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PROOFS OF LEMMAS 10 AND 11 AND THEOREMS 12 AND 13

Throughout this supplementary material, C will denote a generic positive
constant that may be different in different uses. Also, we will abbreviate the
phrases with probability approaching 1 as w.p.a.1, positive semidefinite as
p.s.d., and positive definite as p.d.; λmin(A)�λmax(A), and A1/2 will denote the
minimum eigenvalues, the maximum eigenvalues, and the square root, respec-
tively, of a symmetric matrix A. Let

∑
i denote

∑n

i=1. Also, let CS, M, and T
refer to the Cauchy–Schwarz, Markov, and triangle inequalities, respectively.
Also, let CM refer to the following well known result: If E[|Yn||Zn] = Op(rn),
then Yn = Op(rn).

PROOF OF LEMMA 10: The joint PDF of (x�η) is fZ(x − η)fη(η), where
fZ(·) is the PDF of Z and fη(·) is the PDF of η. By a change of variable v =
Fη(η), the PDF of (x� v) is

fZ(x− F−1
η (v))�

where Fη(·) is the CDF of η0. Consider α = ᾱ + δ > (1 − R2)/R2 = σ2
η/σ

2
Z .

Then for η = F−1
η (v) and 0 < v < 1,

fZ(x− F−1
η (v))

vα(1 − v)α
= C exp

(
−1

2

(
x−η

σ2
Z

)2)
Φ

(
η

ση

)−α

Φ

(
− η

ση

)−α

	

It is well known that φ(u)/Φ(u) is monotonically decreasing, so there is C > 0
such that Φ(u)−1 ≥ Cφ(u)−1, u ≤ 0, and similarly Φ(u)−1 ≥ Cφ(u)−1�u ≥ 0.
Then by Φ(u)−1 ≥ 1 for all u,

Φ(u)−1Φ(−u)−1 ≥ Cφ(u)−1	

Therefore, for η= σηΦ
−1(v),

fZ(x− F−1
η (v))
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≥ C exp
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The expression following the equality is bounded away from zero for |x| ≤ B
and all η ∈ R by α> σ2

η/σ
2
Z .

The upper bound follows by a similar argument, using the fact that there is
a C with φ(u)/Φ(u)≤ |u| +C for all u. Q.E.D.

Before proving Lemma 11, we prove some preliminary results. Let qi =
qL(Zi) and ωij = 1(X1j ≤X1i)− FX1|Z(X1i|Zj).

LEMMA S.1: For Z = (Z1� 	 	 	 �Zn) and L× 1 vectors of functions bi(Z) (i =
1� 	 	 	 � n), if

∑n

i=1 bi(Z)′Q̂bi(Z)/n = Op(rn), then

n∑
i=1

{
bi(Z)′

n∑
j=1

qjωij/
√
n

}2/
n =Op(rn)	

PROOF: Note that |ωij| ≤ 1. Consider j �= k and suppose without loss of gen-
erality that j �= i (otherwise reverse the role of j and k because we cannot have
i = j and i = k). By independence of the observations,

E
[
ωijωik|Z

] = E
[
E[ωijωik|Z�Xi�Xk]|Z

]
= E

[
ωikE[ωij|Z�Xi�Xk]|Z

]
= E

[
ωikE[ωij|Zj�Zi�Xi]|Z

]
= E

[
ωik

{
E[1(X1j ≤X1i)|Zj�Zi�Xi]

− FX1|Z(X1i|Zj)
}|Z] = 0	

Therefore, it follows that

E

[
n∑

i=1

{
bi(Z)′

n∑
j=1

qjωij/
√
n

}2/
n
∣∣∣Z

]

≤
n∑

i=1

bi(Z)′
{

n∑
j�k=1

qjE[ωijωik|Z]q′
k/n

}
bi(Z)/n

=
n∑

i=1

bi(Z)′
{

n∑
j=1

qjE[ω2
ij|Z]q′

j/n

}
bi(Z)/n ≤

n∑
i=1

bi(Z)′Q̂bi(Z)/n�

so the conclusion follows by CM. Q.E.D.

