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In this supplement, we extend the analysis of our paper to nonregular random utility
functions. We also provide examples that demonstrate the independence of the assump-
tions in our paper and provide a detailed discussion of the related literature. Specifi-
cally, we relate our results to the work of McFadden and Richter (1990), Clark (1995),
and Falmagne (1978).
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THIS SUPPLEMENT USES the notation and definitions established in the pub-
lished paper. Theorems, lemmas, and examples are numbered S1, S2, etc. in
this supplement. Numbers without the prefix S refer to the published paper.

1. NONREGULAR RANDOM UTILITY

For a nonregular random utility function (RUF) we cannot identify a unique
maximizing random choice rule (RCR) since there is a positive probability of a
“tie” in some decision problems. More precisely, for some decision problem D
there is a positive probability of choosing a utility function that does not have
a unique maximizer in D.

To deal with nonregular RUFs we introduce tie-breakers. Suppose that the
agent with RUF p faces the decision problem D. Assume that to eliminate
ties, the decision-maker chooses two utility functions (u, v) according to some
measure 7. If the set of maximizers of u in D (denoted M (D, u)) is a single-
ton, then the agent chooses the unique element of M (D, u). Otherwise, the
agent chooses an element of M (D, u) that maximizes v; that is, an element of
MM (D, u),v).If nis a product measure n = u x 4 and [ is regular, then it is
clear that this procedure will lead to a unique choice with probability 1. In this
case, the choice of v is independent of the choice of u and the regularity of f
ensures that M (M (D, u), v) is a singleton with probability 1. It turns out that
independence is not necessary for a tie-breaker to generate a unique choice as
long as the marginal on the second coordinate is a regular RUF Therefore, we
do not require 7 to be a product measure.

To describe the lexicographic procedure above formally, we need to describe
a measure on the set U x U. Let F? denote the smallest algebra that contains
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F x F.The marginals n; of n are defined by

7]1(F)=71(F7 U):
Mm(F)=n(U,F)
forall F e F.

DEFINITION: (i) The measure n on F? is a tie-breaker if 0, is regular. (ii) The
measure 7 is a tie-breaker for u if n; = w and 7, is regular.

Let Ny(D, x) ={(u,v)|x e M(M (D, u),v)}. Hence, (u,v) € N;(D, x) if and
only if x is a lexicographic maximizer of (u,v) in D. We show in Lemma 8
that N;(D, x) € F? for all D, x. A random choice rule p maximizes the tie-
breaker 7 if the probability of choosing x in D is equal to the probability of
choosing some (u, v) in N;(D, x). The random choice rule maximizes the (not
necessarily regular) RUF u if p maximizes a tie-breaker for u.

DEFINITION: (i) The RCR p maximizes the tie-breaker 7 if p”(x) =
n(Ny(D, x)) for all D, x. (ii) The RCR p maximizes the RUF p if p maximizes
a tie-breaker for w.

Part (ii) of the definition above applies to regular and nonregular RUFs. To
see this, note that

w(NT(D, x)) < n(Ni(D, x)) < p(N(D, x))

for all D, x. The first inequality follows from the fact that if x is the unique max-
imizer of u in D, then x is the lexicographic maximizer of (u, v) forallve U.
The second inequality follows from the fact that any lexicographic maximizer
of (u, v) is a maximizer of u. Hence, if 7 is the tie-breaker for the regular RUF
wand p?(x) = n(N;(D, x)) forall D, x, then p”(x) = u(N(D, x)) forall D, x.
Therefore, this definition of maximizing a RUF agrees with the definition of
maximizing a regular RUF presented in the published paper.

Theorem S1 demonstrates that tie-breakers have a unique maximizing RCR.
Moreover, this RCR is monotone, mixture continuous, linear, and extreme.

THEOREM S1: Every tie-breaker is maximized by a unique RCR. If the RCR
p maximizes a tie-breaker, then p is monotone, mixture continuous, linear, and
extreme.

