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THIS SUPPLEMENT CONTAINS the proofs of Theorems 1–4 and Lemma 2 of the
main paper in Sections S1–S3; the verification of Assumptions GMS1, GMS3,
GMS6, and GMS7 for ϕ(5) in Section S4; the specification of the mean vec-
tors used in the simulation results in Section S5; some Monte Carlo simula-
tion results for a missing data model and an interval-outcome linear regression
model in Section S6; and some Monte Carlo simulation results that compare
the null rejection probabilities of subsampling with and without recentering
in Section S7. A separate file provides the GAUSS code used to compute the
simulation results.

S1. PROOF OF THE ASYMPTOTIC SIZE RESULT FOR GMS

In this section, we reiterate and prove Theorem 1 of the main paper. In
addition, at the end of this section, the proof of Lemma 1 is given.

THEOREM 1: Suppose Assumptions 1–3, GMS1, and GMS2 hold and 0 <α<
1/2� Then the nominal level 1 −α GMS CS based on Tn(θ) satisfies the following
statements:

(a) AsyCS ≥ 1 − α,
(b) AsyCS = 1 − α if Assumptions GMS3, GMS4, and 7 also hold.
(c) AsyMaxCP = 1 if v = 0 (i.e., no moment equalities appear) and Assump-

tion M also holds.

The following lemmas are used in the proof of Theorem 1. The first lemma
uses the following notation. Suppose π = (π1�π2) ∈ R

p
+�∞ ×R

q
[±∞]� where π2 =

(π2�1�π2�2) and π2�2 = vech∗(Ωπ2�2) for some k × k correlation matrix Ωπ2�2 �
Given π� define π∗

1�j = ∞ if π1�j > 0 and π∗
1�j = 0 if π1�j = 0 for j = 1� � � � �p,

and let π∗
1 = (π∗

1�1� � � � �π
∗
1�p)

′� Define π∗ = (π∗
1 �π2) and let cπ∗(1 − α) denote

the 1 − α quantile of S(Ω1/2
π2�2

Z∗ + (π∗
1 �0v)�Ωπ2�2)� where Z∗ ∼ N(0k� Ik) and,

by definition, if π∗
1�j = ∞, then the jth element of Ω1/2

π2�2
Z∗ + (π∗

1 �0v) equals ∞
for j = 1� � � � �p� Because there is a one-to-one mapping between (θ�F) ∈ F
and γ ∈ Γ� we write EF and Eγ interchangeably.

LEMMA 2: Suppose Assumptions 1–3, GMS1, and GMS2 hold and 0 < α <
1/2� Let {γn�h = (γn�h�1�γn�h�2�γn�h�3) :n ≥ 1} be a sequence of points in Γ that
satisfies (i) n1/2γn�h�1 → h1 for some h1 ∈ R

p
+�∞� (ii) κ−1

n n1/2γn�h�1 → π1 for some
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π1 ∈ R
p
+�∞� and (iii) γn�h�2 → h2 for some h2 ∈ R

q
[±∞]� Let h = (h1�h2)� π =

(π1�π2)� and π2 = h2� Then (a)–(c) hold:
(a) ĉn(θn�h�1 − α) ≥ c∗

n a.s. for all n for a sequence of random variables
{c∗

n :n ≥ 1} that satisfies c∗
n →p cπ∗(1 − α) under {γn�h :n ≥ 1}� where γn�h�2 =

(θn�h� γn�h�2�2).
(b) lim infn→∞ Pγn�h(Tn(θn�h)≤ ĉn(θn�h�1 − α))≥ 1 − α.
(c) For any subsequence {wn :n ≥ 1} of {n}� the results of parts (a) and (b)

hold with wn in place of n provided conditions (i)–(iii) above hold with wn in
place of n�

LEMMA 3: Suppose Assumptions 1–3, 7, and GMS1–GMS4 hold and 0 <α<
1/2� Let (θ∗�F∗) be an element of F for which Assumption 7 applies, let γ∗ be
the value in Γ that corresponds to (θ∗�F∗) ∈ F� and let h∗ = (h∗

1�h
∗
2) be defined

by h∗
1 = (h∗

1�1� � � � �h
∗
1�p)

′� where h∗
1�j = ∞ if γ∗

1�j > 0 and h∗
1�j = 0 if γ∗

1�j = 0 for j =
1� � � � �p� and h∗

2 = γ∗
2 � Let ch∗(1−α) denote the 1−α quantile of the distribution

of S(Ω1/2
h∗

2�2
Z∗ + (h∗

1�0v)�Ωh∗
2�2
)� When the true distribution is determined by γ∗ for

all n� the following results hold:
(a) ĉn(θ

∗�1 − α)→p ch∗(1 − α).
(b) limn→∞ Pγ∗(Tn(θ

∗)≤ ĉn(θ
∗�1 − α))= 1 − α�

PROOF OF THEOREM 1: First, we prove part (a). Let CPn(γ) = Pγ(Tn(θ) ≤
ĉn(θ�1 − α))� where γ = (γ1�γ2�γ3)� γ2 = (γ2�1�γ2�2)� and γ2�1 = θ� Let {γ∗

n =
(γ∗

n�1�γ
∗
n�2�γ

∗
n�3) ∈ Γ :n ≥ 1} be a sequence such that lim infn→∞ CPn(γ

∗
n) =

lim infn→∞ infγ∈Γ CPn(γ) (= AsyCS). Such a sequence always exists. Let {un :
n ≥ 1} be a subsequence of {n} such that limn→∞ CPun(γ

∗
un
) exists and equals

lim infn→∞ CPn(γ
∗
n) = AsyCS. Such a subsequence always exists.

Let γ∗
n�1�j denote the jth component of γ∗

n�1 for j = 1� � � � �p� Either
(i) lim supn→∞ u1/2

n γ∗
un�1�j <∞ or

(ii) lim supn→∞ u1/2
n γ∗

un�1�j = ∞�

If (i) holds, then for some subsequence {wn} of {un}�
κ−1
wn
w1/2

n γ∗
wn�1�j → 0�(S1.1)

w1/2
n γ∗

wn�1�j → h1�j for some h1�j ∈R+�

If (ii) holds, then either
(ii)(a) lim supn→∞ κ−1

un
u1/2
n γ∗

un�1�j <∞ or
(ii)(b) lim supn→∞ κ−1

un
u1/2
n γ∗

un�1�j = ∞�
If (ii)(a) holds, then for some subsequence {wn} of {un}�

κ−1
wn
w1/2

n γ∗
wn�1�j → π1�j for some π1�j ∈ R+�(S1.2)

w1/2
n γ∗

wn�1�j → h1�j� where h1�j = ∞�
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If (ii)(b) holds, then for some subsequence {wn} of {un}�
κ−1
wn
w1/2

n γ∗
wn�1�j → π1�j� where π1�j = ∞�(S1.3)

w1/2
n γ∗

wn�1�j → h1�j� where h1�j = ∞�

In addition, for some subsequence {wn} of {un}�
γ∗
wn�2 → h2 for some h2 ∈ cl(Γ2)�(S1.4)

By taking successive subsequences over the p components of γ∗
un�1 and γ∗

un�2, we
find that there exists a subsequence {wn} of {un} such that for each j = 1� � � � �p,
exactly one of the cases (S1.1)–(S1.3) applies and (S1.4) holds. In consequence,
conditions (i)–(iii) of Lemma 2 hold. Hence,

lim inf
n→∞

CPwn(γ
∗
wn
)≥ 1 − α(S1.5)

by Lemma 2. Since limn→∞ CPun(γ
∗
un
) = AsyCS and {wn} is a subsequence of

{un}� we have limn→∞ CPwn(γ
∗
wn
) = AsyCS� This and (S1.5) yield the result of

part (a).
Part (b) follows from part (a) and Lemma 3(b) because AsyCS ≤

limn→∞ Pγ∗(Tn(θ
∗)≤ ĉn(θ

∗�1 − α))�
Now, we prove part (c) of the theorem. By assumption, v = 0� Under As-

sumption M, the sequence of constant true values {(θ∗�F∗) ∈ F :n ≥ 1} satis-
fies n1/2EF∗mj(Wi�θ

∗)/σF∗�j(θ
∗) → ∞ for j = 1� � � � �p� Let γ∗ = (γ∗

1�γ
∗
2�F

∗) ∈
Γ correspond to (θ∗�F∗) ∈ F� where γ∗

2 = (θ∗�γ∗
2�2)� Define h∗ = (∞p�γ∗

2)�
As in the proof of part (b) of Lemma 2 below, we have Tn(θ

∗) →d Jh∗ under
{γ∗}� where Jh∗ is the distribution of S(Zh∗

2�2
+ (h∗

1�0v)�Ωh∗
2�2
)� where Zh∗

2�2
∼

N(0k�Ωh∗
2�2
)� (Note that Jh∗ is the same as Jh∗

1�0p
defined in the text.) Further-

more, Jh∗(x) = 1 for x ≥ 0 because S(Zh∗
2�2

+ ∞p�Ωh∗
2�2
) = S(∞p�Ωh∗

2�2
) = 0 by

Assumption 3. Using these results, we obtain

AsyMaxCP ≥ lim sup
n→∞

Pγ∗(Tn(θ
∗)≤ ĉn(θ

∗�1 − α))(S1.6)

≥ lim sup
n→∞

Pγ∗(Tn(θ
∗)≤ 0)= Jh∗(0)= 1�

where the first inequality follows from the definition of AsyMaxCP and the
second inequality holds by Assumption 1(c). Q.E.D.

PROOF OF LEMMA 2: First, suppose cπ∗(1 −α)= 0� In this case, define c∗
n =

0 and we have

cn(θ̂n�h�1 − α) ≥ c∗
n →p cπ∗(1 − α)�(S1.7)
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where the inequality holds by Assumption 1(c), which establishes part (a) for
this case.

Next, suppose cπ∗(1 − α) > 0� For (ξ�Ω) ∈ Rk ×Ψ� let ϕ∗(ξ�Ω) denote the
k-vector whose jth element is

ϕ∗
j (ξ�Ω) =

{
ϕj(ξ�Ω)� if π1�j = 0 and j = 1� � � � �p,
∞� if π1�j > 0 and j = 1� � � � �p,
0� if j = p+ 1� � � � �k.

