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BY SUSAN ATHEY AND KYLE BAGWELL

This document has three parts. The first part analyzes generalizations of our model
to downward-sloping demand, imperfect substitutes, Cournot competition, and non-
linear cost functions. The second part describes a general dynamic programming ap-
proach to games with serially correlated private information. The third part establishes
conditions for the existence of an equilibrium with productive efficiency for perfectly
persistent types and also includes an analysis of severe “belief threat” punishments.

S1. MODEL GENERALIZATIONS AND ROBUSTNESS OF RESULTS

THIS SECTION DISCUSSES the robustness of our results on rigid pricing to sev-
eral modifications of the basic model, allowing for alternative specifications of
demand, quantity competition, and nonlinear cost functions. In the last subsec-
tion, we briefly discuss how our results about first-best equilibria generalize.

S1.1. Downward-Sloping Demand, Perfect Substitutes

Modify Model 2 of the main paper as follows. For simplicity of notation,
eliminate announcements and quantity restrictions from the model, so that the
only choice in the stage game is the price. (This does not affect our analy-
sis.) Maintaining the assumption that goods are perfect substitutes, define the
profit-if-lowest-price function as w(p;,, 0,,) = (pi, — 0;,)D(p;,), where D is a
differentiable market demand function that satisfies D > 0 > D’ over the rel-
evant range. We assume that 7 is strictly quasiconcave in p;,, with a unique
maximizer, p"(6;,), where p”(6) > 6. The monopoly price, p™(6;,), is nonde-
creasing in 6; ;.

With these modifications, given period strategies p, and beliefs »_;;, the ex-
pected market share for firm i in period ¢ can be written

m;(0;; s:, Vfi,t) = Eo,,-,t[%(P,(ei,z, 07i,t))|V—i,t]
and the interim profit function can be written
ﬁi(ei,t, ei,t; St, V—i,t) = W(Pi,z(oi,z)y oi,t)mi(ei,t; St, V—i,t)-

We next define Q(pi.; p_;;» v—i;) as the quantity a firm expects to sell when
it sets price p;, and opponents use pricing function p_; . In the present con-

text, Qi(pi;; P_i1sv-ii) = D(pis) - Bo_, l@i(pii, p_;,(0_;1))v_i ], and so the
function 77; may be alternatively expressed as

0y 00580, v_i) = (pii(0:) — 0.)Qi(pii (000 Py V-i).
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2 S. ATHEY AND K. BAGWELL

We ask three related questions about the optimality of rigid pricing in this
model. First, can we bound the profits from an equilibrium with productive ef-
ficiency (if it is an equilibrium at all)? Second, is price rigidity optimal when
demand is sufficiently inelastic? (That is, is the price rigidity result of Proposi-
tion 2 in the main paper “knife edge”?) Third, what can we say about optimal
equilibria more generally?

Following the proof of Proposition 2, let Ié,-(é,«,l) and Qi(éi’l) denote the
expected future discounted revenues and demand that firm i anticipates if it
mimics type ?)l—,] throughout the game, and let M, ,-(9,-,1) be the associated mar-
ket share. If firm i’s type is 6,;, then the present discounted value of profits

for firm i can be represented as U,-(é,-,l, 0;1) = Iéi(éi,l) — Oi,IQi(éi,l). Incentive
compatibility implies the monotonicity constraint that Q;(6;;) is nonincreas-

ing. Further, we note that local incentive compatibility together with the enve-
lope theorem imply that

0
(S1.1) uwwmo=w@%+/’gwmé
01

Thus, using integration by parts, given prior Fj, ex ante profits are
Fy
fo

This expression shows that there are important similarities and differences
between the downward-sloping demand case and the inelastic demand case. In
both cases, monotonicity of Fy/f, implies that, all else equal, we would like to

have O nondecreasing as well, allocating more expected demand to higher-

cost types. However, the force in favor of 0, nondecreasing conflicts with in-
centive compatibility and creates a force for pooling.

In addition, in the case of inelastic demand, a rigid price at » maximizes both
terms of expression (S1.2). This is no longer true when demand is downward-
sloping. Instead, the two terms are in conflict about the level of the price. To
maximize the profit to the high-cost type, it would be optimal to have a rigid
price, as the market share for type 6 is thereby made as large as possible; fur-
thermore, the best rigid price would be the monopoly price for the high-cost
type. To maximize the second term (subject to monotonicity constraints), it
would also be optimal to have a rigid price, following an argument analogous
to the one we used for inelastic demand; however, the best rigid price would
now be as low as possible, so as to make the quantity produced as large as pos-
sible and maximize the second term (recall that with inelastic demand, the ex-
pected market share was fixed at 1). The conflict between the two terms about
the optimal price level implies that price rigidity is not necessarily optimal.

At the same time, (S1.2) illustrates forces in favor of at least partial price
rigidity, and for certain classes of demand functions it can be used to provide a

(S1.2) E%mwwmm=w@%+&dgwm wm]
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very simple proof that partial price rigidity must be optimal. In addition, when
demand is sufficiently inelastic, full price rigidity will be optimal.

PROPOSITION S1: Suppose that demand is downward-sloping, firms sell perfect
substitutes, cost types are perfectly persistent, and Fy is log-concave. Then there
exists & sufficiently large such that the following hold. (i) Suppose that there ex-
ists a price level p' > 0 such that for p < p', demand is inelastic: D'(p) =0 for
p < p'. Then the optimal perfect public Bayesian equilibrium (PPBE) entails a
positive probability (ex ante) of production for type 6, and thus some productive
inefficiency. (ii) If demand is sufficiently inelastic, then the best rigid-pricing equi-
librium is the optimal PPBE.

PROOF: (i) Suppose that the equilibrium entails zero probability of produc-
tion for type 6. Let the ex ante expected production in this equilibrium as a
function of type be Q5(-), where Q%(8) = 0.

Observe that even if deviations from a collusive agreement can be punished
by giving a firm zero profits forever (as in the belief threat punishment dis-
cussed below), any such equilibrium must have prices less than or equal to 6.
To see why, note that with probability 1, the high-cost type gets zero market
share and zero profit in every period, so there can be no future reward to the
high-cost type for pricing above cost. Thus, in any period where the market
price was greater than 6, the high-cost type would have an incentive to deviate
and undercut the market price. Thus, prices must be less than or equal to 6 in
the proposed equilibrium.

We next argue that there exists a rigid- or partially rigid-pricing scheme that
dominates the proposed one (recall that we have already proved that the best
rigid-pricing scheme is an equilibrium for firms sufficiently patient). Let K =
Egi’l[é}g(ei’l)]. Let pX be the maximum price such that D(p*)/I > K; note
that given our specification of demand, pX > 6. Then if the firms use a rigid-
pricing scheme with prices equal to pX, the difference between the ex ante

expected profits with the rigid scheme and the original scheme can be written
(using (S1.2))

“sn
(S1.3) (pK—a)K—l-K-Eg“[(l—Qi(e[’l))ﬂ(ﬁm)]
’ K fo

Since Ey,,[05(0;)] = K, (03(6,1)/K) - f(8;,) is a probability density. Then,
since Q,» is nonincreasing, the probability distribution associated with f(6;,)
dominates the distribution associated with (Qf(@,»,l) /K) - f(6;1) by first-order
stochastic dominance (FOSD). Since Fy/f, is nondecreasing and is strictly in-
creasing at 6 (using our assumption that f(8) > 0), the second term is positive.
If pX > 6, then the whole expression (S1.3) is positive and the rigid scheme is
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better. When § is sufficiently high, a (pooling) carrot-stick scheme will be an
equilibrium.