Theorem S1 follows from Lemmas S1-S3. For D € D and x € D, let P,(D)
denote the collection subset of D that contains x. For X ¢ R”,let =X = R"\ X.
Note that

s  ND,x= | ((ﬂN(D,ym N ﬂN<D,y>>xN(B,x>>,

BePx(D) yeB ye—BND
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where we let the intersection over an empty index set (i.e., for B = D) equal R".
Define

(82 NDx):= ((ﬂN(D,ym N ﬂN<D,y>>xN+(B,x>).
BePx(D)

yeB ye—~BND
LEMMA S1: We have N,(D, x) € F>.

PROOF: The collection F is an algebra that contains N (D', y) for all D', y.
Since F? contains F x F, equation (11) implies that F? contains N;(D, x).
Q.E.D.

Let n be a tie-breaker and let p: B — II be defined as

($3)  p’B)= Y n(Ni(D,x))

xeDNB

for all D € D, B € B. Clearly, this p is the only candidate for a maximizer of
the tie-breaker n. Lemma S2 shows that the p defined in (S3) is a well-defined
RCR. This proves that every tie-breaker has a unique maximizing RCR.

LEMMA S2: The function p defined in (S3) is a RCR.

PROOF: To prove that p is a RCR it suffices to show that >~ _, p”(x) =1
for all D, x. First, we show that n(N,(D, x)) = n(N, (D, x)) for all D, x.
Clearly, n(N,(D, x)) > n(N; (D, x)). If n(N,(D, x)) > n(N;' (D, x)), then by
(S1) and (S2) there is F € F and B € P,(D) such that n(F x N(B,x)) >
n(F x N*(B, x)).Since n(U\ F x N(B, x)) > n(U\ F x N*(B, x)), this im-
plies that n(U x N(B, x)) > n(U x N*(B, x)), contradicting the regularity
of 7.

For x #y, N/ (D, x)N\N,"(D, y) =¥. Also, ., Ni(D, x) = R" x R". There-
fore,

pP(x) =) m(N«(D, x)) = n<UNz(D, x)> =nR"xR") =1,

xeD xeD

p"(x) =) (N (D,x)) = n(UN,*(D, x)) <nR" xR =1.

xeD xeD

Hence p? is a RCR. Q.E.D.

LEMMA S3: Let the RCR p maximize the tie-breaker . Then p is monotone,
mixture continuous, linear, and extreme.
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PROOF: Note that for all D, x € D, y and A € (0,1), N (D U {y},x) C
Ny(D, x)and Ny (AD+(1—=M){y}, x+(1—A)y) = N,(D, x). Hence, monotonic-
ity and linearity of p follow immediately from its definition.

Next, we prove that p is extreme. For any B C D, let F3(D) denote the in-
tersection of all faces of F'(conv D) that contain B. Obviously, B C Fz(D) N D.
Suppose there exists z € Fs(D)N D,z ¢ B. Thenu e, 3 N(D, y) implies u €
N(D, z) and, therefore, ﬂyeB N(D,y)n ﬂyeﬁBmD =N(D, y) =0¢.Hence, in (S1)
it suffices to consider B such that B = F N D for some face F € F(convD).
However, if B=F N D for some F € F(convD) and x € B is not an extreme
point of D, then it is not an extreme point of B, but then the regularity of 7,
ensures n(R", N(B, x)) =0, proving the extremeness of p.