(S1.8)

By construction,

ϕ∗(ξn(θn�h)� Ω̂n(θn�h))≥ ϕ(ξn(θn�h)� Ω̂n(θn�h)) a.s. [Z∗] for all n�(S1.9)

Let c∗
n denote the 1 − α quantile of the df of S(Ω̂1/2

n (θn�h)Z
∗ + ϕ∗(ξn(θn�h)�

Ω̂n(θn�h))� Ω̂n(θn�h))� where Z∗ is random and (ξn(θn�h)� Ω̂n(θn�h)) is fixed.
Then ĉn(θn�h�1 − α)≥ c∗

n a.s. for all n by (S1.9) and Assumption 1(a).
We now show that c∗

n →p cπ∗(1 − α) > 0� By definition, γn�h�1 = (γn�h�1�1� � � � �
γn�h�1�p)

′ ∈ R
p
+ satisfies

σ−1
Fn�h�j

(θn�h)EFn�hmj(Wi� θn�h)− γn�h�1�j = 0 for j = 1� � � � �p�(S1.10)

Also by definition, Γ is such that under any sequence {γn�h = (γn�h�1� (θn�h�
vech∗(Ωn�h))�Fn�h) :n ≥ 1} of parameters in Γ that satisfies n1/2γn�h�1 → h1 and
(θn�h� vech∗(Ωn�h)) → h2 = (h2�1�h2�2) for some h = (h1�h2) ∈ R

p
+�∞ × R

q
[±∞]�

we have

(vii) An = (An�1� � � � �An�k)
′ →d Zh2�2 ∼N

(
0k�Ωh2�2

)
as n → ∞�(S1.11)

where An�j = n1/2
(
mn�j(θn�h)−EFn�hmn�j(θn�h)

)
/σFn�h�j(θn�h)�

(viii) σ̂n�j(θn�h)/σFn�h�j(θn�h)→p 1 as n → ∞ for j = 1� � � � �k�

(ix) D̂−1/2
n (θn�h)Σ̂n(θn�h)D̂

−1/2
n (θn�h)→p Ωh2�2 as n→ ∞� and

(x) conditions (vii)–(ix) hold for all subsequences {wn}
in place of {n}�

Now, under {γn�h :n≥ 1}� we have

κ−1
n n1/2D̂−1/2

n (θn�h)mn(θn�h)(S1.12)

= κ−1
n D̂−1/2

n (θn�h)D
1/2(θn�h�Fn�h)

(
An + (

n1/2γn�h�1�0v

))
= op(1)+ (Ik + op(1))

(
κ−1
n n1/2γn�h�1�0v

) →p (π1�0v)�

where the first equality holds by the definitions of γn�h�1 and An in (S1.10)
and (S1.11), D(θn�h�Fn�h) = Diag{σ2

Fn�h�1
(θn�h)� � � � �σ

2
Fn�h�k

(θn�h)} in the second
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line, the second equality holds using κn → ∞ and conditions (vii) and (viii)
of (S1.11), which apply by conditions (i) and (iii) of the lemma, and the con-
vergence holds using condition (ii) of the lemma. This and condition (ix) of
(S1.11) yield that under {γn�h :n≥ 1}�

(ξn(θn�h)� Ω̂n(θn�h))→p

(
(π1�0v)�Ωπ2�2

)
�(S1.13)

For notational simplicity, let Ω0 denote Ωπ2�2 � We now show that ϕ∗(ξ�Ω)→
ϕ((π1�0v)�Ω0) for any sequence (ξ�Ω) for which (ξ�Ω) → ((π1�0v)�Ω0). If
π1�j = 0 and j ≤ p� then

ϕ∗
j (ξ�Ω) = ϕj(ξ�Ω)→ ϕj((π1�0v)�Ω0)= 0(S1.14)

as (ξ�Ω) → ((π1�0v)�Ω0)� where the first equality holds by (S1.8), the con-
vergence holds by Assumption GMS1(a), and the last equality holds by As-
sumption GMS1(b). If π1�j > 0� then ϕ∗

j (ξ�Ω) = ∞ = ϕj((π1�0v)�Ω0) by the
definition in (S1.8) and Assumption GMS3. For j = p + 1� � � � �k� ϕ∗

j (ξ�Ω) =
0 = ϕj((π1�0v)�Ω0) by the definition in (S1.8) and Assumption GMS1(c).
These results, (S1.14), and Assumption 1(d) give, for x > 0� as (ξ�Ω) →
((π1�0v)�Ω0)�

S
(
Ω1/2Z∗ +ϕ∗(ξ�Ω)�Ω

)
(S1.15)

→ S
(
Ω1/2

0 Z∗ +ϕ∗((π1�0v)�Ω0)�Ω0

)
a.s. [Z∗]�

1
(
S
(
Ω1/2Z∗ +ϕ∗(ξ�Ω)�Ω

) ≤ x
)

→ 1
(
S
(
Ω1/2

0 Z∗ +ϕ∗((π1�0v)�Ω0)�Ω0

) ≤ x
)

a.s. [Z∗]�
P

(
S
(
Ω1/2Z∗ +ϕ∗(ξ�Ω)�Ω

) ≤ x
)

→ P
(
S
(
Ω1/2

0 Z∗ +ϕ∗((π1�0v)�Ω0)�Ω0

) ≤ x
)
�

The third convergence result of (S1.15) holds by the second result and the
bounded convergence theorem. The second convergence result of (S1.15) fol-
lows from the first result provided

P
(
S
(
Z +ϕ∗((π1�0v)�Ω0)�Ω0

) = x
) = P

(
S(Z + (π∗

1 �0v)�Ω0)= x
)

(S1.16)

= 0�

where Z = Ω1/2
0 Z∗ ∼ N(0k�Ω0)� The first equality in (S1.16) holds because

[(π∗
1 �0v)]j = ∞ = ϕ∗

j ((π1�0v)�Ω0) if π∗
1�j = ∞ by definition and [(π∗

1 �0v)]j =
0 = ϕj((π1�0v)�Ω0) = ϕ∗

j ((π1�0v)�Ω0) if π∗
1�j = π1�j = 0 using Assump-

tion GMS1(b) and (S1.8). The second equality in (S1.16) holds because the
df of S(Z + (π∗

1 �0v)�Ω0) is continuous and strictly increasing for x > 0 by As-
sumption 2(a) and (b) unless v = 0 and π∗

1 = ∞p� The latter does not hold be-
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cause, if v = 0 and π∗
1 = ∞p� then S(Z+ (π∗

1 �0v)�Ω0)= 0 by Assumptions 1(c)
and 3 and cπ∗(1−α)= 0� which contradicts the assumption that cπ∗(1−α) > 0�

In sum, (S1.15) shows that P(S(Ω1/2Z∗ + ϕ∗(ξ�Ω)�Ω) ≤ x) is a continuous
function of (ξ�Ω) at ((π1�0v)�Ω0)� This, (S1.13), and Slutsky’s theorem com-
bine to give, under {γn�h :n≥ 1}�

Ln(x) = P
(
S
(
Ω̂1/2

n (θn�h)Z
∗ +ϕ∗(ξn(θn�h)� Ω̂n(θn�h))� Ω̂n(θn�h)

) ≤ x
)

(S1.17)

→p P
(
S
(
Ω1/2

0 Z∗ +ϕ∗((π1�0v)�Ω0)�Ω0

) ≤ x
) = L(x)

for all x > 0� where P(·) denotes conditional probability given (ξn(θn�h)�

Ω̂n(θn�h)) in (S1.17) and hence is a random probability. By definition, c∗
n is

the 1 − α quantile of Ln(x) and cπ∗(1 − α) is the 1 − α quantile of L(x)� By
Lemma 5 of Andrews and Guggenberger (2010b) (AG1), given that (S1.17)
holds for all x in a neighborhood of cπ∗(1 −α) > 0 and that L(x) is continuous
and strictly increasing at x = cπ∗(1 − α) (see the previous paragraph), we have
c∗
n →p cπ∗(1 − α)� This completes the proof of part (a).

Part (b) is proved as follows. First, conditions (i) and (ii) of the lemma imply
that if π1�j > 0, then h1�j = ∞ and π∗

1�j = ∞� and if π1�j = 0, then h1�j ≥ 0 and
π∗

1�j = 0� Thus, we have

π∗
1 ≤ h1�(S1.18)

S
(
Ω1/2

h2�2
Z∗ + (π∗

1 �0v)�Ωh2�2

) ≥ S
(
Ω1/2

h2�2
Z∗ + (h1�0v)�Ωh2�2

)
�

cπ∗(1 − α)≥ ch(1 − α)�

where ch(1 − α) denotes the 1 − α quantile of S(Ω1/2
h2�2

Z∗ + (h1�0v)�Ωh2�2)� the
second inequality holds by the first inequality and Assumption 1(a), and the
third inequality holds by the second.

Second, by the verification of Assumption B0 in Andrews and Guggenberger
(2009b) (AG4), we have

Tn(θn�h)→d Jh under {γn�h}�(S1.19)

where Jh is the distribution of S(Ω1/2
h2�2

Z∗ + (h1�0v)�Ωh2�2)� This result is ob-
tained by using Assumption 1(b) to write

Tn(θn�h)= S
(
D̂−1/2

n (θn�h)n
1/2mn(θn�h)� D̂

−1/2
n (θn�h)Σ̂n(θn�h)D̂

−1/2
n (θn�h)

)
�(S1.20)

If any element of h1 equals ∞� then it can be shown using (S1.11) that the
corresponding element of D̂−1/2

n (θn�h)n
1/2mn(θn�h) diverges in probability to ∞�

Hence, D̂−1/2
n (θn�h)n

1/2mn(θn�h) does not converge in distribution to a proper
finite random vector and the continuous mapping theorem cannot be applied
to obtain the asymptotic distribution of the right-hand side of (S1.20). The
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verification of Assumption B0 in AG4 avoids this problem by (i) considering
a transformation of D̂−1/2

n (θn�h)n
1/2mn(θn�h) that converges in distribution even

if some elements of h1 equal ∞� (ii) writing the right-hand side of (S1.20) as
a continuous function of this transformation, and (iii) applying the continuous
mapping theorem to the transformation.

We now have

lim inf
n→∞

Pγn�h(Tn(θn�h)≤ ĉn(θn�h�1 − α))(S1.21)

≥ lim inf
n→∞

Pγn�h(Tn(θn�h)≤ c∗
n)

≥ Jh(cπ∗(1 − α)−)�

where Jh(x−) denotes the limit from the left of Jh(·) at x� the first inequal-
ity holds because ĉn(θn�h�1 − α) ≥ c∗

n a.s., and the second inequality holds by
part (a) of the lemma and (S1.19).

Suppose cπ∗(1 − α) > 0. Then

Jh(cπ∗(1 − α)−)= Jh(cπ∗(1 − α))≥ 1 − α(S1.22)

and part (b) of the lemma holds, where the equality holds because Jh(x) is con-
tinuous for all x > 0 by Assumption 2(a) and the inequality holds by (S1.18).

Next, suppose cπ∗(1 −α)= 0� This implies that ch(1 −α)= 0 by (S1.18) and
Assumption 1(c). The conditions ch(1 − α)= 0 and 0 <α< 1/2 are consistent
with Assumption 2(c) only if v = 0� Given v = 0� under {γn�h :n≥ 1}� we have

Pγn�h(Tn(θn�h)≤ 0)(S1.23)

= Pγn�h

(
n1/2mn�j(θn�h)/σFn�h�j(θn�h)≥ 0 for all j = 1� � � � �p

)
= Pγn�h

(
An�j + n1/2γn�h�1�j ≥ 0 for all j = 1� � � � �p

)
→ P

([
Ω1/2

h2�2
Z∗]

j
+ h1�j ≥ 0 for all j = 1� � � � �p

)
= P

(
S
(
Ω1/2

h2�2
Z∗ + h1�Ωh2�2

) ≤ 0
)

= Jh(0)≥ Jh(ch(1 − α))≥ 1 − α�

where the first equality holds by Assumptions 1(b) and 3, the second equality
and the convergence hold by (S1.11), the third equality holds by Assumption 3,
the fourth equality holds by the definition of Jh� the first inequality holds be-
cause ch(1 − α)≥ 0 (note that ch(1 − α) = 0 here, but the argument in (S1.23)
is applied below to a case in which one only knows that ch(1 − α) ≥ 0), and
the second inequality holds by the definition of ch(1 − α)� This completes the
proof of part (b).

The proof of part (c) is the same as that for parts (a) and (b) with wn in place
of n� Q.E.D.
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PROOF OF LEMMA 3: Conditions (i)–(iii) of Lemma 2 hold with γn�h = γ∗

for all n� h = h∗� and π = h∗ because κ−1
n n1/2 → ∞ by Assumption GMS4.

