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7. OUTLINE

WE LET AC1 ABBREVIATE the main paper. This Supplemental Material in-
cludes six appendices.

Supplemental Appendix A provides (i) a verbal description of the steps in
the proofs of the results in ACI, (ii) the vector B8 version of Assumption V1,
(iii) details concerning the type 2 null-imposed (NI) robust CS, (iv) sufficient
conditions for Assumptions B3, C5, C6, C1, and D1 (in that order), (v) an
initial conditions adjustment to the sufficient conditions for Assumptions C1
and D1 that is useful in some time series contexts, and (vi) a brief discussion of
reparametrization in the bivariate probit model with endogeneity considered
in Han (2009). Sufficient conditions for other assumptions in AC1 are given in
Andrews and Cheng (2011a, 2011b).

Supplemental Appendix B gives the proofs of the results in ACI1, and states
and proves results for the restricted estimator 6,,.

Supplemental Appendix C verifies the assumptions of AC1 for the ARMAC(1,
1) example.

Supplemental Appendix D provides some additional simulation results for
the ARMA(1, 1) example.

Supplemental Appendix E introduces the nonlinear regression example and
verifies the assumptions of AC1 for it.

Supplemental Appendix F considers the standard linear instrumental vari-
ables regression model with one right-hand side endogenous variable. This Ap-
pendix compares the power of the robust tests introduced in AC1 with the
power of the CLR test of Moreira (2003).

The notational conventions specified at the end of the Introduction to
AC1 are used throughout this Supplemental Material. In addition, let 0, (1),
0,.(1), and o0,(1) denote terms that are o0,(1), O,(1), and o(1), respec-
tively, uniformly over a parameter 7 € I1. Thus, X,(7) = 0,,(1) means that
sup, .y 1 X, (m)|| = 0,(1), where | - || denotes the Euclidean norm. Let = de-
note weak convergence of a sequence of stochastic processes indexed by 7 € IT
for some space I1. The definition of weak convergence of R’-valued functions
on I1 requires the specification of a metric d on the space &, of R”-valued func-
tions on I1. We take d to be the uniform metric. The literature contains several
definitions of weak convergence. We use any of the definitions that are com-
patible with the use of the uniform metric and for which the continuous map-
ping theorem (CMT) holds. These include the definitions employed by Pollard
(1984, p. 65, 1990, p. 44) and van der Vaart and Wellner (1996, p. 17). The
CMT’s that correspond to these definitions are given by Pollard (1984, p. 70,
1990, p. 46) and van der Vaart and Wellner (1996, Theorem 1.3.6, p. 20). In the
event of measurability issues, outer probabilities are used below implicitly in
place of probabilities.
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8. SUPPLEMENTAL APPENDIX A
8.1. Description of Approach

The criterion functions/models considered in AC1 possess the following
characteristics:

(i) The criterion function does not depend on 7 when 8 =0 (Assump-
tion A in Section 1).

(ii) The criterion function viewed as a function of ¢ with 7 fixed has a
(stochastic) quadratic approximation w.r.t. ¢ (for ¢ close to the true value of
) for each 7 € II when the true B is close to the nonidentification value 0
(Assumption C1 in Section 3.3).

(iii) The (generalized) first derivative of this quadratic expansion con-
verges weakly as a process indexed by 7 € II to a Gaussian process after suit-
able normalization (Assumption C3 in Section 3.3).

(iv) The (generalized) Hessian of this quadratic expansion is nonsingular
asymptotically for all 7 € II after suitable normalization (Assumption C4 in
Section 3.3).

(v) The criterion function viewed as a function of 6 has a (stochastic)
quadratic approximation w.r.t. 6 (for 6 close to the true value) whether or
not the true B is close to the nonidentification value 0 (Assumption D1 in Sec-
tion 3.5).

(vi) The (generalized) first derivative of this quadratic expansion has an
asymptotic normal distribution, where a matrix rescaling is employed when
is local to the nonidentification value 0 (Assumption D3 in Section 3.5).

(vii) The (generalized) Hessian of this quadratic expansion is nonsingular
asymptotically, where a matrix rescaling is used when g is local to the noniden-
tification value 0 (Assumption D2 in Section 3.5).

Now we describe the approach used to establish the asymptotic results. The
estimator 0, = (B,, {,, @,) is defined to minimize a criterion function Q,(6)
over 8 € O. Let 6, = (B,, {,, m,) denote the true parameter.

Several steps are employed. The first three steps apply to sequences of true
parameters in categories I and II of Table I.

Step 1. We consider the concentrated estimator lﬁn( 7r) that minimizes
0,.(0) = 0,(, m) over ¢ for fixed 7 € IT and the concentrated criterion func-
tion Q¢(m) = Q,,(gl/ (), 7). We show that Lpn(w) is consistent for ¢, uni-
formly over 7 € I (Lemma 3.1). The method of proof is a variation of a stan-
dard consistency proof for extremum estimators adjusted to yield uniformity
over 7. The proof is analogous to that used in Andrews (1993) for estimators
of structural change models in the situation where no structural change occurs.

Step 2. We employ a stochastic quadratic expansion of Q, (¥, ) in ¢ for
given 7r about the nonidentification point ¢ = ¢, , = (0, ,), rather than the
true value ¢, which is key. By expanding about i ,, the leading term of the
expansion, Q, (o, ), does not depend on 7 because Q,(B, {, ) does not
depend on = when 8 = 0. For each 7 € II, we obtain a linear approximation
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to ¢, () after centering around i, and rescaling (Lemma 9.2(b)). At the
same time, we obtain a quadratic approximation of Q¢ () (Lemma 9.2(c)).
Both results hold uniformly in 7. The method employed has two steps.

The first step of the two-step method involves establishing a rate of conver-
gence result for ¢, (7) — .. The second step uses this rate of convergence
result to obtain the linear approximation of ¢, (7) — ¢, (after rescaling) and
the quadratic approximation of Q¢ (m) — Q, (¥ ,, 7) (after rescaling) as a func-
tion of . Because Q,(i,, m) does not depend on , it does not effect the
behavior of ¢, (7) or 7r,. The two-step method used here is like that used by
Chernoff (1954), Pakes and Pollard (1989), and Andrews (1999), among oth-
ers, except that it is carried out for a family of values 7, as in Andrews (2001),
rather than a single value, and the results hold uniformly over 7.

Step 3. We determine the asymptotic behavior of the (generalized) first
derivative of Q,(y, ) w.r.t.  evaluated at iy, (Lemma 9.1). Due to the ex-
pansion about ¢ ,, rather than about the true value i, a bias is introduced in
the first derivative—its mean is not zero. The results here differ between the
category I and II sequences of Table 1. With category I sequences, one obtains
a stochastic term (the mean zero Gaussian process {G () : 7 € I1}) plus a non-
stochastic term due to the bias (K (7; y,)b in the notation of Assumption C5)
and the two are of the same order of magnitude. With category II sequences,
the true B, is farther from the point of expansion 0 than with category I se-
quences and, in consequence, the nonstochastic bias term is of a larger order
of magnitude than the stochastic term. In this case, the limit is nonstochastic.

We also determine the asymptotic behavior of the (generalized) Hessian ma-
trix of Q, (¢, ) w.r.t. ¢ evaluated at ¢ ,. It has a nonstochastic limit. There is
no problem here with singularity of the Hessian because it is the Hessian for
only, not 6 = (¢, ), and ¢ is identified.

For category I sequences, the results of this step combined with those of
Step 2 and the condition n'*(y, — ¢,,,) = (b,0) give the asymptotic distri-
butions of (i) the concentrated estimator s, (-) viewed as a stochastic process
indexed by 7 € I1, that is, n'/?(,,(-) — ¢,,) = 7(-), where 7(-) = 7(-; v, b) is a
Gaussian process indexed by 7 € I whose mean is nonzero unless b = 0, and
(ii) the concentrated criterion function Q¢(-), thatis, n(QS(-) — Q. (Yo, ™)) =
&(-), where &(-) = £(-; yo, b) is a quadratic form in 7(-).

For category II sequences, putting the results above together yields (i) a rate
of convergence result for ¢, (), that is, sup__; 1¥.(7) — Yol = O, 6.1,

that is just fast enough to obtain a rate of convergence result for U, — P, in
Step 6 below and (ii) the (nonstochastic) probability limit n(7) = n(7; v, b)
of Q¢() (after normalization), that s, || B,[| ' (Q%(7) — Q. (Yo,n, ™)) =, ()
uniformly over 7 € II.

Step 4. For category I sequences, we use 77, = argmin, .y Q%(m), n(Q4(-) —
O, (o, m)) = &) from Step 3 (where Q, (¢, w) does not depend on
7r) and the continuous mapping theorem (CMT) to obtain 7, -, 7* =
argminge; £(7m) and n(infyep Q,(0) — Q. (o, m)) = n(inf,cp On(m) —
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O, (Yo, w)) = inf, .y €(7r). In this case, 7Tn is not consistent. Given the asymp-
totic distribution of 7,, the result nl/z(dxn( ) — ¥.) = 1(-) from Step 3, and
the CMT, we obtain the asymptotic distribution of glfn gbn(ﬂ-,,), that is,

n'/ z(w — ) =4 7(7*) (Theorem 3.1). This completes the asymptotic results

for (¢n, ) for category I sequences of true parameters.

Step 5. For category 11 sequences, we obtain the consistency of 77, by using
the uniform convergence in probability of Q¢(7) (after normalization) to the
nonstochastic quadratic form, n (), established in Step 3, combined with the
property that n(4r) is uniquely minimized at the limit 7, of the true values ,
(Lemma 3.3). The vector that appears in the quadratic form n(7r) is the vector
of biases of the (generalized) first derivative obtained in Step 3, which appears
due to the expansion around #, , rather than around ,,. The weight matrix of
1 () is the inverse of the Hessian discussed in Step 3.

Step 6. For category II sequences, we use the rate of convergence result
sup,. g 1 (m) — oull = O, (Il B,Il) from Step 3 and a relationship between the
bias of the (generalized) first derivative and the (generalized) Hessian (w.r.t.

i) to obtain a rate of convergence result for l/'n @,,(%n) centered at the true
value ¥, that is, L[/n Y, =0,(lB.Il) (Lemmas 3.4 and 9.3).

Step 7. For category II and III sequences, we carry out stochastic quadratic
expansions of Q,(6#) about the true value 6,. The argument proceeds as in
Step 2 (but the expansion here is in 6, not in ¢ with 7 fixed, and the expansion
is about the true value). First, we obtain a rate of convergence result for 0, — 0,
and then with this rate, we obtain the asymptotic distribution of 6, — 0, (after
rescaling) using the quadratic approximation of Q,(6) in a particular neighbor-
hood of 6,. The result obtained is consistency and asymptotic normality (with
mean zero) for 6, with rate n'/2 for i, for category II and III sequences, rate

n'? for 7, for category III sequences, and rate n'/?||8,| (< n'/?) for 7, for
category II sequences (Theorem 3.2). The last rate result is due to the conver-
gence of B, to 0, albeit slowly. With category II sequences, 77, is consistent and
asymptotically normal, but has a slower rate of convergence than is standard.

For category II sequences, the results in this step are complicated by two is-
sues. First, the (generalized) Hessian matrix for 6 with the standard normaliza-
tion is singular asymptotically because 8, — 0 and the random criterion func-
tion Q,(0) becomes more flat w.r.t. 7 for 8 in a neighborhood of B, the closer
is B, to 0. This requires a matrix rescaling of the Hessian based on the mag-
nitude of || B, ||. Second, the quadratic approximation of the criterion function
w.r.t. § around the true value 6, only holds for 6 close enough to 6,; specif-
ically, only for 6 € 0,(8,) ={0 € O:||y — || < 8, Bull & 7 — |l < 8.}
for constants 6, — 0. Thus, ¢ needs to be very close to the true value ¢, for
the quadratic approximation to hold. It is for this reason that the rate of con-
vergence result fp\,, — ¢, = 0,(|IB.) in Step 6 is a key result. The quadratic
approximation requires 6 € 0,(5,) because for such 6 = (B, {, m), we have
IBI/1B.l =1+ o(1) and, hence, the rescaling that enters the Hessian is
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asymptotically equivalent whether it is based on 8 or the true value B,. (For ex-
ample, see the verification of Assumption Q1(iv) for the LS example in (12.17)
to see that the restriction 6 € @,(8,) is required for the quadratic approxima-
tion to hold in this example.)

Step 8. We obtain the asymptotic null distributions of ¢ test statistics for lin-
ear and nonlinear restrictions using the asymptotic distributions of the estima-
tors described in Steps 1-7 plus asymptotic results for the variance matrix and
standard error estimators upon which the test statistics depend (Theorem 4.1).
The latter exhibit nonstandard behavior for category I sequences because 7,
is random even in the limit. These results yield the asymptotic null rejection
probabilities and coverage probabilities of the standard ¢ test for category I-
III sequences.

For category I sequences, the asymptotic distribution of the ¢ statistic for a
linear or nonlinear restriction that involves both 7 and ¢ is found to depend
only on the randomness in 7, and not on the randomness in . This occurs
because the former is of a larger order of magnitude than the latter. When a
restriction does not involve 7, then the asymptotic null distribution of the ¢
statistic for category I sequences usually still depends on the (asymptotically
nonstandard) randomness of 7, through the standard deviation estimator and
implicitly through the effect of the randomness of 77, on the asymptotic distri-
bution of ’gﬂn = ’a,/;n(%n).

Step 9. Next we consider the QLR test for restrictions of the form r(0) =
(ri(Y), ra(7)). The results of Step 4 give half of the asymptotic distribu-
tion of the QLR statistic for category I sequences, namely, n(infsco Q,(6) —
O, (Yo, ) = inf, . (ar); the results of Step 7 provide half for category 11
and III sequences. The requisite other halves of the asymptotic null distribu-
tions of the QLR statistic are similar, but minimization is subject to the re-
strictions r(6) = v,, where v, = r(6,) is the true value of the restrictions. That
is, one needs to establish the asymptotic distributions of n(infy.g,,), Q.(6) —
O, (o, 7)), where O,(v,) = (0 € O:r(0) =v,} (Theorems 4.2 and 4.3). De-
termining these asymptotic distributions is noticeably more complicated than
in the unrestricted case and requires innovations to the arguments given in
Steps 1-7.

First, for category I sequences, the restrictions can affect the values that 7
can take on. In consequence, the effective parameter space for 7 becomes a
set of the form I1,(v, ), where v, ; = r;(¢,,), which is sample-size dependent,
rather than II. This requires a new version of the standard arg max/min the-
orem (see van der Vaart and Wellner (1996, Lemma 3.2.1)). The new version
is given in Lemma 9.10 below. To apply this lemma, we need to define and
analyze a concentrated restricted estimator (7, v;,) that is defined for all
ar € I1 so as to determine its asymptotic behavior on I1,(v, ;) C II.

Second, because the criterion function Q,(6) is not necessarily smooth
(to allow for quantile estimators, etc.), one cannot use standard methods
based on pointwise Taylor expansions to determine the asymptotic behavior
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of (Zn(’ﬂ, v1,,). Instead, one has to approximate the ~sample—size-dependent re-
stricted parameter space for ¢ given m, denoted ¥, (7, vy,), by a linear sub-
space defined by the derivatives of the restrictions. This uses the Chernoff
(1954) set approximation idea, modified by Andrews (1999) to allow for data-
dependent sequences of sets, and modified further by Andrews (2001) to allow
for dependence on a parameter .

Third, the quadratic expansion about ¢, ,, rather than the true value ¢,,
in the restricted analogue of Step 2 causes new comphcatlons With the un-
restrlcted concentrated estimator z[;n(Tr), a key inequality, a (yn)(Qn(¢n(w)

— Qu(ou, m) < 0,-(1) (see (9.11) below), is obtained from the definition
of @(w), that is, Q, (¥, (), 7) < infyey(m Ou(, T) 4 0,,(n~") in (3.2), com-
bined with ¢, € V(7). However, it is not necessarily the case that i, lies
in the restricted parameter space ¥, (7, v;,). Hence, the previous argument
fails. Instead, using a new argument, we establish a slightly weaker inequality,
@(Y)(Qu (@ (), ) = Qo0 7)) < O,(1) (see (9.81) below), which turns
out to be sufficient.

The complications that arise in the proofs for the restricted concentrated
estimator l’zn(’ﬂ, v1,,) are responsible for our treatment of restrictions of the
form r(0) = (r, (), r,(7)), rather than more general functions of 6.

Step 10. Using the asymptotic results from Steps 8 and 9 for category I-
III sequences of true parameters, combined with an argument that such se-
quences determine the asymptotic size of tests and CS’s (viz., Lemma 2.1 in
Section 2), we obtain a formula for the asymptotic size of standard ¢ and QLR
tests and CS’s (Theorem 4.4). Their behavior under category I sequences de-
termines whether a test overrejects asymptotically and whether a CS undercov-
ers asymptotically. Under category II and III sequences, they perform asymp-
totically as desired.

Step 11. We introduce LF and data-dependent robust critical values that yield
tests and CI’s that have correct asymptotic size, even in the presence of identi-
fication failure and weak identification in part of the parameter space (Theo-
rem 5.1). The adjusted critical values employ the asymptotic formulae derived
in Steps 8-10.

8.2. Assumption V1 for Vector B

The asymptotic behavior of the ¢ statistic relies on Assumption V1, which
concerns the variance matrix estimator. This assumption differs, depending on
whether B is a scalar or a vector. The scalar version in stated in AC1. Here we
state the vector version. When S is a vector (i.e., dg > 1), we reparametrize
B as (IBl, w), where w = B/||B|l if B # 0 and, by definition, @ = 14,/|/14||
with ldﬁ =(1,...,1) € R% if B =0. Correspondingly, 6 is reparametrized as
6" = (Bl @, {,m). Let @7 ={67:6" = (IBIl, B/IBIl, {, 7), 0 € O}. Let 6,
and 6 be the counterparts of 6, and 6, after reparametrization.
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When B is a vector, let J(6%; vy) and V' (07, y,) denote some nonstochastic
dy x dy matrix-valued functions such that J(6;; yo) = J(y,) and V(0 ; v) =
V(’)/()) Let

(81) (O v)=T10T vV (0T v0) (075 v),
2(77, w; Vo) = 2(”30”, w, &, T; Vo).

Let 3p3(7, w; ) denote the upper left dg x dg submatrix of 3 (7, w; vp).
Assumption V1 below applies when S is a vector.

ASSUMPTION V1—Vector B: (i) j; = j;(’e\; ) and 17:, = IZ(@; ) for some
(stochasticldg x dg matrix-valued functions j;((ﬁ) anii 17,,(0+) on O that satisfy
SUPyi g+ 12 (07) = J(0F; yo)l =, 0 and supy. g+ [IV,(07) =V (0F; yo)ll —, 0
under {7y,} € I'(y, 0, b) with ||b| < 00.”

(il) J(O6%;vo) and V (0%; yo) are continuous in 6% on O Yy, € I' with By =0.

(i) Amin(2(77, @; ¥0)) > 0 and Apa(3(7, ®; v0)) < 00 Var € I, Yo € R
with ||| =1, Yy, € I' with B, =0.

(iv) P(7g(m*(y0, b); v0, b) =0) =0 Vv, € I' with By =0 and Vb with ||b| <
00.71

When B is a vector, the matrix E(’JT; Y0, D) is defined differently from the
scalar 3 case. It is defined as

(82)  3(m; v, b) = 3(m, @*(m; 0, b); vo), Where
*(m; v, b) = 15(7; v0, b) /I T5(77; 0, D)l

The upper left d,, x d,, block of E(’?T; Y0, b), denoted E,,,l,,(w; Y0, D), appears in
the denominator of the asymptotic ¢ statistic in (4.5). The lower right d,, x d.,

block of 3(; vy, b), denoted 3., (7; v, b), appears in the denominator of the
asymptotic ¢ statistic in (4.6).

With the changes above, Theorems 4.1, 4.4(a), and 5.1(a) hold for the ¢
statistic and ¢ statistic-based CI in the vector B case.

8.3. Details for the Type 2 Robust CS With NI Critical Values

The type 2 NI robust critical value is defined by replacing H with H(v)
(defined in (5.2)) in (5.8) and in the definitions of A, and by, which
are then denoted by,(v) and A, (v). The set H; is replaced with H;(v) =

The functions J(0*; vy) and V' (8*; ) do not depend on w, only .

"t Assumption V1 (vector 8) differs from Assumption V1 (scalar 8) because in the vector 8
case Assumption V1(ii) (scalar B) (i.e., continuity in €) often fails, but Assumption V1(ii) (vector
B) (i.e., continuity in %) holds.



ESTIMATION AND INFERENCE 9

{(b, v0): (b, o) € H(v) & ||bl| < sup, .y, [1bmas(v) | + D}.” The constants 4,,
A,, Ai(h), and A,(h) in (5.8) are then denoted A;(v), 4,(v), 4;(h,v), and
A,(h,v). By definition, for any v € V,, NRP(4,(v), A;(v); h) < « for all h €
H (v). The NI robust critical value is denoted ¢ 14, (v).

For example, consider the construction of a type 2 robust CS with NI crit-
ical values for the parameter 7. For each value of v € II, one first obtains
the LF critical value cT 1_.(v), and then one calculates A;(v) and A,(v) based
on ¢ .(v) and the asymptotic distribution of 7, and A4, under the null
H() T = V.

A plug-in version of the type 2 robust critical value requlres the replacement
of H with H, throughout (5.8), where H, is defined as in Section 5.1. Similarly,
a plug-in version of the type 2 NI robust critical value is defined like the type 2
NI robust critical value, but with H replaced with H(v) N H, throughout.

Note that for a type 2 robust CS with NI critical values for 8, under semi-
strong or strong identification, A;(v) — 0 and 4,(v) — 0 as ||b|| — oo, and the
NI robust critical value converges to the standard critical value.

For h € H and v € I}, define

(8'3) ?T,l—a(h, U)
)+ A (), if Ah) <k,
C’T,l oz(oo) + Az(v)

e (V) + A1(v) — c71-a(00) — A3 (V)]
X s(A(h) — k), if A(h) >k,

where the random variable A (/) is defined in (5.6). It is shown in the proof
of Theorem 5.1 that the asymptotic distribution of ¢, ;_,,(v) under {y,} €
I (0,0, b) for ||b|| < oo is the distribution of ¢, ;_, (%, v).

Theorem 5.1 uses the following d.f. continuity condition.

ASSUMPTION NI-ROB2: (i) P(7 (h) =¢r,1_o(h,v)) =0Vh e H(v), Vv eV,.
(ii) For some v € V,, Ay(v) =0 or NRP(A,(v), Ay(v); h*) = a for some point
h* € H(v), where A;(v) and A, (v) are defined after (5.8).

8.4. Assumption B3

Assumption B3(i) can be verified using a uniform LLN, for example, as in
Andrews (1992). Assumption B3* provides sufficient conditions for Assump-
tion B3(ii) and (iii).

ASSUMPTION B3*: (i) Q(8; v,) is continuous on @ Ny, € I'.

"In the definition of H,(v), the upper bound on ||b|| does not vary with v, which improves the
smoothness of A;(v) as a function of v.



10 D. W. K. ANDREWS AND X. CHENG

(ii) For any € II, Q(, m; yo) is uniquely minimized by g Vy, € I' with
Bo=0.

(iii) Q(0; yo) is uniquely minimized by 6, Vy, € I" with By # 0.

(iv) () is compact Vo € 11, and 11 and © are compact.

(V) Ye > 0,36 > 0such that dg(V(m), V(m)) < eV, m € Il with ||m —
|| < 8, where dy(-) is the Hausdorff metric.

Assumption B3*(v) holds immediately in cases where ¥ () does not depend
on 7. When ¥ (1) depends on 7, the boundary of ¥ () is often a continuous
linear function of 7, as in the ARMA(1, 1) example. In such cases, it is simple
to verify Assumption B3*(v).

LEMMA 8.1: Assumption B3* implies Assumption B3(ii) and (iii).

8.5. Assumption C5

The following assumption is sufficient for Assumption C5.

ASSUMPTION C5*: (i) For any i > 1, the marginal distribution of W; has a den-
sity function fy,(w; y*) w.r.t. some o-finite dominating measure p that does not
depend on y*,Vy* e I'.

(i) fw,(w; y*) is partially differentiable in B* and the partial derivative is de-
noted by fsw.(w; v*) Vi > 1. Both fy.(w; v*) and fg w.(w; v*) are continuous in
v Vi>1,Ywe W, Vy* € I', where VW denotes the support of .

(iii) For some function fgw(w;y*) € R%, n=' Y " | faw(w;y*) = faw(w;
y)YweW,Vy el

(iv) m(w, 6) is continuous in y uniformly over w € Il for 0 € O with B =
0 Yw e W (ie., sup, ; |m(w, ¥, m) — m(w, Yo, )| = 0 as ¢ — o = (0, {)
YOy = (0, m) € O).

)

| sup it o)1 max{ sup 1 fu (i s
w

0O =L LyeN(y*,8)

sup | fw, (w; v)l} du(w) < oo,

yeN(y*,8)
where N (y*, 8) is a &-neighborhood of y* for some 6 > 0Vy* eI

Assumption C5*(iii) holds automatically with identically distributed obser-
vations. Assumption C5*(v) is used for dominated convergence arguments.

LEMMA 8.2: Assumption C5* implies that Assumption C5 holds with

K, (0;y)=n" Z/ m(w, 0) fg,w (w; y*) du(w),
i=1 YW
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K(6; v 2/ m(w, 0) fgw(w; v*) du(w).
w

In the ARMA(1, 1) and nonlinear regression models, Assumption C5 can be
verified directly without imposing Assumption C5*; see Appendices C and E.

8.6. Assumption C6

Using Assumption CI1(iii), the quantities &(7; yo, b) and n(w; vy, wy) in
Assumptions C6 and C7 can be simplified, which makes the verification of
Assumption C6 easier. Specifically, Assumptions C1(iii) and C2 imply that
m(W;, 0) can be partitioned as (m;(W;, 0)', my(W;, 0)')’, where my(W;, 0) € R%
does not depend on 7 when B = 0. In consequence, we can partition the fol-
lowing quantities and obtain certain subquantities that do not depend on 7:

o [ Hu(m) Hp(m) [ Gi(m)
(8.4) H(w,%)—[Hz](W) o, } G(7T,70)—< G, )

K1(7T)>

K(; 70)=( K,

where Hy,, G,, and K, do not depend on 7, H,|(7) € R¥>%  Hy € R,
Gi(m) e R%,G, € R%, K () € R%*%_ and K, € R%*%_ Define

(8.5) Gi(m; v0) = G (1) — Hp(m)H,'G,,
K;(; v0) = Ky () — Hip(m)Hy,' Ko,
HY\ (5 v0) = Hy (1) — H12(W)H£21H12(7)/,
1
&(m; v, b) = —E(G’{(w; Yo) + K (715 v0)b) Hy (715 v9) ™
x (Gi(; v0) + K{ (7 v0)b),

1
&(v0,0) =—35(Go+ K1b) Hy,' (G, + Ksb),

1
M (75 Yo, W) = —Ew’OKT(w; Yo) Hiy (75 v0) ' K (715 v0) w0,

1
n2(Y0, @) = —EwBKéHEZIszo'

LEMMA 8.3: Suppose Assumptions C1(iii) and C2-CS5 hold. Then the follow-
ing equalities hold:

(@) &(; ¥, b) = & (715 70, b) + E2(0, D).

(b) n(7; ¥, @) = N1 (7; Yo, ®0) + M2(Yo, @o)-
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COMMENT: By Lemma 8.3, Assumptions C6 and C7 hold if and only if
they hold with & (7; vy, b) and m;(7; yo, wo) in place of &(mr; 7y, b) and
n(; v, wg), respectively, because &(vyy, b) and 1, (v, wy) do not depend
on 7. The quantities &, (7; yy, b) and n;(7r; ¥y, wo) are simpler than &(7r; vy, b)
and n(7; v, wo), because they are based on lower dimensional vectors, that
is, the dg-vectors G5 (; o) + K (7; vo)b and K (7; o) w.

Using Lemma 8.3 and an argument similar to that used to prove Lemma 2.6
of Kim and Pollard (1990; KP) (see Lemma 9.13 below), we obtain the follow-
ing sufficient condition for Assumption C6 when g is a scalar.”

ASSUMPTION C6*: (i) dg =1 (i.e., B is a scalar).
(if) Var(G3(m1; y0) — G (1125 ¥0)) # 0 and Var(Gi(mmy; yo) + Gi(7m2; ) #0
V’7Tl, M € 11 with ot ?é ) V')/O e I' with BO =0.

LEMMA 8.4: Assumption C6* implies Assumption CO6.

Next, we provide a primitive sufficient condition for Assumption C6*. We
partition the covariance kernel £2(7r, ,; vy) in Assumption C3 analogously to
H (7; vy) and obtain

(8.6)  (m, m:iv) = [Ql](m’ ™3 v0)  Qu(m; 3’0):|

Q4 (1m2; v0) 25 ()

where 02 (7y,) € R%*% does not depend on 7. For any 7, m, € II and m; # m,
(G1(m), G1(m,), G,)' is normally distributed with mean zero and covariance
matrix

Oy (my, s yv)  Qa(m, msy) Qo y)
(8.7) Qe (my, m5v0) = | Ln(m, msv0)  (m, 5 v0)  4a(m; v0)
Oy (715 70) 01, (7m25 v0) 25 (o)

Typically, the covariance matrix (25 (7r, m; ) takes the form of an outer
product, which facilitates the verification of Assumption C6**, as shown in the
examples.

ASSUMPTION C6**: (i) dg =1 (i.e., B is a scalar).
(ii) Qg (ry, m2; v0) is positive definite Vi, m, € I with ) # 1, Yy € I with
Bo=0.

LEMMA 8.5: Assumption C6** implies Assumption C6*, which in turn implies
Assumption C6.

Kim and Pollard (1990, Lemma 2.6) provide conditions under which the sample paths of a
Gaussian process are maximized at a unique point with probability 1. Here the process of interest
is a quadratic function of a Gaussian process.
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8.7. Assumptions C1 and D1: Quadratic Expansions for Sample Average
Criterion Functions

The sample criterion function for sample average extremum estimators takes
the form

88)  QuO =n") p(W,0).

i=1

For example, p(W,, 0) is the log-likelihood function of the ith observation in
the case of the ML estimator, p(W;, 8) is the squared regression residual in the
case of the LS estimator, and p(W,, 0) is the check function in the case of the
quantile regression estimator.

For Q,(6) as in (8.8), Q(6: %) = E,,p(W,, ).

8.7.1. Sufficient Conditions via Smoothness

First, we provide sufficient conditions for Assumptions C1 and D1 when
p(W,, 6) is twice continuously differentiable in 6 on the support of W,. Let
py(W;, 0) and p,y(W;, 6) denote the first-order and second-order partial
derivatives w.r.t. ¢, and let p,(W;, 6) and pye(W;, 8) denote the first-order and
second-order partial derivatives w.r.t. 6. The support of W; for all y € I' is con-
tained in a set V.

ASSUMPTION Q1: (i) For some function p(w, 0) € R, Q,(0) =n"'>""_, p(W,,
0).
(i) p(w, 8) is twice continuously differentiable in 6 on an open set containing
O*YweW.

