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This supplementary document contains a formal analysis of some of the extensions
briefly discussed in Section 5 of the published version. Section A1 considers the game
in which agents receive signals about the size of past attacks. Section A2 considers the
game with observable shocks to the fundamentals. Section A3 considers the variant
in which agents observe the shocks with a one-period lag. Section A4 considers the
game with short-lived agents in which the fundamentals follow a random walk. Finally,
Section A5 collects the proofs of the formal results contained in this document.

A1. SIGNALS ABOUT PAST ATTACKS

FOR SOME APPLICATIONS, it might be natural to assume that agents collect
information—either private or public—not only about the underlying funda-
mentals, but also about the size of past attacks. To capture this possibility, we
extend the game with public news examined in Section 5.1 as follows. In every
period t ≥ 2� agents receive private and public signals about the size of the
attack in the previous period. These signals are, respectively,

X̃it = S(At−1� ξ̃it) and Z̃t = S(At−1� ε̃t)�

where ξ̃it is idiosyncratic noise, ε̃t is common noise, and S : [0�1] × R → R�
To preserve Normality of the information structure, we adopt a specification
similar to that in Dasgupta (2002):

ξ̃it ∼N (0�1/γx
t )� ε̃t ∼N (0�1/γz

t )� and

S(A�υ)=
{
�−1(A)+ υ� if A ∈ (0�1),
υ� otherwise.

The noises ξ̃it and ε̃t guarantee that even if A(θ) is monotonic� the fundamen-
tals θ never become common certainty among the agents.1

Given that in any equilibrium of the game, agents play in period 1 as in the
static benchmark, the size of attack in period 1 is given by A1(θ)= �(

√
β1(x

∗
1 −

θ)), where x∗
1 = x̂1. This implies that in period 2� the signals the agents receive

about A1 are also additive signals about θ: X̃i2 = √
β1(x

∗
1 − θ) + ξ̃i2 and Z̃2 =

1We assume that these signals are uninformative when A = 0 or A = 1 to avoid the possibility
that agents can detect (collective) deviations. Because agents are infinitesimal, this would not
affect equilibrium outcomes, but would require us to specify out-of-equilibrium beliefs.
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√
β1(x

∗
1 −θ)+ ε̃2� The posterior beliefs about θ conditional on (x̃2� z̃2� X̃2� Z̃2)

are then Normal with mean β2/(β2 + α2)x2 + α2/(β2 + α2)z2 and precision
β2 + α2, where

x2 = β1

β2
x1 + ηx

2

β2
x̃2 + β1γ

x
2

β2

{
x∗

1 − 1√
β1

X̃2

}
�

z2 = α1

α2
z1 + ηz

1

α2
z̃1 + β1γ

z
2

α2

{
x∗

1 − 1√
β1

Z̃2

}
�

β2 = β1 +ηx
2 +β1γ

x
2 � and α2 = α1 +ηz

2 +β1γ
z
2�

with x1� z1�β1, and α1 defined as in the previous sections. That is, x2 and z2

are sufficient statistics for (x̃2� X̃2) and (z̃2� Z̃2) with respect to θ� If the agents’
strategies in period 2 are monotonic in (x̃2� X̃2)� then the size of attack and
hence the regime outcome in that period are decreasing in θ� which in turn im-
plies that the agents’ strategies in period 2 are necessarily a threshold strategy
in the statistic x2� A similar argument applies to every t ≥ 2: in any monotone
equilibrium, the posterior beliefs about θ conditional on (x̃t� z̃t� X̃t� Z̃t) are
Normal with mean βt/(βt +αt)xt +αt/(βt +αt)zt and precision βt +αt� where

xt = βt−1

βt

xt−1 + ηx
t

βt

x̃t + 1t−1
βt−1γ

x
t

βt

{
x∗
t−1 − 1√

βt−1
X̃t

}
�

zt = αt−1

αt

zt−1 + ηz
t

αt

z̃t + 1t−1
βt−1γ

z
t

αt

{
x∗
t−1 − 1√

βt−1
Z̃t

}
�

βt = βt−1 +ηx
t + 1t−1βt−1γ

x
t � and αt = αt−1 +ηz

t + 1t−1βt−1γ
z
t �

where 1t−1 is an indicator function that takes value 1 if At−1 ∈ (0�1) and 0
otherwise, and x∗

t−1 is the threshold played in period t − 1. It follows that the
conditions in Proposition 3 continue to characterize the entire set of monotone
equilibria—the only difference is that the statistics xt and zt are now endoge-
nous and that the thresholds x∗

t and θ∗
t are now functions, not only of zt� but

also of Z̃t .
The multiplicity result of Theorem 2 thus extends directly to this environ-

ment. Similarly, the structure of dynamics remains the same as in the game
with public news, except for the property that an unsuccessful attack does
not necessarily reduce the incentives for further attacks. This is because an
unsuccessful attack now also generates new private and public signals, which
in some cases may offset the impact of the knowledge that the regime sur-
vived past attacks. To see this, consider the case where all signals are private
(γx

t > 0�ηx
t ≥ 0�γz

t = ηz
t = 0), in which case the only novel effect is that an

unsuccessful attack leads to an endogenous increase in βt . A further attack
is then possible only if this increase is large enough, like in the benchmark
game. On the other hand, when the endogenous signal is public (γz

t > 0 = γx
t ),
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a new attack becomes possible if this signal is low enough, like in the case with
exogenous public news. Signals about the size of past attacks can thus substi-
tute for the exogenous arrival of private and public information and lead to
“snowballing effects,” where new attacks become possible immediately after
unsuccessful ones.

A2. OBSERVABLE SHOCKS

Consider the game with observable shocks described in Section 5.3 of the pa-
per. The characterization of monotone equilibria was completed there. Here
we prove that “essentially” all equilibria of the benchmark game Γ (0) can
be approximated by equilibria of the game with observable shocks Γ (δ), for
δ small enough. (This result was discussed at the end of Section 5.3 without
proof.)

As in the case with unobservable shocks (Theorem 3 in the paper), we rule
out knife-edge equilibria where U is tangent to the horizontal axis. Unlike
that case, convergence is established in probability, because the equilibrium
thresholds here are functions of the sequences of observable shocks.

