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MATHEMATICAL APPENDIX: PROOFS

A.1. Informal Discussion of the Proof Technique

ALTHOUGH THE TEST IS EASY to implement, proving Theorem 3.1 involves sev-
eral lengthy steps. Since establishing these steps requires techniques that are
not commonly used in econometrics, we now give an informal description of
our proof techniques and provide some discussions behind them. Specifically,
our proof of Theorem 3.1 consists of the following three steps:

Step 1. The asymptotic approximation of Ûn(y�x)/cn(x) by a Gaussian
process (Appendix A.2).

Step 2. The asymptotic approximation of the excursion probability of the
maximum of the Gaussian process on a fixed set (Appendix A.3).

Step 3. The asymptotic approximation of the excursion probability of the
maximum of the Gaussian process on an increasing set (Appendix A.4).

In particular, in Step 1, we show that Ûn(y�x)/cn(x) can be approximated
uniformly over (y�x) by ξn[FY(y)�h−1

n x], where FY(·) is the cumulative dis-
tribution function (c.d.f.) of Y and ξn is a sequence of Gaussian processes
{ξn(u� s) : (u� s) ∈ [0�1] × [0�h−1

n ]} with continuous sample paths such that

E[ξn(u� s)] = 0�(A1)

E[ξn(u1� s1)ξn(u2� s2)] = [min(u1�u2)− u1u2]ρ(s1 − s2)

for u�u1�u2 ∈ [0�1] and s� s1� s2 ∈ [0�h−1
n ], where ρ(·) is some known smooth

function. See Appendix A.2 for the exact form of ρ(·).
First of all, note that by Step 1, taking the supremum of Ûn(y�x)/cn(x) over

(y�x) corresponds to taking the supremum of ξn[FY(y)�h−1
n x] over (y�x) as-

ymptotically. Since FY is the c.d.f. and hn → 0, this means that we need to take
the supremum of the Gaussian process ξn over the product space of a fixed set
(in the direction of y) and an increasing set (in the direction of x).

In general, it is expected that the asymptotic distribution of a suitably nor-
malized version of the supremum of a Gaussian process over an increasing set
converges to one of extreme value distributions. If the supremum is taken over
Gaussian processes with a one-dimensional parameter, then the corresponding
probability theory and applications on statistical problems are well understood.
See, for example, Leadbetter, Lindgren, and Rootzén (1983). However, for
Gaussian processes with multidimensional parameters (often called Gaussian
fields), the probability theory is less developed and applications on statistical
problems are rare. Unfortunately, we need to deal with ξn(u� s) that has two
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parameters and approximate the distribution of its supremum over an increas-
ing set. These tasks are Steps 2 and 3. The important reference we have used
to carry out Steps 2 and 3 is Piterbarg (1996), who developed a general theory
for approximations of the suprema of Gaussian fields.

Once Step 2 is established, then there is a general approximation method
to achieve Step 3. Thus, Step 2 is the critical step in proving Theorem 3.1.
Note that the covariance function of ξn in (A1) is the product of a Brownian
bridge covariance function and a stationary covariance function. In this pa-
per, we develop a new result for the excursion probability of the maximum
of the Gaussian process ξn (Theorem A.2). To be specific, the approximat-
ing Gaussian process contains both a stationary and a nonstationary part, and
therefore we need to extend existing results that only apply to either one or
the other case. For example, see Section 7 of Piterbarg (1996) for the station-
ary case and Sections 8 and 9 of Piterbarg (1996) for the nonstationary case,
but to our best knowledge, there is no known result regarding our case in the
literature.

A.2. Gaussian Process Approximation

Let fX(·), FX(·), and FY(·), respectively, denote the probability density func-
tion (p.d.f.) the c.d.f. of X , and the c.d.f. of Y . Define

ρ(s)=
∫
q(z)q(z− s)K(z)K(z− s)dz∫

q2(z)K2(z)dz
�

where q(u)= ∫ sgn(u−w)K(w)dw was defined in the main text. Let ξ(u� s)
denote a Gaussian process {ξ(u� s) : (u� s) ∈ [0�1]×R} with continuous sample
paths such that

E[ξ(u� s)] = 0�

E[ξ(u1� s1)ξ(u2� s2)] = [min(u1�u2)− u1u2]ρ(s1 − s2)

for u�u1�u2 ∈ [0�1] and s� s1� s2 ∈ R. Define Xn = [0�1/hn] and let ξn be the
restriction of ξ to [0�1] × Xn.