(iii) Under {y,} € I'(yo, 0, b), for all constants 6, — 0,

sup
YW (m): |y —io,nll<8n

n Y (Wi r, )
i=1

- pl//l//(I/Viy lp(),lu 77))

‘ =0,.(1).
(iv) Under {vy,} € I'(*yy, 00, wy), for all constants 5, — 0,

sup
00, (8,)

= Op(l)’

n™y "B (Bu)pos(Wi, 0) — pas (Wi, 0,)1B7 (B,)
i=1

where ©,(6,) ={0 € O: ||y — ¢, || < 8,lIB.ll and || — || < 5,}.

Assumption Q1(iii) can be verified by a uniform LLN (e.g., see Andrews
(1992)). Assumption Q1(iv) is stronger than the stochastic equicontinuity
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of n7' Y7 pee(W;, 6) over 6 € 0,(8,) because part of the rescaling matrix
B~1(B,) diverges to infinity as 8, — 0. The verification of Assumption Q1(iv)
relies on the fact that n~! Z:’zl peo(W;, 6) is close to singularity for 68 € ©,(5,).

LEMMA 8.6: Suppose Assumptions B1 and B2 hold.
(a) Assumption Q1 implies that Assumption C1 holds with

DyQ.(0)=n"">"p,(W, 0) and Dy, 0.(0)=n">" py, (W, 0).

i=1 i=1

(b) Assumption Q1 implies that Assumption D1 holds with
DQ.(0)=n""Y py(W:,0) and D*Q,(0)=n")" ps(W,, 6).
i=1 i=1

8.7.2. Sufficient Conditions via Stochastic Differentiability

Next, we provide sufficient conditions for Assumptions C1 and D1 that do
not require pointwise smoothness of p(w, 0) in 6 Yw € W. These sufficient
conditions rely on stochastic differentiability of Q,(6), as in Pollard (1985),
van der Vaart and Wellner (1996, Theorem 3.2.16), and Andrews (2001), and
on the smoothness of Ep(W;, 6). These sufficient conditions cover quantile re-
gression estimators, censored and truncated regression estimators, Huber re-
gression M -estimators, and so forth.

To provide sufficient conditions via stochastic differentiability, we first define
the stochastic derivative vectors and the associated remainder terms. Let

8.9)  p(w, ) =p(w, 6, + Aw, 6,) (0 —6,) +r(w, ),

where A(w, 6,,) is a “stochastic derivative” w.r.t. 6 at 6, and r(w, 0) is the re-
mainder term. Compared with Pollard (1985), the current definition of the re-
mainder term does not have |6 — 6, in front of r(w, 6) so as to adapt to
the weak-identification situation. The conditions on r(w, #) given in Assump-
tion Q2 below are adjusted accordingly.

Similarly, for any 7 € I1, let

(810) p(w7 ¢’> 7T) = p(wa lvllﬂ,n’ 7T) +Aw(w7 11[;0,11’ ’]T)/(l,[/_ ¢,0,n)+r¢l(w7 ll/’ 7T)5

where Ay (w, ., ) is a “stochastic partial derivative” w.r.t. ¢ at i, and
ry(w, ¥, ) is the remainder term. Note that A, (w, ¢ ,, ) is a subvector
of A(w, 0) evaluated at 6 = (¢, m). (The quantities A,(w, ¢ ,, ) and
ry(w, ¢, ) in (8.10) are not derivatives of A(w, 6,) and r(w, 6) that appear
in (8.9).)
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For {v,} € I'(yy), define the empirical processes {v,r(0): 6 € O} by

(811)  v,r(0)=n""2> "(r(W,, 0) — E, r(W;, 0)),

i=1

where r(w, 0) is defined in (8.9). Also, define the empirical process {v,r,(6):
0 € O}, where v,r(0) = (v,r,(0), v,r,(0)) and r,(w, 0) is defined in (8.10).
For {vy,} € I'(yy), define the nonrandom real-valued function

8.12) QuO)=n"'Y E,p(W,0).

i=1

When {W;:1 <i < n} are identically distributed under v,, Q(8) = E,, p(W,, 6).

ASSUMPTION Q2: (i) For some function p(w, 0) € R, Q,(0) =n='Y " p(W,
0).

(ii) E,p(W;, 0) is twice continuously differentiable in 6 on an open set con-
taining @*Vy* e I'.

(iii) Under {y,} € I' (o, 0, b), for all constants 8, — 0,

an(yn)n71/2|vnr¢(¢, 7T)| _
sup - 0[)77(1)'
pew(mp—youl<on L1+ 11@n(¥) (W — Po )T 1 — ol

(iv) Under {y,} € I' (yo, 00, wy), for all constants &, — 0,
[v,r(6)]
sup "
00,3, [1+12B(B.)(0 — 6,1 [1B(B.)(6—6,)]

where ©,(5,) ={0 € O: || — ¢, || < 8,18, and |7 — || < 5.}
(v) Under {y,} € I'(v, 0, b), for all constants 8, — 0,

= Op(l);

2 2

sup
ye¥(m):| Y—=10,n11=6n

Q:((pﬂ,ru 7T)H = 077(1)-

(vi) Under {y,} € I' (yo, 00, wy), for all constants &, — 0,

2 2

0;(0) — —— —o(1).

sup
0€0,(5n)

QZ(GH)]B_l(Bn)

-1
B (B”)[aeﬁef

Because the expectation operator is a smoothing operator, E.p(W;, 0) of-
ten is differentiable in 6 even though p (W, 6) is not. For example, Assump-
tion Q2(ii) holds when p(W;, 6) is piecewise differentiable in 6 and is only
nonsmooth in 6 on a negligible set of {W;:1 < i < n}. Such cases include quan-
tile regression, censored and truncated regression models, and so forth.
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Assumption Q2(iii) and (iv) are generalizations of the stochastic differen-
tiability condition in Pollard (1985) to the case of drifting sequences of true
parameters. In the special case where p (W, 6) is twice continuously differen-
tiable, Assumption Q2(iii) and (iv) can be verified easily by omitting the “1”
summand in the denominators. The verification is similar to that in Lemma 8.6
above.

When p(W;, 6) is not pointwise smooth, Assumption Q2(iii) and (iv) can be
verified by methods provided in Pollard (1985). For example, empirical pro-
cess methods can be used to show v,r, (¢, ) /|1y — PYo.ull = 0,-(1) uniformly
for ¢ in a neighborhood of ¢ , to verify Assumption QZ2(iii). In this case, only
the || — .|| part of the denominator in Assumption Q2(iii) is used. Simi-
larly, empirical process methods can be used to show v,7(6)/||B(B,)(0—0,)| =
0,(1) uniformly over 0,(5,) to verify Assumption Q2(iv). Pollard (1985) pro-
vides results for empirical processes based on i.i.d. random variables. For de-
pendent random variables, the empirical process results in Doukhan, Massart,
and Rio (1995) and Arcones and Yu (1994) can be used. Hansen (1996) estab-
lishes the stochastic equicontinuity of empirical process of dependent triangu-
lar arrays, which is suitable for asymptotic results under drifting sequences of
true parameters. For other references, see Andrews (1994). Also, the Huber-
type bracketing condition in Pollard (1985) applies with dependent random
variables.

Assumption Q2(v) is not restrictive. It holds by Assumption QZ2(ii) when
{W;:i> 1} are identically distributed under y* € I'.

Assumption Q2(vi) is stronger than uniform continuity of (6*/96 96) Q7 (6)
because part of B~!(B,) diverges when B, — 0. The verification of Assump-
tion Q2(vi) relies on (4%/96036')Q%(6) being almost singular when S is close
to 0.

For {v,} € I'(yy), define the empirical process {v,A(6): 6 € O} by

(813)  v,A(0)=n""?> (AW, 0) — E,, AW, 0)),

i=1

where A(w, 0) is defined in (8.9). Also, define the empirical process {v,4,(6):
6 € O}, where v,A(0) = (v,4,(0),v,A,(6)) and A,(0) is as in (8.10).

LEMMA 8.7: Suppose Assumptions B1 and B2 hold.
(a) Assumption Q2 implies that Assumption C1 holds with

Dy 0u(6) =m0, A, (6) + %Q;‘;(O) and

2

i

D, 0.(0) = Q:(0).
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(b) Assumption Q2 implies that Assumption D1 holds with

(92
000

DQ,(6) =n""v,A(0) + ;—GQZ(H) and D*Q,(6) = 0,(0).

COMMENTS: (i) When Q7 (6) is minimized at 6, under {v,} € I' (), DQ,(6)
in Lemma 8.7(b) evaluated at 6 = 6, simplifies to n~/?v,A(6,) because
(9/90)Q%(6,) = 0. With identically distributed observations, this holds un-
der Assumption B3 because Q% (6) = E,, p(W,, 0) is minimized at 6 = 6,. In
Assumption C1, D,0Q,(0) is evaluated at 6 = (i ,, ). The expression for
D,Q,(6) in Lemma 8.7(a) does not simplify when 6 = (¢ ,, 7) because Q7 (6)
is not minimized at (i ,, 7) under vy,,.

(ii) In Lemma 8.7, D, Q,,(0) and D*Q,(6) are both nonrandom. With iden-
tically distributed observations, D, Q,(6) and D*Q,(6) are second-order par-
tial derivatives of E,, p(W;, 8) w.r.t. y and 6, respectively.

Under Assumptions B1, B2, and Q2, Assumption C2(i) holds with

J

Hence, E, m(W;, 6) = (3/dY)E«p(W;, 6). Assumption C2(ii) holds provided
E,.p(W,, 0) is minimized at 6 when the true parameter is y* € I", and Assump-
tion C2(iii) holds provided E,p(W;, 0) is minimized at (*, w) Y € Il when
the true parameter is y* € I" with 8* = 0. With identically distributed observa-
tions, Assumption C2(ii) and (iii) are implied by Assumptions B3 and Q2(ii)
with E- p(W,, 6) = Q(6; v*).

Assumption C3 can be verified with G,(7) = v, A, (Yo, 7). Assump-
tion C4(i) holds with H (7; yy) = lim,,_.o(6*/d 9" ) Q% (o, 7) provided this
limit exists, which is always true for identically distributed observations. The
verification of Assumption C5 requires regularity conditions on the density
functions of the observations w.r.t. some dominating measure for y € I'. As-
sumption C6 can be verified using Lemma 8.4 or 8.5. Assumption C7 can
be verified using the matrix Cauchy-Schwarz inequality; see Tripathi (1999).
Assumption C8 is implied by Assumption C4 because (d/d¢')E, D,Q,(0) =
Dy, 0,(0).

Assumption D2 can be verified directly with the nonrandom form of
D*Q,(0,) given in Lemma 8.7(b). Assumption D3 can be verified by a triangu-
lar array CLT provided Q%(0) is minimized at 6, Vn > 1. The latter condition
yields DQ,(6,) = n~"?v,A4,(0,).

8.7.3. Initial Conditions Adjustment to the Sample Criterion Function

In some stationary time series models, the sample criterion function Q,(6)
depends on initial conditions and, hence, is not an average of stationary and
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ergodic random variables. In such cases, Assumptions Q1 and Q2 can be ad-
justed to allow Q,(0) to equal a sample average of stationary summands,
n " p(W, 0), plus a term, Q'°(6), that is asymptotically negligible in a
suitable sense. A similar adjustment is introduced in Andrews (2001).

ASSUMPTION Q3: (i) For some function p(w, 0) € R, Q,(0) =n"'>""_, p(W,,
0) + O\ ().

(ii) Assumption C1(ii) holds with R, (0) replaced by Q" (8) — Q' (¢ ,, 7) and
Assumption D1(ii) holds with R*(0) replaced by Q' (6) — Q'(0,).

LEMMA 8.8: (a) Lemma 8.6 holds with Assumption Q1(i) replaced by As-
sumption Q3.
(b) Lemma 8.7 holds with Assumption Q2(i) replaced by Assumption Q3.

8.8. Bivariate Probit Model With Endogeneity and Reparametrization

Next, we briefly discuss reparametrization in the simple bivariate probit
model with endogeneity considered in Han (2009) and Han and Vytlacil
(2009). The model is

(815) Yi=1(/\1+D[)\2_€iZO)7
Di=1(a+ZB—v;>0),

where (Y;, D;, Z;) is observed, Z;, € R, and (&;, v;) has a bivariate normal dis-
tribution with means zero, variances normalized to equal 1, and correlation p.
Han and Vytlacil (2009) show that the parameters are identified under some
conditions including B # 0. If B = 0, then none of the parameters A, A,, and p
is identified, but a two dimensional subspace of the parameter space for these
three parameters is identified. Han (2009) introduces a nonlinear transfor-
mation of (A, Ay, p), call it ({;, {5, p), such that p is not identified if 8 =0,
but (¢, {») are identified. He shows that the assumptions in AC1 hold with
{ = (41, &) and 7 = p. This transformation is not unique. One can create
other transformations such that A; is not identified when 8 = 0, but the other
two transformed parameters are. See Han (2009) for details concerning the
reparametrization that he provides.

9. SUPPLEMENTAL APPENDIX B: PROOFS

This appendix contains proofs of the following results given in AC1: (i) the
asymptotic size lemma, Lemma 2.1, (ii) the asymptotic distributions of the un-
restricted estimator, (iii) the asymptotic distributions of the # statistic, (iv) the
asymptotic distributions of the restricted estimator and QLR statistic, and
(v) the asymptotic size results for  and QLR CS’s.

This appendix also provides proofs of the sufficient conditions given in Sup-
plemental Appendix A.
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9.1. Proof of Lemma 2.1

PROOF OF LEMMA 2.1: The proof follows the lines of the argument in An-
drews and Guggenberger (2010). Define g,(y) = (n"*|BI, 1181, B/1BI, &, m,
¢), where by definition B/l = 14,/l114,ll if B8 =0 and 1,5, = (1,...,1) €
R, Define G, = {g: g.(v,) — g for some {vy,} € I'(y,,0, b) with ||b|| < oo},
G,={g:8.(y,) — g forsome {vy,} € I'("yy, 00, wy)}, and G = G, U G5.

First, we show AsySz > min{inf,.y CP(h), CP.}. Let {y, € I':n > 1} be a
sequence such that liminf, .. CP,(y,) = liminf,_, . inf,. CP,(y) (= AsySz).
Such a sequence always exists. Let {w,:n > 1} be a subsequence of {n} such
that lim,,_., CP,,, (A,,) exists and equals AsySz. Such a sequence always exists.
Below we show there exists a subsequence {p,} of {w,} such that CP, (y,,) —
CP(h) for some h € H or lim,_.,, CP,, (,,) = CP. In consequence, AsySz =
lim,_, o, CP,, (v,,) = min{inf,.; CP(h), CP}.

Now we show that the claim concerning the subsequence {p,} holds. To this
end, we show (a) for any sequence {vy, € I':n > 1} and any subsequence {w,} of
n, there exists a subsequence {p,} of {w,} such that g, (v,,) — g for some g €
G and (b) for any subsequence {p,} of {n} and any sequence {y,, € [':n > 1}
for which g,,(y,,) — g for some g € G, CP,, (v,,) — CP(h) for some h ¢ H
if g € G, and liminf,_ . CP, (y,,) > CP if g € G,.

To show (a), let B,, ; denote the jth component of B,, and let p;, = w,
Vn > 1. For j =1, either (i) limsup,,_, pjl.’/n2 Bp,...j < oo or (ii) limsup, pjl.’/n2 X
By, = oo. If (i) holds, then for some subsequence {p;1,.} of {p; .}, pllfl’n X

Bp;i1i = bj for some b; € R. If (i) holds, then for some subsequence {p;;1,,}

of {pjna} P,l»fl,nﬁpjﬂyn,j — o0 or —oo. Applying the same argument succes-

sively for j =1, ..., dp yields a subsequence {p;} = {pa,11..} of {w,} such that
(PE)'2By: — b e R% or (p:)'2||B,: 1l — co. Because I is compact, there ex-
ists a subsequence {p:*} of {p’} such that y =« — vy, € I'. Finally, let {p,} be a
subsequence of {p*} such that 8,,/IB,,|| = wo. By construction, g,,(v,,) —
g = (bl 1Boll, @, o, M0, po), where b € (RU {£o0})®.

It remains to show that the vector g constructed in the previous paragraph
is in G. (This is needed because G is defined by the limits of full sequences
rather than subsequences.) To this end, it suffices to show that there exists a
sequence {y, € I':n > 1} such that g,(y;) — g and v, =1v,, ¥n > 1. Such
a sequence {y;:k > 1} can be constructed as follows: (i) Vk = p,, define
Yi = v,, and (ii) Yk € (p,, puy1), define B; = (p,/k)"*B,, when ||b| € R
and B; = B,, when ||b|| = oo, and (iii) ¢{; = {,,, T = 7,,, and ¢; = ¢, in
both cases. Note that when ||b| € R, y; = (B}, {, 7}, ¢;) € I for k large by
Assumption ACP(iv). When ||b|| € R, g,(v:) — g because k'?B; = p}/*B,,
Vk € [P, Pus1), P,/*Bp, — b as n— oo, and B,,/lIB, |l — wo as n — oo
imply that k'/?||B;|| — |1b]| and B;/IIB;ll = wo as k — oo. When ||b|| = oo,
K'Z1Bill = pi* 1By, Il Yk € [Py, Pus1). Thus, p,2lI B, Il — 00 as n — oo implies
|k'2B;|l — oo as k — oo. In addition, when [|b|| = oo, B; /Bl = By, /1Byl



20 D. W. K. ANDREWS AND X. CHENG

Yk € [Pay Pas1) and By, /11y, || — wo as n — oo implies that B/ Bl — wy as
k — oc.

To show (b), note that we have shown that for any subsequence {p,} of {n}
and any sequence {y,, € I':n > 1} for which g,,(y,,) — g for some g € G,
there exists a sequence {y; € I':n > 1} such that g,(y}) - g € G and You = Vpu
Vn > 1. This and Assumption ACP(i) and (ii) imply (b). This completes the
proof of AsySz > min{inf;.y CP(h), CP.}.

Next, we show AsySz < min{inf,.y CP(h), CP,}. First, we show that H
equals

9.1) H*:{h:(b, vo):n'?B, — b e R%,y, — v,
for some {y, € I':n > 1}}.

We have H* C H because vy, in H* has B, = 0 since n'/?||8,| — ||b] < co. To
show H C H*, we need to show that for all b € R% and vy, € I" with 8, =0,
there exists a sequence {y, € I':n > 1} such that n'/?g, — b and vy, — ¥,.
Take v, = (B,, Lo, ™, ¢o) With B, = b/n'/? for n > 1. Then n'/?B, = b for all
n, v, — ¥, and vy, € I for n sufficiently large that b/n'*> < & by Assump-
tion ACP(iv).

Given that H = H*, for any h € H, there exists a sequence {y, € I':n > 1}
such that {y,} € I'{yy,0,b) by the definition of H*. Then AsySz =
liminf, , . inf,. CP,(y) <liminf, . CP,(y,) = CP(h), where the last equal-
ity holds by Assumption ACP(i). There also exists a sequence {y,} € I' (o, 00,
wo) such that CP,(y,) - CP, by Assumption ACP(iii). Thus, AsySz <
liminf,_ ., CP,(y,) = CP,. Hence, AsySz < min{inf;,.; CP(h), CP,} as de-
sired. Q.E.D.

9.2. Proofs of Estimation Results

PROOF OF LEMMA 3.1: The first result of Lemma 3.1(a) is proved along the
lines of the proof of Lemma A1 of Andrews (1993), which is a uniform consis-
tency result under fixed true parameters. Specifically, by Assumption B3(ii),
given any neighborhood ¥, of ¢, there exists a constant ¢ > 0 such that
Var € I, infycp () w, Q(, ;5 v0) — Q(ho, 5 ¥0) > €. Thus,

9.2) P(fp\n(w) e V(m)/ ¥, for some 7 € II)
< P(Q(a(m), 75 v9) — Q(tho, 73 o) = & for some 7 € IT) — 0,

where “— 07 holds provided sup, |Q(I{7n(w), 3 v0) — Q(o, 7 ¥0)| =, 0.
The latter follows from

(93) 0= inf[Q@(m), m o) — Qo )]
< sup[ Q¥ (m), m; ¥0) — Q(o, 73 y0)]

mwell
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< sup[ Qi (m), 5 ¥0) — Qu(Pu(), 75 0) ]

mell

+ Sup[Qn(zyEn('n-)a ] VO) - Q(lll()’ T, 70)]

mell

< sup[ QW (1), 75 o) — Qu(a(), 75 0)]

mell

+ sup[Q, (o, ; ¥0) — Q(tho, m; ¥o)1 + o(n™")

mell

<2 sup |Q.(, 7 y0) = QW 5 yo) | +o(n) = 0,(1),

yeV(m),mell

where the first inequality holds by Assumptlon B3(ii) and the fourth inequality
holds by the definition of ¥, (1) in (3.2), and the equality holds by Assump-
tion B3(i). This completes the proof of the first result of part (a). The second
result of part (a) follows from the first result because tpn l’p\,,(n-n) and 7, € I1.

When B, # 0, 6, —, 6p under {y,} such that vy, — 7y, with ,80 # 0 by
an analogous argument to that just given for part (a), but with ,, 6o, and
0/0, in place of (1//,,(77), ), (Yo, m), and ¥ (m)/W¥,, respectively, where O,
is some neighborhood of 6,, with inf,.; and sup__, deleted, and with As-
sumption B3(iii) used in place of Assumption B3(ii). Because 6, — 6, this
completes the proof of part (b). Q.E.D.

The following two lemmas are used in the proofs of Lemma 3.2 and Theo-
rem 3.1.

LEMMA 9.1: Suppose Assumptions B1, B2, C2, C3, and CS5 hold. Under {y,} €
I' (v, 0, b), there are two alternatives:

(a) When |[b]| < o0, n'/>D Q. (o.n, -) = G (-3 v0) + K (-5 %)b.

(b) When ||b]| = oo and B,/|B.ll — wo for any wy € R% with |wll =1,
Bl "' Dy @ (0.0, ™) = , K (775 ¥0) @ uniformly over € I1.

COMMENT: Lemma 9.1 implies that a,(7y,)DyQ, (o, ) = O, (1).
Define
(94) Z,,(’]T) = _an(’)’n)(Dlpl/xQn(‘p(),m 77))71D¢Qn(¢’0,m 77)

LEMMA 9.2: Suppose Assumptions A, B1-B3, and C1-C5 hold. Under {v,} €
I' (v, 0, b), the following equalities hold:

(@) an(y) (Pu(m) = Po,0) = Opr(1).

(b) an(’)/n)(lpn(ﬂ-) - ‘ﬁo,n) = Zn(ﬂ-) + Opw(l)-
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(c)
@2 (Y) (Qu( (1), ) — Qu(Wo,0, 7))

1
- _Ezn(ﬂ)/Dan('J/o,m m) 2y () + 0,7 (1).

COMMENT: When [|b]| < oo, Lemma 9.2(b) is used to derive the asymptotic
distribution of #,. Lemma 9.2(c) is used in the proof of Lemma 3.2 below.

PROOF OF LEMMA 9.1: First, we decompose D, Q, (o ,, 7) as

(95) D',DQn('vDO,n: 77) = nil/an(ﬂ-) + n71 ZE‘Y"m(VV;7 11[]0,n7 77)

i=1

To analyze n' Y " | E, m(W;, ¢, ,, ) when B, is close to 0, we view this
average expectation as a function of 8, and we carry out element-by-element
mean-value expansions around 3, = 0. This gives

(9.6) n71 ZEynm(VI/i, lrljo,ny 77)
i=1

= I’l71 ZEyoynm(I/Vh ll’(),n’ 7T) + Kn(l/j(],n, , 7”)3'1

i=1
= Kn(l,l’O,n: 5 Vn)ﬁna

where v, = (En, Ly Ty ) may differ across the rows of K, (.., 7; V), E,,
is on the line segment connecting B, and 0, which implies that En converges
to 0 as y, — 7y, for y, with By = 0, and the second equality holds by As-
sumption C2(iii) applied with y* =1y, , because y, = (B., {u, 7, ¢,) € I’ with
| B.Il < &, which holds for » large, implies that vy, , = (0, {,, 7., ¢p,) € I" by As-
sumption B2(ii). Furthermore, (i ,, 7, ¥,) is in the domain @; x I; of K,,(-; -)
by Assumption B2(ii).

By Assumption C5,
9.7 Ko m Vn) = K(7: v0)

uniformly over 7r € I1. From (9.5)-(9.7), we obtain
(98) Dd/Qn(lpO,na 7T) = n_l/an(’n—) + K(Wa VO)Bn + 0[)77(”Bl’l||)'
In part (a), in which case n'/?8, — b with ||b|| < oo, (9.8) leads to

(99) nl/zD',lan(lpO,n; ) = Gn() +K(, ’YO)nl/ZIBn + Op-n-(l)
= G(-;v0) + K(; v0)b,
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where the weak-convergence result holds by Assumption C3.
In part (b), in which case n'/?||B,,| = oo and B,/||B.|l = o, (9-8) leads to

(9.10) 1Bl Dy Qu (W0, ™)

= (n"211Bull) " Gu(mm) + K (5 0) Bu/ 1| Ball + 0, (1)
_)p K(ﬂ-; 'YO)wO

uniformly over 7 € II using Assumption C3. Q.E.D.

PROOF OF LEMMA 9.2: The proof of part (a) is analogous to the proof of
Theorem 1 of Andrews (1999), which in turn uses the method in Chernoff
(1954, Lemma 1). For notational simplicity, D, Q, (., ) is abbreviated as

Dy (). Let Ky = DYy ()@ (¥,) () — s5,,). We have

(911)  0,.(1) = @(v)(Qu(Wu(m), T) — Ou(WP0.0> ™))
= a,(¥) Dy Qu(Wo,, ™)' Dy 2 (1) K

+ —||f<,m||2 + @ (YR, (P (), )
= Opr(llknsll) + 5 L2 + (14| Dy () ks ]) 0pe (1)

= Opr(l k=l + EIIKMII2 + 0pr(l1Knz )

+ 0pr(Iln 7 11%) + 0, (1),

where the inequality holds Va € II for n large by (3.2) and the fact that
Yo, € Y(w) Y € II for n large, which holds because this condition is equiv-
alent to (., m) € @ VY7 € Il for n large, and the latter holds because
() (Yo, m) = (0,4, m) €{BeR™:|B| <8} x Z°x I C O Vi Il by As-
sumption B1(ii) provided ¢, € Z°, and (ii) ¢, € Z° for n large by Assump-
tion B1(ii) because 0, = (B, {», ™) = 6y = (0, {y, 7o) implies that || B, < J,
and 0, € O; C {B € R%:||B|| < 8} x Z° x II for n large. The first equal—
ity in (9. 11) holds by Assumption C1(i) with ¢ = ¥, (m); the second equal-
ity holds by Lemma 3.1(a), Assumptions C1(ii) and C4, and the implication
of Lemma 9.1 that a,(y,)D,Q, (.., m) = O,,(1). Rearranging (9.11) gives
| Knll* < 20 Kn21|Opr(1) + 0,-(1). Let &, . denote the O, (1) term. Then we
have

(9'12) (”Kn,‘n'” - gn,'n')z =< gi,ﬂ- + Op'fr(l)'

Taking square roots gives ||, .|| = O, (1), which together with Assumption C4
completes the proof of part (a).
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Now, we prove part (b). Define

(9.13) A () = ay(y)(Pu(m) — o) and Pl (7) = Yo+ a; (ya) Zu ().

First, we apply the quadratic approximation in Assumption C1(i) with ¢ =
! (7). Rescaling both sides by a?(y,), we get

(9.14) @y (v (Qu(Wi(m), m) — Qu(Won, 7))
1
= _EZn("T)/DduJ/,n(W)Zn(W) + 0[771'(1)7

where the 0,,(1) term is obtained from Assumption C1(ii), Lemma 9.1, and
lp(],n - lpn - O

__Next, we apply the quadratic approximation in Assumption C1(i) with ¢ =
(1) to obtain

(9.15)  @2(y)(Qu(ra(m), 7) — Qu(Who,0, )

1
= _Zn(ﬂ-),DtW/,n(W)An(ﬂ-) + EAn(W)/Di/u//,n(ﬂ-)An(ﬂ-) + Opﬂ'(l)
1
= E(An(’n-) - Zn(w))/Dwgb,n(W)(An(W) - Z,,(’I'T))

1
- EZH(W)/Dl/Illl,n(qT)Zn(W) + Opﬂ'(l)a

where the 0,,(1) term in the first equality is obtained from Assumption C1(ii)
and Lemma 9.2(a).

We can write a,'(y,)Z,(m) = (Bl (), {{' (7)), where Bi(7) =0,,(1) and
{I"(m) = 0,,,(1) using Assumptions C3 and C4 and a,'(y,) <n~"? — 0. This
and Assumption B1(ii) lead to

(9.16) ¢ (m) = (0, &) + (B(m), £ () € W ()

Var € 11, where € ¥ () holds with probability that goes to 1 as n — oo.
Specifically, (9.16) holds because (i) y, — v, with By = 0, (ii) for n large,
(Bus &n» Ty b)) € I' satisties || B,]| < 6/2 and ||, — {oll < 6,/2 for some 6 > 0
and &, > 0 chosen such that the ball centered at {, with radius §,, is in Z°,
(iii) the latter, Bi(m) = 0,,(1), and {/"(7) = 0,,(1) imply that | B} ()| < 3,
12, + £H(m) = Goll < 845 & + £1F(m) € 2°, and ¢i(m) € (B € R%:|BI| <
8} x Z° VY € IT with probability that goes to 1, and (iv) {8 € R :|B| <
S} x Z'c¥(m)n{y = (B, ) € R%:||B| < 8} by Assumption B1(ii). Results
(iii) and (iv) combine to establish (9.16).
Using (9.16) and (3.2), we have

(9.17)  Qu(Pu(m), m) < Qu(i(m), m) 4 0,n(nh)
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Var € I1. This, (9.14), and (9.15) give
1
(918) E(An(ﬂ') - Zn(ﬂ-))/D(/u//,n(ﬂ-)(An(ﬂ') - Zn(ﬂ-)) S 0[771'(1)'

Assumption C4 and (9.18) imply that A,(7) = Z,(7) + 0,,(1), which is the
result of part (b).

Part (c) holds because the first summand on the right-hand side (r.h.s.) of
(9.15) is 0,,,(1) by Lemma 9.2(b) and Assumption C4. Q.E.D.

PROOF OF LEMMA 3.2: Lemma 9.1(a) and Assumption C4 yield
(9.19)  Z,(-) = —H (5 y0)(G(5 v0) + K5 v0)b)

under {vy,} € I'(v, 0, b) when ||b|| < co. Lemma 9.1(b) and Assumption C4
yield

(920)  Z,(m) =, —H ' (m; y0) K (; vo)

uniformly over 7 € II under {vy,} € I'(yy, 0, b) when ||b|| = oo and B,,/|| 8. =
wg.

The result of part (a) holds by Lemma 9.2(c), (9.19), Assumption C4, and
the CMT. Replacing (9.19) with (9.20) gives the result of part (b). Q.E.D.

PROOF OF THEOREM 3.1: First we prove part (a). We have 7, —, 7 (o, b)
by (3.3), Lemma 3.2(a), Assumptions A, B1(iii), C3, C4(i), C5(iii), and C6,
and the CMT. For details, see the proof of the argmax/min Theorem 3.2.2
in van der Vaart and Wellner (1996, p. 286). Note that Assumptions C3, C4,
and C5(iii) are used to guarantee that &(7; vy, b) is continuous on I a.s. and
Assumption B1(iii) guarantees that the sequence of distributions of {7,} is
tight.