PROPOSITION A1: For any ε > 0 and T < ∞, there exists δ(ε�T) > 0 such
that the following is true for all δ < δ(ε�T): For any equilibrium {x∗

t � θ
∗
t }∞

t=1 of
Γ (0), for which θ∗

t /∈ arg maxθ∗ U(θ∗� θ∗
t−1�βt�α� z) for all t ∈ {2� � � � � T }, there

exists an equilibrium {xδ
t (·)�θδ

t (·)}∞
t=1 of Γ (δ) such that

Pr
(|θδ

t (ω
t)− θ∗

t | ≤ ε ∀ t ∈ {1� � � � � T }) ≥ 1 − ε�

A3. SHOCKS OBSERVABLE WITH LAG

In this section, we discuss a variant of the game with shocks in which agents
observe the shocks with a one-period lag. This variant was briefly discussed at
the end of Section 5.3.

The game structure is the same as in the model with fully observable shocks
(Section 5.3), except that ωt becomes known only at the end of period t. The
property that the contemporaneous shock is unobservable introduces an addi-
tional source of uncertainty about the regime outcome in the current period
and may even reintroduce the lower dominance region. At the same time, the
property that the shock is revealed at the end of the period ensures that the
learning induced by the knowledge that the regime survived past attacks con-
tinues to take the simple and sharp form of a truncation in the support of the
agents’ beliefs about θ� as in the case with fully observable shocks.

Equilibrium Characterization, Multiplicity, and Dynamics

Monotone equilibria are now characterized by sequences {x∗
t (ω

t−1)�
θ∗
t (ω

t)}∞
t=1 such that agents attack in period t if and only if xt ≤ x∗

t (ω
t−1) and
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the status quo survives period t if and only if θ > θ∗
t (ω

t). Note that strate-
gies in period t are contingent only on ωt−1 because ωt is not observed at the
time agents choose whether or not to attack, but the regime outcome still de-
pends on ωt� because ωt directly affects the size of attack necessary for regime
change.

To compute the expected net payoff from attacking, we need to adjust
the conditional probability of regime change as follows. For a given thresh-
old rule x̄t , regime change occurs in period t when the fundamentals are θ
if and only if θ + δωt ≤ �(

√
βt(x̄t − θ)) or, equivalently, ωt ≤ ω̄δ

t (θ; x̄t) ≡
[�(

√
βt(x̄t − θ))− θ]/δ. Conditional on θ, the probability of regime change in

period t is therefore given by

pδ
t (θ; x̄t)≡ Pr(ωt ≤ ω̄δ

t (θ; x̄t))= F(ω̄δ
t (θ; x̄t))�

The updating of posterior beliefs, on the other hand, is the same as in
the game with fully observable shocks. Let θ̄t(x̄t�Ω) be implicitly defined
by θ̄t + Ω = �(

√
βt(x̄t − θ̄t)). Next, consider any sequence of threshold

rules {x̄t(ω
t−1)}∞

t=1 and define the sequence {θ̄t(ω
t)}∞

t=1 recursively by θ̄t(ω
t) =

max{θ̄t−1(ω
t−1)� θ̄t(x̄t(ω

t−1)�δωt)}� with θ̄0 = −∞ and ω0 = 0� When agents
follow the strategy associated with {x̄t(ω

t−1)}∞
t=1� posterior beliefs over θ in

period t are again characterized by truncated normal distributions with trun-
cation at θ̄t−1(ω

t−1).
Let then Ψt(θ|x� θ̄t−1) denote the cumulative distribution function of an

agent’s posterior about θ conditional on having statistic x and on believing
that θ > θ̄t−1; this is simply

Ψt(θ|x� θ̄t−1)

=




1 − �
(√

α+βt(
βt

α+βt
xt + α

α+βt
z − θ)

)
�

(√
α+βt(

βt

α+βt
xt + α

α+βt
z − θ̄t−1)

) � if θ > θ̄t−1,

0� if θ ≤ θ̄t−1,

which is exactly the same as in the benchmark model. Next, let vδt (x� x̄t� θ̄t−1)
denote an agent’s expected net payoff from attacking in period t when he has
sufficient statistic x ∈ R, all other agents follow monotone strategies in that
period with threshold x̄t ∈ R, and the agent believes that θ > θ̄t−1; this is given
by

vδt (x� x̄t� θ̄t−1)=
∫ +∞

−∞
F(ω̄δ

t (θ; x̄t))dΨt(θ|x� θ̄t−1)− c�
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Finally, define

V δ
t (x̄t� θ̄t−1)≡




lim
x→+∞

vδt (x� x̄t� θ̄t−1)� if x̄t = +∞,

vδt (x̄t� x̄t� θ̄t−1)� if x̄t ∈ R,
lim

x→−∞
vδt (x� x̄t� θ̄t−1)� if x̄t = −∞.

The function V δ
t is the analogue of the function U in the benchmark model:

it represents the net payoff from attacking in period t for the marginal agent
with threshold x̄t .

Because vδt is continuous in x, x̄t , and θ̄t−1, V δ
t is continuous in x̄t and θ̄t−1

for all x̄t ∈ R. Moreover, because vδt is bounded and decreasing in x, for any
given x̄t , V δ

t (x̄t� θ̄t−1) is well defined at x̄t = ±∞. We thus have the following
equilibrium characterization.

PROPOSITION A2: The strategy {at(·)}∞
t=1 is a monotone equilibrium of Γ (δ) if

and only if there exists a sequence of functions {x∗
t (·)�θ∗

t (·)}∞
t=1 with x∗

t : Rt−1 → �R
and θ∗

t : Rt → (0�1) such that:
(i) for all t� at(x̃

t�ωt−1) = 1 if xt < x∗
t (ω

t−1) and at(x̃
t�ωt−1) = 0 if xt >

x∗
t (ω

t−1);
(ii) for t = 1� x∗

1 ∈ R solves V δ
1 (x

∗
1�−∞) = 0 and θ∗

1(ω1)= θ̄1(x
∗
1� δω1);

(iii) for all t ≥ 2� either x∗
t (ω

t−1) = −∞ and V δ
t (x

∗
t (ω

t−1)�θ∗
t−1(ω

t−1)) ≤ 0 or
x∗
t (ω

t−1) ∈ R solves V δ
t (x

∗
t (ω

t−1)�θ∗
t−1(ω

t−1))= 0 and θ∗
t (ω

t)= max{θ∗
t−1(ω

t−1)�

θ̄t(x
∗
t (ω

t−1)�δωt)}.
An equilibrium always exists.

The equilibrium characterization is thus similar to that with observable
shocks; one only has to adjust the agents’ expected payoff from attacking to
take into account the uncertainty about the regime outcome introduced by un-
observable contemporaneous shocks.

As δ → 0� the impact of shocks on regime outcomes vanishes, thus ensuring
a convergence result similar to the one we established in the previous section
for the case with observable shocks.

