El —P(W))f>ﬁ_1)\'

This can be shown by following the same argument as that for the (2, part of the

proof of Lemma A.9. Last, we show that supWen(SA(W)/SA(W)) —1=0,().
The proof of this statement is the same as that of Lemma A.10. We then obtain
the desired result. O.E.D.

PROOF OF THEOREM A.5: Since it is easy to see that X' X/N — , (E(f?) +
a?), we need to show

(A.28) %X/P(W)X —, E(f})
and
(A.29) %X’P(W)P(W)X —, E(f})

to obtain the desired result.
We have the decomposition

1, I P S
NXP(W)X_fo Nf(l PW)f

+1 "P(W) +1 'P(W) +1 ‘P(W
Nf( u Nu( f NU()M.
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By Lemmas A.6(i) and A.7, it holds that
L.
v/ U —POV)f =0,(D).
Since
! f'PW)Hu= ! flu ! f'd—PW)u
N N N ’
Lemmas A.5(vi) and A.6(ii) (by replacing € by u) imply that
1 /
Nf P(W)u=o0,(1).

Similarly, it follows that w'P(W)f/N = o0,(1). Last, Lemma A.6(iii) and As-
sumption 4 imply that

%u’P(W)u =0,(1).

Thus, we have shown (A.28).
We now consider (A.29). We have the decomposition

1 !’
N X PWPOV)X
1 / 1 /
=5/ - Ad-POVPIW)S
1 / 1 / 1 !/
+ [ PIVIPOV )+ < POV )POV) f + St POV )P (W )u.

‘We have that

1 M M
A= PONPW)F = wiwef (I = Pinc ) f

s1=1 sp=1

- XM:(zw,(i w) + wf) ¥is

j=1 s=j+1

where y; = f'(I — P;)f/N. It follows that

M M M I
Z(Zw,(Z ws) +w12.)37j =ij(2—22ws+wj)§/j.
j=1 s=1

Jj=1 s=j+1
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Take L such that L. — co. We have that

M J
ij<2—22ws + w]'>’$/j
Jj=1 s=1

L j M J
j=1 s=1 Jj=L+1 s=1
L J

= ij(Z—ZZwS+w,->§/j +0,(1)
j=1 s=1

since ¥y, = 0,(1) and W € [, implies that |Z§ZL+1 w2 =27 wy + wy)| is
bounded. Then, since Zle |lw;| = o(1) by assumption, we have

L J
ij<2—22ws + w]->37]—
j=1 s=1

It follows that

=0,(1).

1
S = PW)POV))f = 0,(1),

We have that
E(%f’P(W)P(W)u) =0

and

1, ?
E((ﬁf P(W)P(W)u) )
= E(% f/P(W)P(W)uu/P(W)P(W)f>

1
= mo’j fP(W)PW)P(W)P(W)f

1 M
— 2 P
- N2 gy Ws; Wy, W, wS4f ml“(51a52u33,54)f

51,82,83,54=1
M

= N2 g, 2 : |w51w32w53w54
81,82,83,84=1

ff=0,(1)
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because f'f/N = O,(1) by Lemma A.5(vi) and W € [, by Assumption 4. It
therefore follows that

1
N[ POVIPOV)u=0,(1).

Similarly, we have that w' P(W)P(W)f/N = o0,(1). Last, we observe that

1 w'Trw
E(Nu/P(W)P(W)u> =0’ N

by Lemma 1.2 of Hansen (2007). Assumption 4 and the Markov inequality
imply that

1
Nu’P(W)P(W)u =0,(1).

Therefore, (A.29) is shown and we have obtained the desired result. Q.E.D.

A3. Lemmas for MALIML

As the first step, we show the consistency of MALIML and derive its asymp-
totic distribution. Define the LIML estimator based on the first » instruments
as

Brm= argmin(y — XB)'P(y = XB)/((y = XB) (y = XB))-

We first establish uniform consistency sup,, _,, | B L,m — Bol =, 0 for M/N — 0.

This result is then used to establish the uniform convergence of /i(W) over M
and W satistying Assumption 5(ii).

LEMMA A.11: If Assumptions 1-4, 5(ii), 6, and 7 are satisfied, then the follow-
ing equalities hold:
(1) sup,,.y €Pne/N =o0,(1).

(ii) sup,,_, f'(I — P,)e/N = O0,(1/V/N).
(iii) sup,,_,, 'Pe/N =0,(1).

PROOF: For (i), we observe that

supe Pre/N < €Pye/N
k<M

and

E[€ Pyelz] = o’ tr(Py) = o' M
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such that

Pr(sup l€'Pe/N| > n|z) < Pr(|e'Pye/N| > 1|2)

m<M

1
< n—NE[E/PME|Z] — 0.

For part (ii), note that E[f'(I — P,,)€|z] = 0 such that

M
> WELf'( ~ Pyeel — P,)f/N|z]

m=1
M
< sup(m™ tr(f'(I — P,)f)/N)a2 Yy m™
m=M m=1
= 01,(1),
which shows that sup,, _,, f'(I — P,,)e/N = O,,(l/W).
For part (iii), note that E[u'P,e/N|z] = E[v P,,e/N|z] + 0, /0E|€ P,€/
N|z] =0+ o,cm/N and
(A30) E[|uP,e/N — a,.m/N|?z]
E[tr(u/ P, €€ Pyu — 0,0, .m?)|z]

=Mmax N?
tr Zu tI'Pm N tr(E[ut1 613]E[ul4612])Pm iyip m ,i3iy
= M?ﬁ%(4N2 + . Z 1 N2
I5eeslg=

tr(Cum(u;, u;, €, €;)) P,

+M1'"l;lia.]5[(<2 N2 mu)

i=1

M 2
=< (trZu + tr(Cum(ui7 u;, €, 6,‘))) (ﬁ)

ME ue
+M m<aﬂ)4( E P iviy P iy
m
ll 12 1

O'MO'Mm
=o() +MmM(T)

=o(1),
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N
where we used P, ;,;, = P, ;,;, and Z P iisPriyiy = D iy Pm,ii = m. Then

i1,ip=1

lu'Pne/N| < ||u'Pne/N — guem/N| + llouellm/N
< |u'P,e/N — ouem/N| + |oue[M/N
= |u'Pn€e/N — ouem/N| + o(1),

where the o(1) term is uniform in m < M. The result now follows from
(A.30). O.E.D.

LEMMA A.12: If Assumptions 1-4, 5(ii), 6, and 7 are satisfied, then
Sup,, - |Br.m — Bol =, 0.

PROOF: Define X = (y,X) and Dy = (Bo, I). X can be written as X =
XD, + €€}, where e, is the first unit (column) vector. Let A, =XP,X/N
and A,, = D,H,,Dy. Let B= X'X /N and B = E[X,X] with X, = (i, X).

Let 7= (1, —B’)" and define the augmented parameter space O={1}x0

such that 7 € @. Then (1, BL ) = argmin, 7 'A 7/(7/37) Essentially the
same argument as that in the beginning of the proof of Lemma A.5 in Donald
and Newey (2001) shows that (1, — ;) = argmin, 7' 4,,7/(7'B7). Then, letting

Ly,(t)="7 'A 7/(T’BT) and L, (7) =1 A,,7/(7'B7), and noting that

(A — A 'B
(A31)  sup |Lyn(1)—Ln(7)] < sup ™ )7 sup| o7
7€@,m<M 7€@®,m<M BT 0 | T'BT
+ sup "A,T q 7Bt 1
u up A~ T 4]
7€@0,m<M 7 BT 0| T BT

we note that T/zzlm’T/(’T,B’T) <1 uniformly in n, m, and 7. It follows that

/
T AT
7Bt

sup <1 as.