Define 7, () = n"2(§,(m) — ,,). We have

(921)  7,() = 02 (WP () — o) — 12 (W — o)
= Z,() = (1B, 04,) + 0,n(1)
= —H'(-: %) (G v0) + K(: v0)b) — (b,04,),

where the second equality holds by Lemma 9.2(b) and the definition of s ,,
and the weak-convergence result holds by Lemma 9.1(a) and Assumption C4.
Furthermore, joint convergence (7,(-), 7,) = (7(-; o, b), 7 (7o, b)) holds be-
cause 7,(-) and 77, are continuous functions of Z,(-) and D, O, (¢ ., -), which
converge jointly since the limit of the latter, H(-; y,), is nonrandom.

To prove part (b), we write

(922)  Qu(6,) = Qu(hu(), Tn) = Q4 () = inf O5(m) + o(n ™),
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where the first equality holds by assumption (see the paragraph following
(3.3)), the second equality holds by the definition of Q¢ () given just above
(3.3), and the third equality holds by (3.3). Part (b) follows from Lemma 3.2(a),
(9.22), and the CMT. Q.E.D.

PROOF OF LEMMA 3.3: When B, =0, 7, —, 7 by a standard consistency
argument, such as a simpliﬁcation of the argument given in the proof of
Lemma 3.1(a) with @,, m, 1I/I1o, ||B.ll*(Q5(m) — Qo,), and m (7 ¥y, wo)
in place of (lpn(fn-)a 7T) ('7110’ 7T) W(W)/Wo, Qn(dj> ;5 VO)? and Q(‘wl” 5 yo)a re-
spectively, where I1 is some neighborhood of 7, and with inf,.;; and sup__j;
deleted. The argument uses Lemma 3.2(b) (which applies because the set
of sequences {vy,} € I'(y, 00, wy) with By = 0 is the same as the set of se-
quences {y,} € I'(, 0, b) with ||b]| = co and B,/||B.ll = wo) in place of As-
sumption B3(i). In place of Assumption B3(ii), the argument uses the fact that
1 (7; Yo, wy) is continuous on 11 by Assumptions C4 and C5(iii) and is uniquely
minimized at 7y by Assumption C7, and I is compact by Assumption B1(iii).
Because 7, — m, thls completes the proof that Ty — Ty — ) ()

When By =0, ¢, — §, —, 0 because [[§, — i, = ||l/fn(7Tn) — Yl <

sup, .y ||$n(w) — il =0,(1) by Lemma 3.1(a).
When B, # 0, the desired results are given in Lemma 3.1(b). Q.E.D.

The following lemma is used in the proof of Lemma 3.4, which is used in the
proof of Theorem 3.2 below. Let S = [/, dp :Odﬁxdg] denote the dg x d,, selector
matrix that selects 8 out of .

LEMMA 9.3: Suppose Assumptions C2, C4, C5, and C8 hold. Then K (m;
Yo) = —H (m0; ¥0) S

PROOF OF LEMMA 9.3: For notational simplicity, define a function
(9.23) Ky, ¢)=n"! ZEy*m(Wl-, W, ).
i=1

Let hj.(y*, ) denote the partial derivative of A"(y*, ¢) w.r.t. ¢*, which is
a subvector of y*, and let hf;,(y*, ) denote its partial derivative w.r.t. . By
Assumption C2(ii),

(924)  W'(y*,y*)=0 Vy'el.

In (9.24), ¢* enters h"(y*, ¥*) through both y* and the second argument of
h"(-,-). Taking the derivative of A" (y*, *) w.r.t. * gives

(9.25) (YL, +hy (v, 9ty =0 Vy'ell
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The definition of 4"(-, -) in (9.23) and the equality in (9.25) yield

"9
926) n'> M*,Ewm(Wi, P, )
i=1
= hy. (¥, ¢*) = —hy, (v, )

d
— _pnl —E. VV;, *’ Y.
" el rme ¥7m)

Postmultiplying both sides of (9.26) by S, which selects the first dg columns,
yields

n n

J J
927) a7 :ﬁB*/Ey*m(Wi, W, ) = (—nl > :a—dl,EY*m(W,«, g//*,Tr*))S;;.
i=1 i=1

The partial derivative (d/dB8")E,-m(W;, y*, 7*) on the left-hand side (L.h.s.) of
(9.27) denotes the partial derivative of E,.m(W;, ¢*, 7*) w.r.t. 8*, which is a
subvector of the true value y*, whereas (J/9¢")E,~m(W,, y*, ) on the r.h.s.
of (9.27) denotes the partial derivative w.r.t. ¢, which is an argument of the
function m(W,, i, ).

Under {vy,} € I'(yy, 00, wy), (9.27) with y* replaced by vy, becomes

n n

Jd J
(9'28) n71 Z ()‘B*/E}’nm(vllh lpna 7Tn) = <_n1 Z ()lp,EVnm(I/Vh l/j}w Wn))S;;-
i=1 i=1

Under {vy,} € I'(yy, 00, wy) with By =0, the Lh.s. of (9.28) satisfies

n

J
(929) n_l Z wanm(I/Vh dlna 7Tn) = Kn((!/na s yn) — K(WO’ VO);

i=1

where the equality holds by definition and the convergence follows from As-
sumption CS.
Under {y,} € I'(yy, 00, wy) with By =0, the r.h.s. of (9.28) satisfies

n

d d
(930) n') - 5 B W s ) = S5 E, Dy Qu (i, ) = H (i ),

i=1

where the equality holds by Assumption C2(i) and the convergence follows
from Assumption C8.
Equations (9.28)-(9.30) yield the desired result. Q.E.D.
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PROOF OF LEMMA 3.4: From Lemma 9.2(b), we have

O31) 1Bl W — o)

= 1B @) = o)

= —(Dys QuWo,ns 7))~ 1 Bull ™ Dy Qu (o0, W) + 0, (1)

—p —H ! (70; ¥0) K (770 y0) 0 = Spwo,
where the convergence in probability holds by Lemma 9.1(b), Assumption C4,
7, — 1, = 0,(1) (which holds by Lemma 3.3), and m, = 7 + o(1), and the last

equality holds by Lemma 9.3.
Note that

(932) Y= don+S,B,
by the definition of ¢, ,. Hence,

933)  1Bull ™ W — ) = 1Bl W — $o.) = 1Bl ™' (W — Wo.0)
= (Spwo + 0,(1) = 1Bl 7Sy B, = 0,(1),

where the first equality is straightforward, the second equality uses (9.31) and
(9.32), and the last equality holds because ||B,[~' B8, — w,. O.E.D.

PROOF OF THEOREM 3.2: We show n'2B(B,)(6, — 6,) = O, (1) before prov-
ing parts (a) and (b). The proof is similar to the proof of Lemma 9.2. Let
K, =J*n'2B(B,)(6, — 6,). We have

(934)  0,(1) = n(Qu(6,) — 0.(6,))

1 ~
= nl/z(B_l(Bn)DQn(en)),Jn_l/an + E ||Kn||2 + nR:(On)
1
= 0, (k) + 5 1k P+ (14 |, )0, (1)

1
= O, (llkall) + EIIKnII2 + 0, (lkalD) + 0, (Iknll*) + 0, (1),

where the inequality holds by (2.1), the first equality holds by Assump-
tion D1(i) with 6 = 8,, and the second equality holds by Assumptions D2 and
D3, and the fact that ?9\,1 € 0,(8,) for some 8, — 0 with probability that goes to
1 as n — oco. To see the latter, note that 7, — m, = 0,(1) and ¢, — ¢, = 0,(1)
by Lemma 3.3 and ||Bn||‘1($n —,) =0,(1) by Lemma 3.4 when 8, — 0. Re-
arranging (9.34) gives | k,|I* < 2[k,]|0,(1) + 0,(1). Let & denote the O,(1)
term. Then we have

(9.35)  (lkall = €)° < (€))7 +0,(D).
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Taking square roots gives | k,| = O, (1), which together with Assumption D2
gives n'2B(B,)(6, — 6,) = 0,(1).
Now, we prove parts (a) and (b) of the theorem at the same time. Define
(936) Z;: = _nl/zjnilBil(Bn)DQn(en): A;: = nl/zB(,Bn)(/H\n - Hn)a
00 =0,+n"B 1 (B)Z;.

First, we apply the quadratic approximation in Assumption D1(i) with 6 = 6.
Rescaling both sides by n, we get

1
(937)  n(Qu(8)) = Cu(6)) = =5 ZJuZ; + 0,(D),

where the o0,(1) term is obtained from Assumption D1(ii) and the fact that
0 € 0,(5,) with probability that goes to 1 as n — oo for some 8, — 0. To see
the latter, let 6] = (¢, ar"). Then (9.36), the structure of B(B,), Z; = 0,(1),
and n'?||B,|| — oo, yield

(938) i —¢hu=n""0,(1) =0,(|B.l) and
= m, =12 BT 0,(1) = 0,(1)
under {')’n} € F(V(), 07 wU)' Y
Next, we apply the quadratic approximation in Assumption D1(i) with 6 = 0,
to obtain

_ 1
(939) n(Qn(en) - Qn(gn)) = _Z;:/]nA: + EAZ/]nA: + Op(l)

1 1
= E(AZ —Z)], (A - Z7) — EZ;’JnZZ +o0,(1),

where the 0,(1) term in the first equality is obtained from Assumption D1(ii)
and 6, € 60,(5,) with probability that goes to 1 for some 6, — 0 as shown
above.

We have 67 € @ with probability that goes to 1 as n — oo by (9.38), 6, € O~,
and Assumption B1(i). In consequence,

(9:40)  Q.(6,) < (6] +0,(1)
using (2.1). This, (9.37), and (9.39) give
1
(041) 54— Z) (4, = Z;) = 0,(D).
Assumption D2, (9.39), and (9.41) imply
1

(942) Ai=Z:+0,(1) and n(Q,,(’e‘n)—Qn(en»:—zz;’fnz,’;Jrop(l).
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This, combined with Assumptions D2 and D3, gives the desired results.
Q.E.D.

9.3. Proofs of t Asymptotic Distributions
The proof of Theorem 4.1 given below uses the following lemma. Define

@y =B/l Bull.

LEMMA 9.4: Suppose Assumptions A, B1-B3, C1-C8, and V1 hold.
(a) Under {vy,} € I' (0,0, b) with ||b]| < 00, ®, —4 @*(7*(y0, b); 0, b).
(b) Under {y,} € I'(7yy, 00, ), @, =, w.

PROOF OF LEMMA 9.4: To prove Lemma 9.4(a), we have

Tﬁ(’n-*(’yf)? b)v Yo, b)
75 (7 (*yo, b); v, D)l

(943) @, =n"B,/|n"B.| =

= w*(’TT*(’)/o, b), Yo, b)

by the CMT, because n\2B, —4 73(7* (Y0, b); 0, b) by Theorem 3.1(a) and
Comment (i) to Theorem 3.1, and P(7z(7*; vy, b) = 0) = 0 by Assump-
tion V1(iv) (vector B).

Next, we prove that Lemma 9.4(b) holds when B, = 0. By Lemma 3.4,
I1B417"(Bs — Bu) = 0,(1). This implies that B, = B, + [|B.llo,(1) and || B,/
I8l =1+ 0,(1). Hence,

o~

~ Bu Bu=BullBull | B 1Bl
= — = — —+ — —>p
1Bl 1Ball 1Bl 1Bl Ball

__Under {y,} € I'(y, 00, wy) with By # 0, @, — wy by the CMT given that
B» — » Bo by Lemma 3.3. Q.E.D.

9.44) o,

0.

PROOF OF THEOREM 4.1: Under the null hypothesis Hy:r(6,) = v,, the ¢
statistic defined in (4.2) with v = v, becomes

n'2(r(8,) = r(6,))
(r(i()é\n)Bil(En)ZnBil(En)r9(§n)/)l/2
First, we prove Theorem 4.1(a). We start with the case in which S is a scalar.
Because d, =1, d = 0 implies that r,(0) =0 V6 € ©; for some 6 > 0 by As-

sumption R(iii). In consequence, r,(0) = [r,,(0) : 0] and the denominator of the
t statistic in (9.45) becomes

(9.45) T,=

(9.46)  (ro(0,)B (B) S, B~ (B)rs(0.))2 = (ry (0,) 3 yynrs (6,))"2
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with probability that goes to 1 as n — oo (w.p. — 1), where /Z\W,n is the upper
left ¢ x  submatrix of 3,. We have r(,,, 7,) — (Y, m,) =0w.p. - 1 by (i) a
mean-value expansion w.r.t. 7, (ii) Assumption R(i) and (iii), (iii) 7,(68) =0
V6 € O, and (iv) B, — 0. Hence, we have

(947) 7"(’0\”) - r(en) = r({p\n’ %n) - r(lpna /77\-11) + r(lpm ?Tn) - r(‘pn, 7Tn)

= 13 s T) (B — )

w.p. — 1, where the first equality is immediate, and the second equality uses
r(,, @) — r(,, m,) =0 and a mean-value expansion of r(lpn, ) W.It.

around ¢, with ¢, between Lp,, and ¢,,.
Under the conditions of Theorem 4.1(a),

7y (s m)n“z(lﬁn )

(”lp(e )anrw(e )2
e, TN, — )
(W0, To) Dty (o, 7))
= Tyn(T) + 0,(1) =4 Ty (7(b, ¥0): b, ¥0),

(9.48) T, =

+0,(1)

where the first equality follows from (9.45)—(9.47), the second equality holds
by the consistency of $n(w) uniformly over 7 € II and the continuity of r,(6),
the third equality defines T, ,(7) implicitly, and the convergence follows from
the joint convergence (7 ,(-), 7,) = (T, (; yo,b), 7* (v, b)) and the CMT.
The latterJomt convergence holds by 7,(7) = 2 (Y, () — ) = 7(7; 0, b)
(which is established in (9.21)), Assumptions V1 (scalar 8) and R, Theo-
rem 3.1(a), the uniform consistency of @,,(77) over 7 € II, and the fact that
7,(-) and 7, can be written as continuous functions of the empirical process
G,(-) plus 0,(1) terms.

In the case of a vector B (9. 48) holds with EW . being the d, x d, upper
left submatrix of E E (9*) 1((‘)*)V (0+)J 1(9*) using Assumption V1
(vector B) and with T, ,(77,) replaced by T, ,(7,, ®,), which is defined implic-
itly. In this case, the convergence in (9.48) follows from the joint convergence
(Tl//,n(')a /ﬁn’ an) = (ﬂﬁ(v Yo, b)7 W*(YO’ b)7 w*(ﬂ'*()’o, b)a Yo b))7 which holds
by the same argument as above plus Lemma 9.4(a) and Assumption V1 (vec-
tor B). This completes the proof of part (a).

Next, we prove Theorem 4.1(b). Note that

(9.49)  ro(0,)B " (Bu) =14 (0,) : 2 (8,)¢ " (B)]
= By (0.)u(By) : 72 (0,)]
= B ([0: 7)1+ 0,(1),
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where the first equality follows from the definition of Bfl(ﬁn), the second
equality is straightforward, and the third equality follows from B, — 0 by
Lemma 3.1(a).

By a mean value expansion of r(0 )= r(g[;n, 7r,) about 0 = (¢, 7,), we ob-
tain

r(8,) =r(, @) + 1y (B, 7)) (P — ) and
n2e(BI(r(8,) — r(6,))
= 1P WB Wy ) — 1 (Y, 7))
F 1By (B, TN (W — )
= 101" 2B (W, ) — (P 7)) + 0,(1),

where i, lies between (pn and {1/ and hence, ¥, = o by Lemma 3.1(a),
and the third equality uses [1(B,)| = | B, = 0,(1). 12(f, — ) = O,(1), and
rd,(tpn, 7,) = O,(1), which hold by Theorem 3.1(a) and Assumption R(i).

When B is a scalar, in Theorem 4.1(b), the ¢ statistic becomes
n2[ (B)I(r(8,) — r(6,))
(e (0,) 2 mnrn(0,))12 + 0,(1)
|L(n1/2Bn)|(r(dln77Tn) r(Ya, m,))
(rﬂ'(lp(b Wn)zﬂ"ﬁ nrﬂ'(l/j(ly 7Tn )]/2
= H,7T(7T’l) + 01)(1) —d T7T(7T ; b7 70)7

(9.50) T, =

+0,(1)

where the first equality uses (9.45) and (9.49), the second equality uses the pre-
viously displayed equation and i, — , ¥, the third equality defines T,, (8, 7)
implicitly, and the convergence holds by arguments analogous to those used to
establish the convergence in (9.48).

In the case of a vector ,8 9. 50) holds with 2,,” bemg the d, x d, lower
right submatrix of 2 2 ((9+) = 1(6’+)V (0*)] 1(6)+) using Assumpt10n Vi1
(vector B) and with T, ,(7,) replaced by T,..(7,, ®,), which is defined im-
plicitly. In this case, the convergence in (9.50) follows from the joint conver-
gence (Tpu(:), Ty @) = (T (5 ¥0, b), 7 (30, b), @*(7* (0, b); 0, b)), which
holds by the same argument as used to establish the convergence in (9.48) plus
Lemma 9.4(a) and Assumption V1 (vector B8). This completes the proof of
Theorem 4.1(b).

Next, we prove Theorem 4.1(c). The proof is the same for the scalar and
vector B cases because it relies on Assumption V2, which applies in both cases.
First we prove the result when {v,} € I'(y,, 00, wy) and 8, — 0. When d* =0,
the first equality in (9.48) holds by the same arguments as above. This equal—
ity, Assumptions V2 and R, the consistency of 6, established in Lemma 3.3,
Theorem 3.2(a), and the delta method together imply that 7, —, N (0, 1).
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When d* =1 and {y,} € I'(vy, 00, wy) with B, — 0, (9.49) still holds using
B, — 0 by Lemma 3.3(b). Hence, the first equality in (9.50) also holds. In this
case, the  statistic becomes

n1/2|L<En)|(r¢(5nA)($n — ) + 720, Ty — 7))
(7 (0,) St (002 + 0,(1)

121, (R NS
(T2 (00) 2 rmnl=(0,))% 4 0,(1)

—d N(O, 1)7

(951) T, =

where the first equality follows from (9.45), (9.49), and a mean-value expan-
sion of r(0 ) w.r.t. 6 around 6, with 0 between 6, and 6, the second equality
holds because (i) n'”(t[;n ¥,) = 0,(1) by Theorem 3.2(a), (ii) B8, — 0 and
the consistency of 6, in Lemma 3.3, (iii) the continuity of r4(#) in Assump-
tion R, and (iv) Assumption V2, and the convergence in distribution holds by
(i) the consistency of On, (ii) the continuity of r4(6), (111) n'2u(B,) (7, — ) —>4
N, 3,.(y)) by Theorem 3.2(a), where 3. () is the lower right d, x d.
submatrix of X(yo) =71 (y0)V (yo)J "' (), (V) [«(B.)I/1L(Bi)| = 1B/ I1Bull +
(n'2(B,— B/ In'2BuDIl = llw, +0,(D)]l =1+0,(1), where the third equality
uses n'2(B, — B,) = 0, (1), [n'2B, ] = 00, 0, = Bu/IlBull > wo, and ||wy|| =
1, (v) if Bis a scalar, [¢(B,)|/t(Br) =sgn(B,) =1w.p.—>lor=—-1wp.— 1
because n'/?B, — oo or n'’?B, — —oo, (vi) if B is a vector, [¢(B,)|/t(B,) =1
because ¢(B,) = ||B.ll, (vii)) Assumption V2, and (viii) the delta method.
Under {vy,} € I'(y, 00, w¢) and B, — By #0,

(952)  n'P(r(8,) = r(6,)) =4 N(O, r9(80) B~ (Bo) 2(v0) B~ (Bo)re(60))
by Theorem 3.2(a) and the delta method. By Assumptions R(i) and V2 and the
consistency of 6, established in Lemma 3.3,
(953) o8B (BB (Bro(8,)
= 79(00) B~ (Bo) 2(v0) B~ (Bo)rs(6p)'.
The desired result follows from (9.45), (9.52), and (9.53). Q.E.D.

9.4. Proofs of QLR Asymptotic Distributions and Restricted Estimator Results
and Proofs

In this section, we prove Theorems 4.2 and 4.3 concerning the asymptotic
distribution of the QLR statistic. We also state and prove results concerning
the asymptotic distribution of the restricted estimator 6,.. The QLR proofs rely
on some of the results for the restricted estimator.
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When 1y, is the true value, the set of 7 values that satisfies the re-
strictions r(0) = v, is Il,(v,,), defined in (4.10), where v, = (v, Vn2) =
(ri(Pn), ra(mmy)) = r(0,). We let I, = IlI,(vy,), where vy, = limv,, =
limr,(r,). Throughout this section, we let 0,.(1) and O,.(1) denote quan-
tities that are 0,(1) and O,(1), respectively, uniformly over 7 € II (not just
over the restricted set I1,(v,,)) as n — oo. Thus, X, (7) = 0,,(1) means that
sup, . 1 X, (m)|| = o0,(1), where | - | denotes the Euclidean norm.

As in AC1, we define

n1/2’ lf {‘YH} € F(Y(b 05 b) and ”b” < 00,

9.54 n(Yn) = ;
( ) a (y ) {HBn”_l’ 1f{’)/n}€F(70,0, b) and ||b||:OO.

For notational simplicity, throughout this section we abbreviate a,(vy,) by a,
and Q, (., 7) (Which does not depend on ) by Oy ..

9.4.1. Close to B =0 Results

In this subsection, we provide results for sequences {vy,} € I'(y,, 0, b) for
which ||b]| < oo, and {v,} € I' (v, 0, b) for which ||b|| = co and B,./||B.|| = we
for some w, € R% with ||w,| = 1.

The results of this subsection prove Theorem 4.2 and include results that
are required for the proof of Theorem 4.3, which is given in Section 9.4.3. The
proofs of the results in this subsection are given in Section 9.4.2. _

To obtain the asymptotic distribution of the restricted estimators (¢, 7,)
under sequences {vy,} € I'(y, 0, b) with ||b|| < oo, we need the following as-
sumption. It is not needed to obtain the asymptotic distribution of the QLR
test statistic.

The stochastic process {&,(m; v9,b):m € II} is the limit under {vy,} €
I' (v, 0, b) with ||b|| < oo of the restricted concentrated criterion function after
suitable normalization. It is defined in (4.13).

ASSUMPTION Cér: Each sample path of the stochastic process {&,.(7; vy, b) :
m € I1,,} in some set A,(yo, b) with P, (A,(yo, b)) =1 is minimized over 11,
at a unique point (Which may depend on the sample path), denoted (v, b),
Vv, € I' with By =0, Vb with ||b|| < oc.

In Assumption Cér, 7 (yy, b) is random. By Assumption Cér,

(9.55) 7 (yo, b) = argmin &, (7; yo, b).

mell, o

The following matrix appears in the asymptotic distribution of the restricted
estimators (¢, 7,):

(9.56) P(/f(Tf; Yo) = la, — Py (75 v0),
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where P, (; ) is defined in (4.13). The matrix Plj(ﬂ-; v0) projects obliquely
onto the orthogonal complement of the space spanned by the rows of r; ; ().

The following result gives the asymptotic distribution of the QLR statistic
and the restricted estimators (i, 7,) under sequences {vy,} € I'(yy, 0, b) with
6] < oo.

THEOREM 9.1: Suppose Assumptions A, B1-B3, C1-C5, and RQ1 hold. Un-
der {7y,} € I'(yo, 0, b) with || b|| < oo, the following statements hold.:

(2) 1(Qy(8) = Qo) = infrem,, & (5 70, ). .
(b) QLR, — 4 2(inf,ep,, &(7; v0, b) — infrey (715 v0, b)) /5(v0), provided
Assumption RQ3 also holds.

(©
<n1/2($n—¢n>> (Pi(w (¥0, b); Y07 (777 (0, b3 ’}’o,b))
T 7 (Y0, D)
provided Assumption Cér also holds.

COMMENTS: (i) Theorem 9.1(b) is the same as Theorem 4.2. Hence, to
prove Theorem 4.2, it suffices to prove Theorem 9.1.
(ii) Define the Gaussian process {7, g(; vy, b) : 7 € II} by

(9.57)  7.p(m5 0, b) = SgPy (75 yo) (775 0, b) + b,

where S; = [Las:045a,] is the dg x d, selector matrix that selects 8 out

of . The asymptotic distribution of n'/23, (without centering at B,) under
I'(7v0,0, b) with ||b]| < oo is given by 7, g(7" (o, b); vo, b). This quantity ap-
pears in the NI-ICS statistic A4, (v,) defined in Section 5.2 of AC1.

(iii) Suppose the assumptions of Theorem 9.1(c) hold, and Assumptions V1
and V2 hold with J, and V, in place of J, and V,, respectively. Then in the
scalar B case, the NI-ICS statistic A4,(v,) satisfies

(9.58) A,(v,) »>4 A(h,vy) under {y,}el(y,0,b)
with ||b|| < oo, where

A(h, vo) = (7,75 Yo, ) 3, 5 (7073 Y0) Trp (7175 v0, b) /d) 2,

vy = r(6y), 7" abbreviates 7’ (o, b), and 3, BB(W Yo) is the upper left dg x dg
submatrix of 2 (7; o). The rnatnx 3. (7; ) is defined by

(9.59)  3.(m; y0) = 2 (o, T Y0)s
3.(0; v0) = Py (o) 1 (0; y0)V (0; ¥0)J 7 (6; v0) Py (v0)
Py (o) =14, — Ps(v0),
Py(y0) =7 (y0)r6(00) (re(00)T " (v0)7e(60)) ™' r5(6p).
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In the vector B case, B is reparametrized as (|||, @), as in Section 8.2
in Supplemental Appendix A. Correspondingly, 0 is reparametrized as 0% =
(IIBll, w, ¢, m). In the vector B case, 3, gs(7; yo) is replaced in (9.58) by
3, pp(m, (5 v0, b); v0), Where w}(m; vy, b) = 7, 5(7; Yo, b) /| 7,.5(77; ¥0, D)l
(defined analogously to w*(7r; vy, b) in (8.2) in Supplemental Appendix A) and
3, ss(7m, ©; o) is the upper left dg x dg submatrix of 3,(m, ; ). The matrix
3. (7, w; v,) is defined by

(960) Zr(779 w; 70) = Er(”B(]”’ w, g()a KUY ’)/0)7
3,(0%: v0) = Py (v0)T (0% )V (05 v0)T 71 (0% v0) Py (o)

(analogously to the definitions in (8.1)), where J(07; vy,) and V' (0%; v,) are
the nonstochastic dy x d, matrix-valued functions that appear in Assump-
tion V1 (vector B) in Section 8.2 in Supplemental Appendix A and are such
that J(67; vo) =J(vo) and V(65 vo) =V (y).

Note that when the type 2 robust critical value is considered in the vec-
tor B case, h is defined to include w, € R% with ||wy|| = 1 as an element,
that iS, h = (b, Y0, (,0()) and H(U) = {h = (b, Yo, C!)())”b” < 00,V € I' with
Bo =0, llwoll =1, r(6) = v}.

To prove Theorem 9.1, we start by defining a concentrated restricted estima-
tor ¢, (7, vy) of . This estimator is restricted only by the restrictions on .
It is defined for all 7 € 11, not just for those = that satisfy the restrictions
ry(7) = v,, thatis, 7 € I1,(v, ;). This is important for the use of the extended
CMT and the extended argmax/min theorems below. For given 7 € IT and
v= (v, ;) €r(O),let

(9.61)  §,(m, v1) € ¥, (m,v) and
O,(fo(mv),m)= inf Q,(, m)+o(n™'), where

Ye¥y(m,vy)

W (m,v) ={¢: (¢, m) € O, () = v}

and the o(n~') term does not depend on 7.
Let Q%(m,v;) denote the concentrated restricted criterion function

Q,(,(m,vy), w) for 7 € II. Define a restricted extremum estimator 7,(v)
€ I1,(v,) by

(9.62) QY (a,(v),v) = inf Q' (m, v) +o(n™h).
melly(vy

Analogously to :9\,1, we assume 5,,(1)) can be written as

(9.63)  0,(v) = ($u(Fu(v), V1), Fu(V)).
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In this section, we use the notational simplifications
(964) QLRn = QLRn(vn), 5n = 5n(vn)a 'Zn(ﬂ-) = Jn(ﬂ-; vn,l)7
7, = m,(v,), Wwhere
Uy = (vn,h Un,z) = r(en) and Yn = (on, d)n)

Thus, the asymptotic results given below are results that hold when the restric-
tions are true.
_ The first result is a uniform consistency result for the concentrated estimator

().

LEMMA 9.5: Suppose Assumptions A, B3, and RQ1 hold. Under {vy,} € I' (),
where vy = (Bo, {o, T, do) and By =0, sup,__;; ¥, (7) — .|| =, 0.

COMMENT: Assumption RQ1(v), defined in Section 4.5, is used in the proof
of this lemma and nowhere else. Assumption RQ1(vi) is used in the proof of
Lemma 9.11 below and nowhere else.

The second result is a uniform rate of convergence result for {ﬁ,,(ﬂ-).

LEMMA 9.6: Suppose Assumptions A, B1-B3, C1-CS, and RQ1 hold. Under
{v.} € I'(y, 0, b), Var € 11, the following results hold:

(a) an(%n(ﬂ-) - l/IO,n) = Opw(l)
(b) an(ll’n(ﬂ) - i#n) = Opﬂ'(l)

Let Dy, () abbreviate D, Q, (1., 7). The key to the results that follow
is to rewrite the quadratic approximation in Assumption C1 as follows: For
aell,

(965) ai(Qn(lp7 77) - QO,n)
== anDl/an(lpO,ns W)/an(ll’ - l/’(),n)

1
+ Ean(lp - lpU,n),Dl/u//,n('77-)an(lp - lpU,n) + a,len((p, 7T)

1 1
= _Ezn(ﬂ-),wa,n(W)Zn(ﬂ-) + iqn(an(lp - ‘7071), 7T) + aiRn(lpy 77),
where

(9.66)  Z,(m) =—a,D,,, ,(m)Dy Q.o 7,
Gn(A, ) = (A = 7,(7; ¥2)) Dy n (1) (A = 7, (775 Y1) s
Tu(T5 Yn) = Zn(7) + (Yo, — )
= —anDﬁ,n(ﬂ')DI//Qn(lPo,n, ) — (a,Bn, 0a,)-
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Now we define the limits of Z, (), 7,(, v.), and q,(A, 7). For 7 € I1, let

—H (75 v0) (G (773 v0) + K (773 70)b),
if ||b]| < oo,

—H_l(ﬂ'; Y0) K (77 o) wo,
if [|b]| =00 & B,/ Bull = wy.

(9.67) Z(m;y) =

The split definition of Z(1r; y,) appears here because, by the definition of
a, in (3.4), a,B, =n"?B, — b if {y,} € I'(y,0,b) and ||b|| < co, whereas
anBn = Bu/Bull = @0 if {y,} € ['(1,0,b), ||b]| = 0o, and B,/ B.ll = wo. Note
that Z(1; ) is stochastic if ||b|| < co because G (7r; y,) is stochastic, whereas
Z (13 ) is nonstochastic if ||b|| = oc.