(ii)) Normalize a family of demand functions so that D(0) = 1. Then expected
profit is given by

Eq,, [Ui(6:1, 0;1)] = Ui(0, 9)+Ee,1[Ql(011)f (911)}
=Ui(6, 6) + E,,, |:M(911)f (0,1)}

+Ey, [[Q(ei,]) M(e,l)]f (e,o]

for each member of the family. Assuming log-concavity and inelastic demand,
we showed in Proposition 2 that a rigid price at the reservation value uniquely

maximizes the first two terms. As demand becomes more inelastic, Q;(6; ) ap-

proaches M;(6,,) for all prices below the reservation value, and so the first two
terms dominate. The level of the optimal rigid price approaches the reservation
value as demand becomes inelastic; further, as in Proposition 2, this scheme is
used in a PPBE for sufficiently patient firms. Q.E.D.

The only place we used the restriction on the class of demand curves in
part (i) was to guarantee that pX > 0, where pX is the price that generates out-
put equal to average output in the posited equilibrium with separation. The re-
sult could be extended in a number of ways; for example, we would have pX > 6
as long as demand was sufficiently inelastic for prices below 6. More generally,
any demand curve and cost distribution that jointly lead to monopoly prices
that are much higher than costs will have the feature that the optimal rigid-
pricing scheme dominates schemes with productive efficiency for an interval of
high-cost types, since such schemes necessarily entail prices below 6.

Although we have now argued that neither rigid pricing nor full productive
efficiency will typically be optimal, it is useful to illustrate forces in favor of par-

tial pooling (and in particular, intervals of pooling). Suppose that Q; is strictly
decreasing on [x, y] C [6, 6]. Now define the series of pricing strategies im-
plicitly (where pricing strategles need only be modified on [x, y]) so that the

associated quantity scheme Q is equal to Q, outside of [x, y] but is constant
on [x, y], and

(S1.4)  Ey,[0:(0:)10:: € [x, y11 = Ey, [Q/(0:)16:, € [x, yI1 = O}(y).

Then we can define a probability distribution

G(0:1: Qi) =

1) dFy(0;110,1 € [x, y])
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with G(Oi,l;Q;) defined in an analogous way. Since G(~;Q;) dominates
G(-; Q) by FOSD, if F, is log-concave, then

Eeil[Q;(Oi,l)@(ei,l)} > Ky, [Qi(ai,l)&(ei,l)}

’ fo ' fo

and a force in favor of rigidity is thus illustrated. However, the new scheme
does not, in general, satisfy local on-schedule incentive constraints at x and
y, and so this argument does not establish that a step function is optimal (as
opposed to a scheme with intervals of pooling and intervals of separation).

A full analysis would incorporate the additional modifications to the scheme
that would restore on-schedule incentive compatibility, and also satisfy off-
schedule incentive compatibility, and establish conditions under which the
modification increases expected profits. For example, we could consider a new
scheme Q;’ that is equal to Q; for 6;; > y, is constant on [x, y], and has the
same set of intervals as the original pricing function on which the pricing func-
tion is strictly increasing; but the new scheme is modified to satisfy on-schedule
and off-schedule incentive compatibility constraints for 6, ; < x (it may or may
not be possible to satisfy both on- and off-schedule constraints; let us focus on
the case where it is). Then we could compare the overall profits from Q;’ to
profits from the original scheme. The difference can be expressed as

v v F
(Eei,l |:(Q;(x) - Qi(ei,l))f?(@i,l))ei,l € [x, y]D Pr(0;; € [x,yD

o v F
+(Q/(x) — Q;—(x))<Eoi,1 [70(01',1) 01 € [x, )’]j|> Pr(6;: € [x, y])
0
v Y F,
+ (Ee,-,l [[Q;/(ei,l) - Qi(ei,l)]%(ei,1)|9i,1 < x:|) Pr(6;; < x).
0

The expression on the first line is positive by our previous analysis, but the sec-
ond and third expressions are ambiguous. The sign and magnitude depend on
how the pricing scheme needs to be adjusted to maintain incentive compatibil-
ity, and on the shape of the demand curve. In general, there may be other ways
to improve upon a particular pricing scheme with intervals of strict monotonic-
ity (for example, modifying the pricing function above y or modifying the shape
of the pricing below x in other ways), so even if the latter expression is nega-
tive, it still may be possible to improve on a scheme with intervals where the
pricing function is strictly monotone. See Athey, Atkeson, and Kehoe (2005)
for an approach to analyzing the optimality of partial pooling in a different but
related model.

This analysis suggests that, in general, partial pooling will be optimal, taking
a form similar to the market-sharing two-step scheme analyzed in Section 3.2.3
of the main paper (though there may be more than two steps).
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S1.2. Imperfect Substitutes

We now consider briefly the possibility that firms sell imperfect substitutes.
Note that there are several differences from the perfect substitutes case: with
imperfect substitutes, the first-best allocation typically has all firms produc-
ing a positive amount, and typically demand is continuous in prices. However,
these differences do not affect the analysis of the optimal collusive scheme very
much. In this case, given strategies, we can represent demand in period ¢ by

Qi(pis; P_inVoii) = Eo_,-,, [Di(pi,ta P_,',,(O—i,t))h’—i,t]

and let Q,w,-,o be the expected discounted demand a firm expects over the
course of the game from mimicking 6, ;. Then (S1.2) still characterizes profits.

In this model, expected demand for each cost type depends on the entire
pricing function of opponents. If the demand function is linear in prices, how-
ever, players care only about the average price of opponents. Then it is possible
to modify pricing functions for each player only on the interval of types [x, y],
to change a pricing function from being strictly increasing to being constant
on that interval, while leaving the expected price and the expected demand for
opponents unchanged outside that interval. Then the arguments of the last sec-
tion can be applied: in particular, if QO is strlctly decreasmg on [x, y] C [6, 6],
we can find new pricing strategies such that Q is equal to Q; outside of [x, y]
but is constant on [x, y], and expected demand on that region is unchanged.
Then, as above, there will be a force in favor of pooling. From a formal per-
spective, this model is closely related to one analyzed by Athey, Atkeson, and
Kehoe (2005). We conjecture that their arguments can be modified to show
that if F and 1 — F are log-concave, and demand is linear, then an optimal
PPBE is characterized by intervals of pooling.

S1.3. Quantity Competition

The analysis is similar when firms compete in quantities rather than prices.
To see this, let P be the inverse demand function and let firm i’s expected profit
in period ¢ be given by (where firm i’s quantity strategy in period ¢ is ¢, )

Fi(éi,z, 08, V_;)
= (Bo_,,[P(W1(010), 5, (0_i ) |w_ie] — 00 his(6:1).

Again, we can let Q,«(Gi,l) denote the expected discounted demand firm i ex-
pects from mimicking 6;; throughout the game. Then (S1.2) characterizes
profits, and a force in favor of pooling remains. Again, we expect optimal PPBE
to be characterized by partial pooling.
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S1.4. Nonlinear Costs

So far we have assumed constant marginal costs. Suppose instead that total
costs in period ¢ are given by h(qi,, 0;,) = h?(q;,)h’(6;,) when a firm with
type 0;, produces g, ,. Then we provide sufficient conditions for rigid pricing to
dominate alternative schemes that have the property that the highest-cost type
serves less than 1/1 of the market in each period. Any scheme with greater
period-by-period productive efficiency than rigid pricing will have this feature.
At first it might seem impossible to find an incentive-compatible scheme where
the highest-cost type serves more than 1//; however, even though it might
seem pathological, nonlinearities in cost do make it possible. Thus, we stop
short of a full proof of the optimality of rigid pricing. Despite this, our analysis
makes clear that nonlinear costs do not remove the incentive for pooling nor
do they invalidate our overall approach. In addition, our analysis establishes
that rigid pricing dominates a wide range of schemes with greater productive
efficiency.

PROPOSITION S2: Suppose that (i) h? and h’ are differentiable, with h® > 0,
hi'> 0, ht > 0, k%> 0, ht <0, and ht, >0, and (i)

(S1.5)  r> h,(0, 0).

If F, is log-concave, then rigid pricing at r dominates any scheme satisfying the
market share restriction that m;,(0,0_;,) <1/I foreach i, t,and 0_, .

