SUPPLEMENT TO "IDENTIFICATION AND ESTIMATION OF TRIANGULAR SIMULTANEOUS EQUATIONS MODELS WITHOUT ADDITIVITY"
 (Econometrica, Vol. 77, No. 5, September 2009, 1481-1512)

By Guido W. Imbens and Whitney K. Newey

PROOFS OF LEMMAS 10 AND 11 AND THEOREMS 12 AND 13

Throughout this supplementary material, C will denote a generic positive constant that may be different in different uses. Also, we will abbreviate the phrases with probability approaching 1 as w.p.a.1, positive semidefinite as p.s.d., and positive definite as p.d.; $\lambda_{\min }(A), \lambda_{\max }(A)$, and $A^{1 / 2}$ will denote the minimum eigenvalues, the maximum eigenvalues, and the square root, respectively, of a symmetric matrix A. Let \sum_{i} denote $\sum_{i=1}^{n}$. Also, let CS, M, and T refer to the Cauchy-Schwarz, Markov, and triangle inequalities, respectively. Also, let CM refer to the following well known result: If $E\left[\mid Y_{n} \| Z_{n}\right]=O_{p}\left(r_{n}\right)$, then $Y_{n}=O_{p}\left(r_{n}\right)$.

Proof of Lemma 10: The joint PDF of (x, η) is $f_{Z}(x-\eta) f_{\eta}(\eta)$, where $f_{Z}(\cdot)$ is the PDF of Z and $f_{\eta}(\cdot)$ is the PDF of η. By a change of variable $v=$ $F_{\eta}(\eta)$, the PDF of (x, v) is

$$
f_{Z}\left(x-F_{\eta}^{-1}(v)\right),
$$

where $F_{\eta}(\cdot)$ is the CDF of η_{0}. Consider $\alpha=\bar{\alpha}+\delta>\left(1-R^{2}\right) / R^{2}=\sigma_{\eta}^{2} / \sigma_{Z}^{2}$. Then for $\eta=F_{\eta}^{-1}(v)$ and $0<v<1$,

$$
\frac{f_{Z}\left(x-F_{\eta}^{-1}(v)\right)}{v^{\alpha}(1-v)^{\alpha}}=C \exp \left(-\frac{1}{2}\left(\frac{x-\eta}{\sigma_{Z}^{2}}\right)^{2}\right) \Phi\left(\frac{\eta}{\sigma_{\eta}}\right)^{-\alpha} \Phi\left(-\frac{\eta}{\sigma_{\eta}}\right)^{-\alpha}
$$

It is well known that $\phi(u) / \Phi(u)$ is monotonically decreasing, so there is $C>0$ such that $\Phi(u)^{-1} \geq C \phi(u)^{-1}, u \leq 0$, and similarly $\Phi(u)^{-1} \geq C \phi(u)^{-1}, u \geq 0$. Then by $\Phi(u)^{-1} \geq 1$ for all u,

$$
\Phi(u)^{-1} \Phi(-u)^{-1} \geq C \phi(u)^{-1} .
$$

Therefore, for $\eta=\sigma_{\eta} \Phi^{-1}(v)$,

$$
\begin{aligned}
\frac{f_{Z}\left(x-F_{\eta}^{-1}(v)\right)}{v^{\alpha}(1-v)^{\alpha}} & \geq C \exp \left\{-\frac{1}{2}\left(\frac{x-\eta}{\sigma_{Z}}\right)^{2}\right\} \exp \left(\frac{1}{2} \frac{\alpha \eta^{2}}{\sigma_{\eta}^{2}}\right) \\
& =C \exp \left\{\frac{-x^{2}}{2 \sigma_{Z}^{2}}+\frac{x \eta}{\sigma_{Z}^{2}}+\frac{\eta^{2}}{2 \sigma_{Z}^{2}}\left(\frac{\alpha \sigma_{Z}^{2}}{\sigma_{\eta}^{2}}-1\right)\right\} .
\end{aligned}
$$

The expression following the equality is bounded away from zero for $|x| \leq B$ and all $\eta \in \mathbb{R}$ by $\alpha>\sigma_{\eta}^{2} / \sigma_{Z}^{2}$.

The upper bound follows by a similar argument, using the fact that there is a C with $\phi(u) / \Phi(u) \leq|u|+C$ for all u.

Before proving Lemma 11, we prove some preliminary results. Let $q_{i}=$ $q^{L}\left(Z_{i}\right)$ and $\omega_{i j}=1\left(X_{1 j} \leq X_{1 i}\right)-F_{X_{1} \mid Z}\left(X_{1 i} \mid Z_{j}\right)$.