THEOREM A.1: Let Assumption 3.1 hold. Let hn satisfy

hn(logn)1/2 → 0� nh3
n → ∞� and nh2

n/(logn)2 → ∞�

Then there exists a sequence of Gaussian processes {ξn(u� s) : (u� s) ∈ [0�1]× Xn}
with continuous sample paths such that

E[ξn(u� s)] = 0�

E[ξn(u1� s1)ξn(u2� s2)] = [min(u1�u2)− u1u2]ρ(s1 − s2)
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for u�u1�u2 ∈ [0�1] and s� s1� s2 ∈ Xn, and that

sup
(y�x)∈Y×X

∣∣∣∣n1/2 Ûn(y�x)

σ̂n(x)
− ξn[FY(y)�h−1

n x]
∣∣∣∣

=Op
(
n−1/2h−3/2

n + n−1/4h−1/2
n (logn)1/2 + hn(logh−1

n )
1/2
)
�

PROOF: The proof of the theorem follows closely Theorem 3.1 of Ghosal,
Sen, and van der Vaart (2000). In particular, the theorem can be proved by
combining arguments almost identical to those used in the proof of Theo-
rem 3.1 of Ghosal, Sen, and van der Vaart (2000) with the lemmas proved
in Section A.6. The only difference here is that because of the estimated Xi’s,
an additional term of order Op(n−1/2h−3/2

n ) appears. Q.E.D.

A.3. Asymptotic Behavior of the Excursion Probability on the Fixed Set

Since the distribution of ξn(u� s) does not depend on n, for the purpose of
deriving the distribution of the supremum statistic Sn, it suffices to consider
the asymptotic behavior of the excursion probability of the maximum of the
Gaussian process ξ(u� s) that has the same covariance function as ξn(u� s).

We first consider the asymptotic behavior of the tail probability of the max-
imum of ξ(u� s) on a fixed set [0�1] × I, where I ≡ [0�L] is an interval with a
fixed length L. Define

Ψ(a)= 1√
2π

∫ ∞

a

exp
(

−1
2
x2

)
dx�

THEOREM A.2: Let λ denote the quantity defined in Theorem 3.1. In addition,
let I = [0�L]. Then

Pr
(

max
(u�s)∈[0�1]×I

ξ(u� s) > a
)

=L
(

8λ
π

)1/2

aexp(−2a2)[1 + o(1)]

as a→ ∞.

The following lemmas are useful to prove Theorem A.2.

LEMMA A.1: LetΠδ = [1/2−δ(a)�1/2+δ(a)], where δ(a)= a−1 loga. Then

Pr
(

max
(u�s)∈[0�1]×I

ξ(u� s) > a
)

= Pr
(

max
(u�s)∈Πδ×I

ξ(u� s) > a
)
[1 + o(1)]

as a→ ∞.
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PROOF: For all sufficiently large a,

Pr
(

max
(u�s)∈Πδ×I

ξ(u� s) > a
)

(A2)

≤ Pr
(

max
(u�s)∈[0�1]×I

ξ(u� s) > a
)

≤ Pr
(

max
(u�s)∈Πδ×I

ξ(u� s) > a
)

+ Pr
(

max
(u�s)∈{[0�1]\Πδ}×I

ξ(u� s) > a
)
�

Note that

E[ξ(u1� s1)− ξ(u2� s2)]2

= u1(1 − u1)+ u2(1 − u2)− 2[min(u1�u2)− u1u2]ρ(s1 − s2)�

Furthermore, by some straightforward manipulation,

E[ξ(u1� s1)− ξ(u2� s2)]2 ≤ C|u1 − u2| + |s1 − s2|
for some constant C . Thus, Assumption of Piterbarg (1996, p. 118) is satisfied.
Then since

max
(u�s)∈{[0�1]\Πδ}×I

σ2(u� s)≤ 1/4 − δ(a)2�

by Theorem 8.1 of Piterbarg (1996, p. 119), there exists a constant C such that

Pr
(

max
(u�s)∈{[0�1]\Πδ}×I

ξ(u� s) > a
)

(A3)

≤ Cmes
({[0�1] \Πδ} × I)a4Ψ

(
a

[1/4 − δ(a)2]1/2

)
�

mes(A) denotes the Lebesgue measure of a setA. Note that by (D.8) of Piter-
barg (1996, p. 15), as a→ ∞,

a4Ψ

(
a

[1/4 − δ(a)2]1/2

)
∼ 1√

2π
a3 exp
( −a2/2

1/4 − δ(a)2

)
�

where A∼ B stands for A/B→ 1. Also, for some fixed interior point s̄ ∈ I, we
have

Pr
(
ξ

(
1
2
� s̄

)
> a

)
=Ψ
(
a

2

)
∼ 2√

2π
a−1 exp

(−a2/2
4

)
�

Then it is easy to show that as a→ ∞, the probability on the left-hand side of
(A3) converges to zero at a rate of exp[−2a2 +O(loga)] and Pr(ξ(1/2� s̄) > a)
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converges to zero at a rate of exp[−a2/8 −O(loga)]. Thus, the probability on
the left-hand side of (A3) converges to zero faster than Pr(ξ(1/2� s̄) > a). Since
Pr(ξ(1/2� s̄) > a)≤ Pr(max(u�s)∈Πδ×I ξ(u� s) > a),

Pr
(

max
(u�s)∈{[0�1]\Πδ}×I

ξ(u� s) > a
)

= o
[
Pr
(

max
(u�s)∈Πδ×I

ξ(u� s) > a
)]
�

Then the lemma follows immediately from (A2). Q.E.D.