Before proving the result, we pause to interpret the sufficient conditions.
They require economies of scale: marginal costs are nonincreasing. It may
seem somewhat surprising that with economies of scale, pooling could be opti-
mal, since cost considerations favor shifting production to one firm even more
than in the case of constant marginal costs. However, as in the case of con-
stant marginal cost, allocating more market share to high-cost types relaxes
incentive constraints for low-cost types. Thus, expected “information rents” to
the firms are higher when more market share goes to high-cost firms. When r
is higher than marginal cost for the high-cost type in the relevant range and if
rigid pricing increases the market share to the high-cost type, then rigid pricing
increases profits to the high-cost type as well.

When the sufficient conditions of the proposition fail, there are generally
competing effects and it may be necessary to consider a parameterized model
to fully characterize optimal PPBE.

PROOF OF PROPOSITION S2: Following our notation above, let Iii(é,-,l) de-
note the expected future discounted revenue that firm i anticipates if it mim-

ics type 6, throughout the game, and let M,—(éi,l) be the associated market
share. Let Hl-(éi,,, 0;1) be the expected discounted total cost when type 6,
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mimics éi,l throughout the game, decomposed into two components, so that

Hi(0:1, 0:1) = h?(0;1) - H1(0;y).
Let

Ui(0i1, 0:1) = Ri(0;1) — Hi(;1, 0,.1).

Using the envelope theorem and on-schedule incentive compatibility,
~ —_— ~ _—— 6 ~ ~ ~ ~
Ui(01, 0;1) = R;(0) — H(0, 0) +/ hg(6:1) - H(6;1) d6;,.
i1

So, using integration by parts,

s a5) Sy - F 0,
(51.6) Ee,-,l[Ui(ei,b9i,1)]=Ee,-,1|:Ri(9)—Hi(9, 6)+hy(6,1))H(6;,) o ’1)i|,

fO(ai,l)

The on-schedule incentive constraints also imply that

Ui(0:1, 0:1) > Ui(0:1, 6;1)
= U;(6;1, 0;1) + Hi(6;1, 0,)—H(6:1, 6:1),
Ui(6:1, 0;1) = Ui(0:1, 0;1)
= Ui(0:1, 0;1) + Hi(6:1, 0,1)—H(0:1, 6;1),
so combining,
Hi(8i1, 0,1) + Hi(0:1, 0:0) < Hi(Bi1, 1) + Hi(8,1, 0:10).

In words, on-schedule incentive compatibility implies that H; is submodular.
Using our definitions and monotonicity restrictions, that in turn implies that
H4(6;,) is nonincreasing in ;. This does not, however, imply that expected
market shares are globally decreasing in (91-,1, since A7 is nonlinear.

Profit-at-the-Top

Fix a PPBE. Let m,,(0;) be the market-share allocation to firm i in pe-
riod ¢ as a function of firm types. For every i, ¢, and €_;;, we assume that
m;(0,0_;,) <1/I. The ex ante expected value of “profit-at-the-top” to firm
i in period ¢ is then

Eo_,-,l [Pi,t(a)mi,t(g, 0_.1)— he(a)hq(mi,z(ay 071',1))]-

We claim that this profit-at-the-top cannot exceed that which is achieved when
a best rigid-pricing scheme is used in period ¢.
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To establish this claim, we fix i and ¢, and suppose that p,;,(@) < r and/or
m,-’t(ﬁ, 0_.1) < 1/I for a positive measure of values for 6_;;. (Recall that a
best rigid-pricing scheme has p;,(0) = r and m, (6, 0_,,) = 1/1.) Clearly, if
p,-,,(ﬁ) < r, then profit-at-the-top would be increased if the price were raised
to r. Suppose then that pi,[(a) =r and m,-,t(a, 0_.1) < 1/I for a positive mea-
sure of values for 0_; ;. For each such 6_; |, if we were to increase firm i’s mar-
ket share from m;,(6, @_;,) to 1/I, then firm i would enjoy a strict increase
in profit when state (6, 6_;,) occurs. This follows since r — h’(0)hi(q:,) =
r—h?(6)h(0) =r — hy(0, 6) > 0 for g;, € [0, 1/1], where the first inequality
uses hf (q;,) <0 and the second inequality uses (S1.5). Over a positive mea-
sure of values for #_;;, these pointwise improvements imply a strict increase
of profit-at-the-top to firm i in period ¢.

Thus, when a best rigid-pricing scheme is used, the effect on the profit-at-
the-top in each period is positive, and so the aggregate effect must be positive.
With regard to the profit-at-the-top, we have therefore established that any
PPBE with the feature that m,-,,(a, 0_;1) <1/I for each i, ¢, and 6_;; is domi-
nated by using the best rigid-pricing scheme in each period. Since rigid pricing
at r is a PPBE for sufficiently large 8, it provides greater expected profit-at-
the-top than any other PPBE that satisfies the market-share restriction.

Information Rents

The last part of the ex ante expected profits expression (S1.6), referred to as
the information rents, is

o Fy(6;
Ee,,,l[hZ(ei,l)H"(ei,1> N ’1)].

fo(6i1)

For any M ; associated with a PPBE, consider an alternative market-share allo-
cation function derived from rigid pricing, so that market shares are equal for
all types and all firms in each period, and H4(6;) is constant in 6;. Rigid pricing
dominates from the perspective of information rents if

. hq(l/l) e o - F()(ei,l)
E%th(@“) = ha(e,,l)m(e,,])) fo(ai’l)]zo-

The expression can be rewritten as

h1(1/1) - 0 Fo(8;1)
(S1.7) cov(( 15 —Hq(ei,n)),h9(9i,1)f0(0i’]))

hi(1/1) 0 Fo(6:1)
o [ (200 )] 0]
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Note that Eq, , [A8(6;1)Fo(6;1)/fo(6;1)] > 0 since the integrand is positive
everywhere. In addition, concavity of 47 and Jensen’s inequality imply that for
each ¢,

h'(1/1) = hq(Eol [mi,z(ol)]) > Eq, [hq(mi,t(ol))]
=Ky, [Eq_, h?(m;,(6,))],

so that the second term of (S1.7) is positive, using the definition of H (6:1)-
On the first term, given log-concavity, 4§ > 0, and A%, > 0, h%(0,1)Fy(0:1)/
fo(6;1) is nondecreasing. By incentive-compatibility, (h?(1/1))/(1—8) —
H4(6;,) is nondecreasing. The covariance of two nondecreasing functions of
a single random variable must be positive. Therefore, (S1.7) must be positive
and the alternative with equal market shares must be preferred. Q.E.D.

We conclude by noting that the restriction on market shares was used only in
the analysis of profit-at-the-top, so that there will still be a strong force for at
least partial pooling (from the information rents term) even when the market
share-restriction fails.

S1.5. Robustness of Results About Efficient Collusion

Although we have not conducted a full numerical analysis of alternative
models, the general approach we take to constructing first-best equilibria can
be generalized to alternative models. The first step would be to construct a
punishment equilibrium analogous to the carrot-stick pooling equilibrium (or
some alternative). Although critical discount factors would clearly differ and
some details of the construction would differ, there is no reason to expect dif-
ficulties generalizing the carrot-stick equilibrium to alternative models. The
dynamic programming approach we employ for analyzing first-best equilibria
generalizes directly to other models of product market competition. Since first-
best equilibrium payoffs are higher than payoffs from pooling equilibria, for
sufficiently patient firms, off-schedule incentive constraints should not bind.

The main challenge in eliciting truthful revelation alongside efficient market-
share allocation is to provide future rewards and punishments that provide
sufficient incentives for firms to give up market share, while still implement-
ing efficient allocation in the reward and punishment continuation equilibria.
With discrete types and perfect substitutes (either Bertrand or Cournot), states
of the world arise with positive probability where market share can be shifted
among firms. For particular functional forms, it is straightforward to write the
system of equations and incentive constraints that must be satisfied to imple-
ment a first-best equilibrium, analogous to the system described in the paper.
One could then describe the parameter values for which a first-best equilib-
rium exists. We note that if firms compete in quantities, communication plays
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a more substantive role in coordinating firms on the desired quantities as a
function of cost.