To prove mixture continuity, it suffices to show that p®*"?" is continuous
in ¢, . By an analogue of Proposition 3, p®*'?'(tx + t'x') = v(N,(D, x) N
N,(D', x')), which implies that p®+*?" is continuous in (¢, ¢') for ¢, ¢ > 0. Con-
tinuity at (¢, ') = (0, 0) is obvious. Hence, it remains to show that p'>*?" — p”’
as t — 0. Choose € > 0 small enough so that B.(x') N D’ = {x'} and choose ¢
small enough so that x' + tx € B.(x’) for all x € D and x” + tx ¢ B.(x’) for all
x € D,x" € D\ {x'}. Proposition 3 and the fact that | J._, N;(D, x) = R" imply
that

xeD

pPP (Be(x')) = v(U(Nl(D, X) NN(D, x/)))

xeD
=v(N(D', x)) = p” (x),

which establishes mixture continuity and completes the proof of the lemma.
Q.E.D.

Example S1 gives a tie-breaker for the RUF that corresponds to a determin-
istic utility function .

EXAMPLE S1: There are three prizes (n + 1 = 3). Consider the RUF u;,
which assigns probability 1 to the utility function & # (0, 0, 0). An example of
a tie-breaker for w; is the measure n = u; x w, where w is the uniform RUF
defined in Example 2. The tie-breaker 7 is maximized by the following RCR p.
If M(D, it) = {x} and hence & has a unique maximizer in D, then p”(x) = 1. If
M (D, u) is not a singleton, then the convex hull of M (D, i) is a line segment.
In that case, p? assigns probability 1/2 to each endpoint of this line segment.

Let i be any regular random utility.> Then the product measure 1 := u x i
is a tie-breaker for w. By Theorem S1, every tie-breaker has a maximizer and
therefore it follows that every nonregular RUF has a maximizer. For a nonreg-
ular RUE the choice of a tie-breaker affects behavior and therefore there are

2Lemma 3 proves the existence of a regular RUF.
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multiple maximizing random choice rules. In contrast, regular random utilities
have a unique maximizer. Theorem S2 summarizes these facts.

THEOREM S2: (i) Every RUF p has a maximizer. (ii) A RUF has a unique
maximizer if and only if it is regular.

PROOF: In Lemma 3 we construct a regular RUF p;,. Obviously, u x uy is
a tie-breaker for w. Then Theorem S1 proves part (i) of the theorem.

Let p be such that p?(x) = n(N,(D, x)) for all D, x and n = u x u,, where
wy is the regular RUF constructed in Lemma 3. By Theorem S1, this identifies
a unique RCR p that is a maximizer of w. To construct a second maximizer,
note that since wu is not full dimensional, there exists some polyhedral cone K,
such that dimK, < n and w(K,) > 0. By the argument given in the proof of
Lemma 2, there is x, # 0 such that K, c N(D,, x,) N N(D,, —x,) for D, =
{—x,, x.}. Define u, as

V(Bi(o) NKNN(D,, x,))

) = B () NN (D, %))

Repeating the arguments made for u, establishes that u, is a regular RUFE?
Then let p, be defined by p?(x) = n.(N (D, x)), where n, = i x u,. Again by
Theorem S1, p, is a maximizer of u. Note that 1= pP+(x,) # pP(x,) =.5.
Hence, p, # p and we have shown that there are multiple maximizers
of w. Q.E.D.

Theorem S1 shows that the generalization of RUF maximization to nonreg-
ular RUFs preserves the properties identified in Section 4. If p is a maximizer
of some (not necessarily regular) RUF, then it satisfies monotonicity, linearity,
mixture continuity, and extremeness. Therefore, we can apply Theorem 2 to
conclude that p must also maximize some regular RUF p/'.

THEOREM S3: Ifthe RCR p maximizes some RUF, then p maximizes a regular
RUF.

The proof follows from Theorem S1 and Theorem 2.

Consider a nonregular RUF w. Let i be a tie-breaker for u and let p be the
maximizer of n. By Theorem S3, the RCR p also maximizes a regular RUF w'.
Hence,

K (N (D, x)) = n(N(D, x)) = p”(x)

for all D € D and x € D. We call this u’ a dilation of u.