7€@,m<M

By a law of large numbers (LLN), B-B=o »(1), which implies that
sup, g | :ﬁ: — 1] =0,(1). From Donald and Newey (2001, p. 1185) it follows
that B is positive definite such that inf, 7Bt > ¢ > 0 for some ¢ and

Sup |T/(Am - Am)ﬂ
7€@,m<M
<

(A — Ap)T
7Bt

(A.32) sup

7€@,m<M

&
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We now show that sup, g <y |T’(121m — A,,)7| = 0,(1). For this purpose, we
observe that

om 2

M
(A33) sup T < Tem = o(1),
m<M

T'DyE[u' P, u|z]DyT
N

(A.34) sup

7€@,m<M

tr(P,EluDyt7'Dyu'])

sup
TE@,mSM N

tr(P,,)7' Dy 3, Dot

TEE,me N

M
< —sup7'Dy3,Dyr=0(1),

=
where sup,__g 7' D3, D7 is bounded by Assumption 7, and

T DyE[u'P,e|z]e|T

(A.35) N

Te@,mSM
tr(P,,Elet’Dyu'])
N

7€0,m<M
tr(P,,) 7' Dyore
N

7€@,m<M

M
< ﬁsTlelng/Dgauel =o(1),

where sup, g 7' D0, is bounded by Assumptlon 7. The term A,, has the de-

composmon A - A, = Am L+ Am 24+ Am 9+ o(1), where the o(1) term
is uniform in m < M and consists of (A. 33) (A.34), and (A.35), and

A P,
Am’1=D6<f f _Am>D07

N
/Pm
Ay =D, L
~ P,
s =Dy
N

u'P,u— E(uP,u|z)

A’Zlm,4:DE) N 0s
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€P,u—mo’

p ue
Am,5=617N Dy,
4 —D uP,e —moy |,
m,6 — 0 N 1
~ € mf
An7=e N Dy,
4
121 _D/meE ’
m,8 — 0 N 1
~ €P,e—o’m
m,9 = N €164

For A, define I.,, = Z,,Z,/N, I}.ps = f' Zu/N, L.i = E[Z,Z},), and
Iy.. = ElfiZ,;], and choose a sequence M;, where M; — oo such that
M3 /N — 0. It then follows for m < M, that

ElL e — Tl

N
=N wENfiZ,,, — Tr-m)(fiZ; — Tpzm)']

ij=1

N

= N2> UEWfiZ), — Tpe) (fiZy; — o)
i=1

“ofx)-o0

E[l e — o]

and

a 2
= N_2 ZtrE[(Zm,iZ;n’i - ]—;Z’m)(Zm’iZ}/n,i — ]—;z,n1)/] — O(%),

i=1

Using the Markov inequality, one obtains

~ M ~
Pr( Sup ”Dz,m - Dz,m” 2 8) S _21 Sup E[||I}z,m - 1_‘fz,m||2]

m<M €% m<M,;
=O(M}/N)=o0(1)
as well as

A M .
(A36) Pr( Sup ”Ez,m - Ez,m” Z 8) S _21 Sup E[”Ez,m - Bz,m”z]

m<Mj & m<Mj

=O(M;/N)=o0(1).
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Let |C||3 = sup ¢'C'C¢/¢'¢ for any matrix C, and note that |C, G| < [|Ci ||| C2 |2
and ||C, G| < |G|lI|Ch]l» for any conforming matrices C; and C,. Now,

[V b

zz,m~ fz,m

— Al < e = Do NI 072
el T = T2 el
F 1oL N o = Tyl

(Rt P ) bl AR Dt /S SN e AN

o -1 -1 -1
< MHfzm = TremllL M2+ W L pemll2 L, — T,
-1
+ I, 2,

zz,m

and
-1 -1 -1 o -1
I = T2 < I Nl P = Lo I o

Define F such that || I} |, < F, where F is finite by Assumption 6, and let

zz,m

Ly =115, = T2 o/ (FIT

zz,m zz,m zz,m

- Fz;}m”z + F2) =< ”ﬁz,m - Ez,m”

such that sup,,_,, {mn < SUP,,_y, ||Iiz,m — I, .|l = 0,(1) by (A.36). Following
Lewis and Reinsel (1985, p. 397),

(V2SR p PSR A p
S F+F2§m,N/(1 _F{m,N)

< F+F2(sup gm,N)/(l — F sup gm,N) = 0,(1).

m§M1 mel

It now follows that

P, N A .
A37) sup | LEnL ) = sup 1w Y, — Al
m=<M; m<M,
=0,(1).

For M, <m < M, it follows that A,, — H = E[f:f!]. Then

[Puf
N

(A.38) Ap=—fU—=Py)f/IN+ff/N-H+H-—A,

= Op(l);
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where the o0,(1) term is uniform in M; < m < M because

sup 7TfUA—-Py)ft/N

€0, M1 <m<M

2a

< sup
My=m=M M{x

=M;0,(1)=0,(1)

(sgp 7 (I —P,) fT/N)

by Assumption 2. By Assumption 6 and for M| <m <M, H—A,=0(m*) <
O(M;**) = o(1). By a law of large numbers,

f'fIN—H=0,1/VN)=o0,().
Together, (A.37) and (A.38) imply that

sup || Ayl =0,(1).

7€0,m<M

Now consider, for some ¢ > 0 not necessarily the same as in (A.32),

(A.39) Pr< sup |T,(121m’2+"'+121m’9)7'|>8|Z>

7€0,m<M
9 M
< ZPr<sup 17l S 0 Al > e\z)
j=2 T€O m=1
Msup_ |7 i -
< — —max} JE[|A,,lPlz]
j=2
To show that M max,,<y E[(€ P,,e — o2m)*/N?*|z] — , 0, we observe that

E[(€ P,e — o’m)?|z] = o (tr P,))* + 202 (tr P,,) — o'm?

N
+ Cumle;, €, €;, €] Z(Pm,ii)z

i=1

N
= 20'3771 + Cumle;, €, €;, €] Z(Pm,ii)z
i=1

=0(m)+o0,(m)
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because ZfV:I(Pm,,-,-)2 < (max; P,.;;) Zf\il P, ;i = 0,(m) by the same calculation
as the proofs of Lemmas A.5(ii) and A.6(iv). Therefore,

(A.40) Mmegl(E[(e’Pme — a’m)*/N?|z]

N
20¢m + Cumle;, €;, €;, €] Z(Pm,ii)z

S MmaX i=1
m=<M NZ
erzlgg}&;(miame,ii)m 204 M?
< +
< N2 N?
M\ | 20iM?
o)

Similarly, we can show that M max,.y E[||121m’4||2|z] —, 0,
M max,,<y E[|| Ay 50?121 =, 0, and M max,,y E[|| Ay6l*|2]1 =, 0. Next,

M max E[| Dyf P,uDo/N|P|2]
< IDo|I*M max E[lf' P,yu/N|P|2]

tr(f'P.Eluu|z1P,.f)
N2
te(f'Ponf)
2

— 4 SN Am) )
= [ Doll tr(Eu)MEInlfz}&( N

tr(f'f)
N2

M
= Op<ﬁ) = OI,(l).