Let σ2(u� s)= u(1−u) and r[(u1� s1)� r(u2� s2)] = [min(u1�u2)−u1u2]ρ(s1 −
s2), respectively, denote the variance and covariance functions of ξ(u� s).

LEMMA A.2: As u→ 1/2,

σ2(u� s)= 1
4

−
(
u− 1

2

)2

[1 + o(1)]�(A4)

Furthermore, as (u1�u2)→ (1/2�1/2) and |s1 − s2| → 0,

r[(u1� s1)� r(u2� s2)](A5)

= 1
4

− 1
2
|u1 − u2|[1 + o(1)] − λ

8
(s1 − s2)

2[1 + o(1)]

− 1
2

(
u1 − 1

2

)2

[1 + o(1)] − 1
2

(
u2 − 1

2

)2

[1 + o(1)]�

PROOF: The first result (A4) follows easily from a second-order Taylor series
expansion of the variance of ξ(u� s) with respect to u. We now consider the
second result (A5). In view of the proof of Theorem 9.2 of Piterbarg (1996,
p. 138), note that as (u1�u2)→ (1/2�1/2),

min(u1�u2)− u1u2√
u1(1 − u1)u2(1 − u2)

= 1− 1
2

|u1 − u2|√
u1(1 − u1)u2(1 − u2)

+o(|u1 −u2|)�(A6)

Note that by (4.9) of Ghosal, Sen, and van der Vaart (2000),

ρ(s1 − s2)= 1 − λ(s1 − s2)
2

2
+ o(|s1 − s2|2)(A7)

as |s1 − s2| → 0. As in (A4), a Taylor series expansion of σ(u� s) around u= 1/2
gives

σ(u� s)= 1
2

−
(
u− 1

2

)2

[1 + o(1)] as u→ 1
2
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for any s ∈ I. Thus, we have√
u1(1 − u1)u2(1 − u2)(A8)

= 1
4

− 1
2

(
u1 − 1

2

)2

[1 + o(1)] − 1
2

(
u2 − 1

2

)2

[1 + o(1)]

as (u1�u2)→ (1/2�1/2). Then the lemma follows from combining (A6) and
(A7) with (A8). Q.E.D.

Let ε > 0 be a fixed constant. Define Gaussian processes ψ−
1 (u) and ψ+

1 (u)
such that

ψ−
1 (u)= ζ−

1 (u)

23/2[1 + 4(1 + ε)(u− 0�5)2] and

ψ+
1 (u)= ζ+

1 (u)

23/2[1 + 4(1 − ε)(u− 0�5)2] �

where ζ−
1 (u) and ζ+

1 (u) are Gaussian stationary processes with zero means and
the covariance functions r−1 (u) = exp[−4(1 − ε)|u|] and r+1 (u) = exp[−4(1 +
ε)|u|]. In addition, define mean-zero stationary Gaussian processes ψ−

2 (s) and
ψ+

2 (s) such that they are independent of ψ−
1 (u) and ψ+

1 (u), and have the co-
variance functions of the form

r−2 (s)= 1
8
[1 − λ(1 − ε)s2 + o(s2)]�

r+2 (s)= 1
8
[1 − λ(1 + ε)s2 + o(s2)]�

respectively. Finally, define

ψ−(u� s)=ψ−
1 (u)+ψ−

2 (s) and ψ+(u� s)=ψ+
1 (u)+ψ+

2 (s)�

LEMMA A.3: Let ε > 0 be any fixed, arbitrarily small constant. Then for all
sufficiently large a,

Pr
(

max
(u�s)∈Πδ×I

ψ−(u� s) > a
)

≤ Pr
(

max
(u�s)∈Πδ×I

ξ(u� s) > a
)

≤ Pr
(

max
(u�s)∈Πδ×I

ψ+(u� s) > a
)
�

PROOF: As noted in the proofs of Theorems D.4 and 8.2 of Piterbarg (1996,
pp. 23 and 133), the lemma follows from Lemma A.2 and the fact that the
distribution of the maximum is monotone with respect to the variance and
the Slepian inequality (see, for example, Theorem C.1 of Piterbarg (1996,
p. 6)). Q.E.D.
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LEMMA A.4: Let ε > 0 be any fixed, arbitrarily small constant. As a→ ∞,

Pr
(

max
u∈Πδ

23/2ψ−
1 (u) > a

)
= 21/2 (1 − ε)

(1 + ε)1/2
exp
(−a2

2

)
[1 + o(1)]�(A9)

Pr
(

max
u∈Πδ

23/2ψ+
1 (u) > a

)
= 21/2 (1 + ε)

(1 − ε)1/2
exp(

−a2

2
)[1 + o(1)]�(A10)

PROOF: This lemma can be proved by one of results given in the proof of
Theorem D.4 of Piterbarg (1996, p. 21). In particular, using the notation used
in the proof of Theorem D.4 of Piterbarg (1996), the excursion probability
of 23/2ψ−

1 (u) can be obtained by the result of Case 1 with α = 1, β = 2, b =
4(1 + ε), and d = 4(1 − ε). It follows from the second display on page 22 of
Piterbarg (1996) that as a→ ∞,