3A similar construction is used in Regenwetter and Marley ((2001), p. 880).
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DEFINITION: A RUF ' is a dilation of the RUF w if there exists a tie-
breaker n for u such that w' (N (D, x)) = n(N;(D, x)) for all D, x.

A dilation ' of u satisfies
r(NT(D,x)) < ' (N(D, x)) < u(N(D, x)).

Intuitively, a dilation of u takes probability mass from lower dimensional
subsets of U and (with the aid of the tie-breaker) spreads it over adjacent
n-dimensional sets. Below, we illustrate a dilation of the RUF in Example S1.

EXAMPLE S1—CONTINUED: There are three prizes (n 4+ 1 = 3). Consider
the RUF w;, which assigns probability 1 to the utility function u # (0, 0, 0).
The following regular random utility u' is a dilation of u;. Recall that for any
u,ve U, F, :={au+ Bvla, B > 0}. Let ' (F,,) =1if u # Av (and hence F,, is
two dimensional) and & is in the relative interior of F,,. Let u'(F,,) = 1/2
if u# Av for A € R and u is on the boundary of F,,. That is, i = Au or
i = Av for some A > 0. In all other cases, w'(F,,) = 0. In particular, every
one-dimensional subset of U has p/-measure 0 and therefore, ' is regular.
The RUF u’ is maximized by the same RCR as the uniform tie-breaker de-
scribed above: If M (D, u) = {x}, then u is in the interior of N(D, x). There-
fore, p?(x) = W' (N(D, x)) =1 in this case. If M (D, @) is not a singleton, then
p? = W (N (D, x)) =1/2 for any x that is an extreme point of M (D, i1). (Note
that M (D, u) has at most two extreme points.)

Theorem S4 shows that, except for the case of complete indifference, a dila-
tion of a nonregular random utility is not countably additive. In other words,
ties cannot be broken in a manner that preserves countable additivity. Let
0=(0,...,0) denote the utility function that is indifferent between all prizes.

THEOREM S4: If W' is a dilation of some nonregular p such that u(o) =0,
then W' is not countably additive.

Theorem S4 is closely related to Theorem 3. Theorem 3 implies that a max-
imizer of a regular, countably additive RUF is continuous. In Lemma S4, we
show that a maximizer of a nonregular RUF pu with (o) = 0 must fail conti-
nuity and, therefore, Theorem 3 implies Theorem S4.

LEMMA S4: Let p maximize some RUF p such that (o) = 0. If p is continu-
ous, then . is regular.

PROOF: If p maximizes some w, then

(84)  w(N*(D,x)) < p”(x) < p(N(D, x)).
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Suppose w is not regular. By Lemma 2, this implies that w is not full dimen-
sional. By Proposition 6, H := {riK|K € K} is a semiring and every element
of F can be written as a finite union of elements in /. Therefore, w(K) > 0
for some K € K with dim K < n. By Proposition 1(i), dim K < n implies there
is x # 0 such that x, —x € N(K, o). Since K is a pointed cone, o is an ex-
treme point of K and, therefore, Proposition 1(iii) implies that N*(K, o) is
nonempty. Hence there is z such that u -z < 0 for all u € K, u # o. Let
Dy :={x,1/k(—z), —x} and note that (Dy),-; converges to D = {x, 0, —x}
in the Hausdorff topology. Let O be an open ball that contains o but does not
contain x, —x. Since w(K) = u(K \ {0}), for all k sufficiently large, (S4) im-
plies pP*(0) > u(K \ {0}) = n(K) > 0. However, p”(0) = 0 since p is ex-
treme. Q.E.D.

PROOF OF THEOREM S4: Let ' be a dilation of u for some nonregular ©
such that u(0) = 0. Let p maximize p' (and hence maximize w). Since p maxi-
mizes u, Lemma S5 implies that p is not continuous. Since w' is regular, The-
orem 3 implies that u’ is not countably additive. Q.E.D.

We illustrate Theorem S4 by demonstrating that the dilation in Example S1
is not countably additive.