Analogous calculations show that M max,, <y E [||/Alm,7||2|z] =o0(1) and M x
max,,<y E[|| Ansl*1z]1 = o(1). Summing up, we have %supm@ Ir]l x

23:1 max,, <y E[||/Alm,j||2|z] —, 0. Combining (A.31), (A.32), (A.33), (A.34),
(A.35), and (A.39) establishes that

= ||Do||* M max
m<M

< IDol* tr(Z.)M

(A41) sup |L, (1) = Lu(T)|=0,(1).

r€@,m<M
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From (A.32) and the fact that if |7 — 7| > & for some ¢ > 0, there exists an
1 > 0 such that sup,,_,, |L,,(7) — L,,(70)| = m, it follows that

Pr(sup 1. — Bol = 2[z) = Pr(sup [L(F) = Lu(r)| = n]2)

m<M m<M
with 7, = (1, — ,é/L,m)’ and by standard arguments,

|Lm(%m) - Lm(TO)l =< |Ln,m(%m) - Lm(é\-m)| + ILn,m(TO) - Lm(70)|
+ |Ln,m(+m) - Ln,m(TO)|7

where 0 < L, ,,(7y) < L, n(79) + 0,(1) = 0,(1) uniformly in m < M by the
definition of 7,, and Lemma A.11 such that

sup |Lm(Tm) = Ly m(To)| < 2::5 |Ln,m(T0)| + 0,(1)
=0,(1)
and
(A42) sup|L,(Tmn) — L(79)l

m<M

<2 sup |Lyu(T) = Lyu(7)|+0,(1)

7€@,m<M

= Op(l)
by (A41). Q.E.D.

LEMMA A.13: If Assumptions 1-4, 5(ii), 6, and 7 are satisfied, it follows that
for B defined in (2.3) (MALIML), |8 — Bol =, 0.

PROOF: Let A,,(B) = (y — XB)'P,u(y — XB)/N and B(B) = (y — XB)'(y —
XPB)/N.Define A,,(B) = An(B)/B(B).
As sup, _yIBm — Boll =, 0 by Lemma A.12, it follows that

SUP,,< |B(BL.m) — 02| =, 0. Moreover,
(A43)  An(Bo) =€P,e/N—,0

uniformly in m < M by Lemma A.11(i), which implies that
Sup,, -y |Am(BL,m)| —, 0 and, therefore, sup,,_,, |Am(BL,m)| —, 0. We also
note that A,,(8) =L, »,(7) <1 uniformly in m < N and B.
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It now follows that for A(W) = ZZ:I w, A, (Boy) that

M
JAW) = AW <" 1wl | L (F) = Lo (70)]

m=1

M
<25Up | Ly n(7) = Ln(7)] Y |yl

m=1

M
+ Sup |Lm(€-m) - Lm(TO)| Z |wm|,

m<M m=1

where 2sup,, L, (7) — L(7)| = 0,(1) by Lemma A.12, sup,,_, |L,n(7,) —
L,,(19)l =0,(1) by (A.42), and ZZZI |lw,,| = O(1). It now follows that

(Ad4d)  B—Bo=(XPW)X — AW)X'X) (X' P(W)e — AW)X'e).

We have (A(W)—A(W)X'X/N = o0,(1) and [AW)| < 3w, A.(Bo)| =
0,(1) such that

(A45) N Y X'PW)X —AW)X'X)=N"'X'PW)X +0,(1)

and, similarly, /i(W)X/e/N = 0,(1) such that
B—Bo=(X'PIW)X) ' X'P(W)e +0,(1),

and the result follows from Theorem A.1. QO.E.D.

LEMMA A.14: Suppose that Assumptions 1-4, 5(ii), 6, and 7 are satisfied.
Then, for 3 defined in (2.3) (MALIML), /N (B — Bo) =4 N(0, 02H™").

PROOF: The result follows from (A.44), (A.45), and the fact that X’e/+/N =
0,(1) together with A(W) = 0,(1). We then have

. X'POWHX\ ' X'P(W)
W(B—Bo>=( N ) 7 € +o,(1)

such that the result again follows from Theorem A.1. QE.D.

LEMMA A.15: Suppose that Assumptions 1-4, 5(ii), 6, and 7 are satisfied. Let
Agp.m(B) be the Hessian of A,,(B). If sup,,_y [|Bm — Boll =, 0, then

sup 1A gs.m(Bo) — Apgm(Bm) | = 0,(1)
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and

2
ABB,m(BO) - ;Hm

€

sup

m<M

=0,(1).

PROOF: Let Ag,,(B) and Apgg,,(B) be the gradient and the Hessian of
An(B). Let A, (B) = (y — XB)'P,(y — XB)/N and B(B) = (y — XB)'(y —

XB)/N. Let Ag,,(B) and Bg(B) be the gradients of A4,,(8) and B(B), respec-
tively, and let Agg,,(B) and Bgg(B) be the Hessians of A,,(B) and B(B), re-
spectively. We have

Apm(B) =B(B) "' (Ag.m(B) — An(B)Bs(B)),

Aggn(B) =B(B) " (Agsm(B) — Au(B)Bgs(B))

—B(B) " (Bs(B)Apm(B) + Apm(B)Bg(B)).

By assumption, sup,,_,, ||Bm — Boll = 0, which implies that sup,,_,, |B(,ém) —
o?| —,0and sup,,_,, |BB([§m) — (—204)| —, 0. Moreover,

mE}&(|Am(BO)| = m%(|e/Pme/N| —,0

by Lemma A.11(i) and
(A46) max || Agn(By)ll = max | X Ppe/N|

< max ||f'Pue/N |+ max||u'Pue/N| = 0,(1),
where max,,<y || f'Pn€/N| = 0,(1) by Lemma A.11(ii) and max,,-y [|t'P,€/
N| = o0,(1) by Lemma A.11(iii).

From the proof of Lemma A.12 and (A.41), it follows that
sup,, .y Am( Bm) — , 0. Similarly, we note that

Agm(Bm) = X'Pu(y — XBw)/N
= X'P€/N + X'P,, X (B — Bo)/N,

where € P, X/N = 0,(1) uniformly in m < M by (A.46) and X'P,, X /N is uni-
formly bounded by the same arguments as in the proof of Lemma A.12. This
shows that Az ,,(B,,) — , 0 and, therefore, Ag ,,(B,,) — , 0. Now, consider

Appm(Bm) — App.n(Bo)

oz (X PuX X'X
B(Bn) )2(7]\] An(Bo) N)

- (E/E/N
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1 ~ .\ [€X , X'e
- <m — B(Bn) )(WAB,m(IBO) +Aﬁ,m(IBO)T>
+ B(Bw) " (An(Bo) — Ap(Bu) X' X/N
— B(B) " (Bs(B) Apm(Bn) — Bs(Bo) Apm(Bo))
— B(B) " (Apm(Bm)Bs(Bm) — Agm(Bo)Bs(Bo))s

where

1 5 -1
<m_B(Bm) )

_ B(Bn) —€¢/N

~ B(B,)e€/N

_ 26 X/N (B = Bo) + (B~ Bo) X' X (B — Bo)/N
B(,ém)e’e/N

= Op(l)

uniformly in m < M. Since X'P,, X/N — A,,(Bo) X' X/N = O,(1) uniformly in
m < M and all other terms are of smaller order, it follows that
sup,, -y 1 Agg.m(Bo) — Agg.m(Bm) |l = 0,(1). Next consider

9
ABB,m(BO) - ;Hm

€

( 1 I)ZX/PmX 2 (X/P,,,X - )
= — )=ty —-H,

ee/N o) N a2\ N
1 X'X €X X'e
— A —+2—A "+2A .
€/€/N< m(IBO) N + N B,m(BO) + B,m(BO) N )

Note that 2X'P,X/N — 2H, — » 0, where the convergence is uniform
in m < M by the same arguments as in the proof of Lemma A.12. Also
note that Bgs(B) = 2X'X/N —, 2E(X,;X]). It therefore follows that

sup,, .y 1 Agg.m(Bo) — %P_Imn = 0,(1) uniformly in m < M. Q.E.D.