Lemma S.1: For $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ and $L \times 1$ vectors of functions $b_{i}(Z)(i=$ $1, \ldots, n)$, if $\sum_{i=1}^{n} b_{i}(Z)^{\prime} \hat{Q} b_{i}(Z) / n=O_{p}\left(r_{n}\right)$, then

$$
\sum_{i=1}^{n}\left\{b_{i}(Z)^{\prime} \sum_{j=1}^{n} q_{j} \omega_{i j} / \sqrt{n}\right\}^{2} / n=O_{p}\left(r_{n}\right)
$$

Proof: Note that $\left|\omega_{i j}\right| \leq 1$. Consider $j \neq k$ and suppose without loss of generality that $j \neq i$ (otherwise reverse the role of j and k because we cannot have $i=j$ and $i=k$). By independence of the observations,

$$
\begin{aligned}
E\left[\omega_{i j} \omega_{i k} \mid Z\right]= & E\left[E\left[\omega_{i j} \omega_{i k} \mid Z, X_{i}, X_{k}\right] \mid Z\right] \\
= & E\left[\omega_{i k} E\left[\omega_{i j} \mid Z, X_{i}, X_{k}\right] \mid Z\right] \\
= & E\left[\omega_{i k} E\left[\omega_{i j} \mid Z_{j}, Z_{i}, X_{i}\right] \mid Z\right] \\
= & E\left[\omega _ { i k } \left\{E\left[1\left(X_{1 j} \leq X_{1 i}\right) \mid Z_{j}, Z_{i}, X_{i}\right]\right.\right. \\
& \left.\left.-F_{X_{1} \mid Z}\left(X_{1 i} \mid Z_{j}\right)\right\} \mid Z\right]=0
\end{aligned}
$$

Therefore, it follows that

$$
\begin{aligned}
& E\left[\sum_{i=1}^{n}\left\{b_{i}(Z)^{\prime} \sum_{j=1}^{n} q_{j} \omega_{i j} / \sqrt{n}\right\}^{2} / n \mid Z\right] \\
& \quad \leq \sum_{i=1}^{n} b_{i}(Z)^{\prime}\left\{\sum_{j, k=1}^{n} q_{j} E\left[\omega_{i j} \omega_{i k} \mid Z\right] q_{k}^{\prime} / n\right\} b_{i}(Z) / n \\
& \quad=\sum_{i=1}^{n} b_{i}(Z)^{\prime}\left\{\sum_{j=1}^{n} q_{j} E\left[\omega_{i j}^{2} \mid Z\right] q_{j}^{\prime} / n\right\} b_{i}(Z) / n \leq \sum_{i=1}^{n} b_{i}(Z)^{\prime} \hat{Q} b_{i}(Z) / n
\end{aligned}
$$

so the conclusion follows by CM .
Q.E.D.

Lemma S.2—Lorentz (1986, p. 90, Theorem 8): If Assumption 3 is satisfied, then there exists C such that for each x there is $\gamma(x)$ with $\sup _{z \in Z} \mid F_{X_{1} \mid Z}(x \mid z)-$ $p^{K_{1}}(z)^{\prime} \gamma(x) \mid \leq C K_{1}^{-d_{1} / r_{1}}$.

Lemma S.3: If Assumption 4 is satisfied, then for each K there exists a nonsingular constant matrix B such that $\tilde{p}^{K_{2}}(w)=B p^{K_{2}}(w)$ satisfies $E\left[\tilde{p}^{K_{2}}\left(w_{i}\right) \times\right.$ $\left.\tilde{p}^{K_{2}}\left(w_{i}\right)^{\prime}\right]=I_{K_{2}}, \quad \sup _{w \in \mathcal{W}}\left\|\tilde{p}^{K_{2}}(w)\right\| \leq C K_{V}^{\alpha} K_{2}, \quad \sup _{w \in \mathcal{W}}\left\|\partial \tilde{p}^{K_{2}}(w) / \partial V\right\| \leq$ $C K_{V}^{\alpha+2} K_{2}$, and $\sup _{t \in[0,1]}\left\|\tilde{p}^{K_{V}}(t)\right\| \leq C K_{V}^{1+\alpha}$.