With imperfect substitutes, there is typically a uniquely optimal market-
share allocation for any cost vector, even when costs are identical. Thus, some
inefficiency should be expected for any discount factor strictly less than 1.
Similarly, with nonlinear costs, diseconomies of scale imply that firms should
share the market in a particular way. Thus, distorting production to pro-
vide rewards or punishments for past revelation will lead to some ineffi-
ciency. In both cases, the requisite inefficiency should decrease as patience
increases.

S2. USING DYNAMIC PROGRAMMING TO ANALYZE THE FIRST-BEST SCHEME

This section provides more details about applying dynamic programming ap-
proaches in the spirit of Abreu, Pearce, and Stacchetti (1986, 1990) and Cole
and Kocherlakota (2001) to our Model 1. Although this is not necessary to es-
tablish that the first-best scheme is a PPBE, the techniques are useful more
generally for analyzing self-generating sets of PPBE values either numerically
or analytically.

We retain the notation from the main paper, but also introduce some new
notation. Let V be the set of functions v=(vy, ..., v;) such that v;: ®; — R.
This is the set of possible type-contingent payoff functions. Let W =V x AO.
The set of PPBE then corresponds to a subset of WW. Each equilibrium is de-
scribed by a set of initial beliefs about opponents, u € A®, and a function
v € V that specifies the payoff each player expects to attain, conditional on the
player’s true type.

Consider continuation value and belief functions (V, M) mapping Z to W.
For every possible publicly observed outcome z, from period ¢, these functions
specify an associated belief and a type-contingent continuation payoff function.
That is, V;(z,) is the type-contingent payoff function that will be realized fol-
lowing observed actions z,, and V;(z,)(6; 1) is the payoff firm i expects starting
in period ¢ + 1 if z, was the vector of observed actions in period ¢ and its true
type in period ¢ + 1 is 6,,,;. Note that this structure makes it possible to com-
pute firm i’s expected future payoffs if firm i mimics another type in period ¢.
The chosen actions affect which continuation payoff function is used through
z,, but the firm’s true type determines the firm’s beliefs about 6;,,; and thus
the firm’s continuation value.

Let n;(a;., ;. u;,) represent the belief that firm i # j has about player j in
period ¢ after firm j has made announcement a,,, given that firm i # j began
the period with beliefs u;, and that it posits that player j uses period strat-
egy s;,. Then, for a continuation value function V= (V,...,V}), define ex-
pected discounted payoffs for firm i in period ¢, when firm 7’s type is 0;,, after
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announcements have been observed to be a, and firm i chooses actions p;,, g;,
following these announcements:

ui(ay, Piss Giss 0iss St | LA Vo)
=(pir— 0i1) - ]Eo,,-,, [QDi((Pi,t, p_i.(a,0_.)); (g ¥ (a, 04,:)))
m (@i, s i IL,-,Z)]
+ 6E9,~’,+1,B,,-),[Vi((ai,t, Pits Git)> S—i (A1, 0_1))(0;141)
m_(a_inSinm i), 9i,z]~

As in Section 4.2 of the main paper, the following equality represents firm i’s
expected payoffs in period ¢, before announcements are made, when firm i has

type 6;, and mimics type 6; ,:
ﬁi(éi,ta i3S iy V)
= Fi(éi,t’ ei,t; St Mfi,l)
+ 8Eq,, 0. [Vi(si(@(0i0, 0_10), (810, 0_10)) (8|0 Oic]-

Then, following Cole and Kocherlakota (2001), we define a mapping B :
W — W such that

(S2.1)  B(W)= {(v, p) € W:Vi, 3s' € S; and (V,M): Z — W,
.. M(z) € T(n, 5%, 2) Yz €2, v,(0,) = Ui (0;, 0;, 8", p_;, V7)

V6, € ©;, and (IC) 57 € argm%xﬁ,-(e,«, 0:, (8i,8"), m_;, I/i)}.

Note that in this definition, the requirement that (V, M) : Z — W is restrictive,
since W is not a product set. The requirement ensures that the continuation
value and belief functions are compatible: given the beliefs that arise given
posited strategies and observations, M(z), only a subset of potential continua-
tion value functions satisfy (V(z), M(z)) € W. Intuitively, today’s actions reveal
information about cost types that restrict the expected value of costs, and thus
feasible payoffs, tomorrow.

Following Cole and Kocherlakota (2001), standard arguments can be
adapted to show that the operator B is monotone (where a set A is larger
than B if A 2 B). Showing that the set of PPBE is the largest fixed point of the
operator B involves more work, because our model differs in a few respects
from that of Cole and Kocherlakota. Cole and Kocherlakota’s (2001) assump-
tions about the monitoring technology imply that T is single-valued, since it is
impossible to observe outcomes z that are inconsistent with strategies s*. Our
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definition of B has an additional degree of freedom, since B(J#) may include
different elements that are supported using different off-equilibrium-path be-
liefs. Although this in itself does not pose a difficulty, the fact that we consider
a hidden-information game does raise additional issues. In particular, beliefs
are not continuous in strategies: in the limit as a separating strategy approaches
pooling (for example, announcements are uninformative and the prices chosen
by different types approach one another), the sequence of separating strate-
gies induces very different beliefs than those induced by the limiting pooling
strategy.

Two additional technical differences from the literature arise. First, the strat-
egy space in each period is a compact set but is not finite. Second, there is a
discontinuity in payoffs due to the Bertrand stage game: a firm can receive
discretely higher payoffs by selecting a slightly different price. We believe that
these differences can be addressed, but a full treatment is beyond the scope of
this paper and is not necessary for our purposes.

The most useful insight for analyzing a particular class of PPBE is that if we
can explicitly construct a set W such that W C B(W), this set must be a PPBE.
Lemma S1 states this formally.

LEMMA S1: Let W* be the set of PPBE type-contingent payoff functions and
beliefs. For any compact set W €W such that W € B(W), W is a self-generating
equilibrium set: W C W*,

This lemma follows by adapting the findings of Abreu, Pearce, and Stac-
chetti (1986) and Cole and Kocherlakota (2001) to our game; the extension is
straightforward given the definitions.

Each PPBE is described by w=(v, u) € W*, which is the type-contingent
payoff function and the belief. Since each w € W* corresponds to a PPBE out-
come, we will simply refer to w e W* as a PPBE. Further, since w € W* implies
w € B(W*), each such equilibrium can be “decomposed” into the period strate-
gies, s*, and the continuation belief and payoff mappings (V, M) : Z — W that
are guaranteed to exist by the definition of B. We rely heavily on this way of
describing and analyzing equilibria below.

The incentive constraint in the definition of B includes all deviations. We
wish to separate the types of deviations into on-schedule deviations, whereby
one type mimics another, and off-schedule deviations, where a type chooses an
action that was not assigned to any type. Unlike the case of perfect persistence,
here there is always a chance that types change from period to period, and so
any kind of mimicking behavior constitutes an on-schedule deviation, even if
the firm mimics different types at different points in time. The on-schedule
constraint for firm i can be written as

(S2.2) Wi Oiss O0is Sty phes VI = Ui 0iry 0550, iy, Vi) Vi, 0;
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The off-schedule constraint is written
(S23)  ui(@(8,), pii(@,(0,), 0:1), Yii((0,), 0:1), 0ii 50, .y, Vi)
= ”i((ai,z, a_i(0_)), Pit>Gii> 0its St i s Vl-) forall 0;,,0_;,,
and all (a;,, pis, gi) ¢ {(a,,. Pl q,) 30, € O;st.a, = a; (6;)),
D= pii(a(0:,0_:,),0.),
@i, = Vi@ (0, 0_:), 0,0}

If, for all i, both of these constraints are satisfied for s=s*, then s’ €
argmaxyes, Ui (0;, 0:, (s, 8" ), u_;, V3).