Each element of π1 is either zero or infinity. Thus, the vector π∗ that depends
on π and is defined preceding Lemma 2 equals π� Now, (S1.13) in the proof of
Lemma 2 applies with θn�h = θ∗� π1 = h∗

1� and Ωπ2�2 =Ωh∗
2�2
�

Equation (S1.14) applies (with the first quantity on the left-hand side
deleted) for all j = 1� � � � �p for which π1�j = 0� In addition, we have that
as (ξ�Ω) → ((π1�0v)�Ωh∗

2�2
)� ϕj(ξ�Ω) → ∞ a.s. [Z∗] for all j = 1� � � � �p for

which π1�j = ∞ by Assumption GMS3. Given these results, (S1.15) and (S1.16)
hold with ϕ∗(ξ�Ω) and S(Ω1/2

0 Z∗ + ϕ∗((π1�0v)�Ω0)�Ω0) replaced by ϕ(ξ�Ω)

and S(Ω1/2
0 Z∗ +ϕ((h∗

1�0v)�Ωh∗
2�2
)�Ωh∗

2�2
)� respectively, and the second equality

in (S1.16) holds because ch∗(1 − α) = cπ∗(1 − α) > 0� (The case ch∗(1 − α) = 0
does not occur because the df of S(Ω1/2

h∗
2�2
Z∗ + (h∗

1�0v)�Ωh∗
2�2
) at x < 0 is zero by

Assumption 1(c), the df at x = ch∗(1 − α) = 0 is zero by continuity (Assump-
tion 7), the latter implies that the df is less than 1 − α for x > 0� and the latter
implies that ch∗(1 −α) > 0�) The remainder of the proof of part (a) is the same
as that given in (S1.17) but with ĉn(θ

∗�1 − α) in place of c∗
n�

To prove part (b), we note that the asymptotic distribution of Tn(θ
∗) is

S(Ω1/2
h∗

2�2
Z∗ + (h∗

1�0v)�Ωh∗
2�2
) under {γ∗ :n ≥ 1} by the verification of Assump-

tion B0 in AG1, see (S1.19) and the discussion following it. The df of
S(Ω1/2

h∗
2�2
Z∗ + (h∗

1�0v)�Ωh∗
2�2
) is continuous and strictly increasing at ch∗(1 −α) >

0 by Assumption 2(a) and (b) unless v = 0 and h∗
1 = ∞p� The latter does not

hold by the argument given in the proof of Lemma 2 just below (S1.16) be-
cause ch∗(1 − α) > 0� These results and ĉn(θ

∗�1 − α) →p ch∗(1 − α) establish
part (b). Q.E.D.

We now restate and prove the following lemma.

LEMMA 1: The functions S1(m�Σ)–S3(m�Σ) satisfy Assumptions 1–6 with
Ψ = Ψ1 for S1(m�Σ) and S3(m�Σ), and with Ψ =Ψ2 for S2(m�Σ)�

PROOF: Assumptions 1–4 hold by Lemma 1 of AG4. For S1� Assump-
tion 5(a) holds by the same arguments as for Assumption 2 given in the proof
of Lemma 1 of AG4. Assumption 5(b) holds with a nonstrict inequality by As-
sumption 1(a) and the fact that Z + (m1�0v) is stochastically strictly increasing
in m1 ∈ R

p
+�∞� Assumption 5(b) holds for S1 with a strict inequality because

S1(Z + (m∗
1�0v)�Ω) is strictly stochastically less than S1(Z + (m1�0v)�Ω) on

R+ for m1 <m∗
1� Assumption 6 holds immediately for S1 with χ= 2�

For S2� Assumption 5(a)(i) and (ii) hold by the same arguments as for As-
sumption 2(a) and (b) given in the proof of Lemma 1 of AG4. Assumption 5(b)
holds for S2 by the same argument as for S1� Assumption 6 holds immediately
for S2 with χ = 2� The verification of Assumptions 1–6 for S3 is essentially the
same as that for S1� Q.E.D.
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S2. PROOFS OF RESULTS FOR LOCAL ALTERNATIVES

In this section, we restate and prove the following two theorems.

THEOREM 2: Under Assumptions 1–5, LA1, and LA2, the following state-
ments hold:

(a) limn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1−α))= 1−Jh1�λ(cπ1(ϕ�1−α)) provided
Assumptions GMS2, GMS3, LA4, and LA5 hold.

(b) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) = 1 − Jh1�λ(cg1�0d (1 − α)) pro-
vided Assumption LA6 holds.

(c) limn→∞ PFn(Tn(θn�∗) > c(Ω̂n(θn�∗)�1 − α))= 1 − Jh1�λ(c0p�0d (1 − α))�

THEOREM 3: Under Assumptions 1–5, LA1–LA4, LA6, GMS2–GMS3, and
GMS5–GMS6, the following assertions are valid:

(a) lim infn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >
cn�b(θn�∗�1 − α)) with strict inequality whenever g1�j < ∞ and π1�j = ∞ for some
j = 1� � � � �p and cg1�0d (1 − α) > 0.

(b) lim infn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >

c(Ω̂n(θn�∗)�1 − α)) with strict inequality whenever π1�j = ∞ for some j =
1� � � � �p.

(c) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) ≥ limn→∞ PFn(Tn(θn�∗) >

c(Ω̂n(θn�∗)�1 − α)) with strict inequality whenever g1 > 0p� where Assumptions
GMS2, GMS3, GMS5, GMS6, and LA4 are not needed for this result.

Theorem 2 follows immediately from Lemmas 4 and 5 below. Theorem 3(a)
and (c) do likewise from Lemmas 5–8. Theorem 3(b) follows from Lemmas 6
and 7, where one takes g1 = 0p in Lemma 7 and one notes that c0p�0d (1−α) > 0
by Assumption 2(c) and α ∈ (0�1/2)�

In each of Lemmas 4–8, the parameter space F for (θ�F) is assumed to
satisfy

(i) θ ∈Θ�(S2.1)

(ii) EFmj(Wi�θ) ≥ 0 for j = 1� � � � �p�

(iii) EFmj(Wi�θ)= 0 for j = p+ 1� � � � �k�

(iv) {Wi : i ≥ 1} are i.i.d. under F�

(v) σ2
F�j(θ) = VarF(mj(Wi� θ)) ∈ (0�∞) for j = 1� � � � �k�

(vi) CorrF(m(Wi�θ)) ∈ Ψ�

(vii) EF |mj(Wi�θ)/σF�j(θ)|2+δ ≤ M for j = 1� � � � �k�

In the lemmas that involve subsampling, it is assumed that b→ ∞ and b/n → 0
as n → ∞� Let Z ∼ N(0k�Ω0)�
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LEMMA 4: Under Assumptions 1–3, 5(a), GMS2, GMS3, LA1, LA2, LA4,
and LA5, the following equations hold:

(a) Tn(θn�∗)→d S(Z + (h1�0v)+Π0λ�Ω0) ∼ Jh1�λ.
(b) ĉn(θn�∗�1 − α)→p cπ1(ϕ�1 − α).
(c) limn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) = 1 − Jh1�λ(cπ1(ϕ�1 − α))�

LEMMA 5: Under Assumptions 1–3, 5(a), LA1, LA2, and LA6, the following
results hold:

(a) Tn(θn�∗)→d S(Z + (h1�0v)+Π0λ�Ω0) ∼ Jh1�λ.
(b) Tb(θn�∗) →d S(Z + (g1�0v)�Ω0)∼ Jg1�0d .
(c) cn�b(θn�∗�1 − α)→ cg1�0d (1 − α).
(d) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) = 1 − Jh1�λ(cg1�0d (1 − α))�

LEMMA 6: Under Assumptions 1, 4, 5(a), LA1, and LA2, the following results
hold:

(a) Tn(θn�∗)→d S(Z + (h1�0v)+Π0λ�Ω0) ∼ Jh1�λ.
(b) c(Ω̂n(θn�∗)�1 − α)→ c0p�0d (1 − α).
(c) limn→∞ PFn(Tn(θn�∗) > c(Ω̂n(θn�∗)�1 − α)) = 1 − Jh1�λ(c0p�0d (1 − α))�

The next lemma uses the following notation. Let g1 = (g1�1� � � � � g1�p)
′ be as

in Assumption LA6. Let π∗∗
1�j = ∞ if π1�j = ∞ and let π∗∗

1�j = 0 if π1�j < ∞ for
j = 1� � � � �p� As defined, π∗∗

1 = (π∗∗
1�1� � � � �π

∗∗
1�p)

′ ≤ h1� Let π∗∗ = (π∗∗
1 �π∗∗

2 ) ∈
R

p
+�∞ × R

q
[±∞]� where π∗∗

2 = (π∗∗
2�1�π

∗∗
2�2)� π

∗∗
2�1 = θ0� where θ0 is as in Assump-

tion LA1(a), and π∗∗
2�2 = vech∗(Ω0) for the k × k correlation matrix Ω0 =

Ω(θ0�F0) determined by Assumption LA1(a). Let cπ∗∗
1
(1 −α) denote the 1 −α

quantile of S(Ω1/2
0 Z∗ + (π∗∗

1 �0v)�Ω0)� where Z∗ ∼ N(0k� Ik) and, by defini-
tion, if π∗∗

1�j = ∞, then the jth element of Ω1/2
0 Z∗ + (π∗∗

1 �0v) equals ∞ for
j = 1� � � � �p�

LEMMA 7: Under Assumptions 1–3, 5(a), LA1–LA4, LA6, GMS2, GMS3,
GMS5, and GMS6, the following statements hold:

(a) If cπ∗∗
1
(1 − α) > 0� ĉn(θn�∗�1 − α) ≤ c∗∗

n a.s. for all n for a sequence of
random variables {c∗∗

n :n≥ 1} that satisfies c∗∗
n →p cπ∗∗

1
(1 − α).

(b) lim infn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) ≥ 1 − Jh1�λ(cπ∗∗
1
(1 − α)).

(c) cg1�0d (1 − α) ≥ cπ∗∗
1
(1 − α) with strict inequality whenever g1�j < ∞ and

π1�j = ∞ for some j = 1� � � � �p and cg1�0d (1 − α) > 0.
(d) 1−Jh1�λ(cπ∗∗

1
(1−α))≥ 1−Jh1�λ(cg1�0d (1−α)) with strict inequality when-

ever g1�j <∞ and π1�j = ∞ for some j = 1� � � � �p and cg1�0d (1 − α) > 0�

LEMMA 8: Under Assumptions 1–5, LA1–LA3, and LA6, assertions (a)–(d)
are valid:

(a) c0p�0d (1 − α)≥ cg1�0d (1 − α).
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(b) Jh1�λ(cg1�0d (1 − α))≥ Jh1�λ(c0p�0d (1 − α)).
(c) c0p�0d (1 − α) > cg1�0d (1 − α) unless g1 = 0p.
(d) 1 − Jh1�λ(cg1�0d (1 − α)) > 1 − Jh1�λ(c0p�0d (1 − α)) unless g1 = 0p�

PROOF OF LEMMA 4: To prove part (a), by using element-by-element mean-
value expansions about θ = θn and Assumptions LA1 and LA2, we obtain

D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗)(S2.2)

=D−1/2(θn�Fn)EFnm(Wi�θn)+Π(θ̃n�Fn)(θn�∗ − θn)�

n1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗)→ (h1�0v)+Π0λ�

where D(θ�F) = Diag{σ2
F�1(θ)� � � � �σ

2
F�k(θ)}� θ̃n may differ across rows of

Π(θ̃n�Fn)� θ̃n lies between θn�∗ and θn� θ̃n → θ0� and Π(θ̃n�Fn)→ Π0�
Next, under {(θn�Fn) ∈ F :n≥ 1} as in Assumption LA1, we have