Proof: For $u \in[0,1]$, let $P_{j}^{\alpha}(u)$ be the j th orthonormal polynomial with respect to the weight $u^{\alpha}(1-u)^{\alpha}$. Denote $\mathcal{X}=\prod_{\ell=1}^{r_{2}-1}\left[\underline{x}_{\ell}, \bar{x}_{\ell}\right]$. By the fact that the order of the power series is increasing and that all terms of a given order are included before a term of higher order, for each k and $\lambda(k, \ell)$ with $p_{k}(w)=$ $\prod_{\ell=1}^{s} w_{\ell}^{\lambda(k, \ell)}$, there exists $b_{k j}(j \leq k)$ such that

$$
\sum_{j=1}^{k} b_{k j} p_{j}(w)=\prod_{\ell=1}^{r_{2}-1} P_{\lambda(k, \ell)}^{0}\left(\left[x_{\ell}-\underline{x}_{\ell}\right] /\left[\bar{x}_{\ell}-\underline{x}_{\ell}\right]\right) P_{\lambda(k, s)}^{\alpha}(t)
$$

Let B_{k} denote a $K_{2} \times 1$ vector $B_{k}=\left(b_{k 1}, \ldots, b_{k k}, 0^{\prime}\right)^{\prime}, b_{k k} \neq 0$, where 0 is a $(K-k)$-dimensional zero vector, and let \bar{B} be the $K_{2} \times K_{2}$ matrix with k th row B_{k}^{\prime}. Then \bar{B} is a lower triangular matrix with nonzero diagonal elements and so is nonsingular. As shown in Andrews (1991), there is C such that $\left|P_{j}^{\alpha}(u)\right| \leq C\left(j^{\alpha+1 / 2}+1\right) \leq C j^{\alpha+1 / 2}$ and $\left|d P_{j}^{\alpha}(u) / d u\right| \leq C j^{\alpha+5 / 2}$ for all $u \in[0,1]$ and $j \in\{1,2, \ldots\}$. Then for $\bar{p}^{K_{2}}(w)=\bar{B} p^{K_{2}}(w)$, it follows that $\left|\bar{p}_{k}(w)\right| \leq C \lambda(k, s)^{\alpha+1 / 2} \prod_{\ell=1}^{s-1} \lambda(k, \ell)^{1 / 2}$, so that $\left\|\bar{p}^{K_{2}}(w)\right\| \leq C K_{V}^{\alpha} K_{2}$, and $\sup _{w \in \mathcal{W}}\left\|\partial \bar{p}^{K_{2}}(w) / \partial t\right\| \leq C K_{V}^{\alpha+2} K_{2}$. Then by Assumption 4, it follows that $\Omega_{K_{2}}=E\left[\bar{p}^{K_{2}}\left(w_{i}\right) \bar{p}^{K_{2}}\left(w_{i}\right)^{\prime}\right] \geq C I_{K_{2}}$. Let $\tilde{B}=\Omega_{K_{2}}^{-1 / 2}$ and define $\tilde{p}^{K_{2}}(w)=$ $\tilde{B} \bar{p}^{K_{2}}(w)$. Then $\left\|\tilde{p}^{K_{2}}(w)\right\|=\sqrt{\tilde{p}^{K_{2}}(w)^{\prime} \tilde{p}^{K_{2}}(w)} \leq \sqrt{\bar{p}^{K_{2}}(w)^{\prime} \Omega^{-1} \bar{p}^{K_{2}}(w)} \leq$ $C\left\|\bar{p}^{K_{2}}(w)\right\|$ and an analogous inequality holds for $\left\|\partial \tilde{p}^{K_{2}}(w) / \partial t\right\|$, giving the conclusion. Q.E.D.

Henceforth define $\zeta=C K_{V}^{\alpha} K_{2}$ and $\zeta_{1}=C K_{V}^{\alpha+2} K_{2}$. Also, since the estimator is invariant to nonsingular linear transformations of $p^{K_{2}}(w)$, we can assume that the conclusion of Lemma S. 3 is satisfied with $p^{K_{2}}(w)$ replacing $\tilde{p}^{K_{2}}(w)$.