S2.1. Applying Dynamic Programming Tools to the First-Best Scheme

To verify that a particular first-best scheme is a PPBE, there are two steps.
First, we construct a set W/ c W, which requires constructing the (state-
contingent payoff functions, belief) pairs induced by the first-best scheme, as
well as associated continuation value functions. Using this development, the
second step is to define a set of incentive constraints and verify that they are
satisfied, thus ensuring that strategies of the first-best scheme are indeed a
PPBE. 5

The paper defines period strategies §; and continuation value functions V for
each state, and it states a system of equations that yields the state-contingent
payoff functions v(j, 6,_;) € V.

Recall that v* and v" are the type-contingent payoff functions from the
worst carrot-stick and best rigid-pricing equilibria, respectively. We consider
a modified version of a carrot-stick scheme where players announce their
types in each period. Since behavior does not depend on beliefs about op-
ponents on or off of the equilibrium path in this scheme, firms are indiffer-
ent about their reports, and so the carrot—stick scheme with truthful reporting
is a PPBE as long as the original carrot-stick scheme was a PPBE. For the
case of I =2, let the set of possible beliefs in a fully separating equilibrium be
MFS ={u e A®*:u = F(-; 0,_,) for some 0,_; € @?}. Then define the follow-
ing sets of (state-contingent payoff function—belief) pairs:

We={(v,m) e W:3w;(0, 1) € Qs.t. u=F(-; 0, ,)
andv=v(j, 0, 1)},
WP ={(v,m) e W:v(0,_1) = (v, v*) VO,_,, p € M}
U{(v,m) eW:v(0,_)) = (v, V) VO,_,, u € M5},

We wish to show that W/> = We U WP is a self-generating set in the sense
of Abreu, Pearce, and Stacchetti (1986), and as applied to our problem in
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Lemma S1. Informally, we require that for each element w of W/*, we can
find strategies s* and a continuation value function V: Z — V), such that three
conditions hold. First, we require feasibility: (V(z,), F(-; a,)) € W/?, so that the
continuation valuation function gives a state-contingent payoff function that is
in W/t given the beliefs induced by the period’s public outcomes. Second, we
require promise-keeping: the strategies and continuation valuation functions
deliver the promised state-contingent payoffs. Third, the strategies s* must be
best responses.

The following result formalizes the sufficient conditions required to verify
that a first-best scheme is a PPBE. It provides an alternative to the approach
outlined in the paper.

PROPOSITION S3: Fix I =2 and consider the two-type model with imperfect
persistence, with primitives &,r, L, H, and F, with 6 > 8.. Fix the specification
of a first-best scheme g, @,, and T, and consider the corresponding § and V. If
for each (i, j, 0,_)) € {1,2}* x @2, the on-schedule and off-schedule constraints,
(S2.2) and (S2.3), hold when p, =F(-; 0,_1),V=V(j, 0,_,), and s* =5(j, 0,_,),
then Wb € BOW/'?) and W'* is a self-generating PPBE set that yields first-best
profits in every period.

PROOF: We established in the paper that W? is a self-generating equilibrium
set. By Lemma S1, it remains to show that w € W¢ implies w € B(W/?). By con-
struction, each w € W¢ is associated with a w;(0,_,) € £2°. Let s* =5(j, 0,_1)
and V=V(j, 0,_,), and note that s* € S and, for all z, (V(z), F(-; a)) € W', so
that feasibility is satisfied. Further, letting v; = v;(j, 8,_;) for each i, it follows
by definition of v; that promise-keeping holds: v;(60;) = u;(6;, 0;, s, m_;, V7). Fi-
nally, if (S2.2) and (S2.3) hold with these definitions, s} is a best response to
s*, for each i. Thus, w e B(W/"), as desired. Q.E.D.

S3. PRODUCTIVE EFFICIENCY WITH PERFECT PERSISTENCE

This section establishes conditions under which equilibria with productive
efficiency exist when cost types are perfectly persistent. We focus on the case
of two firms and then discuss the multi-firm extension. The equilibrium we
construct requires a severe form of punishment in the case of an off-schedule
deviation. We also discuss the use of severe punishments as a means of sup-
porting the best rigid-pricing equilibrium.

S3.1. Separating Equilibria With Productive Efficiency

We analyze here Model 2 of the main paper. Any proposed equilibrium with
productive efficiency in each period must be immune to deviations whereby
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one type mimics another type in every period. This incentive compatibility re-
quirement in turn implies

0
(83.1)  Ui(8i1, 6,0) = Ui(9, ) + M;(6,)dé;
0i="0;1
L 1—Fy(6:))' " db
- 1-s éi:f)iyl( 0( I)) is

following the logic and using the notation from the proof of Proposition 2
of the main paper. That is, each player must expect per-period profits equal
to those of the static Nash equilibrium. Thus, an equilibrium with produc-
tive efficiency would not be very profitable. Indeed, it can be shown that if
6—0)/1 > f;(l — F(0))"~'d6, then all types 0 € (6, 8) would earn strictly
less in an equilibrium with productive efficiency than in the worst carrot-stick
equilibrium. Under this distributional condition, in an equilibrium with pro-
ductive efficiency, type 6 would earn weakly less than and type 6 would earn
the same as in the worst carrot-stick equilibrium.’

However, it remains to analyze whether an equilibrium exists that delivers
productive efficiency. The static Nash equilibrium is no longer an equilibrium
in the dynamic game, since beliefs change after first-period play. Focusing on
the case where I = 2, we now consider a productive efficiency scheme, in which
firms do not communicate but rather set prices in a way that ensures produc-
tive efficiency in each period. Clearly, in the first period of such a scheme, the
firms can achieve productive efficiency only if they use a pricing strategy that
is strictly increasing in costs and symmetric across firms.

PRODUCTIVE EFFICIENCY SCHEME: This is a set of strategies such that, in
each period, announcements are uninformative and market-share proposals
are not binding (g;, > 1). The first-period pricing strategy of firm i is denoted
pi1(0;1), and is strictly increasing and symmetric across firms. Each firm infers
the other firm’s cost once first-period prices are observed. Let 6,, and 6, de-
note, respectively, the inferred cost of the “winner” (the lower-cost firm) and
“loser” (the higher-cost firm) in the period-1 pricing contest. Each firm adopts
a stationary price along the equilibrium path in periods ¢ > 1. Let 8(6,,, ;) de-
note the price selected by the winner in periods ¢ > 1 and suppose that the loser
charges & more. We restrict attention to B(6,, 6;) € [0, 6;].> In all periods,

To establish these relationships, simply compare the profits of the two equilibria for each type
and note that the difference is strictly convex for all 8 [0, 6). The distributional condition holds
(with equality) for the uniform distribution, for example.

2This restriction is required if a productive efficiency scheme is to be used in an PPBE: if
B(6,, 6)) < 6, the winner would deviate (e.g., price above r) in period 2, and if B(6,, 6,) > 6,,
the loser would deviate and undercut the winner in period 2.
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any off-schedule deviation induces the carrot-stick belief threat punishment,
as described below.

When firms use a productive efficiency scheme, an off-schedule deviation
may become apparent due to an inconsistency between a firm’s first-period
and (say) second-period prices. For example, suppose firm i has type 6;; and
undertakes an on-schedule deviation in period 1 by mimicking the price of a
higher type, 6;, > 6. Suppose firm j’s type is lower than 6;,, so that firm
j wins the first-period pricing contest and enters period 2 with the belief that

~

01 =0, > 0, = 0;,. If the scheme specifies a period-2 price for firm j such that
0:1 < B(0y, 0;), then firm i will charge the price B(0,, 6;) — € in period 2. Firm
i’s period-2 behavior then reveals its first-period deviation, and in period 3, the
firms proceed to the belief threat punishment.