Pr
(

max
u∈Πδ

23/2ψ−
1 (u) > a

)
= H1�(1/2)[4(1 − ε)]

[4(1 + ε)]1/2
aΨ(a)[1 + o(1)]�

where H1 is the Pickands constant with α= 1 (defined on pages 13 and 16 of
Piterbarg (1996)) and �(·) is the Gamma function. Note that �(1/2) = √

π.
Furthermore, by (9.6) of Piterbarg (1996, p. 138),H1 = 1 and by (D.8) of Piter-
barg (1996, p. 15),

aΨ(a)∼ (2π)−1/2 exp(−a2/2)

as a→ ∞. Therefore, (A9) follows immediately. The excursion probability of
23/2ψ+

1 (u) can be obtained analogously. Q.E.D.

LEMMA A.5: Let ε > 0 be any fixed, arbitrarily small constant. As a→ ∞,

Pr
(

max
s∈I

23/2ψ−
2 (s) > a

)
= [(λ/2)(1 − ε)]1/2L

π
exp
(−a2

2

)
[1 + o(1)]�(A11)

Pr
(

max
s∈I

23/2ψ+
2 (s) > a

)
= [(λ/2)(1 + ε)]1/2L

π
exp
(−a2

2

)
[1 + o(1)]�(A12)

PROOF: Recall that I = [0�L]. By Theorem D.2 of Piterbarg (1996, p. 16)
and a simple scaling of ψ−

2 (u),

Pr
(

max
s∈[0�L]

23/2ψ−
2 (s) > a

)
=H2L

∗aΨ(a)[1 + o(1)]�

where H2 is the Pickands constant with α = 2 and L∗ = [λ(1 − ε)]1/2L.
By (F.4) of Piterbarg (1996, p. 31), H2 = 1/

√
π. Then (A11) follows im-
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mediately. The excursion probability of 23/2ψ+
2 (u) can be obtained simi-

larly. Q.E.D.

PROOF OF THEOREM A.2: Let ε > 0 be any fixed, arbitrarily small constant.
Note that ψ−(u� s) and ψ+(u� s) are convolutions of ψ−

1 (u) and ψ−
2 (s) and of

ψ+
1 (u) and ψ+

2 (s), respectively. Then an application of Lemma 8.6 of Piterbarg
(1996, p. 128) with Lemmas A.4 and A.5 gives

Pr
(

max
(u�s)∈Πδ×I

23/2ψ−(u� s) > a
)

(A13)

=L(1 − ε)3/2

(1 + ε)1/2

(
λ

π

)1/2

aexp
(−a2

4

)
[1 + o(1)]�

Pr
(

max
(u�s)∈Πδ×I

23/2ψ+(u� s) > a
)

(A14)

=L(1 + ε)3/2

(1 − ε)1/2

(
λ

π

)1/2

aexp
(−a2

4

)
[1 + o(1)]�

Then as a→ ∞, by Lemma A.1,

Pr
(

max
(u�s)∈[0�1]×I

23/2ξ(u� s) > a
)

=L
(
λ

π

)1/2

aexp
(−a2

4

)
[1 + o(1)]

since the choice of ε can be made arbitrarily small and the constants on the
right-hand sides of (A13) and (A14) are continuous at ε = 0. Therefore, the
theorem follows immediately. Q.E.D.

A.4. Asymptotic Behavior of the Excursion Probability on the Increasing Set

THEOREM A.3: For any x,

Pr
(

4βn
{

max
(u�s)∈[0�1]×Xn

ξ(u� s)−βn
}
< x
)

= exp
{
−exp
(

−x− x2

8β2
n

)[
1 + x

4β2
n

]}
+ o(1)�

where βn is defined in equation (7) in the main text.

PROOF: This theorem can be proved using arguments similar to those used
in the proof of Theorem G.1 of Piterbarg (1996). Note that the covariance
function of ξ(u� s), that is, r[(u1� s1)� r(u2� s2)], has compact support and in
particular it is zero when |s1 − s2|> 2. Define an increasing sequence mn such
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thatmn → ∞ butmnhn → 0 as n→ ∞. That is,mn converges to infinity slower
than h−1

n . Further, define sequences of sets

Ik = [k(mnhn)
−1� (k+ 1)(mnhn)

−1 − 2]�
Jk = [(k+ 1)(mnhn)

−1 − 2� (k+ 1)(mnhn)
−1]

for k= 0�1� � � � �mn − 1. Then we have

Pr
(

max
(u�s)∈[0�1]×Xn

ξ(u� s) < a
)

(A15)

= Pr
(

max
(u�s)∈[0�1]×[⋃k Ik]

ξ(u� s) < a
)

− Pr
(

max
(u�s)∈[0�1]×[⋃k Ik]

ξ(u� s) < a� max
(u�s)∈[0�1]×[⋃k Jk]