Proof of Lemma 11: Let $\delta_{i j}=F_{X_{1} \mid Z}\left(X_{1 i} \mid Z_{j}\right)-q_{j}^{\prime} \gamma^{K_{1}}\left(X_{1 i}\right)$, with $\left|\delta_{i j}\right| \leq$ $K_{1}^{-d_{1} / r_{1}}$ by Lemma S.2. Then for $\tilde{V}_{i}=\tilde{a}_{1\left(X_{1} \leq X_{1 i}\right.}^{K_{1}}\left(Z_{i}\right)$,

$$
\tilde{V}_{i}-V_{i}=\Delta_{i}^{\mathrm{I}}+\Delta_{i}^{\mathrm{II}}+\Delta_{i}^{\mathrm{III}}
$$

where

$$
\Delta_{i}^{\mathrm{I}}=q_{i}^{\prime} \hat{Q}^{-} \sum_{j=1}^{n} q_{j} \omega_{i j} / n, \quad \Delta_{i}^{\mathrm{II}}=q_{i}^{\prime} \hat{Q}^{-} \sum_{j=1}^{n} q_{j} \delta_{i j} / n, \quad \Delta_{i}^{\mathrm{III}}=-\delta_{i i} .
$$

Note that $\left|\Delta_{i}^{\mathrm{III}}\right| \leq C K_{1}^{-d_{1} / r}$ by Lemma S.2. Also, by \hat{Q} p.s.d. and symmetric, there exists a diagonal matrix of eigenvalues Λ and an orthonormal matrix B
such that $\hat{Q}=B \Lambda B^{\prime}$. Let Λ^{-}denote the diagonal matrix of inverse of nonzero eigenvalues and zeros, and let $\hat{Q}^{-}=B \Lambda^{-} B^{\prime}$. Then $\sum_{i} q_{i}^{\prime} \hat{Q}^{-} q_{i}=\operatorname{tr}\left(\hat{Q}^{-} \hat{Q}\right) \leq C L$. By CS and Assumption 3,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\Delta_{i}^{\mathrm{II}}\right)^{2} / n & \leq \sum_{i=1}^{n}\left(q_{i}^{\prime} \hat{Q}^{-} q_{i} \sum_{j=1}^{n} \delta_{i j}^{2} / n\right) / n \leq C \sum_{i=1}^{n}\left(q_{i}^{\prime} \hat{Q}^{-} q_{i}\right) L^{-2 d_{1}} / n \\
& =C K_{1}^{-2 d_{1} / r} \operatorname{tr}\left(\hat{Q}^{-} \hat{Q}\right) \leq C K_{1}^{1-2 d_{1} / r}
\end{aligned}
$$

Note that for $b_{i}(Z)=q_{i}^{\prime} \hat{Q}^{-} / \sqrt{n}$ we have

$$
\begin{aligned}
\sum_{i=1}^{n} b_{i}(Z)^{\prime} \hat{Q} b_{i}(Z) / n & =\operatorname{tr}\left(\hat{Q} \hat{Q}^{-} \hat{Q} \hat{Q}^{-}\right) / n=\operatorname{tr}\left(\hat{Q} \hat{Q}^{-}\right) / n \\
& \leq C K_{1} / n=O_{p}\left(K_{1} / n\right)
\end{aligned}
$$

so it follows by Lemma S. 1 that $\sum_{i=1}^{n}\left(\Delta_{i}^{I}\right)^{2} / n=O_{p}(L / n)$. The conclusion then follows by T and by $|\tau(\tilde{V})-\tau(V)| \leq|\tilde{V}-V|$, which gives $\sum_{i}\left(\hat{V}_{i}-V_{i}\right)^{2} / n \leq$ $\sum_{i}\left(\tilde{V}_{i}-V_{i}\right)^{2} / n$.
Q.E.D.

Before proving other results, we give some useful lemmas. For these results let $p_{i}=p^{K_{2}}\left(w_{i}\right), \hat{p}_{i}=p^{K_{2}}\left(\hat{w}_{i}\right), p=\left[p_{1}, \ldots, p_{n}\right], \hat{p}=\left[\hat{p}_{1}, \ldots, \hat{p}_{n}\right], \hat{P}=\hat{p}^{\prime} \hat{p} / n$, and $\tilde{P}=p^{\prime} p / n, P=E\left[p_{i} p_{i}^{\prime}\right]$. Also, as in Newey (1997), it can be shown that without loss of generality we can set $P=I_{K_{2}}$.

Lemma S.4: If the hypotheses of Theorem 1 are satisfied, then $E[Y \mid X, Z]=$ $m(X, V)$.