(i) A0
n = (A0

n�1� � � � �A
0
n�k)

′ →d Z ∼N(0k�Ω0) as n → ∞�(S2.3)

where A0
n�j = n1/2

(
mn�j(θn�∗)−EFnmn�j(θn�∗)

)
/σFn�j(θn�∗)�

(ii) σ̂n�j(θn�∗)/σFn�j(θn�∗)→p 1 as n → ∞ for j = 1� � � � �k�

(iii) D̂−1/2
n (θn�∗)Σ̂n(θn�∗)D̂−1/2

n (θn�∗)→p Ω0 as n → ∞�

where result (i) holds by the Cramér–Wold device and the Liapounov triangu-
lar array CLT for rowwise i.i.d. random variables with mean 0 and variance 1
using condition (iv) of (S2.1) and Assumptions LA1(a) and LA1(c), and results
(ii) and (iii) hold by standard arguments using a weak law of large numbers for
rowwise i.i.d. random variables with variance 1 by condition (iv) of (S2.1) and
Assumptions LA1(a) and LA1(c). Note that results (i)–(iii) of (S2.3) do not
hold by (S1.11) because the functions are evaluated at θn�∗ but the true value
is θn�

For the same reason as described above following (S1.20), to obtain the as-
ymptotic distribution of Tn(θn�∗), we use the same type of argument as in the
verification of Assumption B0 in AG4. Let G(·) be a strictly increasing con-
tinuous df on R� such as the standard normal df. Using (S2.2) and (S2.3), for
j = 1� � � � �k� we have

G0
n�j =G

(
σ̂−1

n�j (θn�∗)n1/2mn�j(θn�∗)
)

(S2.4)

=G
(
σ̂−1

n�j (θn�∗)σFn�j(θn�∗)
[
A0

n�j + n1/2σ−1
Fn�j

(θn�∗)EFnmj(Wi� θn�∗)
])
�

G0
n�j

⎧⎨⎩
→p 1� if j ≤ p and h1�j = ∞,
→d G(Zj + h1�j +Π′

0�jλ)� if j ≤ p and h1�j < ∞,
→d G(Zj +Π′

0�jλ)� if j = p+ 1� � � � �k,
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G0
n = (G0

n�1� � � � �G
0
n�k)

→d G
0
∞ = (G(Z1 + h1�1 +Π′

0�1λ)� � � � �G(Zk +Π′
0�kλ))

′�

where Z = (Z1� � � � �Zk)
′ and Zj + h1�j + Π′

0�jλ = ∞ by definition if h1�j = ∞�
Now, the same argument as in the verification of Assumption B0 in AG4 gives

Tn(θn�∗)→d S(Z + (h1�0v)+Π0λ�Ω0)∼ Jh1�λ�(S2.5)

In short, the idea behind the argument is to write the right-hand side of (S1.20)
as a continuous function of G0

n and D̂−1/2
n (θn�∗)Σ̂n(θn�∗)D̂−1/2

n (θn�∗) and apply the
continuous mapping theorem. This completes the proof of part (a).

To prove part (b), by the mean-value expansions in (S2.2), Assumptions
LA1(a), LA2, and LA4, and κn → ∞� we obtain

κ−1
n n1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗) → (π1�0v)�(S2.6)

This leads to

κ−1
n n1/2D̂−1/2

n (θn�∗)mn(θn�∗)(S2.7)

= κ−1
n D̂−1/2

n (θn�∗)D1/2(θn�∗�Fn)

× (
A0

n + n1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗)
)

→p (π1�0v)�

where the equality holds by the definition of A0
n in (S2.3), and the convergence

holds by (S2.6), conditions (i) and (ii) of (S2.3), and κn → ∞� Equation (S2.7)
and condition (iii) of (S2.3) yield

(ξn(θn�∗)� Ω̂n(θn�∗))→p ((π1�0v)�Ω0)�(S2.8)

For j = 1� � � � �k� as (ξ�Ω)→ ((π1�0v)�Ω0)�

ϕj(ξ�Ω)→ ϕj((π1�0v)�Ω0)�(S2.9)

because by Assumption LA5(a), π1 ∈ C(ϕ)� which yields (S2.9) by Assump-
tion GMS3 if π1�j = ∞ and yields (S2.9) by the definition of C(ϕ) otherwise.

Assumption 1(d) and (S2.9) give that for x in a neighborhood of cπ1(ϕ�1 −
α)� as (ξ�Ω) → ((π1�0v)�Ω0)�

S
(
Ω1/2Z∗ +ϕ(ξ�Ω)�Ω

)
(S2.10)

→ S
(
Ω1/2

0 Z∗ +ϕ((π1�0v)�Ω0)�Ω0

)
a.s. [Z∗]�

1
(
S
(
Ω1/2Z∗ +ϕ(ξ�Ω)�Ω

) ≤ x
)

→ 1
(
S
(
Ω1/2

0 Z∗ +ϕ((π1�0v)�Ω0)�Ω0

) ≤ x
)

a.s. [Z∗]�
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P
(
S
(
Ω1/2Z∗ +ϕ(ξ�Ω)�Ω

) ≤ x
)

→ P
(
S
(
Ω1/2

0 Z∗ +ϕ((π1�0v)�Ω0)�Ω0

) ≤ x
)
�

The third convergence result of (S2.10) holds by the second result and the
bounded convergence theorem, and the second convergence result of (S2.10)
follows from the first result provided P(S(Ω1/2

0 Z∗ +ϕ((π1�0v)�Ω0)�Ω0)= x) =
0� which holds by Assumption LA5(b).

Given (S2.8) and (S2.10), the remainder of the proof of part (b) is the same
as that given in the paragraph containing (S1.17) using Lemma 5 of AG1.

Part (c) of the lemma holds by parts (a) and (b) and Assumption LA5(b).
Q.E.D.

PROOF OF LEMMA 5: Part (a) holds by Lemma 4(a).
To prove part (b), by the mean-value expansions in (S2.2), Assumptions

LA1(a), LA2, and LA6, and b/n → 0� we obtain

b1/2D−1/2(θn�∗�Fn)EFnm(Wi�θn�∗) → (g1�0v)�(S2.11)

Using (S2.11) and an analogous argument to that given in the proof of
Lemma 4(a) with n1/2 replaced by b1/2 in (S2.4), we have

Tb(θn�∗)→d S(Z + (g1�0v)�Ω0)∼ Jg1�0d �(S2.12)

which proves part (b).
To establish Lemma 5(c) and (d), we apply Lemma 5 of AG1. We verify

conditions (i)–(iii) of Lemma 5 of AG1 as follows. Lemma 5(a) of the present
paper implies condition (ii). To verify condition (i), Lemma 5(b) of the present
paper and identical distributions for {Wi : i ≤ n} imply that

EFnUn�b(θn�∗�x) = PFn(Tb(θn�∗)≤ x)→ Jg1�0d (x)(S2.13)

for all continuity points x of Jg1�0d � In addition, VarFn(Un�b(θn�∗�x)) → 0
by a U-statistic inequality of Hoeffding, as in Politis, Romano, and Wolf
(1999, p. 44), using the i.i.d. property of {Wi : i ≤ n} and the boundedness of
Un�b(θn�∗�x)� This and (S2.13) give

Un�b(θn�∗�x)→p Jg1�0d (x)(S2.14)

for all continuity points x of Jg1�0d � which verifies condition (i) of Lemma 5 of
AG1.

To verify condition (iii) of Lemma 5 of AG1, we need to show

Jg1�0d

(
cg1�0d (1 − α)+ ε

)
> 1 − α for all ε > 0�(S2.15)

When v = 0 and g1 = ∞p� S(Z + (g1�0v)�Ω0) = S(∞p�Ω0) = 0 using As-
sumption 3. In consequence, Jg1�0d (x) = 1 for all x ≥ 0� cg1�0d (1 − α) = 0� and
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(S2.15) holds for α > 0� Now, suppose v ≥ 1 or g1 
= ∞p� Then, by Assump-
tion 2(b), Jg1�0d (x) is strictly increasing for x > 0� Using this, we have (i) if
cg1�0d (1 − α) > 0� then Jg1�0d (x) is strictly increasing at x = cg1�0d (1 − α) and
(S2.15) holds, (ii) if cg1�0d (1−α) = 0� then Jg1�0d (0)≥ 1−α (by the definition of
cg1�0d (1−α)), (iii) if cg1�0d (1−α)= 0 and Jg1�0d (0)≥ 1−α� then Jg1�0d (x) > 1−α
for all x > 0 and (S2.15) holds (otherwise, Jg1�0d (x)= 1 −α for some x > 0 and
Jg1�0d (x/2)= 1 −α since Jg1�0d is nondecreasing, which contradicts the fact that
Jg1�0d (x) is strictly increasing for x > 0). Hence, (S2.15) holds.

Lemma 5 of AG1 establishes Lemma 5(c) of the present paper and shows
that limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α)) ∈ [1 − Jh1�λ(cg1�0d (1 − α))�1 −
Jh1�λ(cg1�0d (1 − α)−)]� If cg1�0d (1 − α) > 0� then by Assumption 5(a)(i), Jh1�λ

is continuous at cg1�0d (1 − α) and the result of Lemma 5(d) holds. Assump-
tion 1(c) implies that c0p�0d (1 − α) ≥ 0� The conditions cg1�0d (1 − α) = 0 and
0 <α< 1/2 are consistent with Assumption 2(c) only if v = 0� Given v = 0 and
cg1�0d (1−α)= 0� we use the argument given in (S1.23) to establish Lemma 5(d)
with θn�h� Pγn�h� S(Ω

1/2
h2�2

Z∗ + h1�Ωh2�2)� Jh� and ch(1 − α) replaced by θn�∗� PFn�

S(Z + h1 +Π0λ�Ω0)� Jh1�λ� and ch1�λ(1 − α)� respectively. Q.E.D.

PROOF OF LEMMA 6: Part (a) holds by Lemma 4(a) because Assumptions 2
and 3 are not used in the proof of Lemma 4(a).

By standard arguments using a weak law of large numbers for rowwise i.i.d.
triangular arrays and Assumption LA1(c), we have

D−1/2(θn�∗�Fn)Σ̂n(θn�∗)D−1/2(θn�∗�Fn)(S2.16)

−D−1/2(θn�∗�Fn)VarFn(m(Wi�θn�∗))D−1/2(θn�∗�Fn)→p 0k×k�

D̂−1/2
n (θn�∗)D1/2(θn�∗�Fn)− Ik →p 0k×k�

In consequence, Ω̂n(θn�∗)−Ω(θn�∗�Fn)→p 0k×k� This and Assumptions LA1(a)
and LA1(c) give Ω̂n(θn�∗) →p Ω0� The latter and Assumption 4(b) yield
c(Ω̂n(θn�∗)�1 − α) →p c(Ω0�1 − α)� This establishes Lemma 6(b) because
c(Ω0�1 − α)= c0p�0d (1 − α) by definition.

If c0p�0d (1 − α) > 0� Lemma 6(c) holds by parts (a) and (b) and Assump-
tion 5(a)(i). Assumption 1(c) implies that c0p�0d (1 − α) ≥ 0� The conditions
c0p�0d (1 − α) = 0 and 0 < α < 1/2 are consistent with Assumption 2(c) only if
v = 0 (because c0p�0d (1 −α) is the 1 −α quantile of S(Z�Ω0)). Given v = 0 and
c0p�0d (1 − α) = 0� Lemma 6(c) holds by the same argument as used to prove
Lemma 5(d) when cg1�0d (1 − α)= 0� Q.E.D.