PROPOSITION A3: For any ε > 0 and T < ∞ , there exists δ(ε�T) > 0 such
that the following is true for all δ < δ(ε�T): For any equilibrium {x∗

t � θ
∗
t }∞

t=1 of
Γ (0) for which θ∗

t /∈ arg maxθ∗ U(θ∗� θ∗
t−1�βt�α� z) for all t ∈ {2� � � � � T }, there

exists an equilibrium {xδ
t (·)�θδ

t (·)}∞
t=1 of Γ (δ) such that

Pr
(|θδ

t (ω
t)− θ∗

t | ≤ ε ∀ t ∈ {1� � � � � T }) ≥ 1 − ε�

A4. CHANGING FUNDAMENTALS WITH SHORT-LIVED AGENTS

In Section 5.5 we introduced and briefly analyzed a game with short-lived
agents where the “fundamentals” (summarized by the critical size of attack
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necessary for regime change) follow a random walk. Here we prove that Propo-
sition 5 and Theorem 3, which we established for the case with long-lived
agents and unobservable shocks, apply also to this game. To keep the analy-
sis self-contained, we first briefly revisit the description of the game and the
characterization of beliefs and payoffs that is in Section 5.5.

The Game

A regime change occurs in period t if and only if At ≥ ht , where ht follows
a Gaussian random walk: h1 = θ ∼ N(z�1/α) and ht = ht−1 + δωt for t ≥ 2�
with ωt ∼ N(0�1), independent and identically distributed across time and in-
dependent of θ� Once the status quo is abandoned, the game is over. As long
as the status quo is in place, a new cohort of agents replaces the old one in each
period; each cohort is of measure 1 and lives exactly one period. Agents who
are born in period t must choose whether or not to attack the status quo, after
receiving private signals xit = ht + ξit� where ξit ∼ N (0�1/βt) is independent
and identically distributed across agents and independent of hs for any s �= t�
Payoffs are as in the benchmark model: the net payoff from attacking in pe-
riod t is 1 − c if the status quo is abandoned in that period and −c otherwise,
while the payoff from not attacking is zero.

Equilibrium Characterization, Multiplicity, and Dynamics

Let Ψδ
t (ht� x̄

t−1) denote the cumulative distribution function of the common
posterior in period t about ht when agents in earlier cohorts attacked in periods
τ ≤ t − 1 if and only if xτ < x̄τ. When earlier cohorts followed such strategies,
the status quo survived period τ if and only if hτ > θ̄τ(x̄τ)� where θ̄τ(x̄τ) is
the solution to �(

√
βτ(x̄τ − hτ)) = hτ . Therefore, for t ≥ 2, Ψδ

t (ht; x̄t−1) is
recursively defined by

Ψδ
t (ht; x̄t−1)=

∫ +∞
θ̄t−1(x̄t−1)

�(
ht−ht−1

δ
)dΨδ

t−1(ht−1; x̄t−2)

1 −Ψδ
t−1(θ̄t−1(x̄t−1); x̄t−2)

(A1)

with Ψδ
1 (h1) = �(

√
α(h1 − z)). Next, let Ψδ

t (ht |x; x̄t−1) denote the cumulative
distribution function of the private posterior about ht by Bayes’ rule:

Ψδ
t (ht |x; x̄t−1)=

∫ ht

−∞
√
βtφ(

√
βt(x− h′

t)) dΨ
δ
t (h

′
t; x̄t−1)∫ +∞

−∞
√
βtφ(

√
βt(x− h′

t)) dΨ
δ
t (h

′
t; x̄t−1)

�(A2)

The expected net payoff from attacking in period t for an agent with signal x
is thus given by vδ1(x; x̄1)= Ψδ

1 (θ̄1(x̄1)|x)− c for t = 1 and

vδt (x; x̄t)=Ψδ
t (θ̄t(x̄t)|x; x̄t−1)− c
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for t ≥ 2. Finally, define the payoff of the marginal agent by

V δ
t (x̄

t)≡




lim
x→+∞

vδt (x; x̄t)� if x̄t = +∞,

vδt (x̄t; x̄t)� if x̄t ∈ R,
lim

x→−∞
vδt (x; x̄t)� if x̄t = −∞.

(A3)

The following proposition then provides the algorithm for characterizing
monotone equilibria.

PROPOSITION A4: For any δ > 0� the strategy {at(·)}∞
t=1 is a monotone equilib-

rium for Γ (δ) if and only if there exists a sequence {x∗
t }∞

t=1 such that:
(i) for all t� at(x̃

t)= 1 if xt < x∗
t and at(x̃

t)= 0 if xt > x∗
t ;

(ii) for t = 1� x∗
1 ∈ R and V δ

1 (x
∗
1)= 0;

(iii) for any t ≥ 2� either x∗
t = −∞ and V δ

t (x
∗t)≤ 0 or x∗

t ∈ R and V δ
t (x

∗t)= 0�
An equilibrium exists for any δ > 0.2

Finally, the next result establishes that essentially any equilibrium of the
benchmark game can be approximated by an equilibrium of the random-walk
game for δ small enough.

PROPOSITION A5: For any ε > 0 and any T < ∞ , there exists δ(ε�T) > 0
such that the following is true for all δ < δ(ε�T): For any equilibrium {x∗

t }∞
t=1

of Γ (0) such that x∗
t /∈ arg maxx V 0

t (x
∗t−1�x) for all t ∈ {2� � � � � T }� there exists an

equilibrium {xδ
t }∞

t=1 of Γ (δ) such that, for all t ≤ T� either x∗
τ ∈ R and |x∗

t −xδ
t |< ε

or x∗
t = −∞ and xδ

t <−1/ε�

A5. PROOFS

PROOF OF PROPOSITION A1: To establish Proposition A1, we first prove the
following weaker claim:

RESULT A1.a: For any ε > 0� any T < ∞� and any sequence {θ∗
t }Tt=1 that is

part of an equilibrium of Γ (0) and such that θ∗
t /∈ arg maxθ∗ U(θ∗� θ∗

t−1�βt�α� z)

for all t ≤ T� there exists a δ̂ = δ̂(ε�T� {θ∗
t }Tt=1) > 0 such that, whenever δ ≤ δ̂�

there exists an equilibrium {θδ
t (·)}∞

t=1 of Γ (δ) such that

Pr
(|θδ

t (ω
t)− θ∗

t | ≤ ε ∀ t ∈ {1� � � � � T }) ≥ 1 − ε�(A4)