EXAMPLE S1—CONTINUED: In Example S1, we defined a dilation u’ of the
random utility u;. To see that u’ is not countably additive, let v # Au and let
v, be in the relative interior of the line segment that connects # and v. Choose
the sequence v, so that it converges to ii. Note that u'(F,,,) = 0 for all n, yet
w (U, Fw,) = 1/2. Hence, the dilation w’ is not countably additive. Note that
the original random utility w; is countably additive.

We can interpret the results in this section as a justification for restricting
attention to regular RUFs. When tie-breakers are used to resolve the ambigu-
ity associated with nonregular RUFs, the resulting behavior maximizes some
regular random utility. In this sense, the restriction to regular RUFs is without
loss of generality. However, applying a tie-breaker to a nonregular w typically
results in a regular RUF (i.e., dilation of ) that fails countable additivity.

2. COUNTEREXAMPLES

In this section, we provide examples that show that none of the assumptions
in Theorems 2 and 3 in our main paper is redundant. Example S2 provides
a RCR that is continuous (hence mixture continuous), linear, and extreme,
but not monotone. This shows that monotonicity cannot be dispensed with in
Theorems 2 and 3.
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EXAMPLE S2: Let n+1 = 2. Hence, P can be identified with the unit interval
and x € P is the probability of getting prize 2. For D € D, let m(D) denote the
smallest element in D, let m(D) denote the largest element in D, and define

a(D) :=sup{x — ylm(D) <y <x <m(D), (y,x) N D =@}.

Hence, a(D) is the length of the largest open interval that does not intersect D,
but is contained in the convex hull of D. If D = {x}, then p?(x) = 1. If D is not
a singleton, let

a(D)
m(D) —m(D)’

p”(m(D)) =1— p”(m(D)),

p”(m(D)) =

and p”(x) =0 for x ¢ {m(D), m(D)}. Then p is continuous (hence mixture
continuous), linear, and extreme, but not monotone.

Example S3 provides a RCR that is continuous (hence mixture continuous),
monotone, and linear, but not extreme. This shows that the requirement that
the choice rule is extreme cannot be dropped in Theorems 2 and 3.

EXAMPLE S3: Let n+1=2 and let x € [0, 1] denote the probability of get-

ting prize 2. For any D = {xy, ..., x,,}, where x; < x; < --- < X, let
Py 1, ifm=1,
X =
P 1/2, otherwise.
For k > 1, let
D Xk = Xk
p(xi) = 20 —x1)

Then p is continuous, monotone, and linear, but not extreme.

Example S4 provides a RCR that is continuous (hence mixture continuous),
extreme, and monotone, but not linear. This shows that linearity cannot be
dropped in Theorems 2 and 3.

EXAMPLE S4: Let n+ 1 =2 and let x € [0, 1] denote the probability of get-
ting prize 2. As in Example 4, let m(D) and mi(D) be the smallest and largest
elements in D. Let p?(x) =1 for D = {x}. If D is not a singleton, then

p?(m(D)) =m(D),
p”(m(D)) =1—-m(D),

and p?(x) =0 for x ¢ {m(D), m(D)}. Then p is continuous, monotone, and
extreme, but not linear.
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Example S5 provides a RCR that is monotone, linear, and extreme, but not
mixture continuous (and hence is not continuous). This shows that mixture
continuity cannot be dispensed with in Theorem 2 and continuity cannot be
dispensed with in Theorem 3.

EXAMPLE S5: Let n+ 1 =3. The RCR p takes on the values 0, 1 5> and 1. If
N(D, x) = U and hence the decision problem is a singleton, then p”(x) = 1.
There are three cases in which p takes on the value %:

pP(x) = % if N(D, x) is a half-space, or
if there is € > 0 such that
(14+€,-1,0),(1,-1,0) e N(D, x), or
if there is € > 0 such that
(-1,14¢,0),(—-1,1,0) e N(D, x).