Productive efficiency equilibria are difficult to construct. Separation in the
first period must be achieved, even though the first-period price may affect
beliefs and thereby future profits. A subtlety arises because of a potential non-
differentiability of payoffs in the first period for a firm of type 6, at p;1(6;1)-

If firm i charges p,-,l(é,-’l) for 9,-,1 > 6;, in the first period, it is possible that
6,1 > 0;1 > 6,1, in which case firm i will undercut firm j’s period-2 price,
B(O;1, éi,l). On the other hand, if firm i charges pi,l(éi,l) for 9,-,1 < 0;1, it is
possible that 9,;1 < 0,1 < 0,1, in which case firm i would not select the period-2

price B(0;1, 6;1) but would instead set a higher price (e.g., above r) and earn
zero profit. Thus, payoffs change at different rates for upward deviations than
for downward deviations. However, if 8(6,,, 8,) is strictly increasing in both ar-
guments at appropriate rates, it is possible to exactly equalize the incentive to
deviate upward with the incentive to deviate downward.

Strict monotonicity of B(6,, 6;) in turn requires that the first-period pricing
schedule places each firm type above its static reaction curve (i.e., at a price
such that first-period expected profit would be higher if a slightly lower price
were selected). Intuitively, when a firm contemplates an increase in its first-
period price, it then foresees a loss in its first-period expected profit, and this
loss is balanced against the benefit of the higher future price, 8(6,, 0;), that
the firm would enjoy were it to win the first-period pricing contest.

We next establish that a productive efficiency equilibrium exists if two con-
ditions hold. The first condition is that

o B o’
(832)  inf Jol j;1)> and  inf Jo f;l)
6,>07, fo(0])) 1—-8(1-29) o, <6y, fo(0] )

> 0;
the second condition is that 6 is sufficiently small that, for all 6;,

2£3(8:1) /5 S
S3.3 _ 1—Fy(6,))do; > 8.
B33 TR0, Jyy, T OD 46>
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For any 6 < 1, the conditions hold when Fj is sufficiently close to uniform. As
well, for any Fj, the conditions hold if & is sufficiently small.

PROPOSITION S4: Consider Model 2 and suppose I =2. If (S3.2) and (S3.3)
are satisfied, then there exists a productive efficiency equilibrium. Specifically, in
the first period, each firm i uses the strategy

2 1 ’
2-81-Fy(0i1) Jo=,,

pi1(0i1) =01+ - FO(éi))déi-

Let 0,, = min(6, 1, 6,1), while 6, = max(6, 1, 0,,1). If firm i is the low-cost firm in
period 1, then for all t > 1, firm i sets price

1-6 1

i: 011)70 == Hw 0,
Pi = B( 1) 75 +2_81

while firm j # i sets price p;, = B(0.,, 6;) + € for ¢ > 0.

PROOF: In a separating equilibrium with productive efficiency, p;;(6;;) is
strictly increasing and symmetric across firms, B(6,, 6;) € [0, 0,1, and thus
B(0,, 0,) = 0,. Let p(0;;) denote the symmetric first-period pricing function.
Suppose further that 8(6,, 6;) is monotonic, in that it is strictly increasing in
each argument.

Fix 60, € (6, 0). First, suppose firm i engages in a downward deviation by
mimicking the first-period price of 6;; slightly below 6;,. Consider the types
0, for the rival firm j such that the rival loses (i.e., 6;, > 0:,) and the winner
chooses a future price that exceeds 6;; (i.e., ,8(@,-,1, (;ﬂ) > 6;,). Observe that
B(0:1, 0;1) < 6;1; further, B(6,,, 6) > B(6;1, 0;1) = 6;1, and so for 6, slightly
below 6;;, we have that ﬁ(ém ,0) > 0;1. We conclude that there exists a unique
value 06(9,»,1, 0:1) € (0,-,1,5) that satisfies B(@,»,l, éj,l) = 6,;. Second, suppose
firm i engages in an upward deviation by mimicking the first-period price of 9,-,1
slightly above 6;,. Consider the types ?)j,, for the rival such that the rival wins
(ie., 0;, < 6.,) and chooses a future price that exceeds 6;; (i.c., B(0;1, 6.1) >
0:,). Observe that (6,1, 6;1) > 6, 1; further, B(0, 6;,) < 6, for 6, sufficiently
little above 6;;. We conclude that there exists a unique value 01,(9,-,1, 0;1) €
(0, ;) that satisfies B(6;1, 6;1) = 0.

Consider the following downward deviation: Firm i with type 6;, € (0, 6)
mimics ém slightly below 6;, (i.e., chooses p(é,-,l) < p(6;1)) and then (i) if
0,1 < 0.1, firm i makes no first-period sale and exits (e.g., prices above r) in all
future periods; (ii) if é]-,l € (9,-,1, 0.), firm i makes the first-period sale and exits
(e.g., prices above ) in all future periods; and (iii) if 6,, > 6., firm i makes the
first-period sale and mimics thereafter the equilibrium pricing behavior of type
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éi’l (i.e., sets B(ém, éj,l) in all future periods). As é,-,l 1 61, the deviating firm
i’s payoff approaches that which it earns in the putative equilibrium. Thus,
a necessary feature of a productive efficient equilibrium is that firm i does

better by announcing é,-,l = 6;; than any other él—,l < 6,1, given the associated
strategies described in (i)—(iii) above.

Under (i)—(iii), the profit from a downward deviation is defined as
(S3.4) WD(éi,l, 0i1) = [p(éi,l) — 0111 — FO(éi,l)]

8 o ~
+ —/ [B(0i1,0;1) — 0:11dFy(6;1).
1 - 6 0c

LEMMA S2: Forany 6,; € (9, 0), if derivatives are evaluated as éi,l 104,

(83.5) 7T(§Di)1(0i,1’ 0:1) =[p(0;1) — 0,1 1[—F;(0; )] + [1 — Fo(6:1)1p'(6;1)

0
—8/ Bo,, (01, 0;1) dFy(0;1)
- 0i1

/ 8 w(ai, ,0[7 )
(S3.6) 775,19,;1(01}1’ ;1) = Fo(gi’])[l _ Bo 1, 0i1 ]

1—-6 B4 (01, 0i1)

PROOF OF LEMMA S2: Using (S3.4) and the definition of 6., we find that

} (01, 0:0) = [p(B:1) = 0,11[—Fy(0:)] + [1 = Fo(0;1)1p'(6:1)
& 7 .. "
+mﬁ Bo,(0i1,0;1) dFy(6;1).

Differentiating with respect to 6,; and using 96./30;; =1/ ,891(9,«,1, 0.), we ob-
tain

5 Buu (81,00
18 By,(6:1, 6.)

(83.7) Wgyloi’l(éi,l’ 0i1) = F}(6;1) — Fy(6,).

Finally, as 9,-,1 1 6,1, we observe that 6. | 6,;, and so we obtain the desired
expressions. Q.E.D.

Consider now the following upward deviation: Firm i with type 6;, € (0, )
mimics 6;, slightly above 6;, (i.e., chooses p(8;;) > p(6;1)) and then (i) if
0,1 < 65, firm i makes no first- period sale and exits (e.g., prices above r) in
all future periods; (ii) if 0,1 IS (Ob, ,1), firm i makes no first-period sale, un-
dercuts the rival’s price 3(91 1, 0;1) in the second period, and then exits (e.g.,
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prices above r) in all future periods; and (iii) if 6 > 95,1, firm i makes the first-
period sale and mimics thereafter the equilibrium pricing behavior of type (;i,,
(i.e., sets B(@,»’ s é,-,l) in all future periods). As 9,;1 | 6;1, the deviating firm i’s
payoff approaches that which it earns in the putative equilibrium. Thus, a nec-
essary feature of a productive efficient equilibrium is that firm i does better by

announcing é,-,] = 6;; than any other é,-,] > 6;1, given the associated strategies
described in (i)-(iii) above.
Under (i)—(iii), the profit from an upward deviation is defined as

(83.8)  7Y( i1, 0,1) = [p(8;1) — 0,11[1 — Fy(6;1)]