Proof: By the proof of Theorem 1, $V=F_{X_{1} \mid Z}\left(X_{1} \mid Z\right)$ is a function of X_{1} and Z that is invertible in X_{1} with inverse $X_{1}=\bar{h}(Z, V)$, where $\bar{h}(z, v)$ is the inverse of $F_{X_{1} \mid Z}(x \mid z)$ in its first argument. Therefore, (V, Z) is a one-to-one function of (X, Z). By independence of Z and $(\varepsilon, \eta), \varepsilon$ is independent of Z conditional on V, so that by equation (4),

$$
\begin{align*}
E[Y \mid X, Z] & =E[Y \mid V, Z]=E[g(\bar{h}(Z, V), \varepsilon) \mid V, Z] \\
& =\int g(\bar{h}(Z, V), e) F_{\varepsilon \mid Z, V}(d e \mid Z, V) \\
& =\int g(\bar{h}(Z, V), e) F_{\varepsilon \mid V}(d e \mid V)=m(X, V)
\end{align*}
$$

Let $u_{i}=Y_{i}-m\left(X_{i}, V_{i}\right)$ and let $u=\left(u_{1}, \ldots, u_{n}\right)^{\prime}$.

Lemma S.5: If $\sum_{i}\left\|\hat{V}_{i}-V_{i}\right\|^{2} / n=O_{p}\left(\Delta_{n}^{2}\right)$ and Assumptions 3-6 are satisfied, the following equalities hold:
(i) $\|\tilde{P}-P\|=O_{p}\left(\zeta \sqrt{K_{2} / n}\right)$,
(ii) $\left\|p^{\prime} u / n\right\|=O_{p}\left(\sqrt{K_{2} / n}\right)$,
(iii) $\|\hat{p}-p\|^{2} / n=O_{p}\left(\zeta_{1}^{2} \Delta_{n}^{2}\right)$,
(iv) $\|\hat{P}-\tilde{P}\|=O_{p}\left(\zeta_{1}^{2} \Delta_{n}^{2}+\sqrt{K_{2}} \zeta_{1} \Delta_{n}\right)$,
(v) $\left\|(\hat{p}-p)^{\prime} u / n\right\|=O_{p}\left(\zeta_{1} \Delta_{n} / \sqrt{n}\right)$.

Proof: The first two results follow as in equation (A.1) and page 162 of Newey (1997). For (iii), a mean value expansion gives $\hat{p}_{i}=p_{i}+\left[\partial p^{K_{2}}\left(\tilde{w}_{i}\right) /\right.$ $\partial V]\left(\hat{V}_{i}-V_{i}\right)$, where $\tilde{w}_{i}=\left(x_{i}, \tilde{V}_{i}\right)$ and \tilde{V}_{i} lies in between \hat{V}_{i} and V_{i}. Since \hat{V}_{i} and V_{i} lie in $[0,1]$, it follows that $\tilde{V}_{i} \in[0,1]$, so that by Lemma S.3, $\left\|\partial p^{K_{2}}\left(\tilde{w}_{i}\right) / \partial V\right\| \leq$ $C \zeta_{1}$. Then by CS, $\left\|\hat{p}_{i}-p_{i}\right\| \leq C \zeta_{1}\left|\hat{V}_{i}-V_{i}\right|$. Summing up gives

$$
\begin{equation*}
\|\hat{p}-p\|^{2} / n=\sum_{i=1}^{n}\left\|\hat{p}_{i}-p_{i}\right\|^{2} / n=O_{p}\left(\zeta_{1}^{2} \Delta_{n}^{2}\right) . \tag{S.1}
\end{equation*}
$$

For (iv), by Lemma S.3, $\sum_{i=1}^{n}\left\|p_{i}\right\|^{2} / n=O_{p}\left(E\left[\left\|p_{i}\right\|^{2}\right]\right)=\operatorname{tr}\left(I_{K_{2}}\right)=K_{2}$. Then by T, CS, and M,

$$
\begin{aligned}
\|\hat{P}-\tilde{P}\| \leq & \sum_{i=1}^{n}\left\|\hat{p}_{i} \hat{p}_{i}^{\prime}-p_{i} p_{i}^{\prime}\right\| / n \leq \sum_{i=1}^{n}\left\|\hat{p}_{i}-p_{i}\right\|^{2} / n \\
& +2\left(\sum_{i=1}^{n}\left\|\hat{p}_{i}-p_{i}\right\|^{2} / n\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|p_{i}\right\|^{2} / n\right)^{1 / 2} \\
= & O_{p}\left(\zeta_{1}^{2} \Delta_{n}^{2}+\sqrt{K_{2}} \zeta_{1} \Delta_{n}\right) .
\end{aligned}
$$