ξ(u� s)≥ a
)
�

We first consider the first probability on the right-hand side of (A15). Let c∗ =
( 8λ
π
)1/2. For each x, choose an = βn + x/(4βn), where βn is the largest solution

to the equation

h−1
n c

∗βn exp(−2β2
n)= 1�(A16)

Since Ik’s are separated by the diameter of the support and the distribution of
ξ(u� s) is stationary in the direction of s, it follows from Theorem A.2 that

Pr
(

max
(u�s)∈[0�1]×[⋃k Ik]

ξ(u� s) < an
)

=
[
1 − Pr

(
max

(u�s)∈[0�1]×I0
ξ(u� s)≥ an

)]mn
= exp
(
mn log

[
1 − Pr

(
max

(u�s)∈[0�1]×I0
ξ(u� s)≥ an

)])
= exp
(
−mn Pr

(
max

(u�s)∈[0�1]×I0
ξ(u� s)≥ an

))
+O
(
mn

[
Pr
(

max
(u�s)∈[0�1]×I0

ξ(u� s)≥ an
)]2)

= exp
{−mn[(mnhn)

−1 − 2]c∗an exp(−2a2
n)[1 + o(1)]}+O(hn)�

so that

Pr
(

max
(u�s)∈[0�1]×[⋃k Ik]

ξ(u� s) < an
)

(A17)

= exp
{
−exp
(

−x− x2

8β2
n

)[
1 + x

4β2
n

]}
+ o(1)�
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Now consider the second probability on the right-hand side of (A15). Note
that again using Theorem A.2 and the fact that the distribution of ξ(u� s) is
stationary in the direction of s,

Pr
(

max
(u�s)∈[0�1]×[⋃k Ik]

ξ(u� s) < an� max
(u�s)∈[0�1]×[⋃k Jk]

ξ(u� s)≥ an
)

≤ Pr
(

max
(u�s)∈[0�1]×[⋃k Jk]

ξ(u� s)≥ an
)

≤mn Pr
(

max
(u�s)∈[0�1]×J1

ξ(u� s)≥ an
)

=mn Pr
(

max
(u�s)∈[0�1]×[0�2]

ξ(u� s)≥ an
)

=O(mnhn)= o(1)�

This and (A17) together prove the theorem. Q.E.D.

A.5. Proofs of Theorems 3.1 and 3.2

PROOF OF THEOREM 3.1: Since βn[n−1/2h−3/2
n + n−1/4h−1/2

n (logn)1/2 +
hn(logn)1/2] → 0, the main theorem 3.1 is an immediate consequence of The-
orems A.1 and A.3. Q.E.D.

PROOF OF THEOREM 3.2: The theorem can be proved by arguments similar
to those used to prove Theorem 5.1 of Ghosal, Sen, and van der Vaart (2000).
In fact, when Fx(y|x) > 0 for some (y�x), Sn is of order Op(n1/2h3/2

n ) and the
consistency follows from the restriction that nh3

n/ logh−1
n → ∞. Q.E.D.

A.6. Lemmas for Proving Theorem A.1

Define

Vn(y�x�θ)

= 2
n(n− 1)

∑
1≤i<j≤n

[1(Yi ≤ y)− 1(Yj ≤ y)] sgn[ψ(Wi�θ)−ψ(Wj�θ)]

×Khn[ψ(Wi�θ)− x]Khn[ψ(Wj�θ)− x]�
so that Ûn(y�x)= Vn(y�x� θ̂). Also, since Fx(y|x)≡ 0, define the projection of
Vn(y�x�θ) by

V̂n(y�x�θ)

= 2n−1
n∑
i=1

[1(Yi ≤ y)− F(y)]

×
∫

sgn[ψ(Wi�θ)−ψ(w̃�θ)]Khn[ψ(w̃�θ)− x]dFW (w̃)
×Khn[ψ(Wi�θ)− x]�
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LEMMA A.6: Let Θ denote a neighborhood of θ0.

sup
(y�x�θ)∈Y×X ×Θ

|Vn(y�x�θ)− V̂n(y�x�θ)| =Op(n−1h−2
n )�

PROOF: The proof is similar to that of Lemma 3.1 of Ghosal, Sen, and van
der Vaart (2000). Hence, we will only indicate the differences. Consider a class
of functions M = {m(y�x�θ) : (y�x�θ) ∈ Y × X ×Θ}, where

m(y�x�θ)

(
(y1�w1)� (y2�w2)

)
= [1(y1 ≤ y)− 1(y2 ≤ y)] sgn[ψ(w1� θ)−ψ(w2� θ)]

×Khn[ψ(w1� θ)− x]Khn[ψ(w2� θ)− x]�
This class is contained in the product of the classes

M1 = {1(y1 ≤ y)− 1(y2 ≤ y) : y ∈ Y }�

M2 =
{
K

(
ψ(w1� θ)− x

hn

)
: (x�θ) ∈ X ×Θ

}
�

M3 =
{
K

(
ψ(w2� θ)− x

hn

)
: (x�θ) ∈ X ×Θ

}
�

M4 = {h−2
n sgn[ψ(w1� θ)−ψ(w2� θ)]