In all other cases, p?(x) =0.

To see that this p is a well-defined RCR, note that N(D, x) is a half-space if
and only if D is one dimensional and x is an extreme point of D. Clearly, a one-
dimensional decision problem has two extreme points. If D is two-dimensional,
then p?(x) = 1/2 if x is the maximizer of (1, —1,0) in D with the largest first
coordinate or if x is the maximizer of (—1, 1,0) in D with the largest second
coordinate.

This RCR is extreme by definition. It is linear because the probability of
choosing x from D depends only on the set N (D, x), which is invariant to
linear translations of D. To see that the choice rule is monotone, note that the
construction ensures that the probability of choosing x from D is monotone
in N(D, x). Thatis, N(D, x) C N(D', y) implies p”(x) < p” (y). Since N(D U
{y}, x) C N(D, x), it follows that p is monotone. It remains to show that p is
not mixture continuous.

Let D ={(},3,1),(3,1, 1)} and let D' ={(3,2, 1), (4, 5, 9)}. For A >0,
the agent chooses from AD + (1 — A)D’ elther /\( . 3.3) + (1 -G LD
or A(3,5, 1)+ (1=, 3, 1), each with probablhty 1. For A =0, the agent
chooses (g, ;, D or (3, 1, 3), each with probability 1. Clearly, this violates mix-
ture continuity at A = 0.

3. RELATIONSHIP TO THE LITERATURE

McFadden and Richter (1991) and Clark (1995) provide necessary and suffi-
cient conditions for a RCR to maximize a RUFE They do not require the choice
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objects to be lotteries and, hence, do not analyze von Neumann-Morgenstern
utility functions. Both Clark’s condition and McFadden and Richter’s condi-
tion can be thought of as a joint restriction on random choice rules and the
space of utility functions. To facilitate the comparisons, we adopt their assump-
tions to the setting of our main paper: The notation below is taken from Sec-
tion 2.

Clark (1995) introduces an axiom termed coherency. Coherency is closely
related to a theorem of de Finetti that provides a necessary and sufficient con-
dition for a function defined on a collection of subsets to have an extension
to a finitely additive probability measure on the smallest algebra that contains
those subsets. Clark (1995) shows that a random choice rule is coherent if and
only if it maximizes some regular random utility function.

The definition below adapts Clark’s axiom to our setting. For 4 C U, let
14 denote the indicator function on the set 4. Hence I 4(u) =1 if u € A and
I,4(u) = 0 otherwise. For any F:U — R, we write f > 0 as a shorthand for
f(u)=0Vuel.

DEFINITION: The RCR p is coherent if for every finite sequence {D;, x;}}",
with D; € D, x; € D; and every finite sequence of real numbers {A;}7 |,

Z )\iIN(D,-,x,-) > 0 lmphes Z )\l-pDi(x,-) > 0.
i=1 i=1

Clark (1995) shows that coherency is necessary and sufficient for the exis-
tence of a regular RUF w such that for all D and x € D,

p"(x) = W(N(D, x)).

We can show that coherency implies all four assumptions of Theorem 2.

FACT S1: A coherent RCR p is monotone, mixture continuous, linear, and ex-
treme.

PROOF: To show extremeness, let y € D with y ¢ extD and let D' = ext D.
Then Iyp ) = Inw.x) for all x € D and, therefore, coherency implies

Dot w=) pP=1,

xeD xeD

which in turn implies that p?(y) = 0 and establishes extremeness.

To show monotonicity, let D’ = D U {y}. Then N(D, x) D N(D’, x) for all
x € D and, therefore, Iyp ) — Inwr.x) > 0, which implies pP(x) > p” (x).

To show linearity and mixture continuity, note that for any coherent RCR p,

(S35) N(D,x)=N(D,x") implies p°(x)=p” (x)
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and
(S6) ND,x)=ND',x)UN(D",x") implies
p(x) < p” (x) + p”" (x").