Finally, for (v), for $\vec{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ and $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$, it follows from Lemma S.4, Assumption 6, and independence of the observations that $E\left[u u^{\prime} \mid \vec{X}, \vec{Z}\right] \leq C I_{n}$, so that by p and \hat{p} depending only on \vec{Z} and \vec{X},

$$
\begin{aligned}
E\left[\left\|(\hat{p}-p)^{\prime} u / n\right\|^{2} \mid \vec{X}, \vec{Z}\right] & =\operatorname{tr}\left\{(\hat{p}-p)^{\prime} E\left[u u^{\prime} \mid \vec{X}, \vec{Z}\right](\hat{p}-p) / n^{2}\right\} \\
& \leq C\|\hat{p}-p\|^{2} / n^{2}=O_{p}\left(\zeta_{1}^{2} \Delta_{n}^{2} / n\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

LEMMA S.6: If Assumptions 3-6 are satisfied and $K_{2} \zeta_{1}^{2} \Delta_{n}^{2} \longrightarrow 0$, then w.p.a.1, $\lambda_{\text {min }}(\hat{P}) \geq C, \lambda_{\text {min }}(\tilde{P}) \geq C$.

Proof: By Lemma S. 3 and $\zeta_{1}^{2} K_{2} / n \leq C K_{2} \zeta_{1}^{2} K_{1} / n$, we have $\|\hat{P}-\tilde{P}\| \xrightarrow{p}$ 0 and $\|\tilde{P}-P\| \xrightarrow{p} 0$, so the conclusion follows as on page 162 of Newey (1997).
Q.E.D.

Let $m=\left(m\left(w_{1}\right), \ldots, m\left(w_{n}\right)\right)^{\prime}$, and $\hat{m}=\left(m\left(\hat{w}_{1}\right), \ldots, m\left(\hat{w}_{n}\right)\right)^{\prime}$.
Lemma S.7: If $\sum_{i}\left\|\hat{V}_{i}-V_{i}\right\|^{2} / n=O_{p}\left(\Delta_{n}^{2}\right)$, Assumptions 3-6 are satisfied, $\sqrt{K_{2}} \zeta_{1} \Delta_{n} \rightarrow 0$, and $K_{2} \zeta^{2} / n \rightarrow 0$, then for $\tilde{\alpha}=\hat{P}^{-1} \hat{p}^{\prime} \hat{m} / n$ and $\bar{\alpha}=\hat{P}^{-1} \hat{p}^{\prime} m / n$, the following equalities hold:
(i) $\|\hat{\alpha}-\bar{\alpha}\|=O_{p}\left(\sqrt{K_{2} / n}\right)$,
(ii) $\|\tilde{\alpha}-\bar{\alpha}\|=O_{p}\left(\Delta_{n}\right)$,
(iii) $\left\|\tilde{\alpha}-\alpha^{K_{2}}\right\|=O_{p}\left(K_{2}^{-d_{2} / r_{2}}\right)$.

Proof: For (i),

$$
\begin{aligned}
& E\left[\left\|\hat{P}^{1 / 2}(\hat{\alpha}-\bar{\alpha})\right\|^{2} \mid \vec{X}, \vec{Z}\right] \\
& \quad=E\left[u^{\prime} \hat{p} \hat{P}^{-1} \hat{p}^{\prime} u / n^{2} \mid \vec{X}, \vec{Z}\right] \\
& \quad=\operatorname{tr}\left\{\hat{P}^{-1 / 2} \hat{p}^{\prime} E\left[u u^{\prime} \mid \vec{X}, \vec{Z}\right] \hat{p} \hat{P}^{-1 / 2}\right\} / n^{2} \\
& \quad \leq C \operatorname{tr}\left\{\hat{p} \hat{P}^{-1} \hat{p}^{\prime}\right\} / n^{2} \leq C \operatorname{tr}\left(I_{K_{2}}\right) / n \\
& \quad=C K_{2} / n .
\end{aligned}
$$

Since by Lemma S.6, $\lambda_{\min }(\hat{P}) \geq C$ w.p.a.1, this implies that $E\left[\|\hat{\alpha}-\bar{\alpha}\|^{2} \mid \vec{X}\right.$, $\vec{Z}] \leq C K_{2} / n$. Similarly, for (ii),

$$
\begin{aligned}
\left\|\hat{P}^{1 / 2}(\tilde{\alpha}-\bar{\alpha})\right\|^{2} & \leq C(\hat{m}-m)^{\prime} \hat{p} \hat{P}^{-1} \hat{p}^{\prime}(\hat{m}-m) / n^{2} \leq C\|\hat{m}-m\|^{2} / n \\
& =O_{p}\left(\Delta_{n}^{2}\right)
\end{aligned}
$$