0i1 5 R 5
+ 5‘1; [B(0)1,0:1) —0;11dFy(0;1)

b
s [ . . ~
+—/ [B(ei,l;aj,l)_ei,l]dFO(ej,l)-
1-6 By

LEMMA S3: Forany 6, € (9, 6), if derivatives are evaluated as é,-,l 104,

(S3.9) 77'311(01‘,1, 0i1) =[p(0;1) — 0.1 1[—Fy(0:;1)]1+[1 — Fo(6:1)1p'(0:1)

5 [° - ~
+ —/ Bo,(0:1,0,1)dFy(0;1),
1-4 0i,1

0 B, (0:1, ;1)
1 U L0 =F(0,)]1+8 LU N
(S3 O) Woi,lgi,l(el’l, 91,1) 0(91,1)[ + <1 —5 Bew(ei’], 0,',1)>:|

PROOF OF LEMMA S3: Using (S3.8), the definition of 6, and (9,-,1, ém) =
éi,l, we find that

U oA
7l (Bi1, 6:1)
i1

=[p(0;1) — 0,1 )[—F}(8:)1 + [1 — Fo(0;1)10'(6:1)

. .82 b s
—[0;1 — Oi,l]Fé(ei,l)—l 5 + S’L Bo, (01, 0:1)dFy(0;,)
- b

) 0 A~ -
+ — Bo, (i1, 0;1)dFy(0;,).
1-6 By

Differentiating with respect to 6;; and using 96,/960,, = 1/By, (65, 9,-,1), we
obtain

T 2 F(0)).

& } _ 5 Bu(0, 01)
B, (05, 0:1)

(S3.11) @/, (B, 6:0) = Fé(éi,l)[l +
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Finally, as é,-,l | 6;1, we observe that 6, 1 0;; and so we obtain the desired
expressions. Q.E.D.

We now report two corollaries:
COROLLARY S1: Forany 6;, € (0, 0),
775’1(91',1, 0:1) = 7751(91',1, 0i1)
=[p(6;1) — 95,1][—F6(95,1)] +[1- F(J(Oi,l)]p/(ai,l)

9
—8/ Boy(0i1,0;1) dFy(6;1).
- 01

COROLLARY S2: Suppose that

Bo., (0w, 6)
S3.12) ————=1-96
( ) ﬁﬁ/(owa 01)

Then
(83.13) ), (61, 0) =), (6i1,6i) = Fy(6,)[1 — 81> 0,
(S3.14) @y, (Bur, 0i1) = Fy(6i1) — 8F;(6.),
2

1-6

0
(S3 15) 779 19i1 (611, zl)-F/(011)|:1+ ]—mFé(eh)

The corollaries follow directly from Lemmas S2 and S3 and expressions
(S3.7) and (S3.11). The latter corollary motivates the specification for 8(6,,, 6,)
in Proposition S4, which satisfies monotonicity and (S3.12).

We now confirm that the pricing functions specified in Proposition S4 sat-
isfy local incentive compatibility with respect to our two deviation candidates.
Define

(5316) 77(0113 ll)_191<9 m (9117 11)+191>017TU(éi,1’0i,])'

Since 77 (0,1, 0;1) and 7T (011, ;1) exist everywhere, and 77 (9,1, 0:1) =

77 (0,1, 0:1) (as shown in Corollary S1), it follows that 1((91 1, 0;1) exists

everywhere Imposing the specification for B(6,, 6;) in Proposition S4, we may
use Corollary S1 to find that local incentive compatibility holds if and only if
7751(91',1, 0i1) = 7757_1(0,-,1, 6;1) = 0 or, equivalently,

(S3-17) [p(0;1) — 9i,1][—F6(9i,1)]
1)
+[1 - Fo(0;,)1p'(6;1) + m[l - Fy(0,1)]1=0.
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Thus, we can characterize the first-period pricing function that achieves local
incentive compatibility by

(S3.18) p(6) =0,

F)(0;
0( L) (p(0i1) —0;1) —

19) P 0i) =1
(S3.19) p'(6:1) 1—Fy(6;1) ’ 2=

It is now straightforward to verify that the first-period pricing function specified
in Proposition S4 solves (S3.18) and (S3.19).

We next confirm that the specified pricing functions satisfy global incen-
tive compatibility with respect to our two deviation candidates. As established

in Corollary S2, 775_16.1(9,-,1, 0;1) and 77516'1(9,-,1, 0;1) exist everywhere and
775.191_’1(0,-,1, 0,1) = ngei,l(e"’l’ 6,,) for the B(0,, 0;) function that we specify.

It follows that 7y, (01, 0;1) exists everywhere as well. Now consider the sign

of Wg,loi,l(éi’l’ 0;,) for éi,l < 6. Using (S3.14), we see that wg’lem(ém, 0:1) is

positive if fo(éi,l) /fo(6.) > 8. Since 6, > 9,«,1, we may draw the following con-
clusion: given B(60,, 6,) is specified as in Proposition S4, for every é,«,l < 6;1,
775 o (éi,l, 0:1) > 0 if the second inequality in (S3.2) holds. Next, consider the

sign of 775’101_’1 (éi,l, 0;,) for @,;1 > 0; . Using (S3.15), we see that 7757]%l (@,-,1, 0:1)

is positive if fy(6;, D/fo(0y) > 8/[1—8(1 - §)]. Since 6, < 6.1, we may draw the
followmg conclusmn glven B(6.,, 6) is specified as in Proposition S4, for every
0,,1 > 0,1, (0, 1, 0:1) > 0 if the first inequality in (S3.2) holds. Thus, un-

der (S3.2), 7791_‘191_,1(0,-,1, 0;1) is positive everywhere. Then standard arguments
can be used to show that local incentive compatibility implies global incentive
compatibility.?

Next, we determine conditions under which the first-period pricing function
is strictly increasing. Differentiating the first-period pricing function specified
in Proposition S4, we can confirm that p'(6;) > 0 if (53.3) holds.

Guided by the foregoing analysis, we can specify a separating equilibrium
with productive efficiency when (S3.2) and (S3.3) hold. Along the equilibrium
path, firms use the pricing strategies specified in Proposition S4. Following any
history where an off-schedule deviation has been observed, the carrot—stick be-
lief threat punishment is induced. This punishment is characterized in Propo-
sition S5, and it ensures that a firm that undertakes an off-schedule deviation
makes approximately zero expected profit over the subsequent periods. In the

9 101

3For éi,l < 6;1, observe that W(éi,l, 0i1) — m(0;1,0;1) = WD(éi,l, 0;1) — wP(6:1,60:1) <0,
where the inequality follows from standard arguments, given that 77”(12),-,1, 0;1) satisfies local in-

centive compatibility and positive cross partials. For 6;; > 6;;, the same argument applies with
7V replacing 7°.
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event that firm i undertakes an on-schedule deviation in period 1, we specity
that firm i’s subsequent behavior is determined as specified in the downward
and upward deviation candidates discussed above.

To complete the proof of Proposition S4, we now confirm that no deviation
is attractive. Clearly, no firm would gain by taking an off-schedule deviation
in the first period (i.e., by deviating outside of the range of the first-period
pricing function). Likewise, if a firm did not deviate in the first period, then
it would not gain by taking an off-schedule deviation in a later period. A los-
ing firm would clearly not gain from undercutting B(6,, 6,); and a winning
firm would not gain from raising price above B(6,,, 6,), since the immediate
gain is approximately zero (the future price of the losing firm is 8(8,, 6;) + €)
and the induced subsequent profits are also approximately zero. Next, suppose
that firm i took an on-schedule deviation in the first period and consider its
optimal play in subsequent periods. Under our specification, if firm i takes an
off-schedule deviation in a later period, then firm j is induced to follow the
carrot-stick belief punishment thereafter. Thus, if firm i takes an on-schedule
deviation in period 1, then it can do no better than to follow the behavior pre-
scribed by the downward and upward deviation candidates discussed above in
periods 2 and later. This observation, combined with our work above, ensures
as well that firm i does not gain from taking an on-schedule deviation in pe-
riod 1. Q.E.D.