LEMMA S.2—Lorentz (1986, p. 90, Theorem 8): If Assumption 3 is satisfied,
then there exists C such that for each x there is γ(x) with supz∈Z |FX1|Z(x|z) −
pK1(z)′γ(x)| ≤ CK

−d1/r1
1 .
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LEMMA S.3: If Assumption 4 is satisfied, then for each K there exists a non-
singular constant matrix B such that p̃K2(w) = BpK2(w) satisfies E[p̃K2(wi) ×
p̃K2(wi)

′] = IK2 , supw∈W ‖p̃K2(w)‖ ≤ CKα
V K2, supw∈W ‖∂p̃K2(w)/∂V ‖ ≤

CKα+2
V K2, and supt∈[0�1] ‖p̃KV (t)‖ ≤ CK1+α

V .

PROOF: For u ∈ [0�1], let Pα
j (u) be the jth orthonormal polynomial with

respect to the weight uα(1−u)α. Denote X = ∏r2−1
�=1 [x�� x̄�]. By the fact that the

order of the power series is increasing and that all terms of a given order are
included before a term of higher order, for each k and λ(k� �) with pk(w) =∏s

�=1 w
λ(k��)
� , there exists bkj (j ≤ k) such that

k∑
j=1

bkjpj(w)=
r2−1∏
�=1

P0
λ(k��)([x� − x�]/[x̄� − x�])Pα

λ(k�s)(t)	

Let Bk denote a K2 × 1 vector Bk = (bk1� 	 	 	 � bkk�0′)′, bkk �= 0, where 0
is a (K − k)-dimensional zero vector, and let B̄ be the K2 × K2 matrix
with kth row B′

k. Then B̄ is a lower triangular matrix with nonzero diag-
onal elements and so is nonsingular. As shown in Andrews (1991), there
is C such that |Pα

j (u)| ≤ C(jα+1/2 + 1) ≤ Cjα+1/2 and |dPα
j (u)/du| ≤ Cjα+5/2

for all u ∈ [0�1] and j ∈ {1�2� 	 	 	}. Then for p̄K2(w) = B̄pK2(w), it fol-
lows that |p̄k(w)| ≤ Cλ(k� s)α+1/2

∏s−1
�=1 λ(k� �)

1/2, so that ‖p̄K2(w)‖ ≤ CKα
V K2,

and supw∈W ‖∂p̄K2(w)/∂t‖ ≤ CKα+2
V K2. Then by Assumption 4, it follows

that �K2 = E[p̄K2(wi)p̄
K2(wi)

′] ≥ CIK2 . Let B̃ = �−1/2
K2

and define p̃K2(w) =
B̃p̄K2(w). Then ‖p̃K2(w)‖ = √

p̃K2(w)′p̃K2(w) ≤ √
p̄K2(w)′�−1p̄K2(w) ≤

C‖p̄K2(w)‖ and an analogous inequality holds for ‖∂p̃K2(w)/∂t‖, giving the
conclusion. Q.E.D.

Henceforth define ζ = CKα
V K2 and ζ1 = CKα+2

V K2. Also, since the estimator
is invariant to nonsingular linear transformations of pK2(w), we can assume
that the conclusion of Lemma S.3 is satisfied with pK2(w) replacing p̃K2(w).

PROOF OF LEMMA 11: Let δij = FX1|Z(X1i|Zj) − q′
jγ

K1(X1i), with |δij| ≤
K

−d1/r1
1 by Lemma S.2. Then for Ṽi = ã

K1
1(X1≤X1i)

(Zi),

Ṽi − Vi = ΔI
i +ΔII

i +ΔIII
i �

where

ΔI
i = q′

iQ̂
−

n∑
j=1

qjωij/n� ΔII
i = q′

iQ̂
−

n∑
j=1

qjδij/n� ΔIII
i = −δii	

Note that |ΔIII
i | ≤ CK

−d1/r
1 by Lemma S.2. Also, by Q̂ p.s.d. and symmetric,

there exists a diagonal matrix of eigenvalues Λ and an orthonormal matrix B
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such that Q̂ = BΛB′. Let Λ− denote the diagonal matrix of inverse of nonzero
eigenvalues and zeros, and let Q̂− = BΛ−B′. Then