2Given a sequence of thresholds {x∗
t }∞

t=1 that characterize a monotone equilibrium, the se-
quence of thresholds {h∗

t }∞
t=1 that characterize the associated regime outcomes is simply given by

h∗
t = θ̄t (x

∗
t ) for any t ≥ 1�
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Given Result A1.a, the stronger result in the proposition then follows by let-
ting δ(ε�T) be the minimum of δ̂(ε�T� {θ∗

t }Tt=1) across all different sequences
{θ∗

t }Tt=1 that can be part of an equilibrium of Γ (0); that δ(ε�T) > 0 is ensured
by the fact that the set of such sequences is finite for any finite T <∞�

To prove Result A1.a, we proceed in four steps, using an argument based
on induction: Step 1 shows that the result holds for T = 1; Step 2 provides
a sufficient condition for the result to hold for T conditional on holding for
T − 1; Steps 3 and 4 prove that this condition is satisfied both for the case
where θ∗

T = θ∗
T−1 (Step 3) and for the case where θ∗

T > θ∗
T−1 (Step 4).

To simplify notation, let Ω ≡ δω� and for any t ≥ 1 and any (θ̄t� θ̄t−1�Ω) such
that θ̄t ≥ θ̄t−1 and Ω ∈ [−θ̄t�1 − θ̄t]� define Vt(θ̄t� θ̄t−1�Ω) ≡ U(θ̄t + Ω� θ̄t−1 +
Ω�βt�α� z +Ω)� Furthermore, for any ε > 0� T < ∞� and {θ̄t}Tt=1 ∈ R

T � let

Bε�T ({θ̄t}Tt=1)≡ {{θ′
t}Tt=1 ∈ R

T : |θ̄t − θ′
t | ≤ ε ∀ t = 1� � � � � T

}
�

STEP 1: By Propositions 1 and 4, the (unique) first-period equilibrium
threshold θ∗

1 of Γ (0) satisfies V1(θ
∗
1�−∞�0) = 0� while the (also unique)

first-period equilibrium threshold θδ
1(ω1) of Γ (δ) satisfies V1(θ

δ
1(ω1)�−∞�

δω1) = 0. Moreover, because U(θ̄�−∞�β1�α� z) is continuous and strictly
decreasing in both θ̄ and z, V1(θ̄�−∞�Ω) is also continuous and strictly de-
creasing in both θ̄ and Ω. From the definition of V and of θ∗

1� we thus have
that V1(θ

∗
1 − ε�−∞�0) > 0 > V1(θ

∗
1 − ε�−∞� ε). It follows that there exists

Ω̄ ∈ (0� ε) such that V1(θ
∗
1 − ε�−∞� Ω̄) = 0, implying that θδ

1(Ω̄/δ) = θ∗
1 − ε.

Likewise, V1(θ
∗
1 + ε�−∞�0) < 0 < V1(θ

∗
1 + ε�−∞�−ε) and hence there exists

Ω ∈ (−ε�0) such that V1(θ
∗
1 + ε�−∞�Ω) = 0� implying that θδ

1(Ω/δ)= θ∗
1 + ε.

Because V1(θ̄1�−∞�Ω) is continuous and strictly decreasing in both θ̄1 and
Ω, θδ

1(ω1) is continuous and decreasing in ω1. Hence θδ
1(ω1) ∈ [θ∗

1 − ε�θ∗
1 + ε]

if and only if ω1 ∈ [Ω/δ� Ω̄/δ]. There thus exists an equilibrium of Γ (δ) for
which |θδ

1(ω1)−θ∗
1| ≤ ε whenever ω1 ∈ [Ω/δ� Ω̄/δ] and therefore Pr(|θδ

1(ω1)−
θ∗

1| ≤ ε) = Pr(ω1 ∈ [Ω/δ� Ω̄/δ]). Because Ω < 0 < Ω̄� Pr(ω1 ∈ [Ω/δ� Ω̄/δ]) is
decreasing in δ and converges to 1 as δ → 0� It follows that there exists δ̂ > 0
such that Pr(ω1 ∈ [Ω/δ̂� Ω̄/δ̂]) = 1 − ε and Pr(|θδ

1(ω1) − θ∗
1| ≤ ε) ≥ 1 − ε for

all δ ≤ δ̂� which proves the claim for T = 1�

STEP 2: Suppose Result A1.a holds for T − 1� with T ≥ 2� This means that
for any sequence {θ∗

t }T−1
t=1 that is part of an equilibrium of Γ (0) and any ε1 ∈

(0� ε)� there exists a δ̂−1 = δ̂(ε1�T − 1� {θ∗
t }T−1

t=1 ) such that, for any δ ≤ δ̂−1�
there exists an equilibrium {θδ

t (·)}∞
t=1 of Γ (δ) such that

Pr
({θδ

t (ω
t)}T−1

t=1 ∈ Bε1�T−1({θ∗
t }T−1

t=1 )
) ≥ 1 − ε1�(A5)

Now suppose further that we are able to prove that the following result is
true.
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RESULT A1.b: For any ε > 0 and any sequence {θ∗
t }Tt=1 that is part of an equilib-

rium of Γ (0)� there exists an ε1 ∈ (0� ε) and a δ̂ ≤ δ̂−1 such that for any δ ∈ (0� δ̂)�
there exists an equilibrium of Γ (δ) that satisfies (A5) and such that, for any ωT−1

for which |θδ
T−1(ω

T−1)− θ∗
T−1| ≤ ε1�

Pr
(|θδ

T (ω
T)− θ∗

T | ≤ ε|ωT−1
) ≥ 1 − ε+ ε1�

If Result A1.b is true, then

Pr
(|θδ

T (ω
T)− θ∗

T | ≤ ε {θδ
t (ω

t)}T−1
t=1 ∈ Bε1�T−1({θ∗

t }T−1
t=1 )

) ≥ 1 − ε+ ε1�(A6)

However, then

Pr
({θδ

t (ω
t)}Tt=1 ∈ Bε�T ({θ∗

t }Tt=1)
)

≥ Pr
({θδ

t (ω
t)}T−1

t=1 ∈ Bε1�T−1({θ∗
t }T−1

t=1 ) and |θδ
T (ω

T)− θ∗
T | ≤ ε

)
= Pr

({θδ
t (ω

t)}T−1
t=1 ∈ Bε1�T−1({θ∗

t }T−1
t=1 )

)
× Pr

(|θδ
T (ω

T)− θ∗
T | ≤ ε{θδ

t (ω
t)}T−1

t=1 ∈ Bε1�T−1({θ∗
t }T−1

t=1 )
)