LEMMA A.16: Suppose that Assumptions 1-4,5(ii), 6, and 7 are satisfied. Then

B f'd—Pye n v/Pme>
VN VN

VNBrw— Bo) = (H,' + o,,(1>>(h

+0,(D),

where both o0 ,(1) terms are uniform in m < M.



CONSTRUCTING OPTIMAL INSTRUMENTS 59

PROOF: Let Ag,,(B) and Agg,,(B) be the gradient and the Hessian of
A, (B), respectively. A standard Taylor expansion shows that

VNBrw = Bo) = —Apgm(Bu) VN A u(Bo)

_ (&zAgﬁ,m(Bm))l(_ &NNAB,,”(B()))
2 2

for some mean value ﬁm, where 2 = €'€/N. As sup ||,£§L,m — Boll = 0,(1) by

Lemma A.12, it follows that sup,, || Bm — Boll = p 0 such that, by Lemma A.15,
it follows that

&3\/NAB,m(,BO))

W(éL,m—ﬁo>=<H,;l+op(1>>(— 5

where the o0,(1) term is uniform in m < M.
Consider the gradient term. Define & = X'e/€’e, @ = 0,c/0?, and v =u —
ea’. It holds that & — @ = O, (1/+/N) by the CLT. We have the decomposition

02V/NAg(By) XP,e €P,eX'e

2 B ~N v Ne'e
ffd—Pye VP,e . €'P,e
=h- + —vN(a—«a .
N N ( ) N

First, we have & —, N (0, 0H) by the CLT. Lemma A.11(ii) implies that f'(/ —
P,)e/~'N = O,(1) uniformly in m < M. From Lemma A.11(i) sup,,_y € Pne€/
N =0,(1) such that VN(&—a)e'P,e/N = 0,(1) uniformly in m < M. In con-
clusion, we have

VN(Brwm— Bo)=(H,'+ Op(l))<h _fd=Py)e N v’Pme>

VN VN
+o0,(1),

where both 0,(1) terms are small uniformly in m < M. Q.E.D.

LEMMA A.17: Suppose that Assumptions 1-4,5(ii), 6, and 7 are satisfied. Then

A ~ o2 ~ A
AW) = AW) — <% - I)A(W) —A,W)+R,

€

~ 1 K'W
—AW)+ Op(ﬁ> + OP<W> n op(p%)
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where

1 M
AgV) =5 W (Apm(Bo) (Ags.n(Bo)) ™ Apm(Bo)
m=1

“o,(2).

e€P(W)e

AW) = Na?

WIW 4 (Pu(W))

N N

.
o
a2 =¢€¢e/N, \/NIQA = Op(l/«/ﬁ), ﬁA is simply the difference between A and the
first three terms in the expression between two equalities, Ag ,,(B) and Agg ,,(B)
are the gradient and the Hessian of A,,(B), and pw y = tr(S(W)) for S(W) de-

fined in (A.6).

PROOF: We note that, in the LIML case, to show o,(pw, x), it is enough to
show o ,(W'T'W/N+KW/N+>.(P:(W))*/N+A(W)). We use the notation
developed in the proof of Lemma A.14. We expand A,, = A,,.( [§ L.m) around the
true value B,. By Donald and Newey (2001, p. 1186),

~2 232
- (62— 02)? -

- ~2
Am(BO) = Am - <% - 1>Am + WAWU

€

where A, = €' P,.e/(No?) such that

~2

M
3w An(Bo) = AW) — (% = 1>A(W)
m=1 €

=2 2\
+9%%imwy

2
P

By a similar argument as in Lemma A.6(iv), we have
e€P(W)e

Ng?
_KW  ePOV)e— gIK'W
N No?

(A4T) AW)=
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WIW + ) (Py(W))*

N

Rt

Consider

gvec[Agg m(B) -
Vec[;;g,(ﬁ)] = —B(B) *By(B) vec[(Agsm(B) — An(B)Bgs(B))

— (Be(B)Ap.m(B) + Apm(B)Bs(B))]
— B(B) ' Apm(B)vec[Bgs(B))]

— Bag(B)[(K1, @ D(Apn(B) R D]
— Agsm(B)[(K1n @ NI ® Bs(B)]
— Be(B)[(K1,, @ DU ® Agu(B))]
— Mg (B)[(K1, @ D(Bs(B) @ 1],

where the result follows from Magnus and Neudecker (1988, p. 185) and K ,

is the commutation matrix. Let 3,, be some mean value between J r.m and Bo.
Then

IveclAgsm(Bn)l  dvec[Agsm(Bo)l
- — Op(l)
B 9B

uniformly in m < M and dvec[Agg ,,(By)]'/JB is bounded uniformly in proba-
bility over m < M. A Taylor expansion then leads to

M . M
Z wmAm = Z wmAm(BO)
m=1

m=1

M

1 4 , R
= 2wz Brow = Bo) Aps.n(Bo) (Brm — Bo)
m=1
z Ivecl A gg m(Bum)V
+ Z wm(ﬁL,m - BO), gzm -
m=1

X ((Brm — Bo) ® (Brm — Bo))

M
= wuAu(Bo)

m=1
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LM
-3 Z W Apm(Bo) (Apg.m(Bo)) " Ap.m(Bo)

m=1
1
e <N3/2>
where O,(1/N*?) can be established by considering

&VCC[ABB,m(Bm)]/
P

M
Z wm(BAL,m - BO)/

m=1

X ((BLwm — Bo) ® (Brm — Bo))

p ﬁVeC[AﬁB m(IBm)],

<su D Wl BLw — Boll®
m<M
with
VN (Brm = Bo)
e '(I—=Py)e VP,
=(Hm1+o,,(1))<h—f N E+W€)+op(1)

vP,e
VN’

where the O, (1) and 0,(1) terms are uniform in m < M such that

=0,(1)+ (H,' +0,(1))

M
A 3
> 1wl Brw — Boll

m=1

M

<0,(N?)o0, (1 + Y [wal (1H,, Pl Poe/V NP
m=1

+ 1 H, PV Pre/VN ||2>)

+0,(N"?)0 (DwmmH ||||vPe/f||)

+0, (N”Z w1, P |0 Pre/'N ||3>>.
m=1
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Consider

M
D lwlIH IPELV Pe/v'N P 2]
m=1

M
Z w1, 1P (ELIV Pe/vVN|1*l21)

with
E[|VP,€e/~/N|*|lz1 = NE[(tr(v'P,.€€ P,,v))*|Z]

N
)
=N 2 : E : E[vf]sil Ujl,i4U/2>i5vl’z,iseizeizeieeh|Z]