∑
i q

′
iQ̂

−qi = tr(Q̂−Q̂)≤ CL.
By CS and Assumption 3,

n∑
i=1

(ΔII
i )

2/n ≤
n∑

i=1

(
q′
iQ̂

−qi

n∑
j=1

δ2
ij/n

)/
n ≤ C

n∑
i=1

(q′
iQ̂

−qi)L
−2d1/n

= CK
−2d1/r
1 tr(Q̂−Q̂)≤ CK

1−2d1/r
1 	

Note that for bi(Z) = q′
iQ̂

−/
√
n we have

n∑
i=1

bi(Z)′Q̂bi(Z)/n = tr(Q̂Q̂−Q̂Q̂−)/n= tr(Q̂Q̂−)/n

≤ CK1/n =Op(K1/n)�

so it follows by Lemma S.1 that
∑n

i=1(Δ
I
i)

2/n = Op(L/n). The conclusion then
follows by T and by |τ(Ṽ ) − τ(V )| ≤ |Ṽ − V |, which gives

∑
i(V̂i − Vi)

2/n ≤∑
i(Ṽi − Vi)

2/n. Q.E.D.

Before proving other results, we give some useful lemmas. For these results
let pi = pK2(wi), p̂i = pK2(ŵi), p = [p1� 	 	 	 �pn], p̂ = [p̂1� 	 	 	 � p̂n], P̂ = p̂′p̂/n,
and P̃ = p′p/n, P = E[pip

′
i]. Also, as in Newey (1997), it can be shown that

without loss of generality we can set P = IK2 .

LEMMA S.4: If the hypotheses of Theorem 1 are satisfied, then E[Y |X�Z] =
m(X�V ).

PROOF: By the proof of Theorem 1, V = FX1|Z(X1|Z) is a function of X1

and Z that is invertible in X1 with inverse X1 = h̄(Z�V ), where h̄(z� v) is the
inverse of FX1|Z(x|z) in its first argument. Therefore, (V �Z) is a one-to-one
function of (X�Z). By independence of Z and (ε�η), ε is independent of Z
conditional on V , so that by equation (4),

E[Y |X�Z] = E[Y |V �Z] = E
[
g(h̄(Z�V )�ε)|V �Z]

=
∫

g(h̄(Z�V )� e)Fε|Z�V (de|Z�V )

=
∫

g(h̄(Z�V )� e)Fε|V (de|V )= m(X�V )	 Q.E.D.

Let ui = Yi −m(Xi�Vi) and let u = (u1� 	 	 	 � un)
′.
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LEMMA S.5: If
∑

i ‖V̂i − Vi‖2/n = Op(Δ
2
n) and Assumptions 3–6 are satisfied,

the following equalities hold:
(i) ‖P̃ − P‖ =Op(ζ

√
K2/n)�

(ii) ‖p′u/n‖ =Op(
√
K2/n)�

(iii) ‖p̂−p‖2/n =Op(ζ
2
1Δ

2
n)�

(iv) ‖P̂ − P̃‖ =Op(ζ
2
1Δ

2
n + √

K2ζ1Δn)�
(v) ‖(p̂−p)′u/n‖ =Op(ζ1Δn/

√
n)	

PROOF: The first two results follow as in equation (A.1) and page 162 of
Newey (1997). For (iii), a mean value expansion gives p̂i = pi + [∂pK2(w̃i)/

∂V ](V̂i−Vi)� where w̃i = (xi� Ṽi) and Ṽi lies in between V̂i and Vi. Since V̂i and Vi

lie in [0�1], it follows that Ṽi ∈ [0�1], so that by Lemma S.3, ‖∂pK2(w̃i)/∂V ‖ ≤
Cζ1. Then by CS, ‖p̂i −pi‖ ≤ Cζ1|V̂i − Vi|. Summing up gives