Since N(D, x) = N(AD+(1—-A){y}, Ax+(1—A)y), linearity follows from (S5).
Using (S5) and (S6), it is straightforward to adapt the argument given in the
proof of Theorem 2 to demonstrate that p is mixture continuous. Q.E.D.

Clark’s theorem implies that coherency is necessary for a random choice
rule to maximize a regular random utility function. We can use Fact S1 to-
gether with Theorem 2 to provide an alternative proof of Clark’s theorem. Sup-
pose > i, Ay, x> 0 and that the RCR p maximizes some regular RUF .
Then note that 0 < .fU Z?:l /\iIN(D,-,x,-) dM(l/l) = Z:l:l )\,' fU IN(DI-,X,-) d,LL(l/l) =
Yo MmN (Dy, x)) =Y 0, AipPi(x;). Hence, coherency is necessary for p to
maximize some regular u. The sufficiency of coherency follows from Fact S1
and Theorem 2. Hence, a RCR is monotone, mixture continuous, linear, and
extreme if and only if it is coherent.

Coherency can also be applied in settings where we observe choice behav-
ior only in a subset of the possible decision problems. In that case, coherency
is necessary and sufficient for the implied RUF to have an extension that is
a probability measure. Thus whenever the observed choice probabilities sat-
isfy coherency, one can construct a RUF u such that the observed behavior is
consistent with p-maximization.

Coherency is hard to interpret behaviorally. Moreover, it seems difficult to
construct experiments that “test” for coherency. By contrast, it is quite straight-
forward to construct tests of extremeness, linearity, and monotonicity. In fact,
the experimental literature on expected utility has focused on the linearity ax-
iom to point out violations of the expected utility framework and develop al-
ternatives. This process of searching for violations of a theory and generalizing
the theory to incorporate the documented violations requires interpretable ax-
ioms.

McFadden and Richter (1990) introduce a stochastic version of the strong
axiom of revealed preference, an axiom they term axiom of revealed stochastic
preference (ARSP). McFadden and Richter (1990) study a case where each util-
ity function under consideration has a unique maximizer and show that ARSP
is necessary and sufficient for (regular) random utility maximization.

In the definition below, we adapt ARSP to the framework in our main paper.

DEFINITION: The RCR satisfies ARSP if and only if for all (D;, x;)7, with
Dl' € D, X; € Dia

(S7) Zp’)"(x,-) < I&%XZINHDi,xi)(u)-
i=1

i=1
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To see that ARSP is necessary for regular random utility maximization, note
that if p maximizes a regular RUF u, then

ZPDi(xi):/ ZL\H(D,-,x,-)(U)M(dM)-
i=1 Uiz

Obviously, the right-hand side of the equation above is less than or equal to
the right-hand side of (S7).

Fact S2 shows that ARSP implies monotonicity, linearity, extremeness, and
mixture continuity. Hence, Theorem 2 yields an alternative proof of the
McFadden—Richter theorem and implies that a random choice rule satisfies
ARSP if and only if it is monotone, mixture continuous, linear, and extreme.

FACT S2: Ifthe RCR p satisfies ARSP, then it is monotone, mixture continuous,
linear, and extreme.

PROOF: Extremeness is trivial since N*(D, x) is empty unless x is an ex-
treme point of D.

For monotonicity, apply ARSP to {(D, x), (D \ {y}, 2).4,}. This yields
pP(x) < pP\V(x) and hence monotonicity.

Next, we show that

(S8)  pP(x)=p"(x) if N¥(D,x)=N"(D,x).