J15J2 i1,esig=1

X Pm,ili2Pm,i3i4Pm,i5if,Pm,i7ig

<CN~- Z

J1:)2

E m lllZPm,izilPm,i3i4Pm,i4i3

141

+ 2Pm,i1i2Pm,i4i1Pm,i3i4Pm,i2i3)

+CN- Z

J1>J2

§ m zlePm,i2i3Pm,i1i4Pm,i4i3

4=1

+ 2Pm,i1i2Pm,i4i3Pm,i]i4Pm,i2i3)

+CN2Z

J1:)2

E m 11zZPm,i2i3Pm,i3i4Pm,i4i]

i1, 4=1

+ 2Pm,i1i2Pm,i3i2Pm,i3i4Pm,i4i1)

+ lower order terms,

where C is a constant such that (E[|e;|®|z])"/*(max, E[|v,,|*|z])"/* < C and we

use the fact that P, is idempotent and symmetric such that P,, ; ;, = P,, ;,;, and
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Zg’zl PoiiyPrn,iiy = Pn.iyi5- This implies, for example, that

N
E m Ll m Liglq m 1314Pm,i2i3

Lig=1

N N
= § Pm 1112 m 1213 E Pm,i1i4Pm,i4i3

.,i3=1 iy=1

N N
= E Pm111 E m,iqir mlzl’;

Z iy = =tr(P,P,)=m

lll31

N
Z, iy= 1Pm tltZPm 1213Pm l1l4Pm igiz — =m, and Z ig=1 Pm,ilisz,i4i3Pm,i1i4Pm,i2i3 =

,,,,,

m and le byt Py SN P:.. =m? This 1mplies that

i3,iq=1" m,iziy

E[|VP,e/vN|*|z] = O(m?/N*) = o(1)

uniformly in m < M and, by the Markov inequality and the fact that ||| is
bounded uniformly in m, that

M
> Nwul (I 1PV Pre/N'NIP + 1H, P10 Poe /NP

m:l
+ | H [V Pue/vN )
=0,(1).

Thus, we have shown that Zﬁf:l Wil | B — Boll® = O,(N—3/%). To summarize,
it then follows that

1
A(W)—ZwmA (Bo) = A,(W) + 0, (Nm>

Since O,(N7/?) = N™'?0,(W'T'W/N), it follows that VNR, = 0,(pw.N)-
Now turn to A,(W), where by Lemma A.15,

Ag i (Bo) (Aggm(Bo) " A m(Bo)

B h _f/(I—Pm)e vVP,e\ -
_(W LN >(H,,, +0,(1))
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h  f'd—Pye  vVPye
— 1
X <m N + N +0p( )
h/]__l—lh _ -
=—N— ~NPHH I = Pye+ NPHH, W Pye

+ N2~ P,)fH,'h
+ N2 —-P,)fH;'f(I—P,)e+N2(I—P,)fH '"VP,e
+ NP, vH, ' h+ N~2€ P, vH, ' f'(I — P,)e
+ N~2€'P,,vH 'V P,e€
+ terms of lower order.
Next, consider

M
> w,WH,'f'(I - P,)e

m=1

N—3/2

M
<IIB/NIY_lwallH (= Pa)e/v/N]|
m=1

= Op(N71)7

where sup,,_,, ll€'( — P,,)f/~/N| = O,(1) by Lemma A.11(ii). For Nk’ x
H-'v'P,€, note that

(A48) E[|vP,e/N|?|z] = tr E[v'P,.e€' P,,v/N|z]

mo? Cum|v;, v;, €;, €;]
_ €t zv i» Vis €5 € Pm . 2
oS+ 5 ;( i)

such that, by the Markov inequality,

M
N2 Z W, W H ' P,e

m=1

M
<IR/NIY lwallH IV Pue/V'N
m=1

M
<0,(N"HO, (Z |wm|,/m/N> =0,(N7.
m=1
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For N2¢/(I — P,,)fH'f'(I — P,,)e, note that

M
N2> w,e (I —P,)fH,'f(I—P,)e
m=1

M
<N wallH U = Po)e/SNIP?

m=1

=0,(N7").

For N~2¢'(I — P,,)fH;'v'P,€, note that

M
> w,€e I - P,)fH,'VP,e

m=1

N72

M
<N7'sup [l€(I = P)f/VNI Y lwnlllvPue/vN]|

m<M
m=1

=0,(N")

by Lemma A.11 and (A.48). For N-32€¢'P,,vH ' h, it follows that

M
N2 <lh/NIY_ lwallH, 11V Pre/VN]|

m=1

M
Zwme/val:I,;lh

m=1

=0,(N"

by (A.48) and the Markov inequality. For N~2€'P,,vH,'v'P,,€, it holds that

M M
N7 wne PyoH, W Pe| < NT' Y |w,llH, € P/
m=1 m=1
=0,(N"

by (A.48) and the Markov inequality. Together these results imply that

WHY(W)h

N +0,(N7)

M
(A49) > W, (Apm(Bo) (Appm(B)) ™ Apm(Bo)) =

m=1

= Op(N_l)a

where H' (W) =" w, H;  and |[H (W)l < X0 lwal[H; M = O(1).
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To sum up, we have

1
AW) = ZwmA (Bo) — A, W)+ 0, (N3/2)

~2 (6_2 2)2

—AW) — (Z— - 1)A(W) + TA(W)

€

1
—A,(W)+0, <N3/2)

B 6’2 - 1
=AW) — <0_—62 — 1)A(W) - Aq(W) + Op(W)’

€

€ €

where the last equality follows by (7 — 0?)* = O,(1/N). This proves the first
equality in the lemma.
We now consider the second equality in the lemma. We have from (A.47)

that
&2 )
<0_—62 — 1>A(W)
\/W’FW+ S Py
1 K'Ww i
0”<Tﬁ)< N +0”( N

K'w Pw,N
OP(N3/2> ”P(m)'

We also have that

1

from (A.49). It therefore follows that

1 K'W Pw.N
A(W) —A(W) +0, < ) +0, (Nx/z ) +o (ﬁ) Q.E.D.

LEMMA A.18: Suppose that Assumptions 1-4,5(ii), 6, and 7 are satisfied. Then
the following statements hold:
() wPOW)u/N — AW)S, = 0,(VWTW + 3, (Ps(W))?/N).
(i) E[hA(W)€v/v/N|z] = (K'W/N)Y.,fiE(€v))/N + O,(1/N) +
O,(K'W*/N?).
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(iii) E[hWH'(W)h/~/N|z]1=O0,(1/N).
i) YN w,E[hWH ' f'(I — P,)e/N|z]=0,(1/N).
(v) szl w, E[hWH;'V'P,e/N|z1=0,(1/N).
~vi) ¥ w,Elhe' I — P,)fH,'f'(I — P,)e/N-**|z] = 0,(1/N).
vii) YN w,Elhe'(I — P,)fH, "W P,e/N"¥*|z1=0,(1/N).
(viii) ¥ w,E[he P, vH;'v P,.e/N"?z]1=0,(1/N).

PROOF: We begin with the proof of part (i). It holds that E[A(W)|z] =
tr(P(W)E[e€'])/(Na?) = (K'W)/N. We also have

(i)

_ E[€P(W)ee' P(W)elz] <K'W>2
B N2g? N

(KW +20*W'TW + 0, (Z(Pﬁ(W)f) 5
B - K'wW
N N2o? N

WTW +) (Pi(W))*

o

by Lemma A.6(iv), replacing u by €, and Lemma A.5(ii). This gives

\/W’FW U

- K
(A(W) - T)zu = 0,,( =

Similarly, we have

uPWyu KW
N N

\/W/FW + 3Py
op( :

Thus, part (i) is proved.
For part (ii), we observe that

Z E[fiGié'/‘ij(W)€k€[U;|Z]

] ijik!