‖p̂−p‖2/n =
n∑

i=1

‖p̂i −pi‖2/n= Op(ζ
2
1Δ

2
n)	(S.1)

For (iv), by Lemma S.3,
∑n

i=1 ‖pi‖2/n =Op(E[‖pi‖2])= tr(IK2) =K2. Then by
T, CS, and M,

‖P̂ − P̃‖ ≤
n∑

i=1

‖p̂ip̂
′
i −pip

′
i‖/n ≤

n∑
i=1

‖p̂i −pi‖2/n

+ 2

(
n∑

i=1

‖p̂i −pi‖2/n

)1/2( n∑
i=1

‖pi‖2/n

)1/2

= Op(ζ
2
1Δ

2
n +

√
K2ζ1Δn)	

Finally, for (v), for −→
Z = (Z1� 	 	 	 �Zn) and −→

X = (X1� 	 	 	 �Xn), it follows
from Lemma S.4, Assumption 6, and independence of the observations that
E[uu′|−→X�

−→
Z ] ≤ CIn, so that by p and p̂ depending only on −→

Z and −→
X ,

E
[‖(p̂−p)′u/n‖2|−→X�

−→
Z

] = tr
{
(p̂−p)′E[uu′|−→X�

−→
Z ](p̂−p)/n2

}
≤ C‖p̂−p‖2/n2 = Op(ζ

2
1Δ

2
n/n)	 Q.E.D.

LEMMA S.6: If Assumptions 3–6 are satisfied and K2ζ
2
1Δ

2
n −→ 0, then w.p.a.1,

λmin(P̂) ≥ C , λmin(P̃)≥ C .

PROOF: By Lemma S.3 and ζ2
1K2/n ≤ CK2ζ

2
1K1/n, we have ‖P̂ − P̃‖ p→

0 and ‖P̃ − P‖ p→ 0, so the conclusion follows as on page 162 of Newey
(1997). Q.E.D.
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Let m= (m(w1)� 	 	 	 �m(wn))
′, and m̂= (m(ŵ1)� 	 	 	 �m(ŵn))

′.

LEMMA S.7: If
∑

i ‖V̂i − Vi‖2/n = Op(Δ
2
n), Assumptions 3–6 are satisfied,√

K2ζ1Δn → 0, and K2ζ
2/n → 0, then for α̃ = P̂−1p̂′m̂/n and ᾱ = P̂−1p̂′m/n,

the following equalities hold:
(i) ‖α̂− ᾱ‖ =Op(

√
K2/n)�

(ii) ‖α̃− ᾱ‖ =Op(Δn)�

(iii) ‖α̃− αK2‖ =Op(K
−d2/r2
2 )	

PROOF: For (i),

E
[∥∥P̂1/2(α̂− ᾱ)

∥∥2|−→X�
−→
Z

]
=E[u′p̂P̂−1p̂′u/n2|−→X�

−→
Z ]

= tr
{
P̂−1/2p̂′E[uu′|−→X�

−→
Z ]p̂P̂−1/2

}
/n2

≤ C tr{p̂P̂−1p̂′}/n2 ≤ C tr(IK2)/n

= CK2/n	

Since by Lemma S.6, λmin(P̂) ≥ C w.p.a.1, this implies that E[‖α̂ − ᾱ‖2|−→X�−→
Z ] ≤ CK2/n. Similarly, for (ii),

∥∥P̂1/2(α̃− ᾱ)
∥∥2 ≤ C(m̂−m)′p̂P̂−1p̂′(m̂−m)/n2 ≤ C‖m̂−m‖2/n

= Op(Δ
2
n)�

which follows from m(w) being Lipschitz in V , so that also ‖α̃− ᾱ‖2 =Op(Δ
2
n).