For 7 € I1, define

Z(m; ) — (b,04,), it |Ib]l < o0,
Z(;v0) — (00, 04,), if |b]l =00 & B,/ Ball = wo,

—H= (75 y0)(G (75 v0) + K (73 v0)b) — (b, 04,),
if [|b]| < oo,

—Hfl(ﬂ'; Yo K(7; yo) @9 — (w0, 04, ),
if [|b]l =00 & B,/1IBxll = wo.

Note that 7(7; vy) = Z(7; yp) +1im,_, » a, (Yo, — ¥,,). The difference between
T(; ) and Z(1r; v,) is due to the quadratic expansion in Assumption C1
being around ¢ ,, rather than around the true value ,,. Also note that if ||b|| <
00, then 7(r; yy) = 7(7r; yo, b), Wwhere 7(7r; vy, b) is defined in (3.9).

For 7 € I1, define

(9.69) (A, m) = (A —7(m; v0)) H(7; %) (A — 7(715 7p)).

Next, we define a minimizer, lZ,,yq(’TT), of the concentrated quadratic ap-
proximation to Q, (i, ) (which is given by the right-hand side of (9.65) with
@’R, (¢, m) omitted). By definition, for 7 € II, ¢, ,(m) satisfies ¢, ,(7) €
Y, (m, v,,1) and

(9.70)  qu(@y(Pug(m) — ), m) = inf @@ = ), ) + 0, (1),

YeV(mv,

(9.68)  7(miy)=

Note that
(9.71) inf )qn(an(gl/ — i), ) = inf q.(A,m), where

YeV(mv, 1 Aean(Wr(m,0,,1)—n)

an(’lpr(ﬂ-, vn,l) - lpn)
={AeR¥:X=a,(y —,) for some y € ¥,(m,v,1)}.
The restricted concentrated estimators J,,(n-) and Jn,q(ﬂ) and the criterion

function Q, (¢, 7) evaluated at these estimators satisty the following proper-
ties.
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LEMMA 9.7: Suppose Assumptions A, B1-B3, C1-CS, and RQ1 hold. Under
{v.} € I'(0, 0, b), Vo € 11, the following results hold:

@) a(Pog(m) — ) = 0, (1).
(b)  @(Qu(Pu(m), m) — Q)

1
= _Ezn(ﬂ-),DWlﬂv”(ﬂ-)Z”(ﬂ-)

1 ~
+ Eqn(an(lpn(’n—) - dln), 77) + Opﬂ'(l)-
(©)  @(Qu(Yrng(m), ) — Q)

1
= —QZ,,(W),D[/,.J,,n(W)Zn(W)

1 ~
+ Eqn(an(lpn,q(’n—) - dln), 77) + 0]777(1)'

(d) @(Qu(Pu(m), m) = Qu(ng(m), T)) = 0,,(1).
©)  Gu(@an(Pu(m) = ), 7) = @u(@n (P g () — ), ) 4 0, (1).
) @(Qu(Pu(m), ) — Oy.,)

1
= —EZ,,(W),DW,,n(W)Zn(W)

1 ~
+ Eqn(an(djn,q(ﬂ-) - lyl’n)a 7T) + 0]717(1)'

We approximate the sequence of sets {¥,(, v,1) — ¢, :n > 1} by the linear
subspace A of R% defined by

(9.72) A ={xeRY:r (o)A =0}.

The approximation is in the sense of Chernoff (1954), as modified in An-
drews (1999) to cover drifting sequences of sets and as modified here to cover
uniformity over 7 € II. We say that a sequence of sets indexed by 7 € 11,
{A,(m):n > 1}, is locally approximated (at the origin) by a cone A; C R* uni-
formly over 7 € II if

(9.73)  supdist(a, (), A,) = 0<sup ||a,,(77')||> Vi, () € A (m):n > 1)

mwell mell

such that sup||a,(m7)| — 0,
ell
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sup dist(A(7), A,(m)) = 0(sup IAu(m))  ViAs(m) € Ayin=1)

mwell mell
such that sup ||A, ()| — 0.
mell

LEMMA 9.8: Suppose Assumptions B1 and RQ1 hold. Then the sequence of
sets {W,(m, v,.1) — ¥, :n > 1} is locally approximated (at the origin) by the cone A
uniformly over r € I1.

The following result is analogous to Lemma 2 in Andrews (1999). Lemma 9.8
is used in its proof.

LEMMA 9.9: Suppose Assumptions A, B1-B3, C1-C5, and RQ1 hold. Then,
under {vy,} € I'(y,, 0, b), Var € 11, the following results hold:
(a) inf)\eA Qn(/\: 77) = inf)\ea,,(llfr(mv,,,l)—nlxn) QH(A, 77) + Oprr(l)-

(b) ai(Qn(;[fn(W)y 77) - QO,n) = _%Zn('n-)/Ddu//,n(W)Zn("T) + %inf)\e/l qn(/\:
)+ 0,,(1).

Let ’)V\,,(W) € /A be the unique random vector that minimizes g,(A, ) over
A € A; that is,

(9.74) qn(Xn(w),w)ﬂn;qn(/\,w) var e Il.

Correspondingly, let A(m) € A be the unique random vector that minimizes
q(A, ), the asymptotic analogue of g,(A, 7), over A € A. Specifically, define
A(7) € A to be such that

(9.75) q(X(m,w):;nqu()\,w) v e I1.

Standard Lagrangean calculations for the minimum of a quadratic form subject
to linear constraints yield a closed form expression for A(7r): For 7 € II,

(9.76) () = P (m; yo)7(m; y0),

where P (; ) is defined in (9.56) (e.g., see Andrews (1999, p. 1361)).
Now we define the limit, E,(ﬂ-; vo), of the normalized restricted concentrated
criterion function, aﬁ(Qn(Jn(w), ) — Qo.,): For well,

_ 1 1.
9.77)  &.(miy) = —QZ(W; Yo) H (a5 v0) Z (715 v0) + 3 inf g(A, )

1 1 ~
= —EZ(W; Yo) H (75 v0) Z (75 70) + 5610\(77), )
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1 /
= _EZ(W; Yo) H (7 y0) Z (773 v0)

1
+ ET(W; Y0) Py (75 v0) H (773 v0) Py (75 ¥0) T(775 ¥0).

As defined,

1.
gr('n-s Yo, b) = f(’ﬂ', Yo, b) + E }‘qu(/\’ 77)7

©78) E(my)={ lbl<0oo

1.
7](77, Yo, (L)()) + E ilél;CI(/\, 7T)a
if ||b]| = oo and B,/ B.ll — wo,

where &,(; vy, b) is defined in (4.13), &(7r; o, b) is defined in (3.8), n(7; vy,
wo) is defined in (3.8), and the equality for ||b|| < oo holds because &(; vy,
by = —(1/2) Z(w; yo) H(7; yo) Z (115 ¥0).

Note that if A = R%, which corresponds to the case where there are no
restrictions on ¢, then inf,c, g(A, w) =0, &, (15 o) = é(77; ¥, b) when ||b]| <
00, and £, (3 yo) = n(m; o, @) when [[b]] = 00 and B,/IIBall — ws.

When ||b]| < oo and Assumption Cér holds or if ||b]| = oo, B./IIB.ll = wo,
and Assumption C7 holds, we define the unique minimizer of &,(7; y,y) over
the restricted set 11, to be

(9.79) @ (o) = argmin &,(m; o).

mell,

When b < oo and Assumption Cér holds, ='(yy) = 7 (v, b) =
argmin,cy, , & (7; vy, b), where (7, b) is defined in (9.55) and 7 (y,) is
random.

When ||b|| = 00, B./lBsll = wo, and Assumption C7 holds, £,(;v,) is
uniquely minimized over 7 € Il,, by m = m, that is, 7(y,) = m, because
(i) (as shown below) 7(m;yo) = 0, which implies that inf,., g(A, m) =
q(0g,, m) =0, and (ii) n(7; yo, wo) is uniquely minimized over 7 € I1,, C I1
by 7 =y by Assumption C7 Vy, € I" with 8, = 0. Hence, in this case, we have

(9.80) iI}If £,(: o) = m(m0; Yo, @0)
melly
= w(K (0 yo)H ™' (10; v0) K (110: o) wo.
Next we state a result that, in conjunction with Theorem 3.1(b), establishes

Theorem 9.1. It also establishes some key results that are used in the proof of
Theorem 4.3 in Section 9.4.3.
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THEOREM 9.2: Suppose Assumptions A, B1-B3, C1-C5, and RQ1 hold.
Then, under {vy,} € I'(yy, 0, b) with ||b|| < oo and under {y,} € I' (v, 0, b) with
6]l = o0 and B,/ Bull —_wo, the following statements hold.

(a) an(l!ln(ﬂ-) - d/n) = )\n(ﬂ-) + Op‘n'(l)-

(b) Z.¢)= Z(; v0) and 1,(:; va) = 7(:3 Y0)-

(©) Au() = AC) and a,(Pu(-) — ) = AC).

(d) af,(Qn(fn('), ) - QO,n) = fr('§_‘)’0)-

(e) af,(QNn(On) - QO,n) —d infﬂEHhO g,(ﬁ, 70)

(6) (an(hy — ), 7n) —a (T(7(¥0): o), 7 (Vo)) provided Assumption Cor
also holds when ||b|| < oo and provided Assumption C7 also holds when ||b|| =
0.

(g) 7-(77-0; ’)’0) = O’ Wf(?’o) = o, %n —>p T, and ||Bn||7](¢’n - lpn) = Op(l)
when |b|| = oo and B,/ B, = wo provided Assumptions C7 and C8 also hold.

COMMENTS: (i) The results in Theorem 9.2(a)—(d) are for processes indexed
by 7 € II.

(ii) Theorem 9.2(e) for the case |b|| < co establishes Theorem 9.1(a).
Theorem 9.2(e) for the case ||b|| < 0o, combined with Theorem 3.1(b) and
Assumption RQ3, establish Theorem 9.1(b) and hence Theorem 4.2. Theo-
rem 9.2(f) for the case ||b|| < oo establishes Theorem 9.1(c).

(iii) Theorem 9.2(g) for the case where || b|| = oo and B,/ B.|| = wo is used
below in the proofs of Theorems 4.2 and 9.3.

The proof of Theorem 9.2(f) requires the following “extended” arg max/min
lemma, which is analogous to the argmax Lemma 3.2.1 of van der Vaart and
Wellner (1996, p. 286), but allows the set over which the max/min is taken to
depend on .

LEMMA 9.10: Let M, and M be stochastic processes indexed by a metric
space H. Let A, C H and Ay C H be such that dy(A,, Ay) — 0, where dy
denotes the Hausdorff metric. Suppose M is continuous on H almost surely.

Suppose there exists a random element h € Ay such that almost surely M(h) >
SUPgG e M(h) for every open set G C Ay that contains h. Suppose the sequence

{h € A,:n > 1} satisfies M (h ) = sup,, M, (h) + 0,(1). If M, = M, then
h —)dh

COMMENTS: (i) The condition on £ is satisfied if 4 uniquely maximizes
M(h) over A a.s., Ay is compact, and M is continuous on A a.s.

(ii) M, = M means M, ~» M in £*(H) in the terminology and notation of
van der Vaart and Wellner (1996).

9.4.2. Proofs of Close to B =0 Results

PROOF OF LEMMA 9.5: The proof is the same as that for Lemma 3.1(a)
with (p,,(ﬂ-) in place of zpn(Tr) except that (9.3) needs to be altered because
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o does not necessarily satisfy the restriction r, (o) = v,.1 (= r1(¥,)), which
invalidates the fourth inequality in (9.3). However, the fourth inequality holds
with Q, (., 7; yo) in place of Q, (i, 7; yo) in the second summand on the
right-hand side of the fourth inequality because the true value i, satisfies the
restriction r1(¢,) = v,,. With this change, the fifth inequality in (9.3) has the
additional term sup__,; |Q(,,, 7; ¥o) — Q (o, 7; )| on the r.h.s., which is o(1)
by Assumption RQ1(v). This completes the proof. Q.E.D.

PROOF OF LEMMA 9.6: The proof of part (a) is the same as that of
Lemma 9.2(a) with ¢, () in place of ¥, () and with Lemma 9.5 employed
in place of Lemma 3.1(a), except that the inequality in (9.11) does not hold by
the argument given, because (3.2) may not hold with the restricted estimator
() in place of ¥, () and (9.61) cannot be substituted in the proof for (3.2)
because ¢, may not lie in the restricted set W, (7, v,,1).

Instead of the inequality in (9.11), we establish the inequality

(9.81) 0, (1) = @(Qu(Pu(m), m) — Q).

Although the left-hand side of (9.81) is O,.(1) whereas that of (9.11) is
0,-(1), (9.81) is enough for the remainder of the argument in the proof of
Lemma 9.2(a) to go through.

We prove (9.81) by showing

(9.82) (i) o(l)=a? sug(Qn(lZn(w), 7) — Qu(n, m)),

(11) ai(Qn((pn’ T) — QO,n)ZOpw(l)-

Condition (i) holds because () = v, 1, which implies that i, € ¥,(7, v,,1),
,(7) minimizes (up to an o(n~') term) Q, (i, w) over ¢, € ¥,(, v, ), and
a’<n-

To show condition (ii), we apply the quadratic approximation in Assump-
tion C1(i) with ¢ = ¢, to obtain, for 7 € 11,

(983) ai(Qn(‘pna 7T) - QO,n)

== anDlLlQn(wO,n, W)/an(wn - lpO,n)

+ an(lpn - l/’O,n)/Ddu//Qn((ybO,na 77-)an(ll’n - lp(),n) + aiRn(l/’m 7T)

= 0p77(1)7
where the last equality holds because (i) a,(¢¥, — ¥o.) = (@S0, 04,),
a,B, =n'?B, = 0() if ||b|| < oo, and a,B, = B./|B.ll = O) if ||b] =
(if) DyyQOu(hon, m) = O,,(1) by Assumption C4, (iii) a,DyQ, (Yo, m) =
0,.(1) by Lemma 9.1 (see the Comment following Lemma 9.1), and (iv) a2 x

R,({,, m) = 0,,(1) by Assumption C1(ii) because ||, — o .|| = | (B, 04)1l =
I|B.Il = 0 since By =0.
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Part (b) follows from part (a) and the definitions of ¢, and a,. Q.E.D.

PROOF OF LEMMA 9.7: The proof is analogous to the proof of Theorem 2
in Andrews (1999). To prove part (a), let k, ,(m) = D/; ()@, (., () — )
Vo € II. We have
(9.84)  ||kuqg(m) = DYs () (@n(o.0 — ¥) + Zu(m)) |

= qn(an(lZn,q(W) - lpn), 7T)
<q,(0,7m) 4+ 0,.(1)
= | DY} () (@n o — $) + Zu(m)) | + 0,2(1) = 0,,(1),

where the inequality holds by (9.70) because the true value i, is in ¥, (7, v,,1)
and the last equality holds by Assumption C4, Lemma 9.1, and ||a,8,| = O(1).

Hence, () = Dy () (@, (Yo, — ) + Zy (1)) + Opr(1) = 0, (1),

Parts (b) and (c) hold by (9.65), Assumption C1, Lemma 9.6, and part (a),
using the fact that part (a) implies that a,,(lzn)q(fr) —on) =0, (1).

Parts (d) and (e) hold by parts (b) and (c), (9.61), and (9.70):

(9.85)  o(1) > d? sug(Qn(Jn(w, ) — QP (), 7))

1 ~ ~
= ;Ielltl‘ E(qn(an(lpn(ﬂ-) - l//n)a 77) - ('In(an(lpn,q(ﬂ-) - lpn)a 77))
+ 0,px(1)
> 0,,(1).

Part (f) holds by parts (b) and (e). Q.E.D.

PROOF OF LEMMA 9.8: The proof is similar to the proof of Lemma 4 in
Andrews (2002). Let A,(7) = ¥,(m, v,1) — ¥, and m,(Y) = r () — v,1. By
assumption, m,(,) =0 Vn > 1, where vy, = (¢, m,, b,). Let I, =ry (1)
(= (9/3Y")r1(y)). Define

T, m, ()
. I, = d + = ,
(9.86) [FJ and m; (¢) (Fb(lp_%))

where I}, € R“4~%)*d js chosen such that I, € R%*% is nonsingular.
Given {a,(7) € A,(m):n> 1} with sup__;; la,(7)| — 0, define

(987) AZ(W) = E_lm:,—(lyl’n + 0[”(7T)).

Then LAy (m) = my (, + a, (7)) and LA () = m,(, + a,(m)) = ri(f, +
a,(m)) — v,1 = 0, where the last equality holds because ¢, + a,(7) €
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Y, (m,v,,1) since a,(m) € A,(m). Hence, A (1) € A Vi € 11, by the definition
of A in (9.72).
Element-by-element mean-value expansions yield

(9.88)  Ai(m)=1I."'m!(,+ a,(m))

=I"'my () + 1!

J +
P () an(m) + o(lle,(m)])

=0+ a,(m) + o(llen(m)|),

where the last equality uses the continuity of ry , () at ¢, and ¢, — ¥, to give
I, — (d/d¢"ym} () — 0. Using (9.88), we conclude that

(9.89)  supdist(a,(m), A) = sup la,(m) = A; ()| = o(sup law ()] ),

well mwell mell

which verifies the first condition in (9.73), as desired.

Next, the function m,(a) = m} (¥, + «) for a in a neighborhood N, of 0
(€ R%) is continuously differentiable on a neighborhood N, (C N,) of 0 with
nonsingular Jacobian matrix at 0 and 71,(0) = 0. Hence, by the inverse func-
tion theorem, there exists an R% -valued function /7, ' () for « in a neighbor-
hood N, of 0 (€ R) that satisfies 71, (@) is continuously differentiable on N,
m,(m;(a)) = a for all @ € N,, m,'(0) =0, and

J o [ T
M (0)—[ﬂmn(0)} —ij,

Given any {A,(7) € A:n> 1} with sup__; A, (7)| — 0, define

(9.90)

-1
m:(gll,,)i| =I"+o(1).

(9.91)  ai(m) =m, (IA,()).

We have m (¢, + aj(m) = m,(a;(m)) = m, (1, (L A7) = LA (),
which implies that m, (¢, + (7)) = I,A,(7) = 0, where the last equality
holds for A, (7) € A by the definition of A in (9.72); that is, ri (¢, + o (7)) =
v, Y € I1. In addition, sup, _j lai(7)| — 0 and Assumption B1(ii) yield
(Y, + ai(m), m) € ® Y7 € II for n large. These results combine to give
ai(m) € A,(m) Y € II for n large.

Element-by-element mean-value expansions yield

(9.92)  ai(m) =m, (LA, (m))
=m, ' (0) + %’%;](O)E)\n(ﬂ') + o(llA.(m)])

=0+ A, () + o (I A (m)]),
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where the last equality uses (9.90). Hence,

(9.93)  supdist(A,(m), A,(m)) < sup [|A,(m) — @, (m)]| = osup [ As ()] )

mell mell well

which verifies the second condition in (9.73) and completes the proof. Q.E.D.

PROOF OF LEMMA 9.9: The proof of part (a) is analogous to the proof of
Lemma 2 of Andrews (1999) with (i) ¢g,(A, 7) in place of gr(A), (ii) a, (Yo, —
¥,) + Z,(m) in place Zr, and (iii) Dyy..(7) in place of Jr, provided
{¥, (7, Vy1) — ¢, :n > 1} is locally approximated by the cone (in this case, lin-
ear subspace) A defined in (9.72) uniformly over 7 € II. The latter holds by
Lemma 9.8. The quantities a, (¥, (1, v,1) — ¥,), a.l4, and a, play the roles of
Br (O — 6y), Br, and by, respectively, that appear in Assumption 5 of Andrews
(1999), which is used in the proof of Lemma 2 of Andrews (1999).

Part (b) holds by part (a), Lemma 9.7(f), (9.70), and (9.71). Q.E.D.

PROOF OF THEOREM 9.2: The proof of part (a) holds by an argument that
is analogous to the argument given in the proof of Theorem 3(a) of Andrews
(1999) with (i) a, (Yo, — ¥n) + Z, (1) in place Zr, (ii) Dy, ,(7) in place of
Jr, and (iii) indexing of the quantities by 7 € II, which does not create any
difficulty. Theorem 3(a) of Andrews (1999) relies on Assumptions 4-6 of that
paper. The analogue of Assumption 4 in the present paper is @, (i, (7) — ¥,,) =
0,.(1), which holds by Lemma 9.6(b). The analogue of Assumption 5 is the
local approximation of {¥, (7, v,1) — ¢, :n > 1} by the cone A uniformly over
ar € I1, which holds by Lemma 9.8. Assumption 6 holds because A is a convex
cone. Lemma 9.9(a) of this paper is used in the proof of part (a) because the
proof of Theorem 3(a) of Andrews (1999) makes use of Lemma 2 of Andrews
(1999) and Lemma 9.9(a) of this paper is the analogue of the latter.

The first result of part (b) holds by (9.19) and (9.20). The second result of
part (b) holds by the first result, the fact that 7, (7; y,) = Z,(7) + a, (Yo, — ¥»)
by (966); an(l//(],n - (pn) - (_b, Oclg) if ”b” < 00, an(¢0,n - lpn) - (—(1)0, Odg) if
Ib]l = oo and B,/||B.ll = wo, and the definition of 7(; v,) in (9.68).

The first result of part (c) holds by the CMT because Xn(~) is a continuous
function of (7,(-3 ¥u), Dyyn()) and (74(5 ¥a), Dyyn()) = (7( ¥0), H(; 10))
by part (b) and Assumption C4. Continuity holds because the oblique projec-
tion onto a convex cone A is both unique and continuous provided the weight-
ing matrix H (7r; v,) for the oblique projection is nonsingular, which holds be-
cause inf,c;; Amin(H (77; v9)) > 0 by Assumption C4. The second result of part
(c) holds by the first result of part (c) and part (a).

Part (d) holds by the CMT using Lemma 9.9(b), part (b) of the theorem,
Assumption C4, and (9.77).
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To prove part (e), we use the result of part (d), that is, ai(Qn(%( D, 0) —
Qo.n) = £.(-: 70), and the extended CMT (see van der Vaart and Wellner (1996,
Theorem 1.11.1, p. 67)) applied to the right-hand side of the equation

(094) @y Q@) = Qo) =_inf @ (Qu(@u(m), ™) = Qu),

which holds by (9.61)-(9.63) with v = v,. The extended CMT is a generaliza-
tion of the CMT that allows the continuous map to depend on 7. The extended
CMT is applied here with the functions g,(x) = inf ¢y, ¢, ,) X(7) Yo > 1 and
g(x) =inf, .y, x(7), where x = x () is a real-valued function on II. The ex-
tended CMT is required here because the restricted sets II,(v, ;) depend on 7.
For the extended CMT to apply, we need to show that whenever x, — x (i.e.,
sup,p llx, () — x(m)| — 0), where x, and x are real-valued functions on I1
with x continuous on I1, we have g,(x,) — g(x). (Continuity of x on II can be
assumed because the limit process £,(+; ) in our application has continuous
sample paths a.s.) Suppose x, — x. Then we have

9.95 () —g,(x) =| inf x,(m)— inf
(9.95)  lgu(xn) — gu(x)| it X (7) ﬁﬁgvn’z)x(w)
< in1f7|xn(77) —x(m)|— 0.

In addition, by standard arguments, g,(x) — g(x) because x is continuous on
II and dy(I1,(v,2), I1,o) — 0 by Assumption RQ1(iv). Hence, we obtain the
desired result g,(x,) — g(x) and the proof of part (e) is complete.

Now we establish part (f). First, we show 7, —, 7 (yy). We use the extended
argmax lemma, Lemma 9.10, with H =I1, h = 7, M, (h) i—af,(Qn(tpn(lT),
7T) - QO,n)a M(h) = _‘fr(ﬂ-s 70)7 An = Hr(vn,2)7 AO = H}‘,Oa hn = :ﬁ-na and h =
(o). (The minus signs in M, (/) and M(/) convert the minimization prob-
lem to a maximization problem.) The conditions of Lemma 9.10 hold because
(i) a;(Qu(Pu(m), m) — Qo) = &.(; v0) by part (d); (ii) &,(m; y,) is continu-
ous on II a.s. by Assumptions C3-C5, RQ1(i), and RQ1(ii); (iii) dy (11, (v,2),
IT,0) — 0 by Assumption RQI(iv); (iv) m;(yo) satisfies the condition on
h using Comment (i) to Lemma 9.10 because 7*(7y,) uniquely maximizes
—&,(m; ) over II,, by Assumption Cér when ||b|| < oo and by Assump-
tion C7 when ||b|| = oo, 11, is compact by the compactness of II using As-
sumption B1(iii) and the continuity of r,(7) on II using Assumption RQ1(i),
g\nd &.(; o) is continuous on I, a.s.; and (v) 7, satisfies the conditions on
h, because 7, maximizes —ai(Q,,(tZ,,(ﬂ-), ) — Qo) over m € I1,(v,,) up to
o(n™") by (9.62) and (9.64). The result of Lemma 9.10 is 7, — 4 7 (o).

Using 7, —4 (o), we complete the proof of part (f). By (9.63) and
(264), an(lpn - lpn) = an(lpn(%n) - lpn) We have (1) (an(lpn(') - lpn)k%n) =
(A(+), m* (7)) as processes on IT by part (c) and 7, —, 7 (o), (i) A(7) =
Py (3 y0)7(1; v0) by (9.76), and (iii) P, (7 yo)7(7; 7o) is a continuous func-
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tion of 7 on II a.s. by Assumptions RQ1(i) and C3-C5. Hence, by the CMT,
a, (P, () — ¥n) =4 (7 (v0); v0) and the convergence is joint with 7, —,
7*(7y). This completes the proof of part (f).

The first result of part (g) holds because

(9.96) (o vo) = —H " (m0; Y0) K (7703 Yo) @0 — (9, 0g,)
= S;;wo - ((1)(), Odg) = 07

where the second equality holds by Lemma 9.3, which employs Assumption C8.
The second result of part (g) holds because (i) when ||b|| = oo, 7*(y,) mini-
mizes

(9.97)  &,(1; v0) = (13 0, w0)
1
+ 57(77; ¥0) Py (15 v0) H (115 ¥0) Py (775 ¥0) T(75 ¥0)

over I1,, by (9.77), (ii) the first summand on the r.h.s. of (9.97) is uniquely
minimized over I1,, by 7, by Assumption C7, and (iii) the second summand
on the r.h.s. of (9.97) is minimized over I, by m, by the first result of part (g)
and the positive semidefiniteness of P, (7; o) H (7; vo) Py (75 o).

The third and fourth results of part (g) hold by part (f) and the first two
results of part (g). Q.E.D.

PROOF OF LEMMA 9.10: The proofis a variation of the proof of Lemma 3.2.1
of van der Vaart and Wellner (1996, p. 286). First, by the extended CMT (see
van der Vaart and Wellner (1996, Theorem 1.11.1, p. 67)), we have

(9.98) sup M, (h) — sup M, (h) -, sup M(h) — sup M(h).

heFNAy, he Ay, heFNA, heAy

The verification of the condition required by the extended CMT, that x, — x
implies g,(x,) — g(x), is essentially the same as that given in the paragraph
containing (9.95). In the present case, g,(x) = sup,, .z, X(h) —sup,_, x(h),
where x is a real-valued function on H.

Now, for all closed sets FF C H,

(9.99)  limsup P*(h, € F)

n— 00

< limsupP*( sup M, (h) > sup M, (h) + op(l))

n—o00 heFNAy, heAy

< P( sup M(h) > sup M(h))

heFNAy he A

§P< sup M(h)> sup M(h))gP(iZe F),

heFnA, heFen A,
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where P* denotes outer probability, the first inequality holds by the definition
of h,, the second inequality holds by (9.98) and the portmanteau theorem (see
Theorem 1.3.4 of van der Vaart and Wellner (1996, p. 18)), the third inequality
holds because F* N Ay C Ay, and the last inequality holds by the argument in
the following paragraph Equation (9.99) and the portmanteau theorem give
the result that hn —4 h.

Suppose T € F. Then, by the assumption on h,

(9.100) M(h)> sup M(h)= sup M(h)

h¢F¢,he Ay heFNAy
because F° is open. Thus, & € F° implies that

(9.101) sup M(h) > sup M(h).

heF¢NAy heFNAy

The contrapositive is Sup;,.pcq 4, M(2) < sup;,z 4, M(h) implies I € F, which
verifies the last inequality in (9.99). Q.E.D.

9.4.3. Distant From 3 =0 Case

Next, we provide results under sequences {vy,} € I'(yy, 00, wy). We prove
Theorem 4.3. We also state and prove results concerning the asymptotic distri-
bution of the restricted estimator 6, under {,} € I'(vy,, 00, wy).

Let P, (7yy) denote a dy x d, oblique projection matrix that projects onto the
orthogonal complement of the space spanned by the rows of r,(6):

(9.102) Py (7o) =14, — Po(v0),

where Py(7y,) is defined in (4.14).

The following theorem shows that the normalized restricted criterion func-
tion, n(Q,(0,) — Q,(0,)), converges in distribution under {vy,} € I'(*yo, 00, wy)
to & (yo) and the QLR statistic converges in distribution to Aqrr(vo)/s(v0),
which are defined by

1
(9.103) & (yo) =& (v0) + EAQLR('YO)
1
= _EG*(’YO)/JA(VO)PQL(’YO)’J('YO)PQL('YO)JA('YO)G*('YO)a where

1
E(y) = —EG*(W)’J’I(VU)G*(%),

Aatr (Y0) = G*(v0) T (70) Po(¥0) I (¥0) Po (o)~ (v0) G* (o),

where J () and G*(y,) are defined in Assumptions D2 and D3. Note that the
normalized unrestricted criterion function, n(Q,(0,) — Q,(6,)), converges in
distribution to £*(vy,) under {v,} € I'(7y,, 00, wo) by Theorem 3.2(b).
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The following theorem also shows that the normalized restricted estimator,
n'?B(B,)(0, — 6,), is asymptotically normal under {vy,} € I'(,, 00, wy).

THEOREM 9.3: Suppose Assumptions A, B1-B3, C1-C5, C7, C8, D1-D3, and
RQL1 hold. Under {v,} € I' (v, 00, wy), the following statements hold.:

(@) n(Qu(B) — 0u(6,)) —a & (Y0)-
(b) QLR, =4 Aarr(v0)/S(0), provided Assumption RQ3 also holds.

(c)
n2B(B) (0, — 0,) =4 —PL(¥0) " (¥0)G* (o)
~ N(Odg, Pé(’)’o)ffl(’)’O)V(Yo)]q(’)’O)Pé(’)’o)/)

COMMENT: Theorem 9.3(b) is the same as Theorem 4.3. Hence, to prove
Theorem 4.3, it suffices to prove Theorem 9.3.

The proof of Theorem 9.3 uses the following preliminary results. The first
result establishes the consistency of 6,.

LEMMA 9.11: Suppose Assumptions A, B1-B3, C1-C5, C7, C8, and RQl1
hold. Under {vy,} € I'(y,, 00, wy), 6, — 6, =, 0.