≥ (1 − ε1)(1 − ε+ ε1) > 1 − ε�

implying that Result A1.a holds also for T .
To complete the proof of Result A1.a, it thus suffices to show that Re-

sult A1.b holds. We do so by proving the following result:

RESULT A1.c: There exist scalars ε1 ∈ (0� ε)� Ω < 0 < Ω̄, and δ̃ > 0� and a
function θ̂T : R2 → R such that the following conditions hold:

(i) For any θ̄T−1 ∈ [θ∗
T−1 − ε1� θ

∗
T−1 + ε1] and any Ω ∈ [[Ω�Ω̄]� either θ̂T (Ω�

θ̄T−1)= θ̄T−1 ≥ −Ω or θ̂T (Ω� θ̄T−1) > θ̄T−1 and VT(θ̂T (Ω� θ̄T−1)� θ̄T−1�Ω)= 0.
(ii) For any θ̄T−1 ∈ [θ∗

T−1 −ε1� θ
∗
T−1 +ε1] and any δ < δ̃� Pr(|θ̂T (δωT � θ̄T−1)−

θ∗
T | ≤ ε)≥ 1 − ε+ ε1�

We prove Result A1.c in the next two steps, distinguishing the case where
θ∗
T = θ∗

T−1 (Step 3) and where θ∗
T > θ∗

T−1 (Step 4). Result A1.b then follows from
Result A1.c by letting δ̂ = min{δ̃� δ̂(ε1�T − 1� {θ∗

t }T−1
t=1 )} and letting {θδ

t (·)}∞
t=1

be the equilibrium of Γ (δ) whose sequence of thresholds coincides with that
of the equilibrium that satisfies (A5) for t ≤ T − 1 together with θδ

T (ω
T) =

θ̂T (δωT �θ
δ
T (ω

T−1)) for any ωT−1 such that θδ
T (ω

T−1) ∈ [θ∗
T−1 − ε1� θ

∗
T−1 + ε1]�

STEP 3: Suppose that θ∗
T = θ∗

T−1 and pick any ε1 ∈ (0� ε) such that θ∗
T−1 −

ε1 > 0. Then, for any θ̄T−1 ∈ [θ∗
T−1 − ε1� θ

∗
T−1 + ε1], let θ̂T (Ω� θ̄T−1) = θ̄T−1

if Ω ≥ −θ̄T−1 and otherwise let θ̂T (Ω� θ̄T−1) be the highest solution to
VT (θ̂T � θ̄T−1�Ω) = 0. Clearly, θ̂T (Ω� θ̄T−1) satisfies part (i) of Result A1.c
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for any δ. To see when part (ii) is also satisfied, note that for any θ̄T−1 ∈
[θ∗

T−1 − ε1� θ
∗
T−1 + ε1],

Pr
(|θ̂T (δωT � θ̄T−1)− θ∗

T | ≤ ε
) ≥ Pr(θ̂T (δωT � θ̄T−1)= θ̄T−1)

= Pr(δωT ≥ −θ̄T−1)

≥ Pr(ωT ≥ −(θ∗
T−1 − ε1)/δ)�

Because θ̄T−1 ≥ θ∗
T−1 − ε1 > 0, Pr(ωT ≥ −(θ∗

T−1 − ε1)/δ) is strictly decreasing
in δ and converges to 1 as δ → 0� It follows that there exists δ̃ > 0 such that
Pr(ωT ≥ −(θ∗

T−1 −ε1)/δ̃)= 1−ε+ε1, implying part (ii) is satisfied for all δ ≤ δ̃.
Hence, Result A1.c is satisfied for the case θ∗

T = θ∗
T−1�

STEP 4: Next assume that θ∗
T > θ∗

T−1� in which case θ∗
T solves VT (θ

∗
T � θ

∗
T−1�

0) = 0. Suppose further that VT(θT �θT−1�Ω) is strictly decreasing in θT in a
neighborhood of (θT �θT−1�Ω) = (θ∗

T � θ
∗
T−1�0). (An analogous argument ap-

plies if VT is strictly increasing in such a neighborhood, whereas the case
that VT is locally nonmonotonic is ruled out by the nontangency assumption.)
Then, by the implicit function theorem, there exists ε′ ∈ (0� ε]� Ω′ < 0 < Ω̄′,
and a function θ̂T : R

2 → R such that VT (θ̂T (Ω� θ̄T−1)� θ̄T−1�Ω) = 0 for any
(Ω� θ̄T−1) ∈ [Ω′� Ω̄′] × [θ∗

T−1 − ε′� θ∗
T−1 + ε′]�

Clearly, the function θ̂T (Ω� θ̄T−1) satisfies part (i) of Result A1.c by con-
struction. To see when it also satisfies part (ii), note that, by the continuity of
VT � θ̂T is also continuous and hence there exist ε1� ε2 ∈ (0� ε′]� Ω ∈ [Ω′�0)� and
Ω̄ ∈ (0� Ω̄′] such that θ̂T (Ω� θ̄T−1) ∈ [θ∗

T − ε2� θ
∗
T + ε2] whenever (Ω� θ̄T−1) ∈

[Ω�Ω̄] × [θ∗
T−1 − ε1� θ

∗
T−1 + ε1]� Because ε2 ≤ ε′ ≤ ε� it follows that whenever

θ̄T−1 ∈ [θ∗
T−1 − ε1� θ

∗
T−1 + ε1]�

Pr
(|θ̂T (δωT � θ̄T−1)− θ∗

T | ≤ ε
) ≥ Pr

(|θ̂T (δωT � θ̄T−1)− θ∗
T | ≤ ε2

)
≥ Pr

(
ωT ∈ [Ω/δ�Ω/δ])�

Because in turn Pr(ωT ∈ [Ω/δ� Ω̄/δ]) is decreasing in δ and converges to 1 as
δ → 0, there exists δ̃ > 0 such that Pr(ωT ∈ [Ω/δ� Ω̄/δ]) ≥ 1 − ε + ε1 for all
δ ≤ δ̃� which establishes part (ii) of Result A1.c.

Q.E.D.