which follows from $m(w)$ being Lipschitz in V, so that also $\|\tilde{\alpha}-\bar{\alpha}\|^{2}=O_{p}\left(\Delta_{n}^{2}\right)$. Finally for (iii),

$$
\begin{align*}
\left\|\hat{P}^{1 / 2}\left(\tilde{\alpha}-\alpha^{K_{2}}\right)\right\|^{2} & =\left\|\tilde{\alpha}-\hat{P}^{-1} \hat{p}^{\prime} \hat{p} \alpha^{K_{2}} / n\right\|^{2} \\
& \leq C\left(\hat{m}-\hat{p}^{\prime} \alpha^{K_{2}}\right)^{\prime} \hat{p} \hat{P}^{-1} \hat{p}^{\prime}\left(\hat{m}-\hat{p}^{\prime} \alpha^{K_{2}}\right) / n^{2} \\
& \leq\left\|\hat{m}-\hat{p} \alpha^{K_{2}}\right\|^{2} / n \leq C \sup _{w \in \mathcal{W}}\left|m_{0}(w)-p^{K}(w)^{\prime} \alpha^{K_{2}}\right|^{2} \\
& =O_{p}\left(K_{2}^{-2 d_{2} / r_{2}}\right),
\end{align*}
$$

so that $\left\|\hat{P}^{1 / 2}\left(\tilde{\alpha}-\alpha^{K_{2}}\right)\right\|^{2}=O_{p}\left(K_{2}^{-2 d_{2} / r_{2}}\right)$.
Proof of Theorem 12: Note that by Lemma 11, for $\Delta_{n}^{2}=K_{1} / n+K_{1}^{1-2 d_{1} / r_{1}}$, we have $\sum_{i}\left\|\hat{V}_{i}-V_{i}\right\|^{2} / n=O_{p}\left(\Delta_{n}^{2}\right)$, so by $K_{2} \zeta^{2} / n \leq C K_{2} \zeta_{1}^{2} K_{1} / n$, the hypotheses of Lemma S. 7 are satisfied. Also by Lemma S. 7 and T, $\left\|\hat{\alpha}-\alpha^{K_{2}}\right\|^{2}=$

$$
\begin{aligned}
& O_{p}\left(K_{2} / n+K_{2}^{-2 d_{2} / r_{2}}+\Delta_{n}^{2}\right) \text {. Then } \\
& \int[\hat{m}(w)-m(w)]^{2} F_{w}(d w) \\
& =\int\left[p^{K_{2}}(w)^{\prime}\left(\hat{\alpha}-\alpha^{K_{2}}\right)+p^{K_{2}}(w)^{\prime} \alpha^{K_{2}}-m(w)\right]^{2} F_{w}(d w) \\
& \leq C\left\|\hat{\alpha}-\alpha^{K_{2}}\right\|^{2}+C K_{2}^{-2 d_{2} / r_{2}}=O_{p}\left(K_{2} / n+K_{2}^{-2 d_{2} / r_{2}}+\Delta_{n}^{2}\right) \text {. }
\end{aligned}
$$

For the second part of Theorem 12,

$$
\begin{aligned}
& \sup _{w \in \mathcal{W}}|\hat{m}(w)-m(w)| \\
& \quad=\sup _{w \in \mathcal{W}}\left|p^{K_{2}}(w)^{\prime}\left(\hat{\alpha}-\alpha^{K_{2}}\right)+p^{K_{2}}(w)^{\prime} \alpha^{K_{2}}-\beta(w)\right| \\
& \quad=O_{p}\left(\zeta\left(K_{2} / n+K_{2}^{-2 d_{2} / r_{2}}+\Delta_{n}^{2}\right)^{1 / 2}\right)+O_{p}\left(K_{2}^{-d_{2} / r_{2}}\right) \\
& \quad=O_{p}\left(\zeta\left(K_{2} / n+K_{2}^{-2 d_{2} / r_{2}}+\Delta_{n}^{2}\right)^{1 / 2}\right)
\end{aligned}
$$

Q.E.D.

Proof of Theorem 13: Let $\bar{p}=\int_{0}^{1} p^{K_{V}}(t) d t$ and note that by Lemma S.3, $\bar{p}^{\prime} \bar{p} \leq C K_{V}^{2+2 \alpha}$. Also,
(S.2) $\quad \bar{p}(x) \stackrel{\text { def }}{=} \int_{0}^{1} p^{K}(w) d t=p^{K_{x}}(x) \otimes \bar{p}$.