Next, by Theorem 9.2(g), we have the following “intermediate” rate of con-
vergence result for ¢, for sequences {vy,} € I'(7yy, 00, wy) with By = 0 (which
are also in I'(vyy, 0, b) when ||b|| = oo and B,/ B.ll = wo):

(9.104) 1Bl (W — ) = 0,,(1).

Using this intermediate rate result and Lemma 9.11, we obtain the sharp rate
of convergence for 6, in the following lemma.

LEMMA 9.12: Suppose Assumptions A, B1-B3, C1-C5, C7, C8, D1-D3, and
RQ1 hold. Then n**B(B,)(0, — 6,) = O,(1).

We now prove Theorem 9.3 using Lemma 9.12.

PROOF OF THEOREM 9.3: First, we rewrite the quadratic approximation in
Assumption D1 as

(9.105)  n(Q.(8) — Q(6,))
= (n'*B~'(B,)DQ,(8,)) n"*B(B,)(0 — 6,)

+ %(HMB(Bn)(O — 0,)) J,n"*B(B,) (6 — 6,) + n*R;,(6)

1 1
= —EZ;/JnZZ + Eq;“,(n”zB(Bn)(O —6,)) +n’R(0),
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where
(9.106) Z:=—n"?J,"B~(B,)DQ,(6,),

]n = B71 (Bn)Dan(en)Bi](Bn),
g =A—=Z)T,(A—Z}).

Now, the proof of the theorem is analogous to the proof of Theorem 9.1
using (9.105) in place of (9.65). The proof of Theorem 9.1 uses Lemma 9.7,
Lemma 9.9, and Theorem 9.2. The main changes to the proof of Theorem 9.1
and the accompanying lemmas and theorem are the following

(i) The dependence of various quantities on 7 is deleted.
(ii) The quantities Z, (), 7,(7; ¥n), Dyy,n(7), qn()l ), and a,,(tp,,(ﬂ')
,) are replaced by Z*, Z*, J,, g*(A), and n'2B(B,)(6, — 6,), respectively.”
(iii) The limit quantities Z(7r; o), 7(7; ¥o), H(1; v0), q(A, ), and &, (7
vo) are replaced by Z*, Z*, J (o), q¢*(A), and & (y,), respectively, where

(9107) Z*=—J"'(v)G"(y)) and q*(A\)=(A—Z)T(y)(A—Z").

(iv) The normalized parameter space a,(¥,(, v,1) — ¢,) is replaced by
n'2B(B.)(0,(v,) — 0,), where

(9.108) O.(v) ={0=(,m) € O, r () =v1, &r(7) =0}
for v= (v, v).

(v) Lemma 9.12 is employed in place of Lemma 9.6.
(vi) The quantity ,, ,(m) is replaced by 0, 4> Where 0, .q € 0,(v,) is defined
to satisfy

(9-109) g (7" *B(B) By — 01) = inf g, (n'B(B)(O = 6)) +0,(1).

(vii) The definition of A is changed to
(9.110) A ={reR¥:r,(6)A=0}.

(viii) The quantities Py (; ), P{j(’ﬂ; Yo), and X(ﬂ-) are replaced by Py(vy,),
P5(v0), and X, respectively, where X € A is defined to minimize g*(A) over
AeAand

(9.111) X =Py (y)Z* = —P;(v)J ™' (v0)G* (1),

"The quantities Z,(m) and 7,(7; y,) differ by the amount a,(7y,) (o, — ¢,) because the
quadratic expansion in Assumption C1 is around ¢ ,, rather than the true value ¢,. In contrast,
the quadratic expansion in Assumption D1 is around the true value 6,. In consequence, the same
quantity Z; replaces both Z,(7) and 7,(7; 7,) in the proof of Theorem 9.3.
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where the closed form expression for X is as in Andrews (1999, p. 1361).
With these changes, the proof of Theorem 9.1 yields the proof of the results
stated in Theorem 9.3. Q.E.D.

PROOF OF LEMMA 9.11: When B, =0, 7, — m, —, 0 by Theorem 9.2(g)
because sequences {y,} in I'(vy,, 0, b) with ||b|| = oo and B,/|| B.Il = w, are in
F~(70’ 00, wy) with By = O.NWhen Bo=0, ¢, — ¢y, —, 0 because ||y, — Py, =
”lpn(%n) - lpn” S iupwgﬂ ”lpn(ﬂ-) - lpn” = Op(l) by Lemma 95(3)

When B, # 0, 6, —, 6, holds by an argument analogous to that given in
the proof of Lemma 3.1(a) with 8,, 6y, and 0/6,, in place of (;Zf\,,(w), ),
(g, 7), and ¥ (7)/¥,, respectively, where O, is some neighborhood of 6,
with inf,.;; and sup__,, deleted, and with Assumption B3(iii) in place of As-
sumption B3(ii), except that (9.3) needs to be altered. An alteration is needed
because 6, does not necessarily satisfy the restrictions 7(6y) = v, (= r(6,)),
which invalidate the fourth inequality in (9.3). However, the fourth inequal-
ity holds with Q,(6,; v) in place of Q, (i, 7; ) in the second summand on
the right-hand side of the fourth inequality, because the true value 6, satisfies
the restriction r(6,) = v,. With this change, the fifth inequality in (9.3) has the
additional term |Q(0,; yo) — Q(0o; )| on the r.h.s., which is o(1) by Assump-
tion RQ1(vi). This completes the proof. Q.E.D.

_PROOF OF LEMMA 9.12: The proof is the same as the proof that n'/>B(3,) x
(0,—6,)=0 ,(1), which is given at the beginning of the proof of Theorem 3.2.
In the proof, (9 104) is used in place of Lemma 3.4, and 7, — 7, = 0 P(l) and
Lpn ¥, =0,(1) by Lemma 9.11 are used in place of 77, — 7, = 0,,(1) and Lp,,
Y, = 0,(1) by Lemma 3.3. The key inequality in (9.34) holds in the present
case because the true value 0, satisfies the restrictions. O.E.D.

9.4.4. QLR Statistic With Restrictions on w4+ f3

Here we provide more details concerning the claim in Comment (iv) follow-
ing Theorem 4.2 that the QLR statistic has the same asymptotic distribution
for restrictions of the form r(0) = (r (), m+ B) as for restrictions of the form
r(0) = (ri (), m).

Roughly speaking, the reason the comment holds is as follows. First, sup-
pose {y.} € I'(, 0, b) with ||b|| < oo, The restrictions do not effect the second
component of the QLR statistic Q,(6,) and we already have its asymptotic dis-
tribution after suitable normalization, so it suffices to focus on the first com-
ponent Q,(6,). The limit set I1,, is the same whether the restrictions are on
7 + B or 7 because B, — 0. This leads to the same asymptotic distribution of
n(Q,(6,) — Qu.,) for these two restrictions. Next, under {vy,} € I'(y,, 00, wy),
weak identification is not an issue and so the QLR statistic has a x7 asymptotic
distribution whether 7 + B8 or 7 is restricted (as in (4.15)).

Now we provide more details. As just stated, it suffices to focus on the nor-
malized first component n(Qn(H ) — Qo..)- We consider a reparametrization
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of the model/criterion function. The original model based on (B, {, 7) can
be reparametrized to depend on (B, ¢, m ), where 7 = 7 + . The results
of Theorem 9.1(a) can be applied to the reparametrized model with param-
eters (B, {, m ). Denote the criterion function for the reparametrized model
by Qn(IB’ g: 77-I)ZQn(B’ g: 771_[3) o

First, consider the asymptotic distribution n(Q,(0,) — Qo.») under {v,} €
I' (o, 0, b) with ||b|| < oo with the restrictions based on r(6) = (r (), ™+ B).
Given these restrictions, for the results of Theorem 9.1(a), we do not need a
quadratic expansion to hold for all 7r; in some set I1; that is analogous to IT
in Assumption C1. Rather, we just need a version of Assumption C1 to hold
for Q,(B, {, m) when m =, = m, + B,, that is, for Q,(B, ¢, m,). This is
obtained for the reparametrized criterion function when Assumptions C1-C4
hold for the original criterion function:

(9'112) @n(ﬁv g’ 7Tl,n)
= Qn(Ba g, Ti,n — B)
= Qn(07 ga Ti,n — :8) + Dl//Qn(lpO,n’ Tin — B)/(l/’ - 11//0,11)

1
+ E(‘P — $0,0) D yy Qu(Po,n, T — B)Y (W — Po.n)

+ R, (b, m,, — B)
= Qn(07 g& 7Tl,n) + Dl//Qﬂ((ybO,n’ 771,/1)/(1/’ - l/’(),n)

1
+ E(lp - ¢0,n)/Dd/an(¢0,n, Wl,n)(l/’ - lp(),n)

+ Ry (Y, m0 — B) + Ron (),

where R, , () is defined implicitly by the third equality, the first equality holds
by the definition of Q,(B, {, ), the second equality holds by Assumption C1
for O, (0), and the third equality uses the fact that O, (0, {, 7) does not depend
on 7. The additional remainder term R, , () satisfies Assumption C1(ii) with
R, () in place of R, (i, ), using Assumptions C2—-C4 for Q,(6). This relies
on the fact that the true values 0, = (B,, {,, m,) € O* C int(®) by Assump-
tion B1(i). In consequence, for some set I1*, we have , € II* C int(II) for all
n and, hence, 7, — B (= m, + B, — B) isin II for all B with ||B]| < 8, for all n
large, where 6, — 0.

Similarly, under the given restrictions, for the results of Theorem 9.1(a)
to hold for Q,(B, ¢, m), Assumptions B1-B3 and C2-C5 for Q,(B, ¢, m)
do not need to hold for all 7; — B, € Il. It suffices for them to hold with
m € II* + B, C I1, which they do by Assumptions B1-B3 and C2-CS5 for Q,(6).
Assumption A clearly holds for Q, (B, ¢, 7). This completes the verification of
the required assumptions for Q, (8, ¢, 7). In turn, this completes the proof for
sequences {vy,} € I' (o, 0, b) with ||| < oco.
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Next, suppose {y,} € I'(yo, 00, o). We apply the results of Theorem 9.3(a)
to the reparametrized model with criterion function Q, (8, £, ). In addition
to Assumptions C1-C5, we suppose Assumptions D1-D3 and C8 hold for the
original criterion function Q,(6). Then Assumption D1 holds for @n( B, {, m)
by the following calculation. For notational simplicity, suppose no parameter
{ appears. For 7 = 7w+ B8 and m , = 7, + B, we have

(9-113) 0, (B, m)
=0n(B, )

= 0n(0n) +DQn(6)' (6 — 6,) + %(9 — 0)D* Q5 (6,)(6 — 6,) + R} (6)

_A 9p0n(0n) ) B — Bn
= On(Bns 1) + (aﬂann)) (m = (B Bn>>

+1< B=Bn )’[aBBann) aB,Tann)]
2\ m — 71, — (B—Bn) é}wBQn(Gn) mw On(0n)

B_Bn *
x (17'1 S (B—Bn)> +R(0)

-0 (Bmﬂ-ln)_,_(ﬂﬁQn(an)_ann(en))/< B—Bn )+1< B—Bn )

97 QOn(6y) T — Tl,n 2 \m — T1,n
x |:£7,BBQn(9n) - Z&B#Qn(on) + 0717-71Qn(9n) ﬁBan(gn) - ﬁﬂ'#Qn(Ol‘l)]
(777/3Qn(0n) _(?'rrﬂ'Qn(Bn) a’iT’TTQn(Bn)
x ( 5= Pn )+R;;<0>,
T — Tl,n

where the first equality holds by definition, the second equality holds by As-
sumption D1 for Q,(8), the quantities d50,(6,), 3,0,(0,), 90, (6,), ...,
on the r.h.s. of the third equality are subvectors and submatrices of DQ,(6,)
and D?Q,(6,) by definition, and the fourth equality holds by algebra. Equa-
tion (9.113) establishes Assumption D1 for @,,( B, m ) because the properties
of R*(0) in Assumption D2(ii) for Q,(6) yield the appropriate properties for
the remainder R*(0) = R*(8, m — B) for Q,(B, m).

Assumptions D2 and D3 for Q,(6) imply Assumptions D2 and D3 for
Q,(B, 7)) with the limit quantities J(y,) and V' (y,) changed to correspond
to the changes in (9.113) from DQ,(6,) and D*Q,(6,) to

(9.114) <aBQn(g")Q_(&0”)Q”(9”)> and

[aBBQn(On) - ZanQn(Hn) + aﬂ'ﬂ'Qn(en) ﬁBﬂQn(en) - é)'mrQn(en):|
aﬂBQn(en) _é)wa'rQn(en) ﬁaﬂrQn(Gn) ’
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respectively. Assumption C7 for Q, (8, ;) is not needed to obtain the result
in Theorem 9.1(a) for the restrictions given because there is a unique value
of 7, that satisfies the restrictions. Assumption C8 for Q, (3, ) is implied by
Assumption C8 for Q, (B, 7). This completes the verification of the assump-
tions needed for Q, (B, m ) in Theorem 9.1(a). Combining this result with the
asymptotic distribution of n(Q,(8,) — Qo..), which does not depend on the
form of the restrictions, yields the result of Theorem 9.1(b), which is the same
as the result in Theorem 4.2. This result, combined with (4.15) (using the as-
sumption that Assumption RQ2 holds), yields a x7 distribution for the QLR
statistic under {vy,} € I'(7yy, 00, wg) when r(0) = (r, (), m + B), just as it does
when r(0) = (r1(¢), m).
This completes the proof of the assertion in Comment (iv) to Theorem 4.2.

9.5. Proofs of Asymptotic Size Results

PROOF OF THEOREM 4.4: We only prove the asymptotic size result of Theo-
rem 4.4 for the symmetric two-sided CI, which is based on |7,|. The proofs for
the one-sided CI’s and the QLR CS, which are based on 7,,, —7,,, and QLR,,,
respectively, are analogous. For the QLR CS, one uses Theorems 9.1 and 9.3
in place of Theorem 4.1 in the proof below.

By definition, CP,(y,) = P,,(|T,| < zi_4). By Theorem 4.1 and Assump-
tion V3, CP,(y,) = P(T(h)| < z1_4p2) under {y,} € I'(v,0, b) with ||b| <
oo and CP,(A,) = P(|Z| < z1_42) = 1 — a under {y,} € I'(7yy, 00, wy). This
implies Assumption ACP(i)-(iii). Assumption ACP(iv) holds by Assump-
tion B2(ii). Given this, the desired result holds by Lemma 2.1. Q.E.D.

PROOF OF THEOREM 5.1: The proof of Theorem 5.1(a)(i) for the LF
critical value is the same as that of Theorem 4.4 but with |, (=
max{sup,,_, ¢r,1-a(h), cr1-o(00)}) for 7, = |T,|, T,, —T,, and QLR, in place
of Z1_4p2, Z1-as Z1-a» and x3 ,_,, Tespectively, using Assumption LF(i) in place
of Assumption V3. For the case of 7, = |T,,|, this proof delivers

. LF LF
(9.115) AsySz= mln{}lllellgP(|T(h)| <ci ), P(IZl=c )},

[t],1-c [tl,1-a

where Z ~ N (0, 1). The r.h.s. of (9.115) is greater than or equal to 1 — « be-
cause (i) P(|IT(h)| < ¢f,_,) = P(IT(h)| < ¢j1-a(h)) =1 — a Yh € H, where
the second inequality holds by the definition of the quantile ¢y ;_.(#), and
(i) P(1Z| <cF, ) = P(IZ]| < z1_ap2) =1 — . The r.hus. of (9.115) is less than

|t],1—«
or equal to 1 — & because if ¢, _, = zi_ap, then P(1Z| < ¢/f,_,) =1 — a and

if Cll?‘lflfa > Z1-a/2, then P(|T(hmax)| = c‘l;fl,a) = P(lT(hmax)| = c\t\,l—a(hmax)) =

1 — a, where both equalities hold using Assumption LE. Hence, AsySz=1— a.
The proofs for 7, = T,, —T,, and QLR, are analogous using Theorems 9.1
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and 9.3 in place of Theorem 4.1 when considering QLR CS’s. The assumptions
are different for QLR CS’s because of the latter change.

The proofs of Theorem 5.1(a)(ii) and (b)(ii) for the NI-LF critical value
are the same as that just given for the LF critical value except that H,
o> Mmoo and Assumption LF are replaced by H(v), cif,_,(v) (=
max{sup,,_y, Cu.1-a(1); Zi_as2}), Amax(v), and Assumption NI-LF, respectively,
for v € V; and the r.h.s. of (9.115) has inf,,, added.

Theorem 5.1(a)(iii) is proved by verifying Assumption ACP and invoking
Lemma 2.1. Consider the case where 7, = |T,,|. First, we show C1—an =,
¢y, under {v,} € I'(y, 0, b) with ||b]| < co. By the construction of €y 1—a.n,
it suffices to show that P, (A4, < k,) — 1. This holds if 4, = O,(1) under
{v.} € I'(, 0, b) with || b]| < oo, because «, — oo by Assumption K(i).

When B is a scalar, we have

O.116) A, = (n"*B,3,5,n'*Bu/dg)"
— g (Tg(m") Egﬁ(’”*; Yo)Te(m*)/dg)"?,

where 7* and 74(-) abbreviate 7*(y,, b) and 7(-; v, b), respectively, and the
convergence in distribution holds by Theorem 3.1(a) and Assumption V1. By
Assumptions B1(iii) and V1(ii) and (iii), inf,c;; 3gs(7; ¥9) > 0. Hence, A4, =
O,(1) under {v,} € I'(vyy, 0, b) with ||b|| < oo, as desired.

When B is a vector, (9.116) holds with 3gs(7*; y,) replaced by 3gs(7*,
o*(7"); o, wo) by Theorem 3. l(a) Assumption V1, and the joint convergence
(2B, Ty @) —>a (tg(a*), 7, w*(7*)). By Assumptlons B1(iii) and V1(ii)
and (iii), inf e =1 /\mm(EBB(Tr, w; v, wy)) > 0. Hence, 4, = O,(1) under
{v.} € I'(v, 0, b) with ||b|| < oo, as desired.

Using Theorem 4.1(a) and (b) Cl1—an —>p Cjif1_q» and Assumption V3,
we obtain CP,(y,) = P,,(|T,| < Ci1-an) — P(|T(h)| < c‘t|1 ») under {y,} €
I'(vyy,0,b) with 6]l < co. Hence, Assumption ACP(i) holds with CP(h) =
P(T ()| <cff, ).

By the construction of ¢ ;_q,., We have zi_o» < Ciy1—an < ¢lf,_,- Hence,

(9.117) Py, (ITal < 21-02) < Py, (1T < C1-an) < Py, (ITal < €1 _)-
Under {y,} € I'(vo, 00, w0),
(9.118) P, (IT,| < zi-app) > P(IZI < z1-0pp) = 1 — @,

P (T, <cf i) = P(ZI<cf)) = 1—a

By (9.117) and (9.118), Assumption ACP(ii) holds with CP,, =1 — c.

Next, we verify Assumption ACP(iii) by showing €/ ,1_a» =, Zi-a/2 Under
{y.} € I (79, 00, wp) with By # 0. It suffices to show that P, (A4, > k,) — 1. We
have

o~

(9.119) w, A, = (n'*;") (B, ;;,nﬁn/dﬁ)l/z —, 00,
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where the dlvergence to infinity holds because n'?k;' — oo by Assump-

tion K(ii), B, —, Bo # 0 by Lemma 3.1(b), Eﬁﬁn —, 3ps(7v0) by Assump-
tion V2, where Eﬁ/g(yo) denotes the upper left dg x dB submatrix of 3(y,) =
J ‘1(yO)V(y0)J (), and Zgs(yp) is nonsingular by Assumptions D2 and D3.
Hence, P,, (A, > k,) — 1.

Using |T,| —4 |Z| by Theorem 4.1(c), Cis,1—an = p Z1-a/2, and the continu-
ity of the d.f. of Z, we obtain CP,(y,) = P,,(|IT,| <C.1-an) = 1 — @ under
{vn} € I'(y9, 00, wy) wWith By # 0. This completes the verification of Assump-
tion ACP(iii). Assumption ACP(iv) holds by Assumption B2(ii).

Applying Lemma 2.1, we conclude that the nominal 1 — & type 1 robust two-
sided ¢ CI has AsySz = 1 — «. This completes the proof of Theorem 5.1(a)(iii)
for 7, = |T,|. The proofs for one-sided ¢+ CI's and QLR CS’s are analogous.
Note that the use of Theorem 3.1(a) above can be replaced by Lemma 9.2(a),
which shows that nl/ZBn O,(1) under {v,} € I'(o, 0, b). In consequence, the
proof of Theorem 5. l(b)(iii) for QLR CS’s requires Assumptions V1 and V2,
but not C6. (The same is true for Theorem 5.1(b)(iv), but Theorem 5.1(b)(v)
and (vi) require Assumptions V1, V2, and C6 because the asymptotic distribu-
tion of nl/zﬁn under {vy,} € I'(y, 0, b) given in Theorem 3.1(a) is required.)

The proofs of Theorem 5.1(a)(iv) and 5.1(b)(iv) for the type 1 NI robust crit-
ical value are analogous to that just given for the type 1 robust critical value ex-
ceptthat H, c{if,_,, and €, 1_a,, are replaced by H (v), ¢, _,(v), and €y, 1—a,n(v),
respectively, for v e V.

The proof of Theorem 5.1(a)(v) for the type 2 robust critical value is proved
by verifying Assumption ACP and invoking Lemma 2.1. Again, consider the
case when 7, = |T,,|. First, under {v,} € I' (v, 0, b) with ||b|| < oo, we have

(9.120) (| Tn|)at|,l—a,n) —>d (| T(h)|7at\,1—a(h)),

because (i) 7, —, T(h) by Theorem 4.1, (ii) 4, —, A(h) by (9.116),
(iil) Cj..1—an —>a Ci.1-o () by the continuous mapping theorem using result (ii),
(5 5), (8. 3) and the continuity of s(x) for x € [0, 00) (Which 1mplles that
Ci.1—o(h) is a continuous function of A(4)), and (iv) the convergence is joint
because |T,| and ¢;,;_.., are functions of the same underlying statistics.

Equation (9.120) and Assumption Rob2(i) imply that under {y,} € I'(v,, 0,
b) with ||b]| < o0,

(9121) P(|Tn| Sat\,l—a,n) —>d P(|T(h)| Satl,l—a(h)) Vh = (b7 ’)’0) S H

This verifies Assumption ACP(i) with CP(h) = P(|T(h)| <Cy.1-a(h)).
Second, under {y,} € I'(y, 00, wy), we have (i) 4, —, oo by Theo-
rem 4.1(c) with r(6) = B plus the fact that the estimator B, in A, is cen-
tered at 0, rather than at 3,, which causes the divergence in probability to oo,
(ii) s(A, — k) =, 0 by results (i) and (ii) and the assumption that s(x) — 0
as x — 00, and (iii) Cjs,1—an = p Ci,1-a(00) + A2 = z1_4 + A, using result (ii)
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and (5.5). Result (iii) and |7,,| =, | Z] for Z ~ N (0, 1), which holds by Theo-
rem 4.1(c), yield that under {y,} € I'(vy, 00, wy),

(9122) P(|Tn| S/C\Itl,lfa,n) —d P(|Z| = Zl—a/Z + AZ)

This verifies Assumption ACP(ii) and (iii) with CPy, = P(|Z| < z1_4» + 4)).
Lemma 2.1 now gives

(9.123) AsySz= min{%g£P(|T(h)| <Cuiea()s PZ] < 21_apy + ) }
It remains to show that the right-hand side equals 1 — «. We have
(9.124) AsySz = min{}iln;fl(l —NRP(4,, 4y; h)), P(1Z| < zl_a/2+A2)} >1—aq,

where NRP(Ay, A,; h) is defined in (5.7) with 7 (h) = |T(h)|, the equality
holds by (5.7) and (8.3) with 7 (h) = |T'(h)| and (9.123), and the inequality
holds by the definitions of A; and A, in (5.8), P(|Z] < zi_42) =1 — @, and
A, > 0.

If A, =0, then P(|Z| < z1_4p + 4;) =1 — a and AsySz <1 — « by (9.124).
Alternatively, if A, > 0, we have

(9.125) AsySz<1—-NRP(4A;, Ay, ") =1 —q,

where the inequality holds using the equality in (9.124) and the equality holds
by Assumption Rob2(ii). This completes the proof that AsySz=1 — « in
Theorem 5.1(a)(v) for the case 7, = |T,|. The proofs of Theorem 5.1(a)(v)

and (b)(v) for the cases 7, = T,, — T, and QLR, are analogous.
The proofs of Theorem 5.1(a)(vi) and (b)(vi) are analogous to that of The-
orem 5.1(a)(v) using Assumption NI-Rob2 in place of Assumption Rob2.
Q.E.D.

9.6. Proofs of Sufficient Conditions
9.6.1. Assumption B3

PROOF OF LEMMA 8.1: Assumption B3*(i) and (iii) and the compactness
of O lead to Assumption B3(iii) by a standard argument. For any = € II,
we have q(m) = infycpm,w QF, m; v0) — Q(o, m; vo) > 0, where ¥, is de-
fined in Assumption B3(ii), by the same standard argument using Assump-
tion B3*(ii) in place of Assumption B3*(iii). To show inf,.;; g(7) > 0, as is re-
quired by Assumption B3(ii), it suffices to show g(r) is continuous on the com-
pact set I1. For any 7 € II, ¥ (1) /W, is compact and infycy () v, O, 7; yo) =
Q(* (), 3 7y9) for some *(7) € ¥ () by Assumption B3*(i) and (iv). To
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show g(7) is continuous on I1, it is equivalent to show Q(¢*(ar), 7; y,) is con-
tinuous on I1.

For any & > 0, there exists 6; > 0 such that ||y — ¢*(m)| < 6; and
|71 — m|l < &, imply that [Q (1, 71; ¥0) — Q" (1), 723 ¥0)| < & by the con-
tinuity of Q(6; v,). By Assumption B3*(v), for any 8, > 0, there exists a §, > 0
such that || — m|| < 6, implies that dy (¥ (m), ¥(m,)) < 6;. The condi-
tion dH(lp(’iTl),q’(’?Tz)) < 51 lmplles that inflpeq/(m) ||l,[l — l,[l*(’iTz)” < 61. Be-
cause V() is compact, there exists ¢**(m) € ¥ () such that ||**(m) —
()| = infyewim, |9 — $*(m) . Hence, ¢ () — ¢ (m)|| < 8 if [l —
|| < 8,. Take 6 = min{§,, 6,}. Then

(9.126) | Q™ (1), 15 ¥0) — QU (), T2 y0)| < &

for any ||, — m|| < 6. Hence,

(9.127) Q™ (1), 15 ¥o) < Q™ (1), 15 ¥o) < QP (m2), 23 vo) + €

for any || — m|| < 8, where the first inequality is implied by the definition of
Y*(7r) and the second inequality holds by (9.126).

Similarly, we can show Q(¢* (), m; yo) < Q(¥* (1), 71; yo) + € for any
|7 — ;|| < 6. Hence, for any ¢ > 0, there exists 6 > 0 such that |Q(¢* (1), ;
Y0) — Q*(m), m; vo)| < € for any |7 — 7| < 8. This completes the
proof. Q.E.D.

9.6.2. Assumption C5

PROOF OF LEMMA 8.2: We now verify Assumption C5. Without loss of gen-
erality, suppose B € R. Let {8} : k > 1} be a sequence that converges to 8* and
suppose vy; only differs from y* by replacing * with ;. The partial derivative
of E,.m(W;, 8) w.r.t. B*is

E.m(W,0)—E,.m(W, 0)
(9.128)  lim —=* ( ) v
k=00 B — B
Jw (w3 vp) = fw(w; y")

e B T o)
= /W m(w, 9)<,}ij§o fuf yﬁki :]gf(w; y*)) dp(w)

_ f m(w, 6) fam, (w: y*) du(w),
A%

where the first equality holds by Assumption C5*(i), the second equality holds
by the dominated convergence theorem (DCT), and the last equality holds
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by the differentiability of fy,(w; y*) w.r.t. B*. The DCT holds in the second
equality using

0129y (YD) — f i v)
Bi— B

= fowm(w; Ve(w)),

/ sup [lm(w, )| - sup | fam (w; y)|dp(w) < oo,
W 6O YEN(y*,€)
where the equality holds by the mean-value expansion with v, (w) between
v; and y*, and the inequality holds by Assumption C5*(v). Hence, Assump-
tion C5(i) holds with K,,(6; y*) =n"' 3", [, m(w, 0) fgw,(w; y*) du(w).

We now show Assumption C5(ii) holds with K (i), 7; yo) = fwm(w, Yo,
) fo.w (W; vo) d(w). To show Assumption C5(ii), we have

(9130) SUII:]) IKn(‘wbn, 5 ?n) - K(lp(], ;5 YO)I
m(wy lpna 77) (n_l ZfB,W,'(w; ?n))
i=1

< / sup
mell

- m(w7 ‘7[’07 77-)fB,W(U)’ YO)

du(w)

< / sup |m(w, 0))] - dp(w)

0O

n " Fam (Wi ¥) = fam (w: o)
i=1

+ / sup |m(w’ lpn: 77) - m(w’ ‘1[/0: W)'fB,W(wa 'Yo)d/-L(w),

mell

where the first inequality is obvious and the second inequality holds by the
triangle inequality. The fourth line of (9.130) converges to 0 by the DCT
under Assumption C5*(ii), (iii), and (v) using 7y, — 7,. The fifth line of
(9.130) converges to 0 by Assumption C5*(iv) and (v). This yields Assump-

tion C5(ii).
Assumption C5(iii) holds by the DCT using Assumption C5*(iv) and (V).
Q.E.D.

9.6.3. Assumption C6

PROOF OF LEMMA 8.3: We block diagonalize H (; vy,) using the d, x d,,
matrix A () defined by

(9.131) A(7-r)=|: La, —Hu(ﬂ)H{z‘]

Od{ Xdl; Idg
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Simple calculations yield

(9.132)  A(m)H (7 y0) A(r) = [Hi‘l(w) Od,gxdg} ,

Ou xap Hy

A(mIG (3 y0) + K (73 y0)b] = [G’IW; ¥0) + Ki(m; m)b] |

G, + K,b
A(m)K (13 y0) 0o = K7 (775 7o) wo.

In consequence, we have
(9.133)  &(: 0, b)
1
= _i(G(m Yo) + K (75 v0)b) A(m) [A(m)H (75 9) A(m)' ]!

x A(m)(G(7; yo) + K(7; ¥9)b)
= &,(; Y0, b) + &:(v0, D).

Similarly, we have
(9-134) N (7; Yo, ©9)
1
= =5 0K (5 y0) A7) LA(m)H (7 Yo) A(m) 1 A(m)K (73 yo) wo

= M1(7; Yo, @o) + M2(Y0, o),
which completes the proof. Q.E.D.

Lemma 8.4 follows immediately from the following lemma, which is an ex-
tension of Lemma 2.6 of Kim and Pollard (1990).

LEMMA 9.13: Let {Z(¢): t € T} be a univariate Gaussian process with continu-
ous sample paths, indexed by a o-compact metric space T. If Var(Z(s) — Z(t)) #
0and Var(Z(s)+ Z(t)) #0Vs, t € T with s # t, then, with probability 1, no sam-
ple path of Z*(-) can achieve its supremum at two distinct points of T.