PROOF OF PROPOSITION A2: The result follows from exactly the same argu-
ments as the proof of Proposition 5 in the main text, after adjusting the nota-
tion for beliefs. (Note that, unlike in the case of Proposition 5, here there is no
need to prove convergence of beliefs: the belief updating induced by any given
monotone strategy is identical to that in the benchmark model.) Q.E.D.
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PROOF OF PROPOSITION A3: As in the proof of Proposition A1, it suffices
to prove the weaker claim in Result A1.a. For this purpose, Step 1 establishes
pointwise convergence of V δ

t (x̄t� θ̄t−1) to V 0
t (x̄t� θ̄t−1)≡U(θ̄t(x̄t)� θ̄t−1�βt�α� z)

as δ → 0� where θ̄t(x̄t)≡ θ̄t(x̄t�0) with θ̄t(x̄t�Ω) implicitly defined by θ̄t +Ω=
�(

√
βt(x̄t − θ̄t)). Steps 2–5 then use this property to prove the result with an

induction argument similar to the one in the proof of Proposition A1.

STEP 1: The proof that V δ
t converges pointwise to V 0

t as δ → 0 is similar
to Step 1 in the proof of Theorem 3 in the paper; it is actually simplified by
the fact that the equilibrium updating of beliefs here is identical to that in the
benchmark model and hence follows directly from the convergence of regime
outcomes. Indeed, for any t ≥ 1, any x̄t ∈ R, and any θ �= θ̄t(x̄t)�

lim
δ→0

pδ
t (θ; x̄t)= p0

t (θ; x̄t)≡
{

1� if θ ≤ θ̄t(x̄t),
0� if θ > θ̄t(x̄t).

This immediately implies that, for any t� any x̄t ∈ R� and any θ̄t−1 ∈ R�

lim
δ→0

V δ
t (x̄t� θ̄t−1) = lim

δ→0

∫ +∞

−∞
pδ

t (θ; x̄t) dΨt(θ|x̄t� θ̄t−1)− c

= Ψt(θ̄t(x̄t)|x̄t� θ̄t−1)− c

= U(θ̄t(x̄t)� θ̄t−1�βt�α� z)≡ V 0
t (x̄t� θ̄t−1)�

STEP 2: Here we show that Result A1.a holds for T = 1. Fix ε > 0� In pe-
riod 1, the game in which shocks are observable with a lag is isomorphic to the
game in which shocks are never observable. Therefore, for any η > 0, Step 2
of Theorem 3 in the paper implies immediately that there exists δ′(η) > 0 such
that for all δ ≤ δ′(η) there exists an equilibrium {xδ

t (ω
t−1)�θδ

t (ω
t)}∞

t=1 of Γ (δ)

such that |xδ
1 −x∗

1| ≤ η. Moreover, because θδ
1(ω1)= θ̄1(x

δ
1� δω1), define Ω̄(x̄1)

and Ω(x̄1) implicitly by θ̄1(x̄1� Ω̄) = θ∗
1 − ε and θ̄1(x̄1�Ω) = θ∗

1 + ε. Therefore,
Pr(θδ

1(ω1) ∈ [θ∗
1 −ε�θ∗

1 +ε])= Pr(ω1 ∈ [Ω(xδ
1)/δ� Ω̄(xδ

1)/δ]). Clearly, Ω̄(x∗
1) >

0 > Ω(x∗
1) and, by continuity, there exists η1 ∈ (0� ε] such that Ω̄(xδ

1) > 0 >

Ω(xδ
1) for any xδ

1 ∈ [x∗
1 −η1�x

∗
1 +η1]. Because Pr(ω1 ∈ [Ω(xδ

1)/δ� Ω̄(xδ
1)/δ]) is

decreasing in δ and converges to 1 as δ → 0� there exists δ′′ > 0 such that
Pr(ω1 ∈ [Ω(xδ

1)/δ� Ω̄(xδ
1)/δ]) ≥ 1 − ε for all δ ≤ δ′′. We conclude that Re-

sult A1.a holds for T = 1 with δ̂(ε�1)= min{δ′′� δ′(η1)}.
STEP 3: Along the same lines as in Step 2 in the proof of Proposition A1, we

now establish a sufficient condition for Result A1.a to hold for T periods when
it holds for T − 1 periods. In particular, fix an ε > 0� an ε1 ∈ (0� ε)� a T ≥ 2�
and a sequence {θ∗

t }Tt=1 that is part of an equilibrium of Γ (0)� and suppose that
there exists a δ̂−1 = δ̂(ε1�T − 1� {θ∗

t }T−1
t=1 ) > 0 such that whenever δ ≤ δ̂−1� there
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exists an equilibrium {xδ
t (·)�θδ

t (·)}∞
t=1 of Γ (δ) that satisfies the result for T − 1

and ε1. Suppose further that we are able to prove the following result:

RESULT A2.c: There exist scalars ε1 ∈ (0� ε) and δ̃ > 0� such that, for any
δ < δ̃� there exists a function x̂T : R → R that satisfies the following conditions:

(i) For any θ̄T−1 ∈ [θ∗
T−1 − ε1� θ

∗
T−1 + ε1]� either x̂T (θ̄T−1)= −∞ and V (−∞�

θ̄T−1)≤ 0 or x̂T (θ̄T−1) > −∞ and V (x̂T (θ̄T−1)� θ̄T−1)= 0�
(ii) For any θ̄T−1 ∈ [θ∗

T−1 − ε1� θ
∗
T−1 + ε1]� Pr(|θ̂T (δωT � θ̄T−1) − θ∗

T | ≤ ε) ≥
1 − ε+ ε1 , where θ̂T is defined by θ̂T (Ω� θ̄T−1)≡ max{θ̄T (x̂T (θ̄T−1)�Ω)� θ̄T−1}�

Then, for any δ < min{δ̂−1� δ̃}� there exists an equilibrium of Γ (δ) that satis-
fies the result for T − 1 and ε1, and for which xδ

T (ω
T−1)= x̂T (θ

δ
T−1(ω

T−1)) and
θδ
T (ω

T) = θ̂T (δωT �θ
δ
T−1(ω

T−1)) when ωT−1 is such that θδ
T−1(ω

T−1) ∈ [θ∗
T−1 −

ε1� θ
∗
T−1 + ε1]� However, then, by the same argument as in Step 2 of the proof

of Proposition A1, this equilibrium satisfies

Pr
({θδ

t (ω
t)}Tt=1 ∈ Bε�T ({θ∗

t }Tt=1)
) ≥ 1 − ε�

proving that the result holds for T with δ̂ = min{δ̂−1� δ̃}. In the next two steps,
we thus prove Result A2.c, distinguishing again between the case where θ∗

T =
θ∗
T−1 (Step 4) and the case where θ∗

T > θ∗
T−1 (Step 5).