× 1
{|ψ(w1� θ)−ψ(w2� θ)| ≤ 2hn

}
:θ ∈Θ}�

Since θ is finite dimensional and K is of bounded variation, M is a Vapnik–
Červonenkis (VC) class with the envelope function Ch−2

n with some positive
finite constant C , by Lemmas 2.6.15 and 2.6.18 of van der Vaart and Wellner
(1996). Then using Theorem 2.6.7 of van der Vaart and Wellner (1996) and
following the proof of Lemma 3.1 of Ghosal, Sen, and van der Vaart (2000),
we have, for some finite constant C ,

E
[

sup
(y�x�θ)∈Y×X ×Θ

|Vn(y�x�θ)− V̂n(y�x�θ)|
]

≤ Cn−1h−2
n �

which gives the conclusion of the lemma. Q.E.D.

LEMMA A.7:

sup
(y�x)∈Y×X

|Ûn(y�x)− V̂n(y�x�θ0)| =Op
(
n−1/2
)
�
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PROOF: Note that by Assumption 3.1(h),

|V̂n(y�x� θ̂)− V̂n(y�x�θ0)|

=
∣∣∣∣∣2n−1

n∑
i=1

[1(Yi ≤ y)− F(y)]

×
{∫

sgn[ψ(Wi� θ̂)−ψ(w̃� θ̂)]Khn[ψ(w̃� θ̂)− x]dFW (w̃)

×Khn[ψ(Wi� θ̂)− x]
−
∫

sgn[ψ(Wi�θ0)−ψ(w̃�θ0)]Khn[ψ(w̃�θ0)− x]dFW (w̃)

×Khn[ψ(Wi�θ0)− x]
}∣∣∣∣∣

≤ C
[∥∥∥∥∥θ̂− θ0‖n−1

n∑
i=1

Khn[ψ(Wi� θ̂)− x]

+ n−1
n∑
i=1

{
Khn[ψ(Wi� θ̂)− x] −Khn[ψ(Wi�θ0)− x]}]

for some positive constant C <∞, which is independent of (y�x). Also, note
that using the standard empirical process method (for example, van der Vaart
and Wellner (1996)), it is straightforward to show that for a n−1/2 neighborhood
Θn of θ0,

sup
(x�θ)∈X ×Θn

n−1
n∑
i=1

Khn[ψ(Wi�θ)− x] =Op(1)�

sup
(x�θ)∈X ×Θn

n−1

∣∣∣∣∣
n∑
i=1

{
Khn[ψ(Wi�θ)− x] −Khn[ψ(Wi�θ0)− x]}∣∣∣∣∣

=Op
(
n−1/2
)
�

Then the lemma follows from the root-n consistency of θ̂ and Lemma A.6 since
Ûn(y�x)= Vn(y�x� θ̂). Q.E.D.

Define

φn�y�x(Y�X)= 2[1(Y ≤ y)− FY(y)]

×
∫

sgn(X − x̃)Khn(x̃− x)dFX(x̃)Khn(X − x)�
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LEMMA A.8: There exists a sequence of Gaussian processes Gn(·), indexed by
Y × X , with continuous sample paths and with

E[Gn(y�x)] = 0 for (y�x) ∈ Y × X �
E[Gn(y1�x1)Gn(y2�x2)] =E[φn�y1�x1(Y�X)φn�y2�x2(Y�X)

]
for (y1�x1), and (y2�x2) ∈ Y × X , such that

sup
(y�x)∈Y×X

∣∣n1/2V̂n(y�x�θ0)−Gn(y�x)
∣∣=O(n−1/4h−1

n (logn)1/2
)

a.s.

PROOF: As in the proof of Lemma 3.2 of Ghosal, Sen, and van der Vaart
(2000), we use Theorem 1.1 of Rio (1994). Since it can be proved using argu-
ments identical to those used to prove Lemma 3.2 of Ghosal, Sen, and van der
Vaart (2000), we will only highlight the differences. To apply Rio’s theorem, we
rewrite ϕn�y�x(Y�X) as

φn�y�x(Y�X)= 2[1(U ≤ u)− u]

×
∫

sgn(X − x̃)Khn(x̃− x)dFX(x̃)Khn(X − x)
≡ ϕn�u�x(U�X)�

where U = FY(Y) and u= FY(y). Then U is uniformly distributed in [0�1] ≡
U . Thus, Theorem 1.1 of Rio (1994) can be applied to a normalized empirical
process associated with ϕn�u�x(U�X). First, we verify that the class of functions
(v� t) �→ hnϕn�u�x(v� t), indexed by (u�x) ∈ U × X , is uniformly of bounded
variation (UBV). By the definition of Rio (1994), it suffices to show that

sup
(u�x)∈U ×X

sup
g∈D2([0�1]2)

(∫
R2
hnϕn�u�x(v� t)divg(v� t)dvdt

/
‖g‖∞

)
<∞�

where D2([0�1]2) denotes the space of C∞ functions with values in R
2 and with

compact support included in [0�1]2, div denotes the divergence, and ‖g‖∞ =
sup(v�t)∈R2 ‖g(v� t)‖ with ‖ · ‖ being the usual Euclidean norm. To do so, note
that for any g(v� t)≡ (gv(v� t)� gt(v� t)),∫