PROOF OF LEMMA 7: First we prove part (a). By assumption, cπ∗∗
1
(1−α) > 0�

For (ξ�Ω) ∈ Rk ×Ψ� let ϕ∗∗(ξ�Ω) denote the k-vector whose jth element is

ϕ∗∗
j (ξ�Ω)=

{0� if π1�j <∞ and j = 1� � � � �p,
ϕj(ξ�Ω)� if π1�j = ∞ and j = 1� � � � �p,
0� if j = p+ 1� � � � �k.

(S2.17)
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By Assumption GMS6, ϕj(ξ�Ω) ≥ 0 for j ≤ p� Hence, ϕ∗∗(ξ�Ω) ≤ ϕ(ξ�Ω)
and

ϕ∗∗(ξn(θn)� Ω̂n(θn))≤ ϕ(ξn(θn)� Ω̂n(θn)) a.s. [Z∗] for all n�(S2.18)

Let c∗∗
n denote the 1 − α quantile of the conditional df of S(Ω̂1/2

n (θn)Z
∗ +

ϕ∗∗(ξn(θn)� Ω̂n(θn))� Ω̂n(θn)) given (ξn(θn)� Ω̂n(θn))� Then ĉn(θn�1 − α) ≤ c∗∗
n

a.s. for all n by (S2.18) and Assumption 1(a). By the same argument as in the
proof of Lemma 4, (S2.8) holds.

For j = 1� � � � �p with π1�j < ∞� ϕ∗∗
j (ξ�Ω) = 0� For j = 1� � � � �p with π1�j =

∞� as (ξ�Ω) → ((π1�0v)�Ω0)� we have ϕj(ξ�Ω) → ∞ a.s. [Z∗] by Assump-
tion GMS3. These results can be written as

ϕ∗∗
j (ξ�Ω)→ π∗∗

1�j a.s. [Z∗](S2.19)

for j = 1� � � � �p by the definition of π∗∗
1�j�

Assumption 1(d) and (S2.19) give that for x in a neighborhood of cπ∗∗
1
(1−α)�

as (ξ�Ω) → ((π1�0v)�Ω0)�

S
(
Ω1/2Z∗ +ϕ∗∗(ξ�Ω)�Ω

) → S
(
Ω1/2Z∗ + (π∗∗

1 �0v)�Ω0

)
a.s. [Z∗]�(S2.20)

1
(
S
(
Ω1/2Z∗ +ϕ∗∗(ξ�Ω)�Ω

) ≤ x
)

→ 1
(
S
(
Ω1/2Z∗ + (π∗∗

1 �0v)�Ω0

) ≤ x
)

a.s. [Z∗]�
P

(
S
(
Ω1/2Z∗ +ϕ∗∗(ξ�Ω)�Ω

) ≤ x
)

→ P
(
S
(
Ω1/2Z∗ + (π∗∗

1 �0v)�Ω0

) ≤ x
)
�

The third convergence result of (S2.20) holds by the second result and the
bounded convergence theorem. The second convergence result of (S2.20) fol-
lows from the first result provided P(S(Ω1/2Z∗ +(π∗∗

1 �0v)�Ω0)= x)= 0� which
holds because cπ∗∗

1
(1 − α) > 0 for the same reason that the second equality in

(S1.16) holds.
Given (S2.8) and (S2.20), the remainder of the proof of part (a) is the same

as that given in the paragraph containing (S1.17) using Lemma 5 of AG1.
Now we prove part (b). If cπ∗∗

1
(1 − α) > 0� part (b) of the lemma holds by

part (a), Lemma 4(a) (i.e., Tn(θn�∗)→d Jh1�λ), and Assumption 5(a)(i).
Next, we prove part (b) for the case where cπ∗∗

1
(1 − α) = 0� We have

lim inf
n→∞

Pγn(Tn(θn)≤ c∗∗
n ) ≥ lim inf

n→∞
Pγn(Tn(θn)≤ 0)(S2.21)

because c∗∗
n ≥ 0 by Assumption 1(c). By the definition of π∗∗

1 � we have π∗∗
1 ≤ h1�

As in (S1.18), this implies that ch(1 − α) ≤ cπ∗∗(1 − α) and hence ch(1 − α) =
0 using Assumption 1(c). The conditions ch(1 − α) = 0 and 0 < α < 1/2 are
consistent with Assumption 2(c) only if v = 0� Given v = 0� we use the same
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argument as given in (S1.23) with γn�h� An�j� h1�j� Jh� and ch(1−α) replaced by
γn� A

0
n�j� h1�j +Π′

0�jλ� Jh1�λ� and ch1�λ(1 −α)� respectively, where A0
n is defined

in (S2.3), to show that the right-hand side in (S2.21) is greater than or equal to
1 − α� This completes the proof of part (b).

When the inequality is not strict, part (c) holds because (i) π∗∗
1 ≥ g1� which

holds because if π1�j = ∞, then π∗∗
1�j = ∞, and if π1�j < ∞ then g1�j = 0 by

Assumptions LA4 and GMS5, and π∗∗
1�j = 0 by definition; (ii) S(Ω1/2

0 Z∗ +
(π∗∗

1 �0v)�Ω0) ≤ S(Z + (g1�0v)�Ω0) a.s. by (i) and Assumption 1(a), and
(iii) the corresponding quantiles satisfy cπ∗∗

1
(1 − α)≤ cg1�0d (1 − α) by (ii).

Next, we show part (c) holds with a strict inequality when cg1�0d (1 − α) > 0,
g1�j < ∞, and π1�j = ∞ for some j = 1� � � � �p� The latter implies that π∗∗

1 > g1�
Given π∗∗

1 > g1 and cg1�0d (1 − α) > 0� Assumption 5(b) implies that

P
(
S(Z + (π∗∗

1 �0v)�Ω)≤ cg1�0d (1 − α)
)

(S2.22)

>P
(
S(Z + (g1�0v)�Ω)≤ cg1�0d (1 − α)

) ≥ 1 − α�

where Z ∼ N(0k�Ω)� If “v = 0 and π∗∗
1 = ∞p” does not hold, then the df of

S(Z + (π∗∗
1 �0v)�Ω) is strictly increasing for x > 0 by Assumption 2(b). This

and (S2.22) imply that cπ∗∗
1
(1 − α) < cg1�0d (1 − α)� If v = 0 and π∗∗

1 = ∞p� then
S(Z+ (π∗∗

1 �0v)�Ω) = S(Z+∞p�Ω)= 0 by Assumption 1(c) and cπ∗∗
1
(1−α)=

0 < cg1�0d (1 − α), and the proof of part (c) is complete.
Part (d) follows immediately from part (c) when the inequality is not strict.

When cg1�0d (1 − α) > 0, g1�j < ∞, and π1�j = ∞ for some j = 1� � � � �p� part (c)
holds with a strict inequality. The latter, cπ∗∗

1
(1 − α) ≥ 0 (which holds by As-

sumption 1(c)), and Jh1�λ(x) is strictly increasing for x > 0 (which holds by
Assumption 5(a)(ii) because the caveat in Assumption 5(a)(ii) that “v = 0 and
� = ∞p does not occur” holds by Assumption LA3) imply that part (d) holds
with a strict inequality. Q.E.D.

PROOF OF LEMMA 8: Part (a) holds because for 0p ≤ g1 ∈ R
p
+�∞� we have

S(Z + (0p�0v)�Ω0)≥ S(Z + (g1�0v)�Ω0)(S2.23)

by Assumption 1(a). Part (b) follows from part (a). To prove Lemma 8(c), note
that c0p�0d (1 − α) > 0 by Assumption 2(c) and α ∈ (0�1/2)� This, Assumptions
2(a) and 5(b), and g1 > 0p imply that

1 − α = P
(
S(Z + (0p�0v)�Ω0)≤ c0p�0d (1 − α)

)
(S2.24)

< P
(
S(Z + (g1�0v)�Ω0)≤ c0p�0d (1 − α)

)
�

where Z ∼N(0k�Ω0)� The latter and Assumption 2(a) prove part (c).
Lemma 8(d) holds by part (c), cg1�0d (1 − α) ≥ 0 (which holds by Assump-

tion 1(c)), and Assumption 5(a)(ii) (because the caveat in Assumption 5(a)(ii)
that “v = 0 and �= ∞p does not occur” holds by Assumption LA3). Q.E.D.
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S3. PROOF OF RESULT FOR DISTANT ALTERNATIVES

In this section, we restate and prove Theorem 4.

THEOREM 4: Under Assumptions 1, 3, 6, and DA, the following results hold:
(a) limn→∞ PFn(Tn(θn�∗) > ĉn(θn�∗�1 − α)) = 1 provided Assumption GMS7

holds.
(b) limn→∞ PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α))= 1.
(c) limn→∞ PFn(Tn(θn�∗) > c(Ω̂n(θn�∗)�1 − α))= 1�

PROOF: It suffices to show that for any subsequence {tn} of {n} there ex-
ists a sub-subsequence {sn} such that limn→∞ PFsn

(Tsn(θn�∗) > c1−α) = 1� where
c1−α = ĉn(θn�∗�1 − α)� cn�b(θn�∗�1 − α)� or c(Ω̂n(θn�∗)�1 − α)� We can take the
subsequence {sn} to be such that m∗

sn�j
/βsn → ej for some ej ∈ [−1�∞] for

j = 1� � � � �k because {m∗
n�j/βn :n≥ 1} is a sequence of points in the set [−1�∞]

by the definition of βn� For notational simplicity, we establish the former result
with sn replaced by n and by a subsequence argument we assume without loss
of generality (wlog) that

m∗
n�j/βn → ej for some ej ∈ [−1�∞] for j = 1� � � � �k�(S3.1)

The following equation is used in the proofs of parts (a)–(c). We have(
n1/2βn

)−χ
Tn(θn�∗)(S3.2)

= (
n1/2βn

)−χ

× S
(
D̂−1/2

n (θn�∗)n1/2mn(θn�∗)� D̂−1/2
n (θn�∗)Σ̂n(θn�∗)D̂−1/2

n (θn�∗)
)

= (
n1/2βn

)−χ
S
(
D̂−1/2

n (θn�∗)D1/2(θn�∗�Fn)
(
A0

n + n1/2m∗
n

)
�Ω1 + op(1)

)
= S(op(1)+m∗

n/βn�Ω1 + op(1))

→p S(e�Ω1) > 0�

where A0
n is defined in (S2.3), m∗

n = (m∗
n�1� � � � �m

∗
n�k)

′� e= (e1� � � � � ek)
′� the first

equality uses Assumption 1(b), the second equality holds by the definitions
of A0

n� m∗
n� and D(θn�∗�Fn) and by (S2.3) (with Ω1 in place of Ω0 and with

Assumption DA(b) used in place of Assumption LA1(a) in the proof of (S2.3)),
the third equality holds by Assumptions 6 and DA(a) and (S2.3) (with the same
adjustments as above), the convergence holds by Assumption 1(d) and (S3.1),
and the inequality holds by Assumption 3 because for some j∗ ≤ k the j∗th
element of e� ej∗� has absolute value equal to 1 and is negative if j∗ ≤ p� which
implies that ej∗ < 0 if j∗ ≤ p and ej∗ 
= 0 if j∗ ≥ p+ 1�

We prove part (b) first. By another subsequence argument, we can as-
sume wlog that limn→∞ b1/2βn exists and (S3.1) holds. We consider two cases:
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(i) limn→∞ b1/2βn = ∞ and (ii) limn→∞ b1/2βn ∈ [0�∞)� When case (i) holds, the
same argument used to show (S3.2) gives(

b1/2βn

)−χ
Tb(θn�∗)→p S(e�Ω1)�(S3.3)

where βn appears, not βb� because m∗
n/βn → e under {Fn :n ≥ 1}� Equa-

tion (S3.3) and b/n → 0 imply that T †
b (θn�∗)= (n1/2βn)

−χTb(θn�∗)→p 0�
Define U†

n�b(θn�∗�x) as Un�b(θn�∗�x) is defined but with T †
n�b�j(θn�∗) = (n1/2 ×

βn)
−χTn�b�j(θn�∗) in place of Tn�b�j(θn�∗)� Using the result of the previous para-

graph, we have EFnU
†
n�b(θn�∗�x) = PFn(T

†
b (θn�∗) ≤ x) → 0 for x < 0 and → 1

for x > 0� In addition, VarFn(U
†
n�b(θn�∗�x)) → 0 by Hoeffding’s U-statistic in-

equality for bounded i.i.d. random variables; see Politis, Romano, and Wolf
(1999, p. 44). Hence, U†

n�b(θn�∗�x) →p 0 for x < 0 and →p 1 for x > 0� This and
Lemma 5(a) of AG1 imply that c†

n�b(θn�∗�1 − α) →p 0� where c†
n�b(θn�∗�1 − α)

is the 1 − α quantile of the rescaled subsample statistics {T †
n�b�j(θn�∗) : j =

1� � � � � qn}� The latter result and (S3.2) give

PFn(Tn(θn�∗) > cn�b(θn�∗�1 − α))(S3.4)

= PFn

((
n1/2βn

)−χ
Tn(θn�∗) >

(
n1/2βn

)−χ
cn�b(θn�∗�1 − α)

)
= PFn

((
n1/2βn

)−χ
Tn(θn�∗) > c†

n�b(θn�∗�1 − α)
)

→ P(S(e�Ω1) > 0)= 1�

where the second equality holds because c†
n�b(θn�∗�1 −α)= (n1/2βn)

−χcn�b(θn�∗�
1−α) by the scale equivariance of quantiles and the last equality holds because
S(e�Ω1) > 0 by (S3.2).

Next, suppose case (ii) holds. Then the same argument as used to show
(S3.2) but with (n1/2βn)

−χ deleted gives

Tb(θn�∗)= S
(
Op(1)+ (

b1/2βn

)
β−1

n m∗
n�Ω1 + op(1)

) = Op(1)�(S3.5)

where the second equality uses Assumption 1(a). Hence, T †
b (θn�∗) = (n1/2 ×

βn)
−χTb(θn�∗) →p 0� Given this, the remainder of the proof is the same as in

case (i).
Next, we prove part (c). We have Ω̂n(θn�∗) →p Ω1 because (S2.16) of the

paper holds by the argument given for (S2.16) but using condition (vii)
of (2.2) and Assumption DA(b). This and Assumption 4(b) imply that
c(Ω̂n(θn�∗)�1 − α) →p c(Ω1�1 − α)� Combining the latter with (S3.2) and
(S3.4), with cn�b(θn�∗�1 − α) replaced by c(Ω̂n(θn�∗)�1 − α) in (S3.4), gives the
desired result.

Finally, we prove part (a). By (S3.2) and the first equality of (S3.4)
with cn�b(θn�∗�1 − α) replaced by ĉn(θn�∗�1 − α)� it suffices to show that
(n1/2βn)

−χĉn(θn�∗�1 − α)= op(1)�
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Let A0
n be defined as in (S2.3). We have(
n1/2βn

)−1
κ−1
n n1/2D̂−1/2

n (θn�∗)mn(θn�∗)(S3.6)

= (
n1/2βn

)−1
κ−1
n

(
D̂−1/2

n (θn�∗)D1/2(θn�∗�Fn)
)(
A0

n + n1/2m∗
n

)
= op(1)+ κ−1

n (m∗
n/βn)(1 + op(1))�

where the second equality uses (S2.3) with Ω0 replaced by Ω1 (using Assump-
tion DA(b)), κn → ∞� and n1/2βn → ∞� By the definition of βn� m

∗
n�j/βn ∈

[−1�∞) for j = 1� � � � �k for all n� By a subsequence argument, wlog we as-
sume κ−1

n m∗
n�j/βn → ηj ∈ [0�∞] for j = 1� � � � �k� This and (S3.6) give

(
n1/2βn

)−1
ξn(θn�∗)→p η= (η1� � � � �ηk)

′ ∈ R
p
+�∞ ×Rv�(S3.7)

Φn�1 ≡ (
n1/2βn

)−1(
min{ξn�1(θn�∗)�0}� � � � �min{ξn�p(θn�∗)�0}�0� � � � �0

)′

→p 0k�

where ξn(θn�∗)= (ξn�1(θn�∗)� � � � � ξn�k(θn�∗))′�
Using Assumption 6, we have(

n1/2βn

)−χ
S
(
Ω̂1/2

n (θn�∗)Z∗ +ϕ(ξn(θn�∗)� Ω̂n(θn�∗))� Ω̂n(θn�∗)
)

(S3.8)

= S
((
n1/2βn

)−1[
Ω̂1/2

n (θn�∗)Z∗ +ϕ(ξn(θn�∗)� Ω̂n(θn�∗))
]
� Ω̂n(θn�∗)

)
≤ S(Φn�2Z

∗ +Φn�1� Ω̂n(θn�∗))�

where Φn�2 ≡ (n1/2βn)
−1Ω̂1/2

n (θn�∗) (∈ Rk×k) and the inequality holds by As-
sumptions 1(a) and GMS7. We have Φn�2 = op(1) by (S2.3) and Assump-
tion DA(a). Let c̃n denote the 1 − α quantile of S(Φn�2Z

∗ + Φn�1� Ω̂n(θn�∗))
in (S3.8).

By (S3.8), (n1/2βn)
−χĉn(1 − α) ≤ c̃n� Hence, it suffices to show that c̃n =

op(1)� To do so, we use a similar argument to that in (S1.15). For x > 0� as
(ξ�Ωa�Ωb)→ (0k�0k×k�Ω1)� we have

S
(
Ω1/2

a Z∗ + ξ�Ωb

) → S(0k�Ω1)= 0 a.s. [Z∗]�(S3.9)

1
(
S
(
Ω1/2

a Z∗ + ξ�Ωb

) ≤ x
) → 1(0 ≤ x) a.s. [Z∗]�

P
(
S
(
Ω1/2

a Z∗ + ξ�Ωb

) ≤ x
) → 1�

where the equality in the first line uses Assumption 3, the second convergence
result follows from the first result for x > 0� and the third convergence result
holds by the second result and the bounded convergence theorem. The third
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result of (S3.9), (Φn�1�Φn�2� Ω̂n(θn�∗)) →p (0k�0k×k�Ω1) (which uses (S3.7)),
and Slutsky’s theorem give

P
(
S(Φn�2Z

∗ +Φn�1� Ω̂n(θn�∗))≤ x
) →p 1 for all x > 0�(S3.10)

where P(·) denotes the distribution of Z∗ conditional on (Φn�1�Φn�2� Ω̂n(θn�∗))�
By Assumption 1(c), the probability limit in (S3.10) is zero for all x < 0� These
results and Lemma 5(a) of AG1 imply that c̃n →p 0� where c̃n is the 1 − α
quantile of the (random) df in (S3.10). This completes the proof of part (a).

Q.E.D.

S4. VERIFICATION OF ASSUMPTIONS GMS1, GMS3, GMS6, AND GMS7 FOR ϕ(5)

We now verify Assumptions GMS1, GMS3, GMS6, and GMS7 for ϕ(5)� As-
sumption GMS1(b) holds for ϕ(5) if cj(ξ�Ω) = 1 whenever the jth element of
ξ equals 0 by the definition of ϕ(5)� If the jth element of ξ equals zero, cj(ξ�Ω)
does not enter the criterion function S(−c ·ξ�Ω)−η(|c|)� In consequence, the
criterion function is minimized by taking cj(ξ�Ω) = 1 because η(·) is strictly
increasing. Hence, Assumption GMS1(b) holds for ϕ(5)�

We show Assumption GMS1(a) holds for ϕ(5) (provided S satisfies Assump-
tion 1(d)) by showing that if (ξ[r]�Ω[r]) → (ξ�Ω) as r → ∞ and ξj = 0� then
cj(ξ[r]�Ω[r]) = 1 for r sufficiently large. By Assumption 1(d), S is continuous
at (ξ�Ω)� Hence, limr→∞ S(−c · ξ[r]�Ω[r]) → S(−c · ξ�Ω) as r → ∞� The limit
S(−c ·ξ�Ω) does not depend on cj because ξj = 0� Given ε > 0� there exists an
r∗ sufficiently large that |S(−c · ξ[r]�Ω[r]) − S(−c · ξ�Ω)| ≤ ε for all c ∈ C and
all r ≥ r∗� Hence, the first term of the selection criterion, S(−c · ξ�Ω)� is re-
duced by at most ε if cj is changed from 1 to 0� where c = (c1� � � � � ck)

′� On the
other hand, the second term of the selection criterion, −η(|c|)� is increased
by η(|c| + 1) − η(|c|) > 0� Taking ε < infc∈C(η(|c| + 1) − η(|c|)) implies that
the selection criterion is minimized by cj(ξ[r]�Ω[r]) = 1 for all r ≥ r∗� Hence,
Assumption GMS1(a) holds for ϕ(5)�

Next we verify Assumption GMS3 for ϕ(5) for all functions S for which S(−c ·
ξ�Ω) → ∞ as (ξ�Ω) → (ξ∗�Ω∗) whenever cj = 1� For any c∗ ∈ C with c∗� = 0
for all � such that ξ∗� = ∞ we have S(−c∗ · ξ�Ω) ≤ K as (ξ�Ω) → (ξ∗�Ω∗)
for some K < ∞ by Assumption 1(d). Hence, some c∗ = (c∗1� � � � � c∗k)′ ∈ C
with c∗j = 0 is selected over any c = (c1� � � � � ck)

′ ∈ C with cj = 1 as (ξ�Ω) →
(ξ∗�Ω∗)� This gives cj(ξ�Ω)= 0 and ϕj(ξ�Ω)= ∞ (using the definition of ϕ(5))
as (ξ�Ω) → (ξ∗�Ω∗)�

Assumptions GMS6 and GMS7 hold immediately for ϕ(5) by its definition.

S5. MEAN VECTORS FOR SIMULATION RESULTS

The main paper provides simulation results concerning the finite-sample av-
erage power of PA, subsampling, and GMS tests. Here we define the sets of
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mean vectors, denoted Mp(Ω)� for which the average power is calculated for
p = 2� 4� and 10 and ΩNeg, ΩZero, and ΩPos. Each element of Mp(Ω) is in the
alternative hypothesis.

For p = 2� the μ vectors considered are

M2(ΩNeg)= {(−1�001�0)� (−1�804�1)� (−2�303�2)� (−2�309�3)�(S5.1)

(−2�309�4)� (−2�309�7)� (−�5165�−�5165)}�
M2(ΩZero)= {(−2�309�0)� (−2�309�1)� (−2�309�2)� (−2�309�3)�

(−2�309�4)� (−2�309�7)� (−1�6263�−1�6263)}�
M2(ΩPos) = Mk(ΩZero) except the last vector is (−2�0040�−2�0040)�

The finite-sample power envelope (for known Ω) at each of these μ vectors
is .75.