As above, $E\left[u u^{\prime} \mid \vec{X}, \vec{Z}\right] \leq C I_{n}$, so that by Fubini's theorem,

$$
\begin{aligned}
& E\left[\int\left\{\bar{p}(x)^{\prime}(\hat{\alpha}-\bar{\alpha})\right\}^{2} F_{X}(d x) \mid \vec{X}, \vec{Z}\right] \\
& \quad=\int\left\{\bar{p}(x)^{\prime} \hat{P}^{-1} \hat{p}^{\prime} E\left[u u^{\prime} \mid \vec{X}, \vec{Z}\right] \hat{p} \hat{P}^{-1} \bar{p}(x)\right\} F_{X}(d x) / n^{2} \\
& \quad \leq C \int \bar{p}(x)^{\prime} \hat{P}^{-1} \bar{p}(x) F_{X}(d x) / n \leq C E\left[\bar{p}(X)^{\prime} \bar{p}(X)\right] / n \\
& \quad=C\left\{E\left[p^{K_{x}}(X)^{\prime} p^{K_{x}}(X)\right]\left(\bar{p}^{\prime} \bar{p}\right)\right\} / n=K_{x} K_{V}^{2+2 \alpha} / n .
\end{aligned}
$$

It then follows by CM that $\int\left\{\bar{p}(x)^{\prime}(\hat{\alpha}-\bar{\alpha})\right\}^{2} F_{X}(d x)=O_{p}\left(K_{x} K_{V}^{2+2 \alpha} / n\right)$. Also,

$$
\int \bar{p}(x) \bar{p}(x)^{\prime} F_{X}(d x)=I_{K_{x}} \otimes \bar{p} \bar{p}^{\prime} \leq C I_{K_{2}} \bar{p}^{\prime} \bar{p} \leq C I_{K_{2}} K_{V}^{2+2 a}
$$

so that by Lemma S. 7 and T,

$$
\begin{aligned}
& \int\left\{\bar{p}(x)^{\prime}\left(\bar{\alpha}-\alpha^{K}\right)\right\}^{2} F_{X}(d x) \\
& \quad \leq\left(\bar{\alpha}-\alpha^{K}\right)^{\prime} \int \bar{p}(x) \bar{p}(x)^{\prime} F_{X}(d x)\left(\bar{\alpha}-\alpha^{K}\right) \\
& \quad \leq C K_{V}^{2+2 a}\left\|\bar{\alpha}-\alpha^{K}\right\|^{2}=O_{p}\left(K_{V}^{2+2 a}\left(K_{2}^{-2 d_{2} / s}+\Delta_{n}^{2}\right)\right)
\end{aligned}
$$

Also, by CS,

$$
\begin{aligned}
& \int\left\{\bar{p}(x)^{\prime} \alpha^{K}-\mu(x)\right\}^{2} F_{X}(d x) \\
& \quad \leq \iint_{0}^{1}\left\{p^{K}(w)^{\prime} \alpha-\beta(w)\right\}^{2} d V F_{X}(d x)=O\left(K_{2}^{-2 d_{2} / s}\right)
\end{aligned}
$$

Then the conclusion follows by T and

$$
\begin{align*}
\int & {[\hat{\mu}(x)-\mu(x)]^{2} F_{0}(d x) } \\
& =\int\left\{\bar{p}(x)^{\prime}\left(\hat{\alpha}-\alpha^{K}\right)+\bar{p}(x)^{\prime} \alpha^{K}-\mu(x)\right\}^{2} F_{X}(d x) \\
& =O_{p}\left(K_{V}^{2+2 \alpha}\left(K_{x} / n+K_{2}^{-2 d_{2} / r_{2}}+\Delta_{n}^{2}\right)\right)
\end{align*}
$$

REFERENCES

Andrews, D. W. K. (1991): "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, 59, 307-345.
Lorentz, G. (1986): Approximation of Functions. New York: Chelsea Publishing Company.
Newey, W. K. (1997): "Convergence Rates and Asymptotic Normality for Series Estimators," Journal of Econometrics, 79, 147-168.

Dept. of Economics, Littauer Center, Harvard University, 1805 Cambridge Street, Cambridge, MA 02138, U.S.A.; imbens@fas.harvard.edu and
Dept. of Economics, Massachusetts Institute of Technology, Cambridge, MA 02142-1347, U.S.A.; wnewey@mit.edu.

Manuscript received April, 2007; final revision received January, 2009.