Apply ARSP to {(D, x), (D', y),.v} to get pP(x) < p?(x'). Reversing the
roles of D and D’ yields the reverse inequality and hence the result. Linear-
ity now follows because N*(D,x) = Nt (AD + (1 — M){y}, Ax + (1 — A)y).
To prove mixture continuity, we proceed as above. First, we show that
(S5) and (S6) in the proof of Fact S1 above hold. To prove (S6), apply
ARSP to {(D, x), (D', y)yzv, (D", y)yzer}. Since N(D, x) = N(D', x") implies
N*(D,x)=N*"(D', x), (S5) follows from (S8). Using (S5) and (S6) it is again
straightforward to adapt the argument given in the proof of Theorem 2 to
demonstrate that p is mixture continuous. QO.E.D.

Falmagne (1978) studies a model with finitely many alternatives. Let Y be
a finite set. A decision problem is a nonempty subset D of Y. Let D* be the
corresponding collection of decision problems. Let U* be the set of all one-to-
one utility functions on Y and let 7* be the algebra generated by the equiva-
lence relation that identifies all ordinally equivalent utility functions (i.e., u € F
implies v € F if and only if [v(x) > v(y) if and only if u(x) > u(y)] for all
x,y €Y). Let II* denote the set of all probability measures on F*. Falmagne
identifies a finite number (depending on the number of available alternatives)
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of nonnegativity conditions as necessary and sufficient for random utility max-
imization.*

DEFINITION: For any RCR p, define the difference function A of p induc-
tively as A,(@, D) = pP(x) for all x e D and D C Y*. Let A,(A U {y},D) =
A (A,D) — A, (A,D U {y}) for any A, D C Y* such that x e D, AN D =,
andye Y*\ (AUD).

Falmagne (1978) shows that the RCR p maximizes some w € I1* if and only
if A,(A,Y\ A) >0 for all A and x € Y \ A. This condition turns out to be
equivalent to A, (A, D) > 0forall x, A, D suchthat AND = and x € D.

Note that for A = {y}, the condition A,(A, D) > 0forall x € D, y ¢ D corre-
sponds to our monotonicity assumption and says that the probability of choos-
ing x from D is at least as high as the probability of choosing x from D U {y}.
These conditions also require that the difference in the probabilities between
choosing x from D and D U {y} does not increase as alternative z is added to D
and that analogous higher order differences are nonincreasing as well. While
monotonicity is a straightforward (necessary) condition, the higher order con-
ditions are more difficult to interpret.

We can relate our theorem to Falmagne’s if we interpret Y to be the set of
extreme points of our simplex of lotteries P. Suppose Falmagne’s conditions
are satisfied and hence a RCR (on D*) maximizes some RUF . We can ex-
tend this RUF u to a RUF 4 on our algebra F (i.e., the algebra generated by
the normal cones N (D, x)) by choosing a single u from each [u] and setting
L{Auld > 0}) = p([ul), where [u] is the (equivalence) class of utility func-
tions ordinally equivalent to u. Hence, & is a RUF on F that assigns positive
probability to a finite number of rays and zero probability to all cones that
do not contain one of those rays. By utilizing our Theorems S2(i) and S1, we
can construct some monotone, mixture continuous, linear, and extreme p that
maximize 4. This p must agree with p whenever D C P consists of degenerate
lotteries. Hence, any RCR that satisfies Falmagne’s conditions can be extended
to a RCR over lotteries that satisfy our conditions. Conversely, if a Falmagne
RCR can be extended to a RCR on F that satisfies our conditions, then by
Theorem 2, this RCR maximizes a regular RUF It follows that the restriction
of this RCR to sets of degenerate lotteries maximizes a Falmagne RUF and
satisfies the conditions above. Thus, Falmagne’s conditions are necessary and
sufficient for a random choice rule over a finite set to have a monotone, mix-
ture continuous, linear, and extreme extension to the set of all lotteries over
that set.

Dept. of Economics, Princeton University, Princeton, NJ 08544, U.S.A.;
pesendor@princeton.edu.

*Regenwetter and Marley (2001) show that Falmagne’s definition of a random utility is equiv-
alent to the definition used in this paper.