STEP 4: Suppose that θ∗
T = θ∗

T−1 and fix ε > 0. For all x,

vδT (x�−∞� θ̄t−1) =
∫ +∞

−∞
F(ω̄δ

T (θ;−∞))dΨT(θ|x� θ̄T−1)− c

=
∫ +∞

−∞
F(−θ/δ)dΨT(θ|x� θ̄T−1)− c

≤ F(−θ̄T−1/δ)− c�

and therefore V δ
T (−∞� θ̄T−1) ≤ F(−θ̄T−1/δ) − c. Now, select ε1 ∈ (0� ε) and

δ̃1 > 0 such that θ∗
T−1 > ε1 and F(−(θ∗

T−1 − ε1)/δ̃1) − c ≤ 0. Whenever δ ≤ δ̃1

and |θ̄T−1 − θ∗
T−1| ≤ ε1,

V δ
T (−∞� θ̄T−1)≤ F(−θ̄T−1/δ)− c ≤ F(−(θ∗

T−1 − ε1)/δ̃1)− c ≤ 0�

Therefore, whenever δ ≤ δ̃1, x̂T (θ̄T−1) = −∞ satisfies part (i) of Result A2.c,
in which case θ̄T (x̂T (θ̄T−1)�Ω) = −Ω and hence θ̂T (Ω� θ̄T−1)= max{−Ω� θ̄T−1}.
To check that part (ii) is also satisfied, notice that Ω > −θ̄T−1 implies
θ̂T (Ω� θ̄T−1)= θ̄T−1; hence |θ̂T (Ω� θ̄T−1)− θ∗

T | ≤ ε1 < ε. Therefore,

Pr
(|θ̂T (δωT � θ̄T−1)− θ∗

T |< ε
) ≥ Pr(δωT >−θ̄T−1)
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= 1 − F(−θ̄T−1/δ)

≥ 1 − F(−(θ∗
T−1 − ε1)/δ)

for any θ̄T−1 ∈ [θ∗
T−1 −ε1� θ

∗
T−1 +ε1]. Because θ∗

T−1 > ε1, there exists δ̃2 > 0 such
that 1 − F(−(θ∗

T−1 − ε1)/δ) ≥ 1 − ε + ε1 for all δ ≤ δ̃2. Hence, Result A2.c is
satisfied whenever δ ≤ δ̃ ≡ min{δ̃1� δ̃2}.

STEP 5: Suppose now that θ∗
T > θ∗

T−1, and fix ε > 0 and ε′ ∈ (0� ε] such that
θ∗
T−1 + ε′ < θ∗

T − ε′. Suppose further that V 0
t is locally decreasing in x̄T at x̄T =

x∗
T and fix η1 > 0 such that V 0

t (x
∗
T −η�θ∗

T−1) > 0 > V 0
t (x

∗
T +η�θ∗

T−1) for all η ≤
η1. (An analogous argument applies if V 0

T is locally increasing, while tangency
is ruled out by assumption.)

From the pointwise convergence of V δ
T to V 0

t , for any η ∈ (0�η1], there ex-
ists δ1(η) > 0 such that whenever δ ≤ δ1(η), V δ

T (x
∗
T − η�θ∗

T−1) > 0 > V δ
T (x

∗
T +

η�θ∗
T−1). By continuity with respect to θ∗

T−1, there also exists ε1(η) ∈ (0� ε′)
such that

V δ
T (x

∗
T −η� θ̄T−1) >

1
2
V δ
T (x

∗
T −η�θ∗

T−1) > 0 >
1
2
V δ
T (x

∗
T +η�θ∗

T−1)

> V δ
T (x

∗
T +η� θ̄T−1)

for all θ̄T−1 such that |θ̄T−1 − θ∗
T−1| ≤ ε1(η) and all δ ≤ δ1(η). Therefore,

whenever δ ≤ δ1(η), there exists x̂T (θ̄T−1) ∈ [x∗
T − η�x∗

T + η] such that
V δ
T (x̂T (θ̄T−1)� θ̄T−1) = 0, in which case part (i) of Result A2.c is satisfied for

ε1(η) and δ̃ ≤ δ1(η) for any η≤ η1.
To check when part (ii) is also satisfied, note that θ̄T (x̄T �Ω) ∈ [θ∗

T −
ε′� θ∗

T + ε′] if and only if Ω ∈ [ΩT(θ
∗
T + ε′� x̄T )�ΩT(θ

∗
T − ε′� x̄T )], where

ΩT(θ� x̄)≡�(
√
βT(θ− x̄))−θ. Whenever θ̄T (x̂T (θ̄T−1)�Ω) ∈ [θ∗

T −ε′� θ∗
T +ε′],

θ̄T (x̂T (θ̄T−1)�Ω) > θ̄T−1 and therefore θ̂T (Ω� θ̄T−1) = max{θ̄T (x̂T (θ̄T−1)�Ω)�
θ̄T−1} = θ̄T (x̂T (θ̄T−1)�Ω). Moreover, θ̄T (x̄T �Ω) ∈ [θ∗

T − ε�θ∗
T + ε] for all x̄T ∈

[x∗
T − η�x∗

T + η] and, therefore, θ̂T (Ω� θ̄T−1) = θ̄T (x̂T (θ̄T−1)�Ω) ∈ [θ∗
T − ε�

θ∗
T + ε] whenever Ω ∈ [ΩT(θ

∗
T + ε�x∗

T +η)�ΩT(θ
∗
T − ε�x∗

T −η)]. We conclude
that

Pr
(|θ̂T (δωT � θ̄T−1)− θ∗

T | ≤ ε
)

≥ Pr
(|θ̂T (δωT � θ̄T−1)− θ∗

T | ≤ ε′)
≥ Pr

(
δωT ∈ [ΩT(θ

∗
T + ε′�x∗

T +η)�ΩT(θ
∗
T − ε′�x∗

T −η)])

for all θ̄T−1 such that |θ̄T−1 − θ∗
T−1| ≤ ε1(η). Because ΩT(θ

∗
T �x

∗
T ) = 0 and

ΩT(θ
∗
T − ε�x∗

T ) > 0 > ΩT(θ
∗
T + ε�x∗

T ), we have ΩT(θ
∗
T − ε�x∗

T − η2) > 0 >
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ΩT(θ
∗
T + ε�x∗

T + η2) for some η2 ∈ (0�η1] and there exists δ2(η2) > 0 such
that for all δ ≤ δ2(η2),

Pr
(
ωT ∈ [ΩT(θ

∗
T + ε�x∗

T +η2)/δ�ΩT(θ
∗
T − ε�x∗

T −η2)/δ]) ≥ 1 − ε+ ε1(η)�

Therefore, part (ii) of Result A2.c is satisfied with ε1 = ε1(η2) and δ̃ =
min{δ1(η2)�δ2(η2)}.