For p = 4� M4(Ω) includes 24 elements and is of the form

M4(Ω) = {
(−μ1�−μ1�1�1)� (−μ2�−μ2�2�2)� (−μ3�−μ3�3�3)�(S5.2)

(−μ4�−μ4�4�4)� (−μ5�−μ5�7�7)� (−μ6�−μ6�1�7)�

(−μ7�−μ7�2�7)� (−μ8�−μ8�3�7)� (−μ9�−μ9�4�7)�

(−μ10�1�1�1)� (−μ11�2�2�2)� (−μ12�3�3�3)�

(−μ13�4�4�4)� (−μ14�7�7�7)� (−μ15�1�1�7)�

(−μ16�2�2�7)� (−μ17�3�3�7)� (−μ18�4�4�7)�

(−μ19�−μ19�0�0)� (−μ20�0�0�0)� (−μ21�25�25�25)�

(−μ22�−μ22�25�25)� (−μ23�−μ23�−μ23�25)�

(−μ24�−μ24�−μ24�−μ24)
}
�

where μj depends on Ω and is such that the finite-sample power envelope (for
known Ω) is �80 at each element of M4(Ω)�

The μ vectors in M4(ΩNeg) are defined by (S5.2) and the following
values: μ1 = −�5505� μj = −�5526 for j = 2� � � � �5� μ6 = −�5505� μj =
−�5526 for j = 7�8�9� μ10 = −1�8814� μ11 = −2�4283� μj = −2�4705 for
j = 12�13�14�17�18�21� μ15 = −1�8814� μ16 = −2�4283� μ19 = −�3176� μ20 =
−�8624� μ22 = −�5526� μ23 = −�2607� and μ24 = −�1756�

The μ vectors in M4(ΩZero) are defined by (S5.2) and the following values:
μj = 1�7388 for j = 1� � � � �9�19�22, μj = −2�4705 for j = 10� � � � �18�20�21,
μ23 = 1�4242, and μ24 = 1�2350�

The μ vectors in M4(ΩPos) are defined by (S5.2) and the following values:
μj = 2�4047 for j = 1� � � � �9�19�22, μj = −2�4705 for j = 10� � � � �18�20�21,
μ23 = 2�2628, and μ24 = −2�1293�
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For p = 10� M10(Ω) includes 40 vectors and is of the form:

M10(Ω) = {
(−μ1�−μ1�1� � � � �1)� (−μ2�−μ2�2� � � � �2)�(S5.3)

(−μ3�−μ3�3� � � � �3)� (−μ4�−μ4�4� � � � �4)�

(−μ5�−μ5�7� � � � �7)� (−μ6�−μ6�1�1�1�7� � � � �7)�

(−μ7�−μ7�2�2�2�7� � � � �7)� (−μ8�−μ8�3�3�3�7� � � � �7)�

(−μ9�−μ9�4�4�4�7� � � � �7)�

(−μ10�−μ10�−μ10�−μ10�1� � � � �1)�

(−μ11�−μ11�−μ11�−μ11�2� � � � �2)�

(−μ12�−μ12�−μ12�−μ12�3� � � � �3)�

(−μ13�−μ13�−μ13�−μ13�4� � � � �4)�

(−μ14�−μ14�−μ14�−μ14�7� � � � �7)�

(−μ15�−μ15�−μ15�−μ15�1�1�1�7�7�7)�

(−μ16�−μ16�−μ16�−μ16�2�2�2�7�7�7)�

(−μ17�−μ17�−μ17�−μ17�3�3�3�7�7�7)�

(−μ18�−μ18�−μ18�−μ18�4�4�4�7�7�7)� (−μ19�1� � � � �1)�

(−μ20�2� � � � �2)� (−μ21�3� � � � �3)� (−μ22�4� � � � �4)�

(−μ23�7� � � � �7)� (−μ24�1�1�1�7� � � � �7)�

(−μ25�2�2�2�7� � � � �7)� (−μ26�3�3�3�7� � � � �7)�

(−μ27�4�4�4�7� � � � �7)� (−μ28�−μ28�0� � � � �0)�

(−μ29�−μ29�−μ29�−μ29�0� � � � �0)� (−μ30�0� � � � �0)�

(−μ31�25� � � � �25)� (−μ32�−μ32�25� � � � �25)�

(−μ33�−μ33�−μ33�25� � � � �25)�

(−μ34�−μ34�−μ34�−μ34�25� � � � �25)�

(−μ35�−μ35�−μ35�−μ35�−μ35�25� � � � �25)�

(−μ36� � � � �−μ36�25�25�25�25)�

(−μ37� � � � �−μ37�25�25�25)� (−μ38� � � � �−μ38�25�25)�

(−μ39� � � � �−μ39�25)� (−μ40� � � � �−μ40)
}
�

The μ vectors in M10(ΩNeg) are defined by (S5.3) and the following values:
μj = �6016 for j = 1� � � � �9� μj = �3475 for j = 10� � � � �18� μ19 = 1�9847� μ20 =
2�5835� μj = 2�6817 for j = 21�22�23�26�27�31� μ24 = 1�9847� μ25 = 2�5835�
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μ28 = �5341� μ29 = �3322� μ30 = 1�1551� μ32 = �6016� μ33 = �4195� μ34 = �3475�
μ35 = �2985� μ36 = �2674� μ37 = �2430� μ38 = �2254� μ39 = �2106� and μ40 =
�1993�

The μ vectors in M10(ΩZero) are defined by (S5.3) and the following values:
μj = 1�8927 for j = 1� � � � �9�28�32, μj = 1�3360 for j = 10� � � � �18�29�34� μj =
2�6817 for j = 19� � � � �27�30�31� μ33 = 1�5463� μ35 = 1�1963� μ36 = 1�0893�
μ37 = 1�0099� μ38 = �9465� μ39 = �8882� and μ40 = �8440�

The μ vectors in M10(ΩPos) are defined by (S5.3) and the following values:
μj = 2�6227 for j = 1� � � � �9� μj = 2�4676 for j = 10� � � � �18� μj = 2�6817 for
j = 19� � � � �27� μ29 = 2�6227� μ30 = 2�6817� μ31 = 2�6817� μ32 = 2�6227� μ33 =
2�5401� μ34 = 2�4676� μ35 = 2�4005� μ36 = 2�3140� μ37 = 2�2846� μ38 = 2�2565�
μ39 = 2�2343� and μ40 = 2�2066�

For p = 10� the finite-sample power envelope (for known Ω) at each of the
μ vectors is �85�

S6. MONTE CARLO EXPERIMENTS I

S6.1. Introduction

In this section, we report some additional simulation results. We use simu-
lation to investigate the finite-sample properties of GMS CS’s and to compare
them to some other methods in the literature. We consider the coverage prob-
abilities (CP’s) of the CS’s for points in and not in the identified set. For points
on the boundary of the identified set and for which all inequalities are binding
(i.e., hold as equalities), the CP’s should be close to the nominal level 1−α� For
points on the boundary of the identified set and for which some inequality is
not binding, the CP’s should be greater than or equal to 1−α� Probabilities for
these points indicate the nonsimilarity on the boundary of the CS’s. For points
in the interior of the identified set, the CP’s should be greater than 1 − α� For
points that are not in the identified set, the CP’s should be less than 1 −α—the
smaller, the better.

We consider two very simple models. The first is a particular case of the
missing-data model considered in Imbens and Manski (2004) (IM). In this
model, there is one parameter, two moment inequalities, and no moment
equalities. We consider the GMS CS based on the MMM test statistic (i.e.,
the test function S1) with the MMSC function ϕ(5) with η(x) = x and κn =
(2�01 ln lnn)1/2 (i.e., the HQIC MMSC procedure).1 We compare the GMS CS
to the CS introduced by IM for this model (see IM for its definition) and to
the subsampling CS based on the MMM test statistic, and with subsample size
b = [n1/2]� the integer part of n1/2� (We mention, but do not report, results for
other values of b�) Rosen (2008) provided a comparison of the finite-sample
properties of his proposed CS with that of IM.

1We take σ̂2
n�j(θ) = n−1 ∑n

i=1 m
2
j (Wi� θ) for j = 1� � � � �k� rather than σ̂2

n�j(θ)= n−1 ∑n
i=1(mj(Wi�

θ)−mn�j(θ))
2� Results for the latter are similar.
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The second model considered is the interval-outcome regression model of
Manski and Tamer (2002). In this model, there are two parameters, two mo-
ment inequalities, and no moment equalities. We compare the same GMS and
subsampling procedures as defined above. (The IM CS does not apply to this
model.)

All results reported are for CS’s with nominal level �95� For both models,
we report results for n = 100� 500� and 1000� We take the number of simula-
tion repetitions, R� to be 20,000 for the GMS and IM CS’s and 5000 for the
subsampling CS’s.2 The reported CP’s are the relative frequencies of coverage
over the R repetitions.

S6.2. Missing-Data Model

In this model, Wi = (Yi�Di) are i.i.d. for i = 1� � � � � n with Yi ∼U[0�1]� Di ∼
Bern[�85]� and Yi and Di independent. The observations are {(YiDi�Di) : i ≤
n}� Thus, Yi is not observed when Di = 0� The parameter of interest is θ = EYi�
Given that data are missing, the parameter θ is not identified. Two moment
inequality functions used to bound θ are(

m1(Wi� θ)

m2(Wi� θ)

)
=

(
θ−YiDi

(1 − θ)− (1 −Yi)Di

)
�(S6.1)

When θ is the true parameter, we have Em1(Wi� θ)= θ−EYiDi ≥ θ−EYi = 0�
where the inequality holds because Yi ≥ 0 and Di ≤ 1 and Em2(Wi� θ) =
(1−θ)−E(1−Yi)Di ≥ (1−θ)−E(1−Yi)= 0� where the inequality holds be-
cause 1 −Yi ≥ 0 and Di ≤ 1� Hence, the functions in (S6.1) satisfy two moment
inequalities.

For the data-generating process above, the identified set [θL�θU ] is [�425�
�575].3 We consider the CP’s of the CS’s for the values θL = �425� θ = �5� and
θH = �575� which are in the identified set, and for the values �9 × θL and 1�1 ×
θU� which are not in the identified set.

Table S.I reports the CP’s of the GMS, IM, and subsampling CS’s with nomi-
nal level 95%. The table shows that for θ values in the identified set, the perfor-
mance of the GMS and IM CS’s is excellent for all sample sizes. Probabilities
for the GMS CS for boundary θ points range from �948 to �951� In contrast, the
subsampling CS overcovers by a noticeable amount for all sample sizes. Proba-
bilities for the subsampling CS for boundary θ points range from �971 to �990�
(This overcoverage is a finite-sample phenomenon because the subsampling
asymptotic CP is �95 at both boundaries.) All three CS’s cover θ = �5� which

2The subsampling CS’s are more computationally intensive than the moment selection CS’s.
Only 5000 repetitions are used for the moment selection results of Table III for θ not in the
identified set.

3The identified set is determined by θL −EYiDi = 0 (i.e., θL = �5 × �85 = �425) and (1 −θU)−
E(1 −Yi)Di = 0 (i.e., θU = 1 −E(1 −Yi)EDi = 1 − �5 × �85 = �575).
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TABLE S.I

MISSING-DATA MODEL: FINITE-SAMPLE COVERAGE PROBABILITIES OF NOMINAL
95% CONFIDENCE INTERVALS

Coverage Probabilities for θ Values

θ Values in θ Values Not in
Type of

Confidence
Interval

Identified Set Identified Set

n θL = �425 θ = �5 θH = �575 �9 × θL 1�1 × θH

100 GMS .951 1.0 .948 .619 .445
Imbens/Manski .946 1.0 .951 .637 .439

Subsampling .981 1.0 .990 .791 .667

500 GMS .951 1.0 .951 .095 .010
Imbens/Manski .949 1.0 .950 .094 .007

Subsampling .975 1.0 .971 .145 .032

1 000 GMS .951 1.0 .949 .006 .000
Imbens/Manski .953 1.0 .950 .005 .000

Subsampling .972 1.0 .971 .008 .000

lies in the interior of the identified set and is far from either boundary, with
probability 1. This is in accord with the asymptotic results.