Conditions (S3.2) and (S3.3) are satisfied in a rich parameter space; how-
ever, when they are not satisfied, a productive efficiency equilibrium may fail
to exist. Intuitively, the highest-cost type (6) gets no future profit and thus
prices at cost in the first period. All other types, however, distort their first-
period prices upward, in an attempt to signal higher costs and thereby secure a
higher future price. If firms are very patient, the benefit of a higher future price
is significant, and greater distortions in the first-period price are incurred. It is
then possible that higher-cost types may price above 6 and thus above the first-
period price of the highest-cost type. This implies a nonmonotonicity in the
first-period pricing function, in contradiction to the hypothesis of a separating
equilibrium.

We conclude that separating equilibria with productive efficiency exist un-
der certain conditions. Such equilibria are characterized by strategic signaling
in the first period. They thus represent the Bertrand counterpart to the sep-
arating equilibria constructed by Mailath (1989) for a two-period model with
differentiated products and perfectly persistent cost types.

S3.2. More Than Two Firms

It is straightforward to generalize the description of the productive efficiency
scheme to more than two firms. However, stating sufficient conditions for the
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scheme to be a PPBE becomes more complex. The pricing strategies can be
written

(0;1) =0;1 + 2 ! /9 (1—Fy(6,))"'d6
Pii 1) — Vil 2—5(1—F0(0i,]))[71 5 o\Y; i

i=0i1

Let 6,, = min,; 6;,, while 6, = max 4cyr | 4—;_ Min;c 4 0; ;. If firm 7 is the low-cost
firm in period 1, then for all # > 1, firm i sets price

1-96 1

Pis= B0, 0) = 50, + =01,

while firm j # i sets price p;, = B(0,, 6,) + & for ¢ > 0.
The sufficient conditions for global incentive compatibility from the [ =2
case generalize as

1—=F, (0 ))2f (0
($3.20) inf ( o( i;l)) 2fo( i;1) . s
=0 (L= Fo(0]))2fo(07) ~ 1= 8(1—9)

. (1= Fy(6;,)f0(0;,)
6, <6y, (1 — Fo(07))2fo(0],)

and

> 4.

The second condition is that & is small enough that, for all 6; ;,

21 =1)fo(0ir) [°

$321
32D TR0y Jia,

(1 —Fy(6,))'"'do; > 8.

However, the first condition in (S3.20) will fail when I > 2 (let ¢}, = 6). In the
proof of Proposition S4, the condition was used to establish global incentive
compatibility for upward deviations: that is, we used it to show that type 6;;
does not want to mimic type 6;; > 6;,. However, the condition is stronger than
what is needed: if ﬂ-U(é,-,] 0;1) is the payoff from such mimicry, the condition
guarantees that wé] o (91»,1, 0;1) > 0 for all éi,l > 6;;. What is necessary is that

WU(é,‘,l, 6[’1) < 7TU(0,*,1, 0,‘)1) for all éi,l > 0,‘,1. This can be verified directly for
a particular distribution of types; numerical calculations indicate that for Fj
uniform and [ > 2, the critical discount factor below which global incentive
compatibility holds is greater than zero, but diminishes rapidly with 1.

S3.3. Belief Threat Punishment

We now consider punishments that are not themselves equilibria at the start
of the game, because they rely on beliefs that may only arise following a de-
viation from equilibrium. We seek to identify the most severe punishment of
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this sort. To this end, we employ the belief threat punishment: a deviant firm is
forever after believed to have the lowest cost and is thus expected to charge
a low price, regardless of the subsequent path of play, which in turn makes it
rational for nondeviating firms to punish with their own low prices.

BELIEF THREAT PUNISHMENT: Suppose that firm i engages in an off-
schedule deviation in period 7. All firms j # i thereafter believe that firm i
has the lowest costs, 6, and they set the price p;, = 6 + 2¢ in all future periods
t > 7, regardless of the evolution of play.

Now, if firm 7 indeed did have cost 6, then its best response against the
belief threat punishment following its own deviation would in fact be to set
pi. = 6+ e. If firm i does not have low cost, it chooses any price greater
than p;,. This behavior is sequentially rational: each firm is doing its best
from any point forward, given its beliefs and the equilibrium strategies of other
firms. Furthermore, this is the most severe possible punishment outcome, since
a deviant firm earns zero profit in the continuation game, independent of the
discount factor.

While the belief threat punishment serves as a useful benchmark, it is not
entirely plausible. An immediate objection to the construction just presented is
that all firm j’s adopt dominated strategies (pricing below cost, for all histories)
in the continuation. This objection can be handled easily, however, if we modify
the above strategies to include a carrot—stick component.

CARROT-STICK BELIEF THREAT PUNISHMENT: Suppose that firm i engages
in an off-schedule deviation in period 7. The firms then impose a belief threat
punishment with the modification that, in period ¢ > 7, if the deviant firm i
plays p;, = 6 + ¢ and each firm j # i plays p;, = 6 + 2¢, then with some prob-
ability x € (0, 1) the firms switch to the best rigid-pricing equilibrium. Other-
wise, they continue with the described punishment strategies.

For y sufficiently low, the deviant firm still earns approximately zero profit.
But it is now a strict best response for a nondeviant firm j to select p;, = 6 +2¢
throughout the punishment phase: this strategy induces a distribution over zero
and positive profits, whereas any other strategy induces zero or negative profit
in the current period and serves only to delay the eventual escape to the col-
lusive continuation. Thus, the described strategies are no longer dominated.
In this case, the continuation play itself requires a discount factor that is suffi-
ciently high, since firms must be dissuaded from undercutting  in the punish-
ment phase when y > 0.

The (carrot-stick) belief threat punishment implies a new critical discount
factor for the best rigid-pricing equilibrium, as is stated formally in the follow-
ing proposition.
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PROPOSITION S5: Consider Model 2 and suppose 6 > (I — 1)/1. Then there
exists a best rigid-pricing equilibrium. If firm i deviates, the continuation entails a
carrot-stick belief threat punishment, and so firms j # i price at § + 2¢ in sub-
sequent periods and firm i prices above 0 + 2¢& unless its cost type is less than
0+ 2s.

PROOF: We established above that the carrot-stick belief threat punish-
ment does not entail the use of weakly dominated strategies. Let £(6;;) be
the present discounted value a deviant firm expects in the carrot-stick be-
lief threat punishment. For 6;; < 6 + 2¢, this value is approximately £(0;;) =
XSL(r—0,1)+ (1= x)8E(6;1) or £(6;1) = x8(r— 0,1)/(1 — (1 — x)8). Higher
types price above 0 + 2¢ and thus receive §(6;;) = 0. For any 6, , firm i does
not gain by deviating from pricing at r in each period if the following off-
schedule constraint holds:
r—0i,1L>r_el +8£(0.,)

Fi 1 — 8 jl 7,1 1)

Rewriting, we obtain ((I — 1)(r — 05’1) +18§(01’1))/(1(I’ — 0,"1) + 185(0,)1)) <
8. The left-hand side is increasing in &(6;;). Thus, for y sufficiently small,
£(6;,) is arbitrarily close to zero for all 6;; and we are sure to satisfy (53.22) if
6>U-1/I Q.E.D.

(S3.22)

The critical discount factor (I — 1)/1 is strictly less than 8., and so we now
have a lower critical discount factor for supporting the best rigid-pricing equi-
librium. We note that (/ — 1)/ is also the standard critical discount factor for
Bertrand supergames with complete information. Thus, if we are willing to im-
pose the (carrot—stick) belief threat punishment, then incomplete information
does not necessitate a higher discount factor to support the optimal collusive
arrangement (under log-concavity).

While the equilibrium of Proposition S5 entails undominated strategies, one
may object that the nondeviating firms might relinquish their worst-case beliefs
after a deviation if the deviant firm consistently did not price at 6 + &. Our
specification requires a dogged pessimism: even if the deviant firm i has not
priced at 8 + ¢ yet, each firm j # i remains sure that firm i will do so tomorrow.
Standard refinements also do not eliminate this equilibrium. The belief threat
punishment as stated, however, is not robust to the possibility of imperfect
persistence.
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