Finally for (iii),

∥∥P̂1/2(α̃− αK2)
∥∥2 = ‖α̃− P̂−1p̂′p̂αK2/n‖2

≤ C(m̂− p̂′αK2)′p̂P̂−1p̂′(m̂− p̂′αK2)/n2

≤ ‖m̂− p̂αK2‖2/n ≤ C sup
w∈W

|m0(w)−pK(w)′αK2 |2

= Op

(
K

−2d2/r2
2

)
�

so that ‖P̂1/2(α̃− αK2)‖2 = Op(K
−2d2/r2
2 ). Q.E.D.

PROOF OF THEOREM 12: Note that by Lemma 11, for Δ2
n =K1/n+K

1−2d1/r1
1 ,

we have
∑

i ‖V̂i − Vi‖2/n = Op(Δ
2
n), so by K2ζ

2/n ≤ CK2ζ
2
1K1/n, the hypothe-

ses of Lemma S.7 are satisfied. Also by Lemma S.7 and T, ‖α̂ − αK2‖2 =
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Op(K2/n+K
−2d2/r2
2 +Δ2

n). Then

∫
[m̂(w)−m(w)]2Fw(dw)

=
∫ [

pK2(w)′(α̂− αK2)+pK2(w)′αK2 −m(w)
]2
Fw(dw)

≤ C‖α̂− αK2‖2 +CK
−2d2/r2
2 =Op

(
K2/n+K

−2d2/r2
2 +Δ2

n

)
	

For the second part of Theorem 12,

sup
w∈W

|m̂(w)−m(w)|

= sup
w∈W

|pK2(w)′(α̂− αK2)+pK2(w)′αK2 −β(w)|

=Op

(
ζ
(
K2/n+K

−2d2/r2
2 +Δ2

n

)1/2) +Op

(
K

−d2/r2
2

)
=Op

(
ζ
(
K2/n+K

−2d2/r2
2 +Δ2

n

)1/2)
	 Q.E.D.

PROOF OF THEOREM 13: Let p̄= ∫ 1
0 pKV (t)dt and note that by Lemma S.3,

p̄′p̄ ≤ CK2+2α
V . Also,

p̄(x)
def=

∫ 1

0
pK(w)dt = pKx(x)⊗ p̄	(S.2)

As above, E[uu′|−→X�
−→
Z ] ≤ CIn, so that by Fubini’s theorem,

E

[∫
{p̄(x)′(α̂− ᾱ)}2FX(dx)|−→X�

−→
Z

]

=
∫ {

p̄(x)′P̂−1p̂′E[uu′|−→X�
−→
Z ]p̂P̂−1p̄(x)

}
FX(dx)/n

2

≤ C

∫
p̄(x)′P̂−1p̄(x)FX(dx)/n≤ CE[p̄(X)′p̄(X)]/n

= C
{
E[pKx(X)′pKx(X)](p̄′p̄)

}
/n =KxK

2+2α
V /n	

It then follows by CM that
∫ {p̄(x)′(α̂− ᾱ)}2FX(dx)= Op(KxK

2+2α
V /n). Also,

∫
p̄(x)p̄(x)′FX(dx)= IKx ⊗ p̄p̄′ ≤ CIK2p̄

′p̄ ≤ CIK2K
2+2a
V �
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so that by Lemma S.7 and T,∫
{p̄(x)′(ᾱ− αK)}2FX(dx)

≤ (ᾱ− αK)′
∫

p̄(x)p̄(x)′FX(dx)(ᾱ− αK)

≤ CK2+2a
V ‖ᾱ− αK‖2 =Op

(
K2+2a

V

(
K

−2d2/s
2 +Δ2

n

))
	

Also, by CS,∫
{p̄(x)′αK −μ(x)}2FX(dx)

≤
∫ ∫ 1

0
{pK(w)′α−β(w)}2 dV FX(dx)=O

(
K

−2d2/s
2

)
	

Then the conclusion follows by T and∫
[μ̂(x)−μ(x)]2F0(dx)

=
∫

{p̄(x)′(α̂− αK)+ p̄(x)′αK −μ(x)}2FX(dx)

=Op

(
K2+2α

V

(
Kx/n+K

−2d2/r2
2 +Δ2

n

))
	 Q.E.D.
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