PROOF OF LEMMA 9.13: A sample path of Z? achieves its supremum only
where Z achieves its supremum or infimum. By Lemma 2.6 of KP, if Var(Z(s) —
Z(t)) # 0 Vs # t, no sample path of Z achieves its supremum at two distinct
points of T with probability 1. By the same argument, no sample path of Z
achieves its infimum at two distinct points in 7" with probability 1.

It only remains to show that with probability 1, no sample path of Z has its
supremum equal to minus its infimum at two distinct points. To show this, we
use the condition

(9.135) Var(Z(s)+ Z(t)) #0 Vs#t.
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The argument is analogous to that in KP. For each pair of distinct points # and
11, instead of taking the supremum of Z(¢) over neighborhoods N, of ¢, and
N; of #; as in KP, take the supremum of Z(¢) over N, and the supremum of
—Z(t) over N;. Using the notation in KP, Cov(Z(%), —Z(t;)) = —H (%, t1).
By (9.135), —H(t, t;) cannot equal both H(f, ) and H(#,t). Suppose
H (1, ty) > —H (%, t;) (the other cases are handled similarly). Then /(%) =1 >
—h(t), where h(t) = H(t,, t,)/H (%, t,) as in KP. The rest of the proof is the
same as in KP, except that 8; = SUP,cy, h(t) and I1(z) = SUp,cy, (Y(®)+ h(t)z)
are changed to B; = supleNl(—h(t)) and I1(z) = suplGNl(—Y(t) — h(t)z2), re-
spectively.  This leads to the desired result P{sup,. Z(1) =
sup,.y, (—Z(1))} =0. Q.E.D.

PROOF OF LEMMA 8.5: For any , m, € I1,
(9.136) Var(G7(my; vo) — G5 (25 ¥0))
= Var(G,(m) — Gy(m) — (Hyp(m) — Hip(m))Hy,)' Gy)
=a'Q¢g(m, m; vo)a > 0,

where a = (1, —1, —(H,(m) — Hiz(m,))H,,') and the inequality holds by As-
sumption C6**(ii). Similarly, we can show that Var(G;(; v) + G (23 v0)) #
0 VYV, m € II with 7 # ,. Hence, Assumption C6* holds. By Lemma 8.4,
Assumption C6 holds as well. Q.E.D.

9.6.4. Quadratic Expansions: Assumptions C1 and D1

PROOF OF LEMMA 8.6: We first prove part (a). Let 8, be any sequence of
constants such that 8, — 0 as n — oco. By a second-order Taylor expansion of
Q,(, ) about i, for € W(ar) with ||y — .|l < 6, and 7 € 1, we have

(9.137) R\ (¢, )|

1 n
z(w - (yll(),n),(nl Z(PM/(VVH l!/g,n(ﬂ'): 77) - p'//‘/’(I/I/H l,[/(),n, W)))

i=1

X (lp - lpO,n)

]

n Y (P Wi 1 1), ™) = Py (W, o, ) H

i=1
=0, (Ily — Yoall?),
where g[/g,n(w) lies between ¢ and ¢ ,, and the 0, (|| — ¢ ,||*) term follows

from Assumption Q1(iii). This immediately implies Assumption C1 using the
lla,(yn) (Y — o) || part of the denominator in Assumption C1(ii).
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Next, we show part (b). By a second-order Taylor expansion of Q,,(6) w.r.t. 6,

(9.138) |R(0)| =

1 - .
5(6 — 6,,)/<n] ;(Pea(VVi, 0),) — poo (W, 0n))>(6 —6,)

1
E(B(Bn)(a —6,)

x [B‘l(ﬁn)n‘l > (pos (Wi, 03) — poo(W,, en»B-l(Bn)}

i=1

x B(B)(0 — 0,)

X

B (Bn™" D (pos(Wi, 0)) — poa(Wi, 0,))B7(B.)
i=1

=0,(IB(B)(O—0)1°),

where 67 is between 6 and 6,, and the o,(||B(B,)(0 — 6,)|*) term follows

from Assumption Q1(iv). This immediately implies Assumption D1 using

the ||n'?B(B,)(6 — 60,)| part of the denominator in Assumption D1(ii).
O.E.D.

PROOF OF LEMMA 8.7: We first prove part (a). For any function f(w, 6),
define the empirical process {v, f(6):0 € @} by v, f(6) =n'2Y""  (f(W;, 0) —
E,, f (W, 6)). Note that

(9-139)  Qu(6) — Qu(o,n, ™)

=n""2W,p(0) = vap (Yo, ™)) + O(0) — O (P00, ).
The expansion in (8.10) implies that
(9:140)  v,p(0) — vup (o0, ™) = v, Ay (P00, ™)' (Y — Po,0) + V.1 (6).

Under {v,} € I'(yo,0, b), a second-order Taylor expansion of Q%(6) w.r.t. ¢
gives

(9.141)  Q5(0) — O, (Yo, )

— %Qz(m, 7Y (W — o)
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2
I Iy’
+ oL (I — $o.ull®),

using Assumption Q2(v) (where o,(-) denotes o(-) uniformly over 7 € II).
From (9.139)-(9.141), we have

(9142) Qn(e) - Qn('vb(],na 77)

1 ’ *
+§(¢'— l/fo,n)< Q,,(llfo,n,ﬂ))(l/f—lﬂo,n)

= (”1/2Vn4¢(¢o,m ™) + %Q:(l//(},m 7T)> (¥ — o)
P
P oY’
+ 07w, () + 04 (Il — Youll?).-

When D,0,(0) and D,,0,(6) take the form as in Lemma 8.7(a), the
quadratic approximation in Assumption C1(i) holds with

(9.143)  R.(, m) =n""0,r,(0) + 0, (I — Po.ull?).

To verify Assumption C1(ii), we have

a2 () R (s, )]
9.144 n
O Sp o TF [ar ) & — Do) )2

la (y)n™"Pv,r, (0)]
< sup 5
peV(m):|lg—o ,ll<én (1 + ||an(7n)(w - ¢0,n)||)

1
+§(¢— o) O (Yo, ™) (W — Pro,n)

+ 017(1) = op‘n'(l)a

where the inequality follows from (9.143) and the triangle inequality, and the
equality is implied by Assumption Q2(iii) by using [1 + ||a,(y,) (¥ — Yo.) ] -
lla,(y.) (¥ — o) in the denominator.

Next, we prove part (b). The sample criterion function satisfies

(9.145)  0,(8) — Qu(6,) =1 (,p(0) — v,p(6,)) + 0;;(6) — O (6,).
The expansion in (8.9) gives

(9.146)  v,p(0) — v,p(0,) =v,A(0,) (6 — 0,,) + v,r ().

A second-order Taylor expansion of Q% (6) about 6, gives

(9.147)  Q,(6) — Q,(6,)

—aQ*O’HH 10 0,)
—(9_0 n( n)( - n)+§( - n)

ﬁZ
0006

0;(5)(6 - 6,),
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where 6 is between 6 and 6,. By Assumption Q2(vi),

aZ

-1
(9148) BB

Q:(61)B(B,)

(92

* -1
5090 Q,(6,)B (B, +o(1),

=B"'(Bn)

where the o(1) term holds uniformly over 6 € 0,(4,).
Equations (9.145)—(9.148) yield

(9.149)  0,(6) — Qu(6,) = (n“zvnA(Hn) + %Qi‘,(@)) (0 =06,
2

2006
+o(IB(B.)(O = 0,)]7).

+ %(0 -6, 05(6,)(0 = 6,) +n"v,r(0)

When DQ,(0) and D*Q,(6) take the form in Lemma 8.7(b), the quadratic
approximation in Assumption D1 holds with

(9.150) R:(8) =n""v,r(8) + o(IB(B) (O — 0,)7).

To verify Assumption D1(ii), we have

|nR;(6)]
9.151 su -
( ) ae@,,g,,> (1 +n'2IB(B)(6 — 6.)1)?
In'v,r(6)|

1) = 1
< S A BB —onne o = o

where the inequality holds by (9.150) and the triangle inequality, and the
equality is implied by Assumption Q2(iv) by using [1 + n'/?||B(B8,)(6 — 6,)|] -
n'2|B(B,)(6 — 6,)| in the denominator. Q.E.D.

PROOF OF LEMMA 8.8: Lemma 8.8(a) is proved using the proof of Lem-
ma 8.6 with (9.137) and (9.138) changed to

(9.152) R, ™| < 0, (180 — o.ulI?) + 10 (4, m) — O (0, m)|  and
IR:(0)] < 0,(I1B(B.)(0— 0,)I7) + 0(6) — QI(6,)],

respectively. By Assumption Q3(ii), Assumptions C1 and D1 follow from the
same arguments as those in the proof of Lemma 8.6.
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Lemma 8.8(b) is proved using the proof of Lemma 8.7 with (9.143) and
(9.150) changed to

(9.153) R, (¢, m) =n""u,ry(0) + 0 (Il — Po.ull®)
+ Qic(lwl’a 7T) - Qic(lwl’(),n, 77) and
R:(0) =n""v,r(0) + o(IB(B.) (0 — 6,)I°) + Q) (6) — O (6,),

respectively. By Assumption Q3(ii), Assumptions C1 and D1 follow from the
same arguments as those in the proof of Lemma 8.7. Q.E.D.

10. SUPPLEMENTAL APPENDIX C: VERIFICATION OF ASSUMPTIONS FOR THE
ARMA(1, 1) EXAMPLE

This appendix verifies the assumptions of AC1 for the ARMAC(1, 1) example
of Section 6.

First, we give some details concerning the form of the criterion function
0, (0) for this example. To specify the quasi-log-likelihood function, it is use-
ful to write the innovations as a function of the observations and the unknown
parameters. By repeated substitution for &, 4, ..., & in (1.1), we have

t—1

(10.1) &= m(Yi;— poYi_i1) + meo.

j=0

The Gaussian quasi-log-likelihood function for 6 = (8, {, ) conditional on
Y, and & is a constant plus

1 n t—1 _ 2
(10.2) —g log{ — 27 Z(Z Y, j—(m+B)Y. ]+ 7Tt80> .
t=1 \j=0

The conditioning value g, is asymptotically negligible, so for simplicity (and
wlog for the asymptotic results), we set &y = Y in the log likelihood. Thus, the
(conditional) QML criterion function for 6 = (B, {, w)’ (multiplied by —n™"
and ignoring a constant) is

2
1 1 B n t—1 A
(103) Q,,(O) = 5 10g§ + 2—§7’l ! L (Yt - ﬂ JZ_O: 71-thjl) .
10.1. ARMA Example: Initial Conditions Adjustment

We use the initial conditions adjustment of the criterion function given in
Lemma 8.8(a) of Section 8.7.3. This lemma implies that it suffices to establish
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Assumptions C1-C8 and D1-D3 with Q,(6) replaced by an approximation
0>(0). Lemma 8.8(a) relies on Assumption Q3. We verify Assumption Q3
with

(104)  OX(0)=n") p(0), where

t=1

2
pu(6) = —log§+2§<Y BZwY,“),

0,°(6) = 0.(6) — Oy (6)

s

n t* o0
+ ?nl (Yr -B Z 7TjYz—j—1> Z 7Tth—j—1-
=1 j=0 j=t

Note that the difference between Q°(6) and Q,(6) is that the sum over j goes
to oo in the former and to ¢ — 1 in the latter. In (10.4), W, = (Y,, Y,_1)’ and
p.(0) depends not only on W,, but also on W,_4, ..., W;. This does not affect
the results in Lemma 8.8(a).

LEMMA 10.1: For the ARMA(1, 1) model, {Q'(0):n > 1} satisfies the fol-
lowing statements:

(a) Under {v,} € I'(y0), SUPyee |ON(0)] — , 0.
(b) Under {Yn} € F(yo: 07 b):

sup la; (v (N (P, ) — QIC(lPon,Tr))I 1
YEW ()= | <3 I+ a,(y) I — boul)? Orm

for all constants 6, — 0.
(C) Under {’}ln} € F(YO’ o0, (1)0),

sup (n(Q,(6) — 0, (6.))] —o,(1)
veonom (L+1I02B(BYO— 0,012 "

forall 6, — 0, where 0,,(6,) ={0€ O: |\ — .|| <6,|B. and |7m — m,| < b,}.

COMMENTS: (i) Lemma 10.1(a) implies that it suffices to establish Assump-
tion B3 with Q°(6) in place of Q,(6).
(i1) Assumption Q3 holds by Lemma 10.1(b) and (c).

The proof of Lemma 10.1 is given in Section 10.4 below.
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10.2. ARMA Example: Derivation of Formulae for Key Quantities

The quantities that appear in Assumptions B1-B3, C1-C8, and D1-D3,
namely, Q(6; vo), DyQ,(0), Q(1, m; v0), DyyQn(0), H(m; ), K(7; ),
D¢ (1, ™5 %), DOW(0), D*Q,(6), J(y0), and V(yy), as well as 7*(yo, b)
and X, (), are specified in Section 3 of ACI. In this section, we derive
the formulae for these quantities based on the criterion function Q9°(0) =
n'Y " p.(6). (For convenience, the formula for K (; v,) is derived in Sec-
tion 10.3.4 below.)

The expressions for D, 0,(0) and D,,0,(6) are the ordinary first and sec-
ond partial derivatives of n=' Y p,(6) w.r.t. ¢ for p,(0) defined in (10.4).
Analogously, DQ,(6) and D*Q,(0) are the ordinary first and second partial
derivatives of n=' >~ p,(0) w.r.t. 6.

Now, we derive the formula for £2(7r;, m,; vy). For any sequence {vy,} € I'(yy)
with By =0, we have

(105) Q(’?Tl, 7, ’)/0)

= lim Cov,, (n‘“Zpr,,(npo,n, ), 172 py (Yo, 772))
=1 =1

n—oo

= Z COVyO(pu,l;,t(d]O, 771); p.//,t+m(¢’07 772))

= Cov,, (py,: (Yo, ), Py, (Yo, m))
_|:(1—7Tl772)] 0 :|
B 0 /0L E, (2 — 4)* |’

where the first equality holds by the definition of G,(7) in Assumption C3
with ¢, = (0, {,), the second equality holds by strict stationarity for given vy,
and vy, — v, and the third and fourth equalities hold because {g,:¢ > 1} are
independent and have mean zero plus

(106) pﬁ,t(l//()a 77) =_§0718t277j8t,j71,

j=0
pei(o, ) =—(1/2){% (&7 — &o)
when the true parameter is y, with 8y = 0, using the definitions of pg,(#) and

pe.(0) in (6.5). The off-diagonal elements in (10.5) are zero because E, &, (&7 —
50)817]'71 = Eyogt(‘g% - gO)Eyusz—j—l =0V;>0.
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Next, we derive the formula for H (7r; vy,), which is shown in Section 10.3.3
to equal £, pyy,. (o, 7). Using the definitions of py, ,(6), ..., p¢.(6) in (6.8),
when the true parameter is vy, with 8y =0, we have
. 2
(10.7)  pgp.(po, m) = & (Z 7Tj8:—j—1) )
j=0

ppe(o, ™) = {57, Z e,
=0
pred(Wo, m) =—(1/2)7% + & e

te

Using these expressions, we obtain

o 2
—1E 7Tj£[,‘, 0
(10.8) H(m;v) = Empw,t(%’ mT) = 50 %0 (Z j 1)

j=0

0 @

oo
E i 0
e =0

_[(1—772)—1 0 }
T
0

Now, we calculate the covariance kernel {25 (7, mm; o) that appears in As-
sumption C6**. For B, =0, we define

(10.9)

PT,,,,('J/O, my, ) = (pg, (o, ™), pg, (o, ™), pe(Po, m)')', where

o0 o0

- k — k

pp.(Wo, ™) =—05'e, Y TY =—"e Y me i,
k=0 k=0

oo, ) = —(1/2){;% (] = &)

Using these definitions, for 8, = 0, we have

(1010) Qg('ﬂl,'ﬂz; ’)/0)

Z COVyO(P:;,,;(lPO, T, 772)7 p:;,,[+m(¢0a T, 772))

m=—0o0

Val'yO(P?;,,[(lpO, T, 71-2))
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00 2
{5 'Ey, (Z 77{8!—/‘—1)

j=0

{5 Ey (Z W{St—j—l) (Z wéa,_,»_l)
j=0

j=0
0

(o' Ey, (Z 77{81—/‘—1) (Z Wéat—/—l)
j=0

j=0

00 2
4o By (Z Wﬁsz—j—l)

j=0
0
0
0
(/8 E,, (62 — §)?
A—m)"  (A—mm)! 0
=|Ad-—mm) A-—m)"! 0 .
0 0 (/9 E,, (82 — {o)?

The second and third equalities of (10.10) hold using (10.9) and E, &,(s? —
$0)&j1 = Ey8(e; — L) Ey 8 jo1 =0Vj > 0.

To determine J (), we first provide the (generalized) second-derivative ma-
trix

(10.11) D*Q,(0)=n">" pss.(6)

t=1

n | ppp.(0)  ppr(0) ppr.(0)
Ppei(0)  prei(0) peri(0) |,
Pﬁw,z(e) Pgw,t(e) p‘n"n',t(g)

t=1

where

00 2
(10.12) pﬁﬁ,,((a):g—l(z wa,H) ,
j=0
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ppei(0) = §_2<Yt -B ZWthj1> Z 7Y i,
j=0 k=0
Ppri(0) = - (Z 7TjYz—j—1)B Zkﬂ-kilyt—k—l
j=0 k=0
- <Y, — BZWth—j—l) Zkﬂ-kilYt—k—l
=0 k=0

and

0 2
(10.13)  pri(0) = —(1/2)0 2+ £ (Yl -8 wf'Yljl) :

j=0

pemi(0) ={7 (Y -B) wa,,»l)ﬂ D kY,

j=0 k=0

Pami(0) = §71 (B Z].Wji] Yt—j—l) B Z kak! Y ko1
j=0 k=0
- (Yl -BY 7T"Ylj1>B D k(k =) Y .
k=0

j=0

To determine J(vy,) via the expression J(y,) = E,, pZG’I(BO) given in (10.51)
below (in the verification of Assumption D2), we define pge’ ,(6) and x,(0) via

(10.14) B~ (B)pan.()B~'(B) = pjy, (6) + B~ x:(0),
where pgy,(0) is defined in (10.11)—(10.13) and pzf,,,(()) is defined by

Pp.(0)  Ppi(0)  pp,.(6)
(10.15) on,t(9)=|:l)ﬁg,z(9) peei(6) Pzw,t(e):|,
Phn(0) pl. () pl_.(6)

Phri(0) =" (Z wa,_,«_l) > kT Y,
j=0 k=0

PZ,T,;(B) =B pri(0) = §_2<Yz — BZWthjl) Zkﬂ-k_lyt—k—la

j=0
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pjmr,t(g) = g_l <Z jo_lYtjl) Z k’iTk_lthkq.

=0 k=0

The matrix y,(0) is defined by

0 0 Xxpmi(0)
(10.16) y(®=| 0 0 0 |, where
XB#,[(O) 0 X‘n’ﬂ',t(e)

k—1
kw7 Y, i,

Xprs(0) = —{! (Y, -y w-fx_j_l)

j=0

Me I[M]2

k(k - 1)7Tk_2Y[,k,1.

Xﬂ'ﬂ',t(e) = _Z_l (Yl - B Z’n—lejl)

j=0

x
Il
o

Now, using J(yy) = Empze’t(é?o) and (10.12), (10.13), and (10.15), we have

(10.17)  J(y0) = Ey,ply, ,(60)

2
. —_ = j 1
:Dmg{{o 1EW,U<E 7T(J)Ytjl) 20
0

j=0

40 ' Ey, (Z jm Yr—j—l) D kY }

j=0 k=0
+ (%'Evo (Z Wéx—j—l) Y kg Yt—k—l)
=0 k=0

0 0 1
X |:O 0 0:| .
1 00
As shown in Section 10.3.7 below, the matrix n=' Y7 B~ x,(0) evaluated at

6 =6, (— 6y) does not contribute to J(y,) because its probability limit is zero.
To derive the formulae for V' (), we define

(10.18)  p} ,(6) =B~ (B)ps.(8) = (pp.(0), pi(6), B~ pri(6))',

V01, 00 70) = D Covy(ph (01), p) ., (62)).

m=—00
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For any sequence {v,} € I'(y,), we have

(10.19) V(v = }ggo Var,, (n'?B™"(B.)DQ,(6,))

= lim Var,, (n‘l/2 > pg,,(en)>
t=1

=V"(60, 00 o)

= Var,, (p},(6))

00 2
= Dlag{ é/o_lE'yO (Z 77(]; Ylkl) 5 (1/4)50_4E70(8[2 - §0)27

k=0

00 2
e (S ) )
j=0
x % 001
+ (golEm <Z 77(’)Y,_j_1) kaglyt_k_l) X [0 0 0},
j=0 k=0

1 00
where the first equality holds because the convergence in distribution result in
Assumption D3(i) is obtained by a CLT (see (10.56) below), the second equal-
ity holds by definition, and the third equality holds by strict stationarity for
given ., Y. = o, and the continuity of E, p},(6y)p},(6o) in o = (60, o),
which follows straightforwardly from the form of p; ,(6y) given in (10.20) be-
low. The last two equalities in (10.19) hold because

(1020) pi(0)=—¢'e > MY, pei60) = (/D282 = L),

j=0

pl(80)=—{'e, Y jmy Yoy, and

j=0
Eyoet(‘g% - gO)Yt—k—l =0 Vk> 0’

where the last equality holds because &, and Y, ;_; are independent and
E, Y. j1=0.

The expression for 7* (7, b) given in (6.19) holds using the expression for
&(r; v, b) for this example given in (6.10) plus simplifications based on (6.7)-
(6.9). In particular, it uses the block diagonality of H (7; y,) in (6.8) and the
fact that the second element of G(7r; ) in (6.7) does not depend on 7. The
expression for 3, (7) in (6.19) uses the expression for 74(7; o, b) given just

above (6.16) and the equality ., (; ¥y, b) = 3, ()2, which holds using the
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expressions for J(6; y,) and V' (6; v,) in (10.57) and (10.58) and some calcula-
tions.

10.3. ARMA Example: Verification of Assumptions

Here, we verify Assumptions A, B1-B3, C1-C8, and D1-D3 for the criterion
function Q*(6) =n"'>""_, p,(6).

10.3.1. ARMA Example: Verification of Assumptions A and B1-B3

Assumption A holds immediately given the definition of p,(8) in (10.4).

Assumption B1(i) holds by the definitions of ® and @* in (6.1). Assump-
tion B1(ii) holds with Z° = (£}, i), where {;* is between {; and ¢} for J =
L, U, using the fact that p; < 7, and py > 7y imply that, for 6 = (B, {, m) € O,
B can take values in a neighborhood of zero for any value of 7 € I1. Assump-
tion B1(iii) holds by the definition of II in (6.1).

Assumption B2(i) holds by the definition of I" in (6.2). Assumption B2(ii)
holds by the definitions of I" and @*, and the conditions p; < 7} and 7, < pj;,
which guarantee that, for 0 = (B, {, 7) € O*, 6, = (aB, {, w) € O®* Va € [0, 1].
Assumption B2(iii) holds by the definitions of I" and ®*, and the condition
PL < T <TG < Py-

Assumption B3(i) holds with Q(6; y,) = E, p,(0) by the following argu-
ment. By Theorem 1 of Andrews (1992), uniform convergence in probabil-
ity is implied by pointwise convergence in probability, stochastic equicontinu-
ity, and boundedness of @. Pointwise convergence in probability is implied by
mean square convergence. In the present case, the latter is straightforward,
but tedious, to establish by writing out the square that appears in p,(6), us-
ing the expression Y, = Z;’io(v-rn + B.)/ (&_j_1 — mu&,_j_2) under y,, which is
obtained by repeated substitution in (1.1), and using the moment condition
sup,..r E,|&|* < oo, which appears in the definition of I'. Because the norm-
ing is by n~!, not n~'/2, stochastic equicontinuity also is straightforward, but
tedious, to establish by applying Markov’s inequality and standard manipula-
tions (along the lines of those in (10.33) below). For brevity, the details are
omitted.

Assumption B3(ii) and (iii) are verified using Assumption B3* and Lem-
ma 8.1 in Supplemental Appendix A. Assumption B3*(i) holds because
Q(0; vp) is a quadratic function of 8, and {7/:j > 1} and the log function is
continuous on R, . Assumption B3*(iv) holds because ¥'(7) = {y = (B, {): B €
lp; —m, p5; — 7l & L €L}, 5]} is compact Vo € I, II = [, 7y] is compact,
and O is compact by its definition in (6.1). Assumption B3*(v) holds because
dy(¥Y(m), ¥(m)) = |m — m|.

Assumption B3*(ii) is verified by showing that when B, =0, E, p,({, 7)
is uniquely minimized by ¢, V7r € I1. This holds by the following argument.
When By =0, by (1.1), we have Y, = 7Y, | + & — me,_; and so Y, = ¢,. Thus,
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when B, =0, we have

(1021) 2E’Y[)pt(lp7 77) - 2E70pt(¢07 7T)

- 2
=logl+ lEm (8, - B Z st,_j_l) —log &y — ! maz
z L %
o B4
=1
ogl+— [ + 1=
&o B4

1 =—-1
= Og(§/§0)+ g + ZU 5

using {) = E,, &2Vt =0,1,.... The Lh.s. is zero for ¢y = ¢s; the r.h.s. is positive
for = (B, {) # Yo = (0, &) VY7 € I1. This holds by writing {/{, =1+ x and
noting that the function s(x) =log(1+x)+1/(14x)—1 is uniquely minimized
over x € R, at x = 0. This property of s(x) holds because its derivative, x /(1 +
x)?, is zero for x = 0, is strictly negative for x < 0, and is strictly positive for
x > 0. Hence, Assumption B3*(ii) holds.

Next, we establish Assumption B3*(iii), that is, Q(0; y,) is uniquely mini-
mized by 6, Vv, € I" with B, # 0. Using (10.4), we have

2) _loggo_l

(10.22) 2E, p,(0) — 2E, p,(6y)

2
1 =
=log{ + ZEVO (Yt -B) W"Yt—/—1>
=0

2
1
logg(] g ‘yo(Y BOZW() t—j— 1)
2
=log{+ Em(a, ﬁZW]Y[ i 1—!—,302770 i 1)

IOg g(] g 708?
o
(IOg(g/fo) + 77 1)

2
1 [=S] . 00 ]
+ ZEYO (B Z 7T]Y[,j71 - ,80 Z 7T(])Ytj1> .
j=0 j=0

The first summand on the r.h.s. is uniquely minimized by ¢ = ¢, by the argu-
ment following (10.21).
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We now show that the second summand on the r.h.s. of (10.22) equals zero
when (B, m) = (By, m) and is positive for (B, 7) # (B, 7). We have

o 2
(10.23) E,, <Z[Bwj - Boﬁé]Yt—j—1>

j=0

= Eyg ((B —Bo)ei-1+ (B—=PBo)(poYi2 — moe2)

00 2
+) 1B — Bow{;]Yt_,_1>

j=1

= (B~ Bo)’&

. 2
+Ey ((ﬂ — Bo)(poYi2 — mei2) + Z[BWj - Boﬂé]ytjl) ’

j=1

where the first equality uses (1.1) and the second equality uses the indepen-

dence of &, 1, and (Y, 5, &5, ...) and Eg, { =0. The r.h.s. of (10.23) is zero if
B = By and is positive if B # B, because ¢, > 0.

Next, we suppose B = By (# 0). Then we have

j=0

oS 2
(1024) E,, (Z[Bowf - Bowém_,«_l)
= BiEy, ((7T — 10) &2+ (T — o) (po Y3 — ToE,3)

o 2
+ Z[Wj - Wé]Yt—j—l)

j=2

= (7 — )’ Bl

- 2
+ BoEy, <(7T — o) (poYi3 — moE3) + Z[Wf — W(’)]Y,j,) .

j=2

The r.h.s. of (10.24) is zero if = = 7, and is positive if 7 # 9, because ¢, > 0
and By # 0.
We conclude that when B # 0, the second summand on the r.h.s. of (10.22)

is zero if and only if (iff) (B, m) = (B, m). Hence, Assumption B3*(iii) holds.
This completes the verification of Assumption B3*.



ESTIMATION AND INFERENCE 77

10.3.2. ARMA Example: Verification of Assumptions C1 and D1

We verify the quadratic expansions that appear in Assumptions C1 and D1
using Lemma 8.6, which relies on Assumption Q1. Assumption Q1(i) holds
with p,(8) in place of p(W;, 8). (The fact that p,(6) dependson Y,, Y, 4,...,
rather than just W,, does not effect the result of Lemma 8.6.) Assump-
tion Q1(ii) holds given the form of p,(0).

Assumption Q1(iii) holds by (i) a uniform LLN for n='Y""  py,..(0) —
E, pyy:(0) over 6 € O under {v,} € I'(yy,0,b) and (ii) the convergence
SUP e 17 SUPyew (m:1g—pg 1 <60 |Ey, pyy. (b, m) — E, pyy(Pon, m)] — 0 under
{v.} € I'(v,0, D) for all constants 5, — 0. The uniform LLN holds by the
same type of argument as used to verify Assumption B3(i) using the definition
of py,.(0) in (10.11)—(10.13). The convergence in (ii) holds by fairly straight-
forward calculations. For example, for the (1, 1) element of p,, (6), the dif-
ference is zero for all n > 1 and hence the limit is zero. For the (1, 2) element
of pyy..(0), we have

(10.25) sup sup |Ey,pp0:(W, ) — Ey, ppr.i (o, ™)

well yeW (m):lly—o nll<6n

=sup sup {‘13ZZHW"E%IYH,IY,,,C,I

mell B:|BI<dn j=0 k=0

<{'8,) Y mlwiE, Y] -0,

j=0 k=0

where 7, = max{|m|, |myl} <land E, Y} - E, Y} =E, &’ = {; < c0.

To verify Assumption Q1(iv), for 6 € 0,(8,), we write

(1026) B~ (B)n™" > pas.(0)B™'(B)

t=1

= B(B/B.) (n-l Y (Pl (0) + B‘lxt(é’)))B(B/Bn)
t=1

= (n1 szg,tw)) (1+o0(1) + (n“ZZ(xtw) - Ey,,x,w)))

=1 t=1
x (n'2B,) " (A + 0(1)) + (Ey, x.(8)/B,) (1 + 0(1)),

where pj,,(6) and x,(6) are defined in (10.14). In (10.26), the second equal-
ity holds because |B| < B — B.| + |B.l < (1 + 8,)|B.| and 6, = o(1). By
(10.26) and the fact that n'?|B,| — oo for {y,} € I'(yy, 0, ), to verify
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Assumption Q1(iv), it suffices to establish the stochastic equicontinuity of
ntyr pZ&,(G) and n='2Y"" (x.(0) — E,, x.(0)) over 6 € ©,(5,), and the
equicontinuity of E,, x,(6)/|B.| over 6 € ©,(5,). The stochastic equicontinu-
ityof n™' Y| ng,,(O) follows by the same argument as used above to verify
Assumption B3(i) with ng’t((-)) in place of p,(#0). For brevity, details are not
iven.