For θ points not in the identified set, we want the CP of a CS to be as close
to zero as possible. (A lower CP for such points translates into a shorter and
more informative CS.) Table S.I shows that the GMS CS covers points not in
the identified set with substantially lower probability than the subsampling CS
when n = 100 (viz., �619 versus �791 and �445 versus �667) and with slightly
lower probability for n= 500 (viz., �095 versus �145 and �010 versus �030). This
is consistent with the asymptotic power comparisons given in the main paper.
For points not in the identified set, the GMS and IM CS’s have comparable
CP’s. For n = 500 and 1000� the CP’s of all three CS’s are sufficiently low that
the differences between them are small.

As has been reported in other scenarios, subsampling CP’s are sensitive to
the choice of the subsample size b� Additional simulation results not reported
here show that for smaller b, the subsampling CP’s for θ in the identified set
become slightly closer to the nominal level, while for larger subsample sizes,
they become closer to 1. For θ not in the identified set, smaller b reduces the
subsampling CP’s slightly and larger b increases them slightly.

S6.3. Interval-Outcome Regression Model

This model is a regression model with unobserved dependent variable Yi,

Yi = θ1 +Ziθ2 +Ui�(S6.2)
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where (Zi�Ui) are i.i.d. for i = 1� � � � � n� Zi ∼ N(1�1)� Ui ∼ N(0�1)� and
θ = (θ1� θ2)� The observations are {(YL

i �Y
H
i �Zi) : i ≤ n}� where YL

i equals the
integer part of Yi� Y

H
i equals the smallest integer greater than or equal to Yi�

and so YL
i ≤ Yi ≤ YH

i a.s. The parameter θ is not identified because Yi is not
observed. The two moment inequality functions are(

m1(Wi� θ)

m2(Wi� θ)

)
=

(
θ1 +Ziθ2 −YL

i

(YH
i − θ1 −Ziθ2)Z

2
i

)
�(S6.3)

When θ is the true parameter value, we have Em1(Wi� θ) = θ1 +Ziθ2 −EYL
i ≥

θ1 + Ziθ2 − EYi = 0 and Em2(Wi� θ) = E(YH
i − θ1 − Ziθ2)Z

2
i ≥ E(Yi − θ1 −

Ziθ2)Z
2
i = 0.4 Thus, the functions in (S6.3) satisfy two moment inequalities.

We consider the case where the true parameter is θ = (1�1)� In this case, the
identified set consists of the (θ1� θ2) values that satisfy5

θ1 + θ2 ≥ 1�5 and 2θ1 + 4θ2 ≤ 7�(S6.4)

We consider the CP’s of the CS’s for the θ values (−�5�2)� (1�5�0)� (1�1�25)�
and (1�1)� which are all in the identified set. The point (−�5�2) is on the
boundary of the identified set with both moment inequalities binding; (1�5�0)
and (1�1�25) are on the boundary of the identified set with only one inequal-
ity binding in each case; and (1�1) is in the interior of the identified set. We
also consider CP’s of the CS’s for the θ values (1�35�0) and (1�1�375)� which
are not in the identified set. The point (1�35�0) violates the first inequality in
(S6.4) and satisfies the second. The reverse is true for the point (1�1�375)�

Table S.II reports CP’s for the interval-outcome regression model. Table S.II
shows that the GMS CS performs very well at θ = (−�5�2) (at which both in-
equalities are binding) and at θ = (1�5�0) (at which only the first inequality is
binding) with CP’s ranging between �948 and �953. Its CP’s at θ = (1�1�25) (at
which only the second inequality is binding) are somewhat higher, with CP’s
ranging between �957 and �963� Overcoverage in this case is not necessarily a
finite-sample phenomenon because the CS is not asymptotically similar on the
boundary of the identified set. For points on the boundary of the identified
set, the CP’s of the subsampling CS are not quite as good as for the GMS CS.
At θ = (−�5�2) they vary between �940 and �963; at θ = (1�5�0)� they vary be-
tween �972 and �986; at θ = (1�1�25) they are comparable to those of the GMS
CS. Both CS’s cover the point θ = (1�1) (which is in the interior of the identi-

4In the second moment function, YH
i −θ1 −Ziθ2 is multiplied by Z2

i to avoid perfect colinearity
with θ1 + Ziθ2 − YL

i since YH
i = YL

i + 1 by definition. We do not consider optimal choices of
moment functions for this model because such choices are not known and the results are only
illustrative anyway.

5The identified set is determined by θ1 +EZiθ2 −EYL
i ≥ 0 (i.e., θ1 + θ2 ≥ 1�5), where EYL

i ≈
1�5 (by numerical calculation), and by E(YH

i −θ1 −Ziθ2)Z
2
i ≥ 0 (i.e., EYH

i Z2
i −EZ2

i θ1 −EZ3
i θ2 ≥

0), where EYH
i Z2

i ≈ 7 (by numerical calculation), EZ2
i = 2, and EZ3

i = 4.



INFERENCE FOR PARAMETERS 27

TABLE S.II

INTERVAL-OUTCOME REGRESSION MODEL: FINITE-SAMPLE COVERAGE PROBABILITIES OF
NOMINAL 95% CONFIDENCE SETS FOR (θ1� θ2)

Coverage Probabilities for (θ1� θ2) Values

(θ1� θ2) in (θ1� θ2) Not in
Type of

Confidence
Interval

Identified Set Identified Set

n (−�5�2) (1�5�0) (1�1�25) (1�1) (1�35�0) (1�1�375)

100 GMS .953 .948 .963 1.0 .719 .626
Subsampling .963 .986 .962 1.0 .851 .638

500 GMS .953 .950 .959 1.0 .236 .061
Subsampling .944 .980 .962 1.0 .375 .067

1000 GMS .951 .951 .957 1.0 .056 .002
Subsampling .940 .972 .957 1.0 .106 .002

fied set and not close to a boundary) with probability 1. This is expected given
that the asymptotic CP is 1.

Next, we consider θ points not in the identified set. Table S.II shows that
the GMS CS has noticeably lower CP at θ = (1�35�0) than the subsampling
CS (viz., �719 versus �851 and �236 versus �375). For θ = (1�1�375)� the two
CS’s have comparable CP’s. These results are consistent with the power results
given in the main paper which show that the GMS test has higher power at
some points and equal power at other points compared to the subsampling test.

Similar comments regarding the sensitivity of the subsampling results to b
apply in this model as in the missing-data model.

In sum, the simulation results of this section are in accord with the asymp-
totic results. They show that the GMS CS has advantages relative to the sub-
sampling CS. The GMS CS has CP’s that are (i) closer to the nominal level and
less nonsimilar on the boundary of the identified set, and (ii) lower for points
outside the identified set.

S7. MONTE CARLO EXPERIMENT II: SUBSAMPLING WITH AND
WITHOUT RECENTERING

In this section, we provide finite-sample comparisons of the maximum null
rejection probability (MNRP) over different null mean vectors of recentered
and non-recentered subsampling tests based on the QLR test statistic (i.e., S2).
(MNRP is defined precisely below.) In short, the recentered subsampling test
is found to out-perform the non-recentered subsampling test by a substantial
margin in terms of the closeness of the nominal level and the finite-sample
MNRP of the tests.

We consider the case in which no equalities arise (i.e., v = 0) and the
number of inequalities, p� is 2 or 4� For given θ� the null hypothesis is
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H0 :Em(Wi�θ) ≥ 0p for some given moment functions m(Wi�θ) and the al-
ternative hypothesis is that H0 does not hold. The finite-sample properties
of tests of H0 depend on m(Wi�θ) only through (i) μ = Em(Wi�θ)� (ii) Ω =
Corr(m(Wi�θ))� and (iii) the distribution of the mean zero, variance Ip ran-
dom vector Z† = Var−1/2(m(Wi�θ))(m(Wi�θ) − Em(Wi�θ))� We consider the
case in which Z† ∼ N(0p� Ip)� We consider three representative correlation
matrices ΩNeg� ΩZero� and ΩPos� which exhibit negative, zero, and positive cor-
relations, respectively. Specifically, ΩZero equals Ip for p = 2 and 4� The ma-
trices ΩNeg and ΩPos are Toeplitz matrices with correlations on the diagonals
given by a p− 1 vector ρ� For p = 2, ρ = −�9 for ΩNeg and ρ= �5 for ΩPos� For
p= 4, ρ = (−�9� �7�−�5) for ΩNeg and ρ = (�9� �7� �5) for ΩPos�

By MNRP, we mean the maximum null rejection probability over all mean
vectors in H0 (i.e., all μ = Em(Wi�θ) ∈ R

p
+� where R+ = {x ∈ R :x ≥ 0}) un-

der the assumption of normally distributed moment inequalities (i.e., Z† ∼
N(0p� Ip)) and given the correlation matrix ΩNeg� ΩZero� or ΩPos�

For the subsampling test without recentering, the subsample size is m = n1/2.
(Better results for this test were not found by taking other values of m.) For the
recentered subsampling test, the subsample size is m = �75n2/3. (This choice
is based on the simulation results reported in the main paper.) For the sub-
sampling test without recentering, the simulation results are based on 5000
subsamples and 5000 simulation repetitions. For the recentered subsampling
test, the simulation results are based on 2500 subsamples and 2500 simulation
repetitions.

Table S.III reports the MNRP results for subsampling with and without re-

TABLE S.III

FINITE-SAMPLE MNRP’S OF NOMINAL .05 TESTSa

Number of
Moment
Inequalities

Sample
Size n

MNRPb

Critical Value ΩNeg ΩZero ΩPos

.0 .0 .0
2 250 Sub/Recenter .050 .050 .051

250 Sub/NoRecenter .027 .020 .018
1000 Sub/NoRecenter .037 .027 .025
5000 Sub/NoRecenter .044 .039 .037

4 250 Sub/Recenter .046 .047 .051
250 Sub/NoRecenter .038 .030 .020

1000 Sub/NoRecenter .036 .032 .028
5000 Sub/NoRecenter .044 .041 .036

aTests are based on the quasi-likelihood ratio test statistic combined with recentered subsampling (Sub/Recenter)
and non-recentered subsampling (Sub/NoRecenter) critical values for sample sizes n = 250, 1000, and 5000, three
correlation matrices ΩNeg� ΩZero� and ΩPos� and 2 and 4 moment inequalities.

bMNRP denotes the maximum null rejection probability over mean vectors in H0 under the assumption of nor-
mally distributed moment inequalities and given the correlation matrix ΩNeg� ΩZero� or ΩPos�
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centering. The results show that subsampling without recentering leads to sub-
stantial underrejection of the null hypothesis for sample sizes n = 250 and
1000� For example, for p = 2 and n = 250� its MNRP ranges from .018 to
.027 for nominal .05 tests. For p= 2 and n = 1000� it ranges from .025 to .037.
Even for a sample size of 5000, the subsampling test without recentering un-
derrejects the null hypothesis somewhat. In contrast, the subsampling test with
recentering has good MNRP values for a sample size as small as 250� For p= 2
and n= 250� its MNRP ranges from .050 to .051.
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