Q.E.D.

PROOF OF PROPOSITION A4: Given that first-period beliefs are identical to
those in the benchmark game, V δ

1 (x̄1) = V 0
1 (x̄1) for all x̄1 ∈ R and, therefore,

x∗
1 = x̂1 and h∗

1 = θ̂1, where (x̂1� θ̂1) denotes the first-period equilibrium thresh-
olds of the benchmark game. The rest of the proof then follows from the same
arguments as the proof of Proposition 5 and Lemma A2. In particular, to see
that V δ

t (x̄
t−1�+∞) = −c < 0 for all x̄t−1 ∈ R

t−1
(which rules out equilibria in

which x∗
t = +∞), notice that for x̄t = +∞ and for any x > 1,

Ψδ
t (h̄t(x̄t)|x� x̄t−1)

=Ψδ
t (1|x� x̄t−1)

≤ Ψδ
t (1� x̄

t−1)

Ψδ
t (1� x̄t−1)+ ∫ +∞

1
φ(

√
βt(x−ht ))

φ(
√
βt(x−1)) dΨ

δ
t (ht |x̄t−1)

;

as x → ∞, φ(
√
βt(x−ht))/φ(

√
βt(x− 1))→ ∞ whenever ht > 1 and, there-

fore, limx→∞ Ψδ
t (1|x� x̄t−1)= 0. Q.E.D.

PROOF OF PROPOSITION A5: We establish that as δ → 0� beliefs and hence
payoffs in the game with short-lived agents converge pointwise to those in the
benchmark model. Given the convergence of payoffs, the result then follows
from the same arguments as in Steps 2–4 in the proof of Theorem 3.

Pointwise Convergence of Posteriors and Payoffs: Consider first beliefs. Let
Ψ 0

t (ht; x̄t−1) denote the period-t common posterior about ht in the benchmark
model and let Ψδ

t (ht; x̄t−1) denote the period-t common posterior about ht in
the game with changing fundamentals and short-lived agents. The former are
simply given by the truncated Normals,

Ψ 0
t (ht; x̄t−1)= 1 − �(

√
α(z − ht))

�(
√
α(z − θ̄t(x̄t−1)))

�
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while the latter are defined by (A1). (Recall that θ̄t(x̄
t−1) ≡ min{θ :θ ≥

�(
√
βτ(x̄τ − θ)) ∀τ ≤ t} = maxτ≤t{θ̄τ(x̄τ)}.) By Bayes’ rule, the correspond-

ing private posteriors in the benchmark game satisfy

Ψ 0
t (ht |x; x̄t−1) =

∫ ht

−∞
√
βtφ(

√
βt(x− h′))dΨ 0

t (h
′; x̄t−1)∫ +∞

−∞
√
βtφ(

√
βt(x− h′))dΨ 0

t (h
′; x̄t−1)

�

The private posteriors in the game with changing fundamentals are obtained
in the same way by replacing Ψ 0

t with Ψδ
t . (Clearly, the preceding definitions

and conditions apply to t ≥ 2; similar ones hold for t = 1.)
To prove pointwise convergence of private posteriors, it thus suffices to prove

pointwise convergence of the common posteriors. We establish this by induc-
tion. Because period 1 is identical in the two games,

Ψδ
1 (h1) = 1 −�(

√
α(z − h1))= Ψ 0

1 (h1)

for any h1� Next, consider any t ≥ 2 and suppose that pointwise convergence
holds at t − 1� By the induction hypothesis,

lim
δ→0

Ψδ
t−1(ht; x̄t−2)

=Ψ 0
t−1(ht; x̄t−2)

=



0� if ht ≤ θ̄t−2(x̄
t−2),

1 − �(
√
α(z − ht))

�(
√
α(z − θ̄t−2(x̄t−2)))

> 0� if ht > θ̄t−2(x̄
t−2),

for all ht and x̄t−2� Using this convergence result together with the fact that
limδ→0 �((ht −ht−1)/δ) = 1 whenever ht−1 <ht and limδ→0 �((ht −ht−1)/δ)=
0 whenever ht−1 >ht� condition (A1) gives

lim
δ→0

Ψδ
t (ht; x̄t−1) =




0� if ht ≤ θ̄t−1(x̄t−1),∫ ht

θ̄t−1(x̄t−1)
dΨ 0

t−1(ht−1; x̄t−2)

1 −Ψ 0
t−1(θ̄t−1(x̄t−1); x̄t−2)

� if ht > θ̄t−1(x̄t−1),

= Ψ 0
t (ht� x̄

t−1)

for all ht and x̄t−1, which proves the pointwise converge of posteriors in pe-
riod t.

Next, consider payoffs. In the benchmark model, first-period payoffs satisfy

V 0
1 (x̄1)=U(θ̄1(x̄1)�−∞�β1�α� z)=Ψ 0

1 (θ̄1(x̄1)|x̄1)− c ∀ x̄1 ∈ R�

whereas for any t ≥ 2�
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V 0
t (x̄

t−1� x̄t) = U
(
θ̄t(x̄t)� θ̄t−1(x̄

t−1)�βt�α� z
)

= Ψ 0
t (θ̄t(x̄t)|x̄t; x̄t−1)− c ∀ x̄t ∈ R� x̄t−1 ∈ R

t−1
�

In the game with changing fundamentals, first-period beliefs are identical to
those in the benchmark game and, therefore,

V δ
1 (x̄1)= Ψδ

1 (θ̄1(x̄1)|x̄1)− c =Ψ 0
1 (θ̄1(x̄1)|x̄1)− c = V 0

1 (x̄1) ∀ x̄t ∈ R�

For t ≥ 2, payoffs in the game with changing fundamentals satisfy

V δ
t (x̄

t−1� x̄t)=Ψδ
t (θ̄t(x̄t)|x̄t; x̄t−1)− c ∀ x̄t ∈ R� x̄t−1 ∈ R

t−1
� t ≥ 2�

The pointwise convergence of beliefs thus implies that

lim
δ→0

V δ
t (x̄

t−1� x̄t) = lim
δ→0

Ψδ
t (θ̄t(x̄t)|x̄t; x̄t−1)− c

= V 0
t (x̄

t−1� x̄t) ∀ x̄t ∈ R� x̄t−1 ∈ R
t−1

� t ≥ 2�

Note that convergence of beliefs and payoffs may fail at x̄t = −∞� but, as in
the case of Theorem 3, this does not affect the result. Q.E.D.
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