& The stochastic equicontinuity of n=/23"" (x,(6) — E,, x.(0)) follows from
the stochastic equicontinuity of terms of the form

(1027) vy(m)=n""Y "33 wlkat (Y Yo — Ey YY)

(=1 j=0 k=0

over 6 € 0,(5,) under {y,} € I'(yy, 00, wy); see the definition of y,(6) in
(10.16). For any & > 0, we have

(1028) &P, ( sup [uj(m) - vi(m)| > ¢)
| —m| <8
() k-1 7Tj+k—l)

<E, sup (iik 1_/2 2

|‘n'1 | <8 =0 k=0 ajk

2
X a},ﬁzn”ﬂZ(Yz—HYt—k e 1))

(1) k-1 ]+k—1)2

< sup ZZI{Z

|7 — 772\<6I 0 k=0 ajk

o0 o0 n 2
X ZzajkEyn (nl/ZZ(Y:—j—lYt—k 1 —E, Y Y 1))

j=0 k=0 =1
<&
for 6 > 0 sufficiently small, where a; = 77;’;1‘, Ty 1S some number between
max{|m.|, |7y|} and 1, the first inequality holds by Markov’s inequality, the
second inequality holds by the Cauchy-Schwarz inequality, and the third
inequality holds because (i) lims_osup,, . _s Z;’ia Yoo KA ((ary fary )T —
(my/m4) %12 = 0, which can be established using the fact that |, /x| < 1 for
¢ =1, 2 and using mean-value expansions of (7 /m)/**~! around (7, /) !
Vj,k >0, (ii) Var, (n7"2Y"" Y, ; 1Y, 41) < C Vn > 1 for some C < co by
standard calculations, and (iii) 77 > @ < 0.

It remains to show that SUPy, 4,c0,(5m) |Bul'E,, (x:(61) — x:(62)) = o(1). It
suffices to show that sup,_g ., |B.|T'E,, x:(6) = o(1). For any 6 € 0,(5,), we
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have

(10.29) 1B.I7"E,, x:(6)
= 1Bl (Eyxi(0) — Ey xi (Y, m)) + | Bul " Ey X o (W, ).

To show that the first term on the r.h.s. of (10.29) is o(1), we write

(10.30) E., xpni(0)

=—{""E,, (Bn ZW};Yt—j—l -B ZW'fYt—j—l) Zkﬂ-kilYt—k—la
j=0 Jj=0 k=0

EYnX,Bn',t(lpn’ 77)
= _§;'EYn (,Bn 2(77,]1 — Wj)Yt_j_1> Z k'Y, .,
j=0 k=0

using the definition of x4, ,(6) in (10.16).
For 0 € ©,(5,),

(1031) |§Ey,,XBw,t(0) - gnE‘ynXBw,t(lwl’n; 7T)|

= ‘(B =B Y Y mkT T E, Y. 1Y | < 8,1BAIC

j=0 k=0

for some constant C < oo, where the inequality uses the definition of 0,,(5,)
and |E,,Y, ;1 Y, x| <E, Y} < C, ¥n > 1 for some constant C; < co. Com-
bining (10.30), (10.31), and sup,. , |{,E,, Xg=,:(0,)| < 0o (which holds by stan-
dard calculations) establishes that the (3, 1) element (i.e., the 7 element) of
the first term on the r.h.s. of (10.29) is o(1):

(10.32)  sup |Ey,xpmi(8) — Ey, Xpmi (P, ™|

0€0,,(8,)
< sup {E, Xpmi(0) = LBy, Xpmi (s )|
0€0,,(6n)
+ sup {7 — DEy, Xpmi (W, m)|
0€0,,(5,)
:0(|ﬁn|)a

using ¢, — { = O(8,|8,|) by the definition of ®,(5,) and { > {; > 0.

The proof for the (3, 3) element (i.e., the 7 element) of the first term on
the r.h.s. of (10.29), which is the only other nonzero element of y,(6), is the
same with k(k — 1)7*=2 in place of k#*~!. This completes the proof that the
first summand on the r.h.s. of (10.29) is o(1).
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Let ¢; = |E,, Y1 Y14;|. The second summand on the r.h.s. of (10.29) is O(8,) =
o(1) by the followmg calculations. For 6 € ©,(5,), we have

(1033) |ﬁ;1E7nXB‘n',l(l//na 7T)|

= BJIQV;IE%; (Bn 2(77,]1 - 77'j)Yt—j_1> Z k7Tk71Yz_k_1
j=0 k=1

[o.¢] o0
-1 i i k-1
={ E |7T’—7TZ,|E kmy ¢k
j=1 k=1
(o] [e ]
-1 . _j-1 k-1
<C{; Z]Tr{, |’7T—’7Tn|2k7TU
j=1 k=1

00 2
ssncql(Zw{, ) = o(1),

Jj=1

where the first equality holds by (10 30), the second inequality holds because
|l — | < |jai N — )| < jarl, "\ — ar,| for some m,,, between 7 and r, by
a mean-value expansion and sup,., ¢; < 0o, and the last equality holds because
Y%, jmy; <ooand 8, =o(l).

For the (3, 3) element of x,(,, 7), we obtain |B,'E,, Xrr (Y, m)| < |7 —
,|C* = O(8,) = o(1) for a constant C* < oo by the same argument as in
(10.33) with k(k — 1)7*=2 in place of k#*~!. This concludes the proof that
the second summand on the r.h.s. of (10.29) is o(1), which completes the ver-
ification of Assumption Q1(iv). In turn, this completes the verification of As-
sumptions C1 and D1.

10.3.3. ARMA Example: Verification of Assumptions C2-C4

Assumption C2 is verified in ACI.

The empirical process {G,(): € II} that appears in Assumption C3 is
defined in (6.6). The covariance matrix of the stochastic process {G(7; y) : 7 €
I1} that appears in Assumption C3 is defined and derived in (10.5). The weak
convergence G,(-) = G(:; y,) holds by the proof of Theorem 1(a) of Andrews
and Ploberger (1996, pp. 1339-1340).

Assumption C4(i) holds by a uniform LLN for n='>""  (pyy..(Po.n, ™) —
E, pyy(Pon, m)) over 7 € Il under {v,} € I'(y, 0, b) and the convergence
result sup__; 1E,, pyy.c(Yon, T) — Eypyy. (Yo, )| — 0. Using the definition
of pyy, (Yo, ) in (6.8), the uniform LLN holds by the same sort of argu-
ment as used to prove Assumption B3(i). For brevity, the details are not
given. The convergence result holds by the same calculations as in the ver-
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ification of Assumption Q1(iii); see (10.25). The simplified expression for
H(m; v9) = Ey,pyy, (o, ) is derived in (10.8).

Assumption C4(ii) holds because H (; yy) = Diag{(1 — #*)~', (2¢3)"'} by
(10.8), inf,cy (1 — 7*)~' > 1, and ¢* > {; > 0 by the definition of O*.
10.3.4. ARMA Example: Verification of Assumption C5

The quantity K, (6; v*) that appears in Assumption C5 is

7

| n 9 &B*E‘y*pﬁ't(e)
(10.34) K, (6;y")=n" Z&—B*Ewpw(ﬂ): g
t=1 a_B*Ey*pg’t(e)

The terms on the r.h.s. of (10.34) are calculated as

(10.35) E,.pp.(6)

= —g_lE.y* (8[ + B* Z 7T*jY[,j71 — BZ’]TjY,jI) Z’iTkY[,k,l
k=0

=0 j=0

=-7'p Z Z W*jWkEy*K—j—lyt—k—l

j=0 k=0
PO Y T, Y
j=0 k=0

and

(9 oo 0] )
(10.36) &_&Ey*pﬁ,l(e) e Z Z I Ey Y, Y
j=0 k=0

B . J
_ g—l B* Z Z a* Wka_B*Ey* }][_j—lyt—k—l
=0 k=0
d

+BY Y alat ﬁEv* Yioj1 Yk
j=0 k=0 B

In addition, we have

(1037) E,.p.,(6)

o0 [e] 2
=-(1/2)¢7 (E (a +B Y T, =By wf’Y[,-l) - z)
Jj=0 j=0
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o0 0 2
= —(1/2)5_2(5* —{+E, (B* Yo BZWerjl) )
j=0 j=0
= _(1/2)5—2 (g* _ é/ 4 ZZ(B*ZW*(HM _ Zﬂ*ﬂ'ﬂ*j’ﬂk + ﬂzﬂj+k)

j=0 k=0

X Ey* Yt—j—IYt—k—1> .
This gives

d
(10.38) %Ev*pi,t(e)

>r

Il
o
<)

- —(1/2>z-2(

J

Z(ZB*W*(j+k) - 2B7T*}7Tk)E7* Yl,j,1 Kkl)
k

(B*2W*<j+k) _ Z’B*Bﬂ.*]’ﬂ.k + '3277.j+k)
k=0

- (1/2¢7

r

Il
=)

J
J
X —

o Er Yo You

From (10.36), if , — 7y, with By = 0 (for nonstochastic y,) and ¢, — ¢y =
(0, &), as in Assumption C5, then

J
10.39) —E5 pg.. (o,
( ) (93 anBy (lpU 77)

n

o0 o0
-1 J -k
- —{; E E mom B, Y, i1 Y

j=0 k=0
o0 o0
- ik
=—{, E E o By 8 i 18 k-1
j=0 k=0
o0
_ jJ_ 1
=— ) mm =— .
, 1—mym
j=0

The convergence is uniform in 7 € IT because (i) |7| < max{|m.|, |[7y]} <1
Var € I1 and (ii) the term (J/9dB,)E5, Y,—j—1Y,—«—1 is well defined and is bounded
in absolute value uniformly over » > 1. This holds because when the true pa-
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rameter is y,, we can write

(10.40) Y, =(Fu+ B Y1 +u =Y (Fu+ Bu)uijo1, where

j=0
u, =g, — e and
d
?E% Y,Y,
0o 00 0,) _ - i~ ~
=Y =[G+ B T+ B 5ttty
j=0 k=0 O?B"

From (10.38), if , — vy with By =0 and ¢, — ¥, = (0, ), as in Assump-
tion C5, then

J
(10.41) a—EnEy,,Pg,z(l//m m) =0

due to the multiplicative terms B*, B, B**, B*B, and B? that appear in (10.38)
and that converge to 0 when B* = En —0and B=p4,— 0.

Combining (10.34), (10.39), and (10.41) verifies Assumption C5(i) and (ii)
with K(; ) = (—(1 — mym)~",0). Assumption C5(iii) holds because 1 —
mom #0Vm ell.

10.3.5. ARMA Example: Verification of Assumption C6

Now, we verify Assumption C6 using Assumption C6**, which is shown in
Lemma 8.5 to be sufficient for Assumption C6. Assumption C6**(i) holds be-
cause B is a scalar. Assumption C6**(ii) requires 25 (7, 2; o) to be positive
definite Vi, m, € II with ; # m,, Yy, € I’ with B, = 0. The expression for
Q¢ (m, m; ) given in the r.h.s. matrix in (10.10) is positive definite because
the determinant of the upper left 2 x 2 matrix is zero iff 7; = , by straight-
forward calculations, and {;*E,, (¢ — {)* > 0 by the definitions of @* and ®*
in (6.1) and (6.2). This completes the verification of Assumption C6**. Hence,
Assumption C6 holds.

10.3.6. ARMA Example: Verification of Assumption C8

Here we verify Assumption C8. Suppose {y,} € I'(y, 0, b), which implies
that B8y = 0. From (10.35), we have

(9 (o] o0 )
(1042) 5By pa.(6) = (Y S AT E Y Y,

j=0 k=0
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which leads to

J
(1043) —FE,, pp. (P, m,)

B = é/n_lzzﬂiﬂﬁEantfjletfk—l

Y=in j=0 k=0

oo o0

-1 J -k
— & E mymy By Yo 1Yk
j=0 k=0

[ee)
-1 2j 2

= { 2770 Ey &,

j=0

1
2 b

1—m
where the second to last equality uses E, Y, ;. Y,_x_1 = E, &_j_18_r_1 be-
cause By =0 and E, &_; 18, =0 for j # k because {g,:t < n} are mean

zero and independent.
From (10.35), we also have

(9 (o] o0 ]
(10.44) 775 Pea(0) = B D wIa E. Y Y

j=0 k=0

-8 Z Z ma Ey Y, i 1Yk,

j=0 k=0

which yields

d
(1045) 2By ppu(hym)| =0 Vaz 1.

Y=y

From (10.37), we have

Jd
(10.46) %Ey*pz,ﬁﬂ)
_ {—2 (Z Z(B*,n.*j,n-k _ B7Tj+k)Ey* Y[,]‘,] Ytkl>>
=0 k=0

which yields

J
(1047) —E,, ps. (P, ) =0 Vn=>1.

P

y=y¢n
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From (10.37), we also have
J

=7 (f C— LYY (B 2B Bt - B )

j=0 k=0

x E, Yzj1Ytk1) + /272,

which yields

d
(1049) —E,p. (¥, m)| =1/~ (1247
74 =t

Combining (10.43), (10.45), (10.47), and (10.49) gives

J J
(1050) ﬁ—dﬂE%’D,’an(l#, 7Tn) . = &—WEynpllf,t(lyb’ 7Tn) v
(1—m)! 0 _ '
- [ 0 (1/2)§02:| _H(WO’ YO),

where the first equality holds by (6.5). This completes the verification of As-
sumption C8.

10.3.7. ARMA Example: Verification of Assumption D2
Next, we verify Assumption D2. By (10.26), we have

(1051) T, =B'(B)n™" > pos.(8,)B™(B,)
t=1

= (n szg,,wn))(l +o(1))

t=1

t=1

+ (n—m > (xi(6) - Ey,,x[wn))) (n2B,)" 1+ 0(1))

+ (Eyux:(6,)/B,) (1 + 0(1))

= (nl szg,,(e,»)(l +o(1)) +o(1)

t=1

=E,,ph (0.) +0,(1) >, E, pl, (60) =T (y0),

85
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where the third equality holds because n'/?|8,| — oo for {y,} € I'(vy, 00, wy),
E,, x:(6,) =0 by the equation for E, xg~(,, 7) in (10.30) evaluated at = =
m, and an analogous equation for E,, x .., (., m), and n="23""  (x.(6,) —
E, x:(6,)) = O,(1) because Var, (n™"?3Y"""  xp.(6,))* = O(1) by straight-
forward calculations using the fact that xz,,(0,) = —{'e, Y k7" 'Y, 1
is a martingale difference sequence for t = 1,...,n and likewise for n=/% x
> Xami(6,); the fourth equality holds by the mean square convergence of
Y phe(0,) — E, phe.(6,) to zero, which holds by straightforward, but
tedious, calculations that are not given here for brevity; and the convergence
in the last line holds straightforwardly by the form of pge,,(en) given in (10.12)-
(10.15) and vy, — 7.

The form of the matrix J(y,) given in (6.13) is derived in (10.11)—(10.17)
above.

Assumption D2 requires that J(v,) is nonsingular. To show this, note that
J(y) = Emng,t(eo), as specified in (10.17), is block diagonal between its
(B, m) and ¢ elements. Since (2¢2)~' > 0 by the definition of @, it suffices
to show that the 2 x 2 submatrix of E,, p}:g,,(()o) that corresponds to (B, ) is
positive definite. The latter multiplied by ¢, equals

o0
§ : J
WOthj—l
Jj=0
o0
. j_1Y
]y t—j—1
j
j=1

NOW, by (11), Yt =& + (770 + BO)K—l — TyEr—1- Hence,

(10.52) E

Y0

A,A,, where At=<j“>:
2t

(1053) A=Y+ Y mY_j1=&_1+E&, where

j=1

Eo=(m+B)Yi2— meE s+ Z W(I;thjfl

j=1
and &,_, is independent of &,_;. For A = (A, A,)’ € R? with A # 0, we have

0 2
(1054) /\/EvoAtA/t)\ = Evo (/\18t—1 + )\1§t—2 + A Zjﬂélyt_j_1>

j=1

o 2
= )@Evo 8z271 + Evu (/\1 it Ay Z ].77671 Ytjl) .

j=1
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The r.h.s. is positive if A; # 0. Alternatively, suppose A; = 0. Then A3 > 0 and
the r.h.s. divided by A equals

00 2
(10.55) E,, (ijélx_f_l)

j=1

00 2
=E,, (er +Y jm Ytjl)
j=2

o 2
=k (8;2 + (mo+ Bo)Yi3 — mo&3 + Zjﬂ'{)_lYtj1>

j=2

00 2
= Emsf—z + Eva <(7TO +B0)Yi 3 — me, 3+ Zjﬂ'(j)_lyz—j—1>

j=2
> é/o > 0.

We conclude that NE, A, A)A > 0 VA = (A, Ay)’ € R* with A # 0 and, hence,
E, A, A, is positive definite (p.d.). This completes the verification that J(v,) is
positive definite.

10.3.8. ARMA Example: Verification of Assumption D3

Assumption D3(i) is verified as follows. By the definitions in (6.5) and (6.12),

and B(B) = Diag{1, 1, B}, we have

(10.56) n'2B~'(B,)DQ.(6,)

=n""2Y B (B)pe.(6y)

t=1

gn—lgt Z 77',/,( Yk
n k=0
=-n"3 "1 (D4HE - )
t=1 N
g;lé‘z Zk’ff,l,(_lyszfl

k=0

—>d N(O, V(yO)):

where the convergence in distribution holds by a triangular array martingale
difference CLT for rowwise stationary random variables (e.g., see Hall and
Hyde (1980, Theorem 3.1)) and V' () = lim,_ Var,,(n™"/2>"7_ B7'(B,) x
pe.:(0,)). The verification of the conditions of Hall and Hyde’s martin-



88 D. W. K. ANDREWS AND X. CHENG

gale difference CLT is essentially the same as given in the proof of Theo-
rem 1(b) of Andrews and Ploberger (1996, p. 1339) and uses the condition
E4,1¢1%e,|* < K < oo, which appears in the definition of @ in (6.2), to verify
a Lyapounov-type condition. The formula for V' (y,) given in (6.15) is derived
in (10.18)—(10.20).

To verify Assumption D3(ii), note that the matrix V' (yy) = V'(6y, 0o; yo) is
the same as J(y) = Emng,,(eo) but with (1/4){;*E,, (&2 — {)? in place of
(2£3)7'; see (10.17) and (10.19). Because (1/4){,*E,, (&2 — {y)* > 0 by the def-
inition of the parameter spaces ®* and &*, the same argument as used above to
show that J (vy,) is p.d. also shows that I (vy,) is p.d. Hence, Assumption D3(ii)
holds.

10.3.9. ARMA Example: Verification of Assumptions V1 and V2
Assumption V1(i) (for scalar 8) holds with

(10.57)  J(6; v)

0 2
=Diag{§1Ey0 (Z Wth—j—l) 5 (252)717
j=0
00 2
{Ey, (ZJ'W“erl) }
j=0
o 00 0 01
+ (g—lE70 (Z wa,,]> kak-ly,“) X [0 0 0}

=0 k=0 1 00

by the same type of argument as used to verify Assumption B3(i). Assump-
tion V1(i) (for scalar B) holds with 1/ (8; y,) defined just as J(6; y,) is defined,
but with

o 2 2
(10.58) (4¢)7'E,, ((Y -8y wa[j1> — g)

j=0

in place of (2¢%)7!, by the same type of argument as used to verify Assump-
tion B3(i). This argument requires the additional condition E,|¢, ¥ < K in
the definition of @ in (6.2).

Assumption V1(ii) holds by the functional forms of J(6; v,) and V' (6; o).

Next, we verify Assumption V1(iii). By definition, 3(; vy) = J (i, m;
vo)V (o, 5 v0)J 1 (o, 75 o). Because the matrices J(0; v,) and V' (0; ) are
block diagonal between the parameters (B, 7) and ¢, and these matrices are
equal when their second rows and columns are deleted, it suffices to show that
(i) Assumption V1(iii) holds for 3(m; y,) replaced by J=! (i, m; vo) with its
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second row and column deleted, which we call A~!(r), and (ii) the (2, 2) el-
ement of 3(; vy), call it 3 (7; vy), is in (0, 0o) for all 7 € IT. When B, =0,
we have

o0 /

Zﬁth,j,l Zﬁthfjfl

(10.59) A(m) =L 'Ey | 7 o
Yoim Yo || Do i Y
j=0 Jj=0

oo o0
LD IEe
_ j=0 j=0
oo oo
Z]-Trzj—l Zj27T2(j—1)
j=0 j=0

where the first equality holds by (10.57) and the second equality holds because
Y, = &, under vy, when By = 0, which is the case in Assumption V1(iii). We have
|A(7)|| < oo because |7| < 1 Var € I1. In addition, det(A (7)) > 0 because

o0 2 o0 o0
10.60 i) < wH 22U Voell
(10.60) |>"J j

=0 =0 =0

by the Cauchy-Schwarz inequality. This implies Ayi(A~'(7)) > 0 and
Amax(A71(ar)) < 00 Var € II. Next, when By = 0, using (10.57) and (10.58),
we have 35, (7; y0) = (24 (445 ' E, (Y7 — £0)*(245) = LG Ey, (&7 — £o)?, which
lies in (0, c0) because ¢, = Var(e,) > 0 and E, &} < co. This completes the
verification of Assumption V1(iii).

Assumption V1(i) and (ii) hold not only under {vy,} € I'(yo, 0, b), but also
under {vy,} € I'(yy, 00, wg). This and /6\,1 —, 0y under {y,} € I'(y, 00, wy),
which holds by Lemma 3.3, imply that Assumption V2 holds.

10.3.10. ARMA Example: Verification of Assumptions RQ and RQ3

Assumptions RQ2(ii) and RQ3 hold with s(7y,) =7, = 1 in the ARMA(1, 1)
example for restrictions r(6) that only involve the parameters (3, ) because
(i) V(7o) and J(vy,) are block diagonal between the parameters (3, 7) and ¢,
where { is the innovation variance, and (ii) the blocks of V' (vyy) and J(vy,) that
correspond to (B, ) are equal whether or not the innovations are normally
distributed. (In contrast, the blocks corresponding to ¢ are equal under nor-
mality, but not for more general error distributions.)
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10.4. Proof of the ARMA Initial Conditions Lemma

PROOF OF LEMMA 10.1: To prove part (a), we write

(10.61)  2£.0,°(0) = 24,1077 (0) — Q. (6)]

n

n™ Y [(A, =B’ — 4]

t=1

=

=|n"' Y [-24,B,+ B]]

t=1

n 12 n 172 n
< 2(11_1 ZA?) (n_l ZB?) +n! ZB,Z,
i=1 i=1 i=1

where

t—1
(10.62) A,=A,(0)=Y,—BY @'Y, and

j=0

B=B(0)=B) m'Yi .

i=t

Hence, to show part (), it suffices to show that under {vy,} € I'(yy) Vyo € ',

(10.63) supn‘lez(O) 0,(1) and supn” ZBZ(H)_OP(I)

0O =1 0O =1

To show (10.63), we have

n o0 2
(10.64) n_IZBZ(G) B*n *Z(Zaﬂc“)

t=1 t=1

(e )

k=l

<n_1BuZ ZtZZ”Hk i-1Y_ral,

j=0 k=0
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where the second equality holds by change of variables with k = j — ¢, By =
max{py — 7, my — pr}, and 7, = max{|m, |, |7y|}. Using (10.64), we obtain

(10.65) E, supn™' > B}O)<n”'BLY a2y > @“E, Y] >0,
00 =1 =1 j=0 k=0
where the inequality uses E,,|Y_; ;Y ;1| <sup, , E, Y} < C < oo by the

Cauchy-Schwarz inequality and stationarity.
Next, we have

(10.66) E, supn™' Y AX(0)
0O =1

S Sup E%t Sup A%(H)

>1 0O

-1 2
S 2sup E'Yn Yt2 + 2 Sup EYn Sup (B Z Wj)’t‘f-l)

t>1 t>1 0O =0

<2supkE,, Y}

n,t>1

+285 ) Y al™ sup E, |V Y] < oo

j=0 k=0 n,t>1,j,k>0

This completes the proof of part (a).
Next, we establish part (b). By (10.61) and (10.62),

(1067) Al(lp(],n, 7T) == Yt; Bt(¢0,n7 77) = Oa and ch(lpo,m 77) =0.
Hence, for part (b), it suffices to show that

2 IC
(10.68) sup sup |a, (va) O (i, )| _
ell wew(my - nl<sn (L+ 1@ () (Y — o)1)

0,(1)

for all constants 8, — 0. The Lh.s. of (10.68) is less than or equal to

(10.69) sup [nQ(0) =o0,(1),

0€0:|B|<o

where the equality holds by (10.61) and (10.64)-(10.66) because (10.64) and
(10.65) hold with By replaced by 8, and 6, — 0.
Last, we establish part (c). It suffices to show that

(10.70)  sup |Q'°(0) — Q'°(0,)| = 0,(n")

00, (8,)
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for all 8, — 0, where 0,(6,) ={0€ O: |y — .|| <8,|B, and |7 — m,| < b,}.
Let 4,,= A,(6,) and B, ,, = B,(6,).
First, suppose ¢ = ¢,,. Then, using (10.61), we have

(10.71)  2£.105°(6) — O, (6,

n

n™' Y [—2A4B,+2A,,B,,+ B} — B} ]

t=1

=

=

n' Y [-2A4,(B.— B.) —2(A, — A,)B,, + B — B,

t=1

<207 Y | A 1B = Bial +2n7' Y 1A, — Apul - 1Byl

=1 t=1

+{n' > (BB,
t=1

where the first inequality uses { = ..
To bound the first two terms on the r.h.s. of (10.71), we have

(10.72)  sup |AO) <|Yil+ By Yl 1Yl

00, (5n) =0

t—1 t—1

A(0) = A(0)=—(B—B)Y T =B, (7 —m)Y 4,

j=0 j=0

sup |A4,(0) — A,(6,)]

0€6,(8n)

<IB=Bul Y Yl 4+ Bu Yl — ] |Vl

j=0 j=0

<8,8u Y [+ jml Yl

j=1
where the last inequality holds by mean-value expansions of 7/ around 7/ for

]Z 1 and T = ma-x{le" |7TU|}5 and

(10.73) B()=B) #'Y_ =) =Y i,

j=t k=0
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|B:(6) — B,(6,)]

<|[(B=B0Y 7Y+ By (m =Y,

k=0 k=0

<8,Bu Y Y il + | — mil B Y (¢ + k)T Yl

k=0 k=0

sup |B,(0) — Bi(0,)| < 8,Bul Y [k + (t+ k)mi Y 4],

0€0,(5n) k=0

where the second equality holds by change of variables and the second inequal-
ity holds by mean-value expansions of 7% around 7'+ for k > 0.

Using (10.72) and (10.73), we have the following bound on the expectation
of the supremum over 6 € 0,(3,) of the first term on the r.h.s. of (10.71):

(10.74) 2E,, sup n') |A(0)]-|B,(6) — Bi(6,)|

) E——

<2178,y " wl Y [mh + Bu(t+ k)mE,, V.Y ]

t=1 k=0

+2n7'8,Bu Yy my Yy wl Y [k 4 But+ kymi
=1 j=0

k=0
X Ey Yo Yo = o(n™),

using E,,|Y, ;1Y 44| <sup,_, E, Y} < C < oo and m, € (0,1). By Markov’s
inequality, (10.74) implies that the Lh.s. quantity with E,, deleted is 0,(n™"),
as desired.

Similarly, using (10.72) and (10.73), we have the following bound on the
expectation of the supremum over 6 € ,(5,) of the second term on the r.h.s.
of (10.71):

(10.75) E,, sup n™'» | A,(0) — A,(6,)] - |B.(6,)]

0€0p(5n) =1

o0 o0 [e ]
15 2 ¢ jo il k
<n 8,,,8UE 7T+E [7, 4+ jmy ]E T
=1 j=1 k=0

x sup E,|Y, Y, |=o0o(n").

n,t>1,j,k>0

Hence, the Lh.s. of (10.75) with E,, deleted is 0,(n™").
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Next, we consider the third term on the r.h.s. of (10.71):

(10.76) n™' Y (B} (6) — B}(6,))

t=1

n o0 2
=pBn"! Z (Z 'tk Yk1> - ,3271_1 Z (Z 7Tt+kY k- 1)
k_

— (B~ B’ Z(Z Y, )

t=1

B, ’iZDfW mIYY Y

t=1 j=0 k=0

The supremum over 0 € 0,(5,) of the absolute value of the first term on
the r.h.s. of (10.76) is O,(sup,.e, s, 18> — Brln™") = 0,(n™") by calculations
analogous to those in (10.64) and (10.65). The expectation of the supremum
over 0 € 0,(8,) of the absolute value of the second term on the r.h.s. of (10.76)
is bounded by

(10.77) B3 *1222 sup |7 HTE — itk Lsup E, Y2 = o(n7h).

=1 j=0 k=0 |7~ 7nl=dn nz1

The equality in (10.77) holds because

[o ] o0 o0
(10.78) ZZZ sup |mr' Ik — itk
=1 j=0 k=0 |7=7nl=on
o0 oo o0

< sup |m—m|Y D> > (t+j+kaT =01,

7= <8n =1 j=0 k=0

where the inequality holds by mean-value expansions of 7/*/*% around #/*+/**
for t > 1, j, k > 0 and the equality holds because 7, € (0, 1). Equation (10.77)
implies that the supremum over 6 € @,(5,) of the absolute value of the second
term on the r.h.s. of (10.76) is o p(n”). Hence, we conclude that the supremum
over 6 € 0,(5,) of the absolute value of the L.h.s. of (10.76), which is the third
summand in (10.71),is 0,(n7").

This completes the verification of (10.70) for the case where { = ¢,.

Last, we consider the case where ¢ # £,. We have

(10.79)  1Q€(6) — O (8,)] = |0°(6) — O (B,, £, )]
+ |Q£C(Bn’ g, 7Tn) - QE,C(Bna grn 7Tn)|
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The proof of part (c) for the case where ¢ = ¢, gives SUDyeo, (5, |QLC(6) —
O'(B,, ¢, m,)| = 0,(n~1). It remains to show

(1080) sup |QLC(BM 57 7Tn) - Q}zc(ﬁna gna 7Tn)| = Op(n_l)-

0€0,(8,)

We have

(10.81) QX (Bus & m) = Qu(Bus &, ™) — O (Bus &5 )

2
1 n 00 . 1 n
= in_l <8t + ﬁn E W;lejl) - 2_571_1 . £l2

t=1 Jj=t

1 n o0
=—n' Y e ) m Yo
g =1 k=0
2
<,3n Z ,n_t+kY )
5 p

The quantity Q'°(B.,, ¢, m,) is the same, but with ¢, in place of {. Hence,

(1082) |QIC(Bm g’ 7Tn) - QIC(BM gn’ 7Tn)|

< |§ il _128anZ7T,t,+kY7k71
¢dn =1 k=0
2
|{ — &al ! = ey
+ 255 ;(Bng'ﬂn —k—l) .

We have

(10.83) E,, sup

9€@n(5n)

n Z&&ZW’”‘Y k1

<n*1BUZZw'+k sup E,,|&,Y 4 q|=0(n™),

=1 k=0 n=1,k=0
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where 7, = max{|m.|, |my|} and

n o0 2
(10.84) E,n'>" (Bn PREAR Y“)
k=0

t=1

o0 o0 [o ]
-1 22:}:}: 1+ _t+k -1
<n BU Ty, sup Eyn|Y7j71Y7k71| = O(I’l )
=1 j=0 k=0 nzl,jik=z0

Equations (10.83) and (10.84) and Markov’s inequality, coupled with (10.82)
and sup,.g ., |{ — &l < 8, = o(1), establish (10.80), which completes the
proof of part (c). Q.E.D.