Z ey
22
N2o?

E[hA”(W)e/v
VN
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S fPAW)ELE] D fiPy(W)El€v)]

i#]
N2 0.2 +2 N2

Y fiPy(W)E[€v]

i#]

+ N2

K'w+ K'w+
=0\ ) e

> fiP(W)E[€l]]
+ -

N2
> fiP(W)E[€}v)]
_ I
> fiEl€]]

K'W = 1 KW+
= ! o, = o.=——
N N ”(N)+ ( N? )

where Lemma A.6(v) implies that

> fiPu(W)E[€}v]]

KW+
N2o2 = 01’( N2 )’
> fiPu(W)E[€}v]]
l- K'W+
No? =0\ "N )

and the fact that for f, ;, the ath element of f;,

> faiPi(W)

i#]

M
D lwall(FPaA Y fuiPu(W)

< m=1 _

N? N?

N2

M
D lwnl (£ Puf) (A 1y)"?

m=1
=< N2 +0, (
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gives
> fPyW)ElEv] 1 i
i#]
v =o{y) o)

Part (iii) follows Lemma A.8(iii) in Donald and Newey (2001). We have

(A50)  E[hWH " (W)h/v/N|z]
N

M
=Zwm Z E[ﬁleileiz.fi;l:lr;]ﬁSE@|Z]/N2
m=1 1

i1,...,i3=1

I
WE

N
wy Y El€121fif{H, /N> = O,(1/N).
i=1

3
I

For part (iv), let f? ,, be the ith row of f'(I — P,,) such that

N
ElhWH, f'(I - P,)e/Nlzl= Y E[f, €, €, fiH, fime,|z]/N?
i1,..,03=1

= Op(l/N)

by the same argument as in (A.50).
For part (v), consider

N
E[hh'H,'vVP,€e/N|zl= > E[fieeif, H, vi,Puiyi,€i,12]/N?

i,e,0ig=1

N
= Z ‘fil‘fi/zH_y;]Pm,i3i4E[eileizvi3€i4|z]/N2

ifyeig=1

N
= Zfifi/H,;lpm,ii Cumle;, €;, v;, €;]z]/N*

i=1

=0,(N").
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For part (vi), let f:’ ,, be the ith row of f'(I — P,,) such that

E[he' — P,)fH,f'(I — P,)e/N*|z]

N

= Z E[fileilflzfzzm m1fl3m€l3|z]/N2 O (1/N)

ifsensiz=1
For part (vii), consider

E[he'( — P,)fH,,'v P,e/N"|z]
N

= Z [fileil 6izfi/2,ml:lr;1vi3Pm’i3i4€i4 |Z]/N2

ig=1

N
Z ; ,;IPm,ii Cumle;, €;, v;, €]z]/N* = Op(N71)~

For part (viii), consider

(A51) E[heP,vH, v P,e/N|Z]
N

= Y E[fi € €,PuiiViH, 0, Py iyis€is 2] /N

ifyeis=1

N
= Z O-Ezﬁlpm,iliZPHI,izlz (H 1E[v12vl Ei2|z])/N2

it ip=1

N
+ Z Uezf‘ilpm,ililpm,illg (H 1E[vl1vl Elllz])/Nz

it ip=1

N
—+ Z Uezfilpm,izi]Pm,iliz tr(I:I,;lE[vil v;le,«] |Z])/N2

it ip=1

N
+ Y E[€12]fi Puiyiy Py, tr(H,, E[v;, v}, 12]) /N

i1,ir=1

+ Z.fl m,ii tr(I:In;] Cum[eia €, Vi, v;‘a €i|Z])/N27

71
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where E[v;ve;|z] does not depend on z by Assumption 3 and, for the first term
in (A.51), we have

N

Z ﬁlpm,lllz m,izip — Z flIPm iyip — fP 1N
il,izzl ll l2 1
< (FHPAPAN < VN )
such that
N

Z 02 fis Ponsisiy Pn.igiy tr(H,, E[v;,0] €5, 2]) /N> = N7\ (f f/N)'/

i =1
= Op(N_l)a

where a similar argument shows that the second term in (A.51) is O,(N ).
Next,

N
E ﬁl m,iriy mlllz_ E _fllpmlllz m, iy

il,i2=1 ll 12 1

N N
=" fiPuis <sup | fil Y Puii = 0, (m),
i=1 ! i=1

where sup;, || fill = O,(1) by Assumption 3(iv) such that the third term in (A.51)
is O,(m/N H=o »(N ~1) and the same argument also shows that the fourth
term in (A.51) is 0,(N ). Finally,

Zfl m,ii tr(l:ly;] Cum[e,-, €, V;, U;a Ei|Z])/N2

< | tr(H,,' Cumle;, &, vi, ), €1|2D) sup ||f||ZP2 /N?

m,ii
i=1

= 0,(m/N*) = 0,(N).

These results establish that Z _, w,E[h€ P, vH "WP,e/N72|z] = O0,(N™")
as desired. QE.D.

A.4. Proof of Theorem A.2
The MALIML estimator, 3 defined in (2.3), has the form

VN@B—Bo)=H"h
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H=XPW)X/N—-AW)X'X/N,
h=XPW)e/vN — AW)X'e/v/N.

Also H and h are decomposed as
. 5
h=h+) T!+Z",
j=1
T'=—fI—-PW))e/sN, T!I=vPW)e/vN,

~ ‘e ~ Ve
T, = _A(W)j_ﬁa Ty = _A(W)ﬁ’ T = \/ﬁAq(W)‘TME’

- n R X’ ~ X'
7' = (AW) — AW) + RA)\/N(TE — 0'u5> _ RA\/—]_\E,
and

3
H=H+) T/+2z",

i
T =—fI-PW)f/N, T,'=@f+fuw/N,
T = —AW)f'f/N,
Z"=uPW)u/N — AW)3, —u/ (I — P(W))f/N
— /(I = P(W))u/N + AW)(H + 3.,) — A(W)X'X/N.

Let 7" =Y T and T" = Z?zl T!". We give the order of each term. By

j=17"]
Lemma A.5(vi), we have

(AS52) h=0,(1) and H=0,(1).
Lemma A.6(ii) gives
(A53) T}'=0,(4WM)'"?).