R2
ϕn�u�x(v� t)divg(v� t)dvdt

=
∫

R2
2[1(v≤ u)− u]

∫
sgn(t − x̃)Khn(x̃− x)dFX(x̃)Khn(t − x)

×
[
∂gv(v� t)

∂v
+ ∂gt(v� t)

∂t

]
dvdt
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=
∫

R

∫
R

2[1(v≤ u)− u]∂gv(v� t)
∂v

dv

×
∫

sgn(t − x̃)Khn(x̃− x)dFX(x̃)Khn(t − x)dt

+
∫

R2
2[1(v≤ u)− u]

×
∫

sgn(t − x̃)Khn(x̃− x)dFX(x̃)Khn(t − x)
∂gt(v� t)

∂t
dvdt�

Then it is straightforward to verify that

sup
g∈D2([0�1]2)

(∫
R2
ϕn�u�x(v� t)divg(v� t)dvdt

/
‖g‖∞

)
=O(h−1

n )

uniformly over (u�x) ∈ U × X . This implies that the class of functions
{hnϕn�u�x : (u�x) ∈ U × X } satisfies the UBV condition of Rio (1994). Further-
more, it is also straightforward to verify that

sup
g∈D2([a�b]2)

(∫
R2
ϕn�u�x(v� t)divg(v� t)dvdt

/
‖g‖∞

)
=O(h−1

n [b− a])

uniformly over (u�x) ∈ U × X . This implies that the class of functions
{hnϕn�u�x : (u�x) ∈ U × X } also satisfies the local UBV (LUBV) condition of
Rio (1994). We now verify that the class of functions {hnϕn�u�x : (u�x) ∈ U × X }
is a VC class. The function hnϕn�u�x is bounded by a constant uniformly in
(u� z) ∈ U × X and is obtained by taking an average of

2hn[1(v≤ u)− 1(ũ≤ u)] sgn(x̃− t)Khn(x̃− t)Khn(t − x)
over (ũ� x̃). Then it is easy to show that {hnϕn�u�x : (u�x) ∈ U × X } is a VC
class by using arguments similar to those used in the proof of Lemma 3.2 of
Ghosal, Sen, and van der Vaart (2000), in particular equation (8.5). Finally,
by applying Theorem 1.1 of Rio (1994), there exists a sequence of centered
Gaussian processes Gn(u�x) with covariance

E[Gn(u1�x1)Gn(u2�x2)] = E[ϕn�u1�x1(U�X)ϕn�u2�x2(U�X)
]
�

By switching back to the original variable Y and its corresponding index y , we
obtain the desired result. Q.E.D.

Define

σ2
n(x)= 4

∫ [∫
sgn(x̄− x̃)Khn(x̃− x)dFX(x̃)Khn(x̄− x)

]2

dFX(x̄)
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and

σ2(x)= 4
[∫

q2(u)K2(u)du

]
[fX(x)]3�

LEMMA A.9:

(a) sup
x∈X

|hnσ2
n(x)− σ2(x)| = o(1),

(b) lim inf
n→∞

hn inf
x∈X

σ2
n(x) > 0,

(c) sup
x∈X

|σ̂2
n(x)− σ2

n(x)| =Op
(
n−1/2h−2

n

)
.

PROOF: Parts (a) and (b) of the lemma follow directly from Lemma 3.3(a)
and (b) of Ghosal, Sen, and van der Vaart (2000). To prove part (c) of the
lemma, note that σ̂2

n(x) depends on the estimated Xi. To deal with this, let
σ̃2
n(x�θ) be the same as σ̂2

n(x) except that X̂i is replaced by ψ(Wi�θ). As in the
proof of Lemma A.6, modifying the proof of Lemma 3.3 of Ghosal, Sen, and
van der Vaart (2000) gives

sup
x∈X

sup
θ∈Θ

|σ̃2
n(x�θ)−Eσ̃2

n(x�θ)| =Op
(
n−1/2h−2

n + n−1h−3
n + n−3/2h−4

n

)
�

where Θ is a neighborhood of θ0. Then part (c) follows from the restriction on
hn and the fact that Eσ̃2

n(x�θ) is Lipschitz continuous with respect to θ. Q.E.D.