By a similar argument to Lemma A.6(iv) (note that E[v;e;] = 0), we have

WTW + Y (Pu(W))*
(A54) Th= 0p< N )
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Lemma A.17 and the CLT give

\/WFW—i—Z(Pu(W))z
(ASS) T'= <—+0,,< N’ 0,(1)

<K,

\/WTW + Z(P,,(W))2

and

K'w

\/W’FW—i— S (P2
N + N

(A56) Tl= 0,,(

By Lemma A.17, we have

(A57) Ti=0, (%)

By definition, we have
(A38) T!'=0,(5W)),

where Z (W) is defined in (A.11). By a CLT, we have

(A59) TV = OP(L)

VN
By Lemmas A.5(vi) and A.17, it holds that
\/W W+ 3 (P(¥))
(A60) T = ( p< N O0,(1)

\/WTWJr > Py

K/
=0
(N N
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By Lemma A.17 together with the CLT, which implies that VN (XT’G — Oue) =
0,(1), as well as

AW) — AW) + R,

&2 .
- (—2 - 1>A(W) +A,W)
g

€

\/W/I‘W + 3 (P2
=0,(N"?)0, (KNW + Ni

+O0,(N7Y,

it follows that

\/W’FW U
h_ / 1
(A6l) Z (N ,,( 5 0p<ﬁ)

( >+0p(pWN)O (1)

\/W’FW + 3P

KW
= OP(N3/2 + N32

1
+O ( )+0p(pWN)

= Op(pW,N)7

where 1/N =o0,(W'I'W/N) =o0,(pw,n). Last, we have

AW)(H +3,) - AW)X'X/N
=AW)H+3,— X'X/N)— (AW) — AW )X X/N

1 KW pw.
=0,(pwn)+ O, (N>+O <N3/2>+0 (%)

:Op(pW,N):
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where (H 4 3, — X’X/N) = 0,(1/~/N) and A(W) — A(W) = 0,(1/N) +
O,(K'W /N*?) 4 0,(pw.n/~/N) from Lemma A.17. It then follows that

/ WIIW 4+ (Pu(W))?
i A(W)l/z
(A.62) zH:op(pW,N)Jro,,( n >+op( N )

=0,(pw.N)

by Lemmas A.6(ii), A.17, and A.18(i), the CLT, and the LLN.

We show below that the conditions of Lemma A.1 of Donald and
Newey (2001) are satisfied and S(W) has the form given in the theorem.

We first have h = O,(1) and H = O,(1) by (A.52). Next, we need to show
that 7" = 0,(1). By (A.53)—(A.57), it follows that

WTW + Y (Pa(W))*
T"=0,(AW)'""?) + 0p( N )

\/WTW+§ (P;(W))?
KW i 1
+0p< ~ N )+O"<ﬁ)‘

Now Lemma A.6(i) says that A(W) = 0,(1). We have |[K'W/N| < K'W* /N —
0 by Assumption 5. By Lemma A.6(xii) and Assumption 5, it holds that
WITIW/N < CK'W*/N — 0, where C is some constant. Lemma A.5(ii)
implies that ) ,(P;(W))*/N = 0,(K'W*/N) = 0,(1). Thus, T" = 0,(1) is
shown.

The next step is to show that || 77 ||* = 0,,(pw ~ ). We have, by (A.58)-(A.60),
that

— 1 BW) (K'W)?
THI>=0,| E(W)* + —
il ,,<()+N+W+N2

\/W’FW + 3 (Paw) )
|[K'W| i

N N
WTW + Y (Pa(W))*

i —_ |[K'W|
=104
+ N7 + =) N
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\/W/FW + ) (Pu(W))?

+=2W) ~
WITW + Y (Pa(W))?
|[K'W| i
+ N3/2 + N3/2

Since \/W/FW—FZI-(PH(W))Z/N = O,(WTW + Zi(Pi,-(W))z)/N) =

0,(pwn), |IK'W|/N?* = o(|IK'W|/N) = 0,(pwn), (K'W)*/N?* = o(K'W/

N) = 0,(pwn), 1/N = 0,(pwn), and the observation that 5(W)/v/N =

0,(pw ) by Lemma A.6(vi) and Z(W) = O,(A(W)'?), we have
IT"1I>=0,((E(W))*) + 0,(pwn)-

The order of (Z(W))* is 0,(pw.n) by Lemma A.7. Next, we consider ||T"| -
| T ||. We have, by (A.53)—(A.60),

I 17

WIW 4+ (Py(W))
1/2 i |K/W|
=0, AWV 4

N N

\/W’FW + 3P

1
")

+

WTw + Z(P,,<W>>2
1 |K/W|

0, (E(W) +

\/W w4+ Z(P,,(W))Z

A(W)uz

=0, (A(W)“ZE(W) +

WITW + ) (Pa(W))*
+EW) N )

+o0,(pwnN)
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WITW 4+ (Pu(W))*
=0, <A(W)1/2E(W) +EW) : )

N

+o0,(pw.N)

=0,(pwnN),

since 0,(D|IK'W|/N = 0,(pwn), \/W/FW+Zi(Pii(W))2/N = 0,(pwnN),
1/N =o0,(pwx), AW)'?//N = 0,(pw.) by Lemma A.6(vi), and the order
of Z(W)is 0,(A(W)"?) by Lemma A.7. Last, it holds that Z" = 0 ,(pw ) and
Z" = 0,(pw.n) by (A.61) and (A.62).

We have shown that the conditions of Lemma A.1 of Donald and Newey
(2001)? are satisfied and we apply the lemma with

AW) = (h+ T/ + TY(h+T! + T} + h(T} + T} + Ty
+ (T + T+ THH — hH (T + T + TY)
— (T + T/ +T{HH '"hiW
and
Z'W) =Ty + T + TI(Ty + T} + T
+ (T} + T+ TH(T! + T + (T + T))(T) + T + Th).

We show that Z4(W) = o0,(pwn). By (A.55), (A.56), and the fact that
\/W/FW + Z,(Pu(W))z/N = Op(pW,N)a it holds that

KW\’
(T3’1+T4”)(T3’1+T4’1)’:0,,<< N >>+0p(pW’N)

= Op(pW,N)-

By (A.55), (A.56), (A.57), and the fact that /W' IT'W + ) .(P;(W))?}/N*? =
0,(pw,n), it holds that

’

K'W
Tsh(T;’ + T4h)/ = OP<W) +0,(pw.n) = 0,(pwN).

We note that here we do not need to use our Lemma A.1, which is a modified version of
Lemma A.1 of Donald and Newey (2001).
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By (A.57), we have

1
Tsh(Tsh), = 0p<ﬁ) = Op(pW,N)-

By (A.53), (A.55), (A.56), and the fact that \/W/FW+Zi(Pil—(W))2/N =
0,(pw,n), we have

KW
Tlh(T3h + T4h) =0, (A(W)l/ZT> +0,(pwn) =0,(pw.N),

since A(W)"? = 0,(1) by Lemma A.6(i). By (A.54), (A.55), (A.56), and the
fact that /W' I'W + > ,(P;(W))*/N = 0,(pw.n), it follows that

WTW + ) (Pi(W))*
K'W ;
Tz”(T3h+T4h):Op( ~ N >+o,,(pW,N)

=0,(pw.N)-
Lemma A.6(vi), (A.53), and (A.57) imply that

A(W)l/z
VN

Tsh(T,h)’:0p< )ZOp(PW,N)-

Last, we have

Tsh(Tzh)/ — Op<\/

by (A.54), (A.57), and the fact that /W' TW + Y .(Ps(W))*/N = 0,(pw.)-
To sum up, we have Z4(W) = 0,(pw ).

WIW 4+ (Py(W))*

N :Op(pW,N)

Now, we calculate the expectation of each term in /AI(W). First of all,
E[hW|z] = E[f'€€ f/N|z] = 0>H. Second, we have

_J'eed =PWW)f ‘Z] _ _sz’(l - PW)f
N e N ’

E[hTl"|z] =E[

Similarly, it holds that E[T['h'|z] = —o?f'(I — P(W))f/N. Third, using
Lemma A.6(v) and replacing u by v gives

N
E[hT}|z1=_ fiP«(W)El€v)|z]/N,

i=1
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which is O,(K'W™*/N). Fourth,

N

_ sz/(I—P(W))(I—P(W))f
= o N )

ETAT|2] = E[f/(l — POV))e€] — P(W))f’z]

Fifth, by Lemma A.6(viii), replacing u by v, we obtain

N

S =PV (W)
_ » ,

EIT/T}'|2] = —E[f/(l - P(W))“'P(W)”\z]

where /*Lv(W) = (l‘LU,l(W)7 cee IJ’U,N(W)) and Mo,i = Pll(W)E[Elel] Slmllarly,
we have E[T!T"|z] = —u,(W)(I — P(W))f/N. Sixth, noting that E[v;€;|z] =
0, a similar argument to Lemma A.6(iv) gives

E[TIT|2] = 02, (W' I'W)/N + Cumle,, €, v, vj] Y _(Pa(W))*/N.

Seventh, we have

'ee! —-1frey
E[hh/H—lTlH/|Z]:_E|:feefH f(I P(W))f‘z]

N2

__ S U—POV)f

=—0’ N )

Similarly, we have E[TfH 'hh'|z] = —a?f'(I — P(W))f/N. Eighth,
Lemma A.6(vii) implies that

E[hWH'T)"|z] :E[

1
= Op<ﬁ> = Op(pW,N)

and that E[TY'H 'hh'|z] = 0,(pw,y). Ninth, we have

hWH (U f + f'u) ‘z}
N

h(TEY — hWHN(THY = Tih — T H 'hit = 0.
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Tenth, we have

N
Y fEl€y]
K'W C 1 KW+
L e +0’”(ﬁ)+0’”(7)

N
> fElE)]
KW D
N N

by Lemma A.18(ii). Similarly, we have E[T4hh/|z] = —(K/W/N)(Zfilf,« X
E[€?u;]/N) + 0,(pw ). Last, Lemma A.18(iii)—(viii) implies that

+0,(pwnN)

1
E[h(T!)|z] = Op<ﬁ) =0,(pwnN)

and that E[T!'H|z] = 0,(pw.n)-
Let

. N KW N
(=) fiP:(W)E[ev]]/N — > fiEl€v]]/N.
i=1 i=1

N

Note that 7 = 0 under the third moment condition in the theorem. Therefore,
we have

s o S A=PW)f L fU—=PW)f
E(AK))=0.H — o N O'E—N
U =PV )W) w(W)U = POV)f

N N
> (Pa(W))?

+ Cum[eh €, Vi, v;] :

w'rw

2
+0’3, N

N

yn 2,+U€2f/(1—P(W)])\fI—P(W))f

sz/(I—P(W))f n sz/(I—P(W))f
€ N € N

W ITw N sz/(I—P(W))(I—P(W))f
N € N

+ +0p(pW,N)

=0o’H + 0’3,

D (Pa(W))?

’ i
+ Cumle;, €;, v;, V] N
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CPU=PO )W) (W)U = POW)f
N N

+ ¢+ +0,(pwn).

By Lemma A.1 of Donald and Newey (2001), we have the desired result.

For the MAFuller estimator 3 defined in (2.4) the result can be established
by noting the following. By the construction of Ay, we have 0<1— A, <1.
Therefore,

0< /Ln - /im
(64 A

1-A,)?°
N—m( )

o ~
— 1-A,
N )

(=AY
CN-m—a(l—A4,)

a 1
_*  _of=
SN_M-a (N)

uniformly over m. It therefore follows that

1

(A63) AW)=AW)+0,(1/N).

Now let py vy =tr(S(W)). We have

XPOWX - XX XPW)X . XX 1
—~ AWM=y AW=g +0P<N)
XPOW)X .~ XX
=N —AW) N +0,(pw.N)

by (A.63), X'X/N = O,(1) and 1/N = 0,(py y)- Similarly, we have

X'P(W v X’ X P(W A X’ 1
e XTI dan T2 vo,(y)

N NN wo\N
XPW) - X
:TG_A(W)JNGJrop(pW,N).

Therefore, the higher order mean squared errors of the MALIML and the
MAPFuller estimator are the same. O.E.D.
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A.S. Verification of Regularity Conditions for Unconstrained Optimal Weights

To demonstrate that the regularity conditions imposed are not too strin-
gent, it is useful to consider various optimal weights and verify that the con-
ditions hold. We note that when (2 is equal to {2y or (2, a closed form
solution for W* is available. Let y,, = NH-'f'(I — P,,)fH 'A/N and let U
be the matrix whose (i, j) element iS ymax ;) SO that NH (I - P(W))U —
P(W))fH'A/N = W'UW. This implies that S,(W) is quadratic function
in W and the optimal weight is given by solving the first-order condition. For

the MALIML estimator with {2 = (2, we have

W* =1y, (U + 2T) " y) (U + 62T) "1y

2

(o

v

o2+ N(

2

O-'U

Yi—7Y2)

2

O-U

2
gy

- +
02+ N(yi—v2) 02+ N(v,—v3)

2
gy

2

O-'l)

- +
02+ N(yy—2—vYu-1) 2+ N(yy—1—vu)

1

- +
02+ N(Ym-1—Yu)

such that
2Ny =)
It follows that for some ¢ > 0,
J » j2a+1 0_3
— : N jtlg2/N + ¢
and
J
L2t g2 _
w,| < -2 for jé¢lJ,
; =N j¢

wpal for j ¢ J

J=<L

such that, for L = O(NY?@+D)) it follows that

j
sup |3 w,
jel.j<L

s=1

=0,(1/¥/'N).
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The case of MA2SLS with 2 = (2 is handled next. The optimal weight is
given by

Wi = in S)(W
§ =arg min S\(¥)

1 2-1), A" KNH'ByH ")
= —Al(KNHlBNHl)H- w22 N IM)
2 1), A1y
ey 4 2(0203 + 03 + Ma},) - B)
M 2 M—-1 0_2 4 0_2 /0_2
Rt ot Y At el
j=1 oy + 0y /0E+N(yj— vjt1)

o3+ 0xe/ 02
o3+ 03 /T2 + N(y1 — 72)
_ 0')% + 0')%6/062 . 0')% + 0')%5/0'52
X o2+ 03 /o2 +N(y1—y2) oi+0i/o2+N(y2—v3)

2 )
0A+0/\E/a€

o2+ 03, /02+N(yp-1—Ym)

First, consider (y; — v11) < ¥; < C < oo which holds because f; is bound-
ed by Assumption 3(iv) such that NH-'f'(I — P,)fH'A/N < NH7'f’" x
fH'A/N <sup, | fi|I*INVH||* < C for some C < oco. Then

Af oy + 03/ 0!
oy +03./02 4+ N(y; — ¥j41)

j=1

1 Af ol + ol /o?

N = (o3 + 01 /0)/N+C
M

ol £
(¥)

=

such that

2.2 2 2

2(o.0;+ 05, +Moy,) — B,

M1

2.2 2 2 } :
0')\0'6 + 0-/\5 + O-As

j=1

=0,(M).

oy + 03/ 0!
o+ 05/ 02+ N(y; — ¥js1)
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By the same argument as before we have
a3+ 95/ 9¢
0% + 0%/ 02+ N(v; — Y1)
L i+ o

N oi+oi/ot+e

for j¢J,j<L

such that

J M2t
(Lol =0,(5)

J¢l <L s=1

where the desired rate obtains if

172\ 1/(2a+1)
=o(5r) )
M
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