LEMMA A.10: For the sequence of Gaussian processes {Gn(y�x) : (y�x) ∈ Y ×
X } obtained in Lemma A.8, there corresponds a sequence of Gaussian processes
{ξn(u� s) : (u� s) ∈ [0�1] × Xn} with continuous sample paths such that

E[ξn(u� s)] = 0�

E[ξn(u1� s1)ξn(u2� s2)] = [min(u1�u2)− u1u2]ρ(s1 − s2)

for u�u1�u2 ∈ [0�1] and s� s1� s2 ∈ Xn, where

sup
(y�x)∈Y×X

∣∣∣∣Gn(y�x)

σn(x)
− ξn[FY(y)�h−1

n x]
∣∣∣∣=Op(hn√logh−1

n

)
�

PROOF: Let Gn denote the class of functions {gn�u�x : (u�x) ∈ U × X }, where
gn�u�x(U�X) = ϕn�u�x(U�X)/σn(x). Also, let G̃n denote the class of functions
{g̃n�u�x : (u�x) ∈ U × X }, where

g̃n�u�x(U�X)= ϕ̃n�u�x(U�X)/σ̃n�x(X)�
ϕ̃n�u�x(U�X)= [1(U ≤ u)− u]
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×
∫

sgn(X − x̃)Khn(x̃− x)dx̃Khn(X − x)�

σ̃n�x(X)=
[∫ (∫

sgn(x̄− x̃)Khn(x̃− x)dx̃
)2[
Khn(x̄− x)]2 dx̄]1/2

× [fX(X)]1/2�

As explained in Remark 8.3 of Ghosal, Sen, and van der Vaart (2000), it is pos-
sible to extend Lemma A.8 in that there exists a sequence of Gaussian bridges,
say {Bn(g) :g ∈ Gn ∪ G̃n}, with

E[Bn(g)] = 0� E[Bn(g1)Bn(g2)] = cov(g1� g2)

for all g�g1� g2 ∈ Gn ∪ G̃n and with continuous sample paths with respect to the
L2 metric such that

Gn(u�x)= σn(x)Bn(ϕn�u�x)�
where Gn(u�x) is defined in the proof of Lemma A.8. Now let ξ̃n(u�x) =
Bn(g̃n�u�x) and γn(u�x) = Gn(u�x)/σn(x) − ξ̃n(u�x). As in the proof of
Lemma 3.4 of Ghosal, Sen, and van der Vaart (2000), note that γn(u�x) is
a mean-zero Gaussian process with

E[γn(u1�x1)γn(u2�x2)] =E[(gn�u1�x1 − g̃n�u1�x1

)(
gn�u2�x2 − g̃n�u2�x2

)]
�

Then the lemma can be proved using identical arguments to those used in the
proof of Lemma 3.4 of Ghosal, Sen, and van der Vaart (2000). Q.E.D.

A.7. Proof of Theorem 6.1

This theorem can be proved using arguments similar to those used in the
proof of Theorem 3.1. In particular, the following lemmas can be proved (the
whose proofs are omitted here for brevity) and then the desired result follows.

Recall that

ρ(s)=
∫
q(z)q(z− s)K(z)K(z− s)dz∫

q2(z)K2(z)dz
�

where q(u) = ∫ sgn(u − w)K(w)dw. Let ξ(u� s) denote a Gaussian process
{ξ(u� s) : (u� s) ∈ [0�1] × R

d} with continuous sample paths such that

E[ξ(u� s)] = 0�

E[ξ(u1� s1)ξ(u2� s2)] = [min(u1�u2)− u1u2]
d∏
j=1

ρ(s1j − s2j)
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for u�u1�u2 ∈ [0�1] and s� s1 ≡ (s11� � � � � s1d)� s2 ≡ (s21� � � � � s2d) ∈ R
d . Define

Xn = [0�1/hn]d and let ξn be the restriction of ξ to [0�1] × Xn.

LEMMA A.11: Let Assumption 6.1 hold. Let hn satisfy

hn(logn)1/2 → 0� nh3d
n → ∞� and nhd+1

n /(logn)d+1 → ∞�

Then there exists a sequence of Gaussian processes {ξ(u� s) : (u� s) ∈ [0�1] × Xn}
with continuous sample paths such that

E[ξn(u� s)] = 0�

E[ξn(u1� s1)ξn(u2� s2)] = [min(u1�u2)− u1u2]
d∏
j=1

ρ(s1j − s2j)

for u�u1�u2 ∈ [0�1] and s� s1 ≡ (s11� � � � � s1d)� s2 ≡ (s21� � � � � s2d) ∈ Xn, and that

sup
(y�x)∈Y×X

∣∣∣∣n1/2 Ûn(y�x)
ŝn(x)

− ξn[FY(y)�h−1
n x]
∣∣∣∣

=Op
[
n−1/2h−3d/2

n + n−1/2(d+1)h−1/2
n (logn)1/2 + hn(logn)1/2

]
�

LEMMA A.12: Let λ denote the quantity defined in Theorem 3.1 and let I ≡
[0�L]d be a rectangle with a fixed volume Ld . Then

Pr
(

max
(u�s)∈[0�1]×I

ξ(u� s) > a
)

=Ld2−(d−1)

(
8λ
π

)d/2
ad exp(−2a2)[1 + o(1)]

as a→ ∞.

LEMMA A.13: For any x,

Pr
(

4bn
{

max
(u�s)∈[0�1]×Xn

ξ(u� s)− bn
}
< x
)

= exp
{
−exp
(

−x− x2

8b2
n

)[
1 + x

4b2
n

]d}
+ o(1)�

where bn is defined in equation (16) in the main text.
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