11. SUPPLEMENTAL APPENDIX D: ARMA(1, 1) NUMERICAL RESULTS

This appendix provides (i) a table containing the constants c.*,_(v), 4;(v),
and A,(v) that are used to compute the type 2 NI robust critical values that
are used to construct CI’s for the MA and AR CI’s, (ii) details concerning the

ARMAC(1, 1) simulation computations, and (iii) additional numerical results.

11.1. Table of Constants for Type 2 Robust CI'’s With NI Critical Values

Table S-I provides the c%lfl_a(v), A;(v), and A,(v) values necessary to com-
pute the type 2 NI robust critical values for the |¢| and QLR test statistics for
computing CI’s for the MA and AR parameters. These CI’s employ the unre-
stricted ICS A,,. (The same values apply to both the MA and AR parameters.)
In this case, v denotes the null hypothesis value of 7 (or p), which we denote
by my, (or py,) in the table. For 7y, (or py,) values between those given in
Table S-1, linear interpolation can be used.

11.2. Simulation Details

To achieve an approximately stationary startup, the first innovation is set
equal to 0 and the first 200 realizations of the process are discarded. For pur-
poses of speed, matrix/vector calculations are employed to compute the time
series Y, and the log likelihood. In these calculations, lags are truncated at 100.

The Matlab function finincon is used in all cases where optimization is re-
quired. When the optimization is in more than one dimension, such as with
the finite-sample unconstrained optimization, six independent random start-
ing values are used. The random starting values are uniformly distributed in the
parameter space of the parameters. When the optimization is one dimensional,
such as with the asymptotic results and with the finite-sample constrained op-
timization, the starting value for the fmincon function is obtained by a grid
search. In all cases, the grids divide the optimization parameter space into 50
intervals of equal length.
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TABLE S-1

NI-LF CRITICAL VALUES AND VALUES OF A (7y,) AND As(7y,) FOR SIZE CORRECTION IN
THE ARMA(1, 1) MODEL

1] THy/PH 000 005 010 015 020 025 030 035 0.40 0.45 0.50

Cll;ll:‘o‘gs(ﬂyo) 6.43 643 643 643 657 681 7.09 739 7.69 8.01 831
Ay(7h,) 122 121 119 112 090 064 032 022 020 0.19 0.20
A (7h,) 0.06 0.06 0.06 0.06 0.06 0.07 0.07 006 0.05 0.06 0.06

THy/PH, 055 0.60 0.625 0.65 0.675 070 0725 075 0.775 0.80 0.825

clL[fo‘gs(wHU) 8.62 894 9.09 924 940 955 9.70 9.86 10.01 10.17 10.25
Ay (7h,) 021 022 022 023 024 025 025 026 026 027 0.26
A (7h,) 0.05 003 0.02 003 0.03 003 0.03 002 002 002 001

QLR THy/PH 000 005 010 015 020 025 030 035 0.40 0.45 0.50

A oos(mny) 430 431 432 432 433 432 431 430 429 428 425
A(my,) 060 062 071 073 076 081 082 077 0.68 064 055
Ay(my,) 008 008 008 009 010 010 008 009 009 009 0.09

THy/PH 055 0.60 0.625 0.65 0675 070 0725 0.75 0.775 0.80 0.825

S oos(mmy) 421 413 408 407 409 412 416 422 429 436 4.37
A(my) 057 055 054 045 029 048 007 009 011 012 012
Ay(my) 006 004 004 003 004 004 004 002 001 000 0.00

For the finite-sample and asymptotic results for both the MA and AR param-
eters, the constrained and unconstrained criterion functions often are found to
have multiple local minima for small values of |b|. Hence, the grid search and
multiple starting values are useful.

In all figures concerning the MA parameter # for which the x axis is b or |b|,
such as Figures 4, 6, and 7 of ACI, the discrete values of b for which compu-
tations are made run from 0 to —20 (although only values from 0 to —15 are
reported), with a grid of 0.1 for b between 0 and —35, a grid of 0.2 for b between
—5 and —10, and a grid of 1 for b between —10 and —20. For the analogous fig-
ures concerning the AR parameter p, the same grids are used but the b values
are nonnegative.

For the finite-sample simulations concerning the MA parameter, for each
b, the true value of B is B, = —b/+/n and the AR parameter is p, = m +
B, = m — b//n. The value of b is restricted such that p, belongs to its true
parameter space, that is, p, € [—0.85, 0.85]. Note that the b values are negative.
Positive values of b also could be considered, but if m is positive, then the
range of positive b values is more restricted (by the requirement that p, €
[—0.85, 0.85]) than the range of negative b values.

For the finite-sample simulations concerning the AR parameter, for each b,
the true value of B is B, = b/+/n and the MA parameter is 7, = pg — B, = 7 —
b/«/n. The value of b is restricted such that m, belongs to its true parameter
space, that is, 7, € [—0.8, 0.8].
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In Figure 1 of AC1 and Figures S-1 and S-2 below, the asymptotic den-
sity of the ML estimator of the MA parameter 7 is given by 7*(yy, D)
(= argmin,y &(7; 9, b)) for b =0, —2, —4, and —12. Similarly, in Figures S-
11-S-13 below, the asymptotic density of the ML estimator of the AR parame-
ter p = w+ B is given by 7 (yy, b) for b =0, 2, 4, and 12 (because its asymptotic
distribution is the same as that of the MA parameter when |b| < 00).

In Figure 2 of AC1, the asymptotic density of the ML estimator of 8 centered
at the true value is equal to the first element of 7(7* (7o, b); yo, b) divided by
n'/2 with n = 250, so that it has the same scale as the finite-sample (n = 250) es-
timator. In this ARMA example, the first element of 7(7* (v, b); vo, b) equals

(11.1) —(1—772)<Z7Tij—(1—77077)_1b> +b.

j=0

Figures that give densities for the estimators of 7 and p are constructed
using histograms with 40 bins. Figures that give densities for the estimator of 3
and for the test statistics use 100 bins. The areas under the histograms equal 1.

When determining « for use with the robust CI’s, we compute FCP’s using
n=500.

11.3. Additional Simulation Results

In this section, we provide additional numerical results to those given in
ACI1. Figures S-1-S-9 provide results analogous to those in ACI, but for
7 = 0.0 and 0.7, rather than 7 = 0.4. Figure S-10 gives asymptotic 0.95 quantile

Asy, b=0 Asy, b=-2 Asy, b=-4 Asy, b=-12
6 6 6 6
4 4 4 4
2 2 2 2
0 0 J-‘i 0 A_A.L 0
-1 0 1 A1 0 1 -1 0 1 A1 0 1
n=250, b=0 n=250, b=-2 n=250, b=-4 n=250, b=-12
6 6 6 6
4 4 4 4
2 2 2 2

-1 0 1 -1 0 1 - 0 1 -1 0 1

FIGURE S-1.—Asymptotic and finite-sample (n = 250) densities of the estimator of the MA
parameter 7 in the ARMA(1, 1) model when 7y = 0.
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Asy, b=0 Asy, b=-2 Asy, b=-4 Asy, b=-12

10 10 10 10

5 L J 5 5 5

0 I I 1

-1 0 1 - 0 1 -1 0 1 -1 0 1

n=250, b=0 n=250, b=-2 n=250, b=-4 n=250, b=-12

10 10 10 10

5 | J 5 5 5

-1 0 1 -1 0 1 -1 0 1 - 0 1

FIGURE S-2.—Asymptotic and finite-sample (n = 250) densities of the estimator of the MA
parameter 7 in the ARMA(1, 1) model when 7, =0.7.

graphs for the || and QLR statistics for tests concerning 3. Figures S-11-S-25
provide figures for the AR parameter p that are analogous to the figures given
for the MA parameter .

Asy, b=0 Asy, b=-2 Asy, b=-4 Asy, b=-12
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 0 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10
n=250, b=0 n=250, b=-2 n=250, b=-4 n=250, b=-12
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0 ) 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10

FIGURE S-3.—Asymptotic and finite-sample (n = 250) densities of the ¢ statistic for the MA
parameter 7 in the ARMA(1, 1) model when 7y = 0 and the standard normal density (black
line).
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Asy, b=0 Asy, b=-2 Asy, b=-4 Asy, b=-12
0.4 0.4 0.4 0.4
0.2 ﬂ 0.2 0.2 0.2
0 0 0 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10
n=250, b=0 n=250, b=-2 n=250, b=-4 n=250, b=-12
0.4 0.4 0.4 0.4
0.2 ﬂ 0.2 0.2 0.2
0 0 0 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10

FIGURE S-4.—Asymptotic and finite-sample (n = 250) densities of the ¢ statistic for the MA
parameter 7 in the ARMA(1, 1) model when 7y = 0.7 and the standard normal density (black
line).

Asy, b=0 Asy, b= Asy, b= Asy, b=-12
n=250, b=0 n=250, b= n=250, b= n=250, b=-12

FIGURE S-5.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
MA parameter 7 in the ARMA(1, 1) model when m, = 0 and the x? density (black line).
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Asy, b=0 Asy, b=-2 Asy, b=-4 Asy, b=-12

2 2 2 2

1 1 1 1

0 > 0 0 0 :
0 5 0 5 0 5 0 5

n=250, b=0 n=250, b=-2 n=250, b=-4 n=250, b=-12

27 27 27 27

1 1 1 1

0 0 0 0 :
0 5 0 5 0 5 0 5

FIGURE S-6.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
MA parameter 7 in the ARMA(1, 1) model when 7y = 0.7 and the X% density (black line).

(a) Standard Itl ClI (b) Standard QLR ClI

Asy
= = =n=500
098 | i n=250|1
....... n=100
0.961-
0.941-
0.92t-
0.9 : :
0 -5 -10 -15

FIGURE S-7.—Coverage probabilities of standard |¢| and QLR CI’s for the MA parameter 7
in the ARMA(1, 1) model when 7y = 0.4.
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(a) Standard Itl CI

D. W. K. ANDREWS AND X. CHENG

(b) Standard QLR CI

0.98¢-

0.96("

0.94( -

0.92

0.9

-15

FIGURE S-8.—Coverage probabilities of standard |¢| and QLR CI’s for the MA parameter 7

in the ARMA(1, 1) model when 7y =0.7.

(a) Robust It CI

1 ....
K e S Asy
\. % |===n=500
0.98 : ¢ W= n=250
'.’.’ )\ N I, n=100
J NN :
0.96p : \\“ L
0.94} N S ~<s o
o
0.92} - N
0o | eeeeeaeeent
0 -5 -10 -15

(b) Robust QLR Cl

1
Asy
= = =n=500
0.98r e n=250
veeen L |t n=100
0.96 ’Q,' 'o,.".' R | R
Q"""—_M— ....... =
0.94r - :
0.92F -
0.9 : :
0 -5 -10 -15
b

FIGURE S-9.—Coverage probabilities of robust |¢| and QLR CI’s for the MA parameter 7 in
the ARMA(1, 1) model when 7y = 0.7, k = 1.5, and s(x) = exp(—x/2).
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Itl forp

1.5

FIGURE S-10.—Asymptotic 0.95 quantiles of the |#| and QLR statistics for tests concerning 8
in the ARMAC(1, 1) model.

QLR forp

Asy, b=0 Asy, b=2 Asy, b=4
6 6 6 6
4 4 4 4
2 2 2 2
0 0 J-‘-I_ 0 <._L_.> 0
-1 0 1 -1 0 1 -1 0 1 -1
n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12
6 6 6 6
4 4 4 4
2 2 2 2
0 L-J_ 0 _-m_ 0 __L 0
-1 0 1 -1 0 1 1 0 1 -1

FIGURE S-11.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR

parameter p in the ARMA(1, 1) model when py = 0.
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Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12
6 6 6 6
4 4 4 4
2 2 | 2 . 2
0 0 0 0
-1 0 1 -1 0 1 1 0 1 -1 0 1
n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12
6 6 6 6
4 4 4 4
2 2 2 2
0 _L_—J_ 0 J.l_‘_ 0 _J. 0
-1 0 1 1 0 1 1 0 1 -1 0 1

FIGURE S-12.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR
parameter p in the ARMA(1, 1) model when p, =0.4.

Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12

20 20 20 20

10 10 10 10

-1 0 1 A1 0 1 A1 0 1 1 0 1

n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12

20 20 20 20

10 10 10 10

0 Uit et | 0 J, 0 —J_ 0 4

-1 0 1 - 0 1 - 0 1 - 0 1

FIGURE S-13.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR
parameter p in the ARMA(1, 1) model when py =0.8.
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Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12
0.4 0.4 0.4 0.4
0.2 m 0.2 ﬁ 0.2 ‘ 0.2
0 0 0 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10
n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12
0.4 0.4 0.4 0.4
0.2 m 0.2 ﬂ 0.2 l 0.2
0 0 L o 0
-10 0 10 -10 0 10 -10 0 10 -10 0 10

FIGURE S-14.—Asymptotic and finite-sample (n = 250) densities of the ¢ statistic for the AR
parameter p in the ARMA(1, 1) model when py = 0 and the standard normal density (black line).

Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12

0.4 0.4 0.4 0.4
0.2 ﬂi 0.2 ‘I 0.2 0.2

0 S5 0 0

-10 0 10 -10 0 10 -10 0 10 -10 0 10

n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12

0.4 0.4 0.4 0.4
0.2 4i 0.2 ﬁ 0.2 0.2

0 * 0¢ 0 0

-10 0 10 -10 0 10 -10 0 10 -10 0 10

FIGURE S-15.—Asymptotic and finite-sample (n = 250) densities of the ¢ statistic for the AR
parameter p in the ARMAC(1, 1) model when p, = 0.4 and the standard normal density (black
line).
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Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12

0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2

0 0 0 0

-10 0 10 -10 0 10 -10 0 10 -10 0 10

n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12

0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2

0 0 0 0

-10 0 10 -10 0 10 -10 0 10 -10 0 10

FIGURE S-16.—Asymptotic and finite-sample (n = 250) densities of the ¢ statistic for the AR
parameter p in the ARMA(1, 1) model when p, = 0.8 and the standard normal density (black
line).

Asy, b=0 Asy, b=2 Asy, b=4 Asy, b=12
n=250, b=0 n=250, b=2 n=250, b=4 n=250, b=12

LLLL

FIGURE S-17.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
AR parameter p in the ARMA(1, 1) model when py =0 and the x? density (black line).
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FIGURE S-18.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
AR parameter p in the ARMA(1, 1) model when py = 0.4 and the X% density (black line).
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FIGURE S-19.—Asymptotic and finite-sample (rn = 250) densities of the QLR statistic for the
AR parameter p in the ARMA(1, 1) model when p, = 0.8 and the x7 density (black line).
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(a) Standard Itl CI (b) Standard QLR ClI
1 ‘ 1 ‘
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FIGURE S-20.—Coverage probabilities of standard |¢| and QLR CI’s for the AR parameter p
in the ARMA(1, 1) model when py = 0.
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FIGURE S-21.—Coverage probabilities of standard |¢| and QLR CI’s for the AR parameter p
in the ARMA(1, 1) model when py, = 0.4.
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(a) Standard Itl CI (b) Standard QLR ClI
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FIGURE S-22.—Coverage probabilities of standard |¢| and QLR CI’s for the AR parameter p
in the ARMA(1, 1) model when py =0.8.
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FIGURE S-23.—Coverage probabilities of robust |¢| and QLR CI’s for the AR parameter p in
the ARMA(1, 1) model when py =0, k = 1.5, and s(x) = exp(—x/2).
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(b) Robust QLR Cl
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FIGURE S-24.—Coverage probabilities of robust |¢| and QLR CI’s for the AR parameter p in
the ARMA(1, 1) model when py = 0.4, k = 1.5, and s(x) = exp(—x/2).
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FIGURE S-25.—Coverage probabilities of robust |¢| and QLR CI’s for the AR parameter p in
the ARMA(1, 1) model when py = 0.8, k = 1.5, and s(x) = exp(—x/2).
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TABLE S-11

ASYMPTOTIC COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% STANDARD
CI'S FOR 7 AND p IN THE ARMAC(1, 1) MODEL

70/P0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Asy Size

2] 0523 0527 0534 0552 0578  0.612  0.642 0.643 0.627  0.523
QLR 0935 0933 0933 0934 0935 0936 0940 0941 0.933 0.933

Tables S-1I to S-X provide (i) asymptotic and finite-sample coverage proba-
bilities for |¢| and QLR CI’s for 7 and p and (ii) FCP results for NI-LF and
type 2 robust CI’s for 7r and p.

Table S-1I provides the minimum over b asymptotic CP’s for 7 for a range
of true m, values. It shows that the asymptotic size of the |¢| CI for 7 is 0.523.7
Table S-1I also shows that the undercoverage of the standard QLR CI for 7
is much less severe than for the |¢| CI. It shows that the asymptotic size of the
nominal 95% standard QLR CI for 7 is 0.933. The results of Table S-1I also
apply to CI’s for p.

Table S-III provides a summary of the finite-sample (n = 250) CP’s of the
CI’s for both 7 and p based on critical values that are standard (normal or
x1), NI-LE and type 2 robust (using NI critical values and ICS statistic A,,).
The standard |¢| CI’s undercover considerably. The standard QLR CI’s only
undercover by a small amount. The NI-LF |¢| CI’s overcover by a small amount.

TABLE S-111

FINITE-SAMPLE COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% CI'S FOR 7
AND p IN THE ARMA(1, 1) MODEL, n = 250

l] QLR
Std LF Rob Std LF Rob
MA m=0.0 0.569 0.965 0.952 0.937 0.951 0.951
= 0.4 0.613 0.961 0.943 0.937 0.953 0.951
m=0.7 0.673 0.962 0.930 0.944 0.953 0.946
AR po=0.0 0.573 0.967 0.955 0.937 0.952 0.950
po=0.4 0.632 0.966 0.953 0.939 0.954 0.953
po=0.8 0.660 0.965 0.952 0.936 0.954 0.950

>This is based on a grid of 1y values with grid size 0.05 for || < 0.60 and grid size 0.025 for
0.625 < |my| < 0.825.
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TABLE S-1IV

FINITE-SAMPLE COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% CI’S FOR 7
AND p IN THE ARMAC(1, 1) MODEL, n = 100, 500

7] QLR
Std LF Rob Std LF Rob

n =100
MA m =0.0 0.572 0.970 0.956 0.936 0.950 0.950
m=0.4 0.630 0.971 0.933 0.935 0.951 0.948
m=0.7 0.678 0.972 0.903 0.944 0.953 0.946
AR po=0.0 0.589 0.982 0.974 0.938 0.954 0.953
po=0.4 0.651 0.982 0.957 0.938 0.953 0.952
po=0.8 0.661 0.982 0.952 0.929 0.947 0.946

n=>500
MA m =0.0 0.565 0.956 0.951 0.935 0.951 0.951
= 0.4 0.613 0.958 0.946 0.937 0.952 0.951
m=0.7 0.676 0.959 0.937 0.944 0.953 0.947
AR po=0.0 0.567 0.965 0.953 0.938 0.952 0.953
po=0.4 0.619 0.962 0.955 0.937 0.952 0.953
po=0.8 0.662 0.961 0.953 0.936 0.952 0.950

The type 2 robust |¢| CI’s are close to 0.95 except for some undercoverage for
7r when 7y = 0.4 and 0.7. The NI-LF and type 2 robust QLR CI’s are quite
close to 0.95.

Table S-IV provides analogous results to Table S-III, but for » = 100 and
500. The results for the standard CI’s are very similar to those in Table S-111.
The discrepancies between the CP’s and 0.95 for the NI-LF and type 2 robust
|t| CI's are magnified for » = 100 and lessened for n = 500. The CP’s for the
NI-LF and type 2 robust QLR CI’s are quite close to 0.95 for » = 100 and 500.

Table S-V provides finite-sample FCP results for the NI-LF and type 2 ro-
bust CI’s for the MA parameter 7 for n = 500.” Table S-V shows that the |¢|
statistic combined with the NI-LF critical value yields a CI whose FCP’s are
very high—close to 1.0 for most values of b and . This illustrates the poor
performance of NI-LF critical values when a substantial amount of size cor-
rection is required. The NI-LF critical value performs much better in terms of
FCP’s when combined with the QLR statistic (because much less size correc-

The true values considered are m, = 0.0, 0.4, and 0.7 and b = —2, —5, —10, and —oo. The
null values 7, are provided in the table. They are selected so that the robust QLR CI has FCP
close to 0.50 for those cases where that is possible. When b = 0 or |b| is small, all CI's have FCP
greater than 0.50 for all values of 7y, in the parameter space.
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TABLE S-V

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF 95% LEAST FAVORABLE AND ROBUST |¢|
AND QLR CI'S FOR THE MA PARAMETER 7 IN THE ARMA(1, 1) MODEL, n = 500

7y =0.0 7y =0.4 y =0.7
b -2 -5 -10 —o0 -2 -5 -10  -o0 -2 -5 -10 -0
TH 0.800 0.410 0.200 0.048 0.000 0.010 0.205 0290 0.000 0460 0.570 0.615 Avg

||
LF 097 100 1.00 1.00 093 09 1.00 1.00 0.76 0.99 1.00 1.00 0.97
Rob 095 078 056 090 091 0.64 049 049 0.68 057 044 044 0.65

QLR
LF 068 051 055 052 088 052 055 055 059 053 054 053 058
Rob 0.67 050 051 049 089 050 051 051 062 051 051 051 0.56

tion is needed). The type 2 robust critical values work quite well in terms of
FCP’s with both the |¢| and QLR statistics. Overall, the type 2 robust QLR CI
performs best, followed closely by the NI-LF QLR CI, followed by the type 2
robust |¢| CI.

Analogous results to those in Table S-V, but for the AR parameter p, are
provided in Table S-VI. Most of the results are quite similar.

Tables S-VII-S-X provide finite-sample false coverage probabilities of robust
|t| and QLR CI’s for 7r and p for a range of values of x in the ARMA(1, 1)
model with n = 500.

TABLE S-VI

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF 95% LEAST FAVORABLE AND ROBUST
(WITH k = 1.5) |t| AND QLR CI'S FOR THE AR PARAMETER p IN THE ARMA(1, 1) MODEL,

n =500
po=0.0 po=04 po=0.8
b 2 5 10 00 2 5 10 00 2 5 10 00
PH, 0.800 0.400 0.200 0.110 0.000 0.000 0.200 0.287 0.200 0.625 0.700 0.730 Avg

||
LF 097 099 100 100 094 097 100 1.00 0.69 1.00 1.00 1.00 0.96
Rob 093 0.77 054 056 093 0.65 049 050 058 057 045 047 0.62

QLR
LF 066 052 053 053 088 052 054 054 048 049 051 052 056
Rob 0.65 050 050 049 0.89 050 050 050 051 048 049 049 0.54




TABLE S-VII

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST |¢| CI’S FOR THE MA PARAMETER 71 FOR DIFFERENT VALUES OF k IN THE
ARMAC(1, 1) MODEL, n = 500

9 =0.0 7y =0.4 7y =0.7

b -2 -5 -10 —00 -2 -5 —-10 —00 -2 -5 —-10 —00

TH, 0.800 0.740 0.220 0.110 0.000 0.000 0.210 0.293 0.000 0.410 0.580 0.623 Avg

LF 0.968 0.994 1.000 1.000 0.928 0.957 0.997 1.000 0.760 0.958 1.000 1.000 0.964

K
0.00 0.944 0.395 0.483 0.490 0.912 0.628 0.506 0.512 0.682 0.433 0.491 0.504 0.582
0.50 0.944 0.395 0.483 0.490 0.912 0.628 0.506 0.512 0.682 0.433 0.491 0.504 0.582
1.00 0.944 0.395 0.483 0.490 0.911 0.627 0.506 0.512 0.681 0.433 0.491 0.504 0.581
1.50 0.947 0.415 0.483 0.490 0.911 0.627 0.506 0.512 0.681 0.444 0.493 0.503 0.584
1.75 0.954 0.455 0.484 0.490 0.911 0.627 0.507 0.511 0.680 0.465 0.496 0.503 0.590
2.00 0.958 0.498 0.486 0.489 0.916 0.641 0.508 0.509 0.697 0.490 0.500 0.503 0.600
2.25 0.962 0.544 0.490 0.488 0.917 0.659 0.511 0.508 0.706 0.516 0.504 0.503 0.609
2.50 0.964 0.594 0.495 0.487 0.919 0.680 0.515 0.508 0.718 0.545 0.510 0.503 0.620
2.75 0.966 0.643 0.501 0.486 0.921 0.706 0.520 0.507 0.731 0.576 0.517 0.503 0.631
3.00 0.967 0.694 0.508 0.485 0.924 0.731 0.525 0.506 0.739 0.609 0.524 0.502 0.643
4.00 0.968 0.870 0.547 0.482 0.928 0.831 0.555 0.504 0.758 0.751 0.560 0.503 0.688
5.00 0.968 0.963 0.610 0.480 0.928 0.909 0.603 0.502 0.760 0.878 0.619 0.503 0.727
6.00 0.968 0.990 0.707 0.480 0.928 0.946 0.671 0.501 0.760 0.940 0.697 0.503 0.758
8.00 0.968 0.994 0.936 0.479 0.928 0.957 0.851 0.501 0.760 0.958 0.889 0.506 0.811

10.00 0.968 0.994 0.999 0.477 0.928 0.957 0.974 0.499 0.760 0.958 0.988 0.514 0.835
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TABLE S-VIII

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST QLR CI’S FOR THE MA PARAMETER 7w FOR DIFFERENT VALUES OF k IN THE
ARMA(1, 1) MODEL, n =500

7y =0.0 7y =0.4 my=0.7
b -2 -5 -10 —00 -2 -5 -10 —00 -2 -5 -10 —00
TH 0.800 0.410 0.200 0.048 0.000 0.010 0.205 0.290 0.000 0.460 0.570 0.615 Avg
LF 0.678 0.510 0.546 0.524 0.876 0.524 0.546 0.552 0.594 0.531 0.539 0.533 0.579
K
0.00 0.669 0.497 0.509 0.485 0.887 0.505 0.508 0.510 0.620 0.513 0.511 0.508 0.560
0.50 0.669 0.496 0.509 0.485 0.887 0.505 0.508 0.510 0.619 0.513 0.511 0.508 0.560
1.00 0.669 0.496 0.509 0.485 0.886 0.505 0.508 0.510 0.618 0.513 0.511 0.508 0.560
1.50 0.669 0.496 0.509 0.485 0.886 0.504 0.508 0.510 0.617 0.512 0.511 0.508 0.560
1.75 0.669 0.496 0.509 0.485 0.886 0.504 0.508 0.510 0.616 0.512 0.511 0.508 0.560
2.00 0.671 0.496 0.509 0.485 0.885 0.504 0.508 0.510 0.615 0.512 0.511 0.508 0.560
2.25 0.673 0.495 0.509 0.485 0.884 0.504 0.508 0.510 0.612 0.512 0.511 0.508 0.559
2.50 0.675 0.495 0.509 0.485 0.882 0.504 0.508 0.510 0.609 0.512 0.511 0.508 0.559
2.75 0.676 0.495 0.509 0.485 0.880 0.504 0.508 0.510 0.605 0.511 0.511 0.508 0.559
3.00 0.677 0.494 0.509 0.485 0.878 0.504 0.508 0.510 0.601 0.511 0.511 0.508 0.558
4.00 0.678 0.499 0.509 0.485 0.876 0.510 0.508 0.509 0.595 0.516 0.511 0.508 0.559
5.00 0.678 0.505 0.510 0.485 0.876 0.519 0.509 0.508 0.594 0.524 0.512 0.507 0.561
6.00 0.678 0.509 0.513 0.485 0.876 0.523 0.511 0.507 0.594 0.530 0.513 0.506 0.562
8.00 0.678 0.510 0.523 0.485 0.876 0.524 0.522 0.507 0.594 0.531 0.520 0.506 0.565
10.00 0.678 0.510 0.541 0.485 0.876 0.524 0.540 0.507 0.594 0.531 0.534 0.506 0.569
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TABLE S-IX

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST [¢| CI’'S FOR THE AR PARAMETER p FOR DIFFERENT VALUES OF « IN THE
ARMA(1, 1) MODEL, n =500

po=0.0 po =04 po=038

b 2 5 10 [ 2 5 10 00 2 5 10 [}

PH, 0.800 0.725 0.212 0.117 0.000 0.000 0.200 0.287 0.075 0.595 0.705 0.735 Avg

LF 0.967 0.990 1.000 1.000 0.942 0.973 0.999 1.000 0.588 0.995 1.000 1.000 0.955

K
0.00 0.925 0.400 0.495 0.504 0.932 0.656 0.492 0.497 0.501 0.445 0.482 0.517 0.573
0.50 0.925 0.399 0.495 0.504 0.932 0.656 0.492 0.497 0.501 0.445 0.482 0.517 0.572
1.00 0.925 0.399 0.495 0.504 0.932 0.655 0.492 0.497 0.501 0.445 0.482 0.517 0.572
1.50 0.930 0.416 0.495 0.504 0.930 0.655 0.492 0.497 0.500 0.457 0.484 0.517 0.575
1.75 0.941 0.454 0.496 0.504 0.926 0.655 0.493 0.496 0.498 0.476 0.487 0.517 0.581
2.00 0.948 0.496 0.497 0.503 0.929 0.670 0.494 0.495 0.506 0.503 0.491 0.516 0.590
2.25 0.953 0.543 0.500 0.502 0.932 0.688 0.497 0.494 0.520 0.536 0.495 0.516 0.600
2.50 0.958 0.591 0.504 0.502 0.936 0.708 0.502 0.493 0.537 0.566 0.501 0.515 0.612
2.75 0.961 0.635 0.510 0.501 0.938 0.731 0.506 0.492 0.552 0.600 0.507 0.515 0.623
3.00 0.963 0.688 0.517 0.500 0.940 0.756 0.511 0.491 0.564 0.635 0.513 0.515 0.635
4.00 0.967 0.851 0.556 0.498 0.941 0.859 0.542 0.490 0.585 0.794 0.551 0.515 0.681
5.00 0.967 0.951 0.615 0.497 0.942 0.935 0.590 0.487 0.588 0.922 0.612 0.515 0.720
6.00 0.967 0.982 0.709 0.496 0.942 0.965 0.664 0.486 0.588 0.986 0.696 0.516 0.750
8.00 0.967 0.990 0.923 0.497 0.942 0.973 0.851 0.485 0.588 0.995 0.908 0.519 0.803

10.00 0.967 0.990 0.997 0.501 0.942 0.973 0.978 0.484 0.588 0.995 0.997 0.529 0.829
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TABLE S-X

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST QLR CI'S FOR THE AR PARAMETER p FOR DIFFERENT VALUES OF k IN THE
ARMAC(1, 1) MODEL, n =500

po=0.0 po=0.4 po=038

b 2 5 10 00 2 5 10 00 2 5 10 00

PH, 0.800 0.400 0.200 0.110 0.000 0.000 0.200 0.287 0.200 0.625 0.700 0.730 Avg

LF 0.662 0.517 0.533 0.535 0.883 0.520 0.538 0.537 0.477 0.489 0.511 0.518 0.560

K
0.00 0.654 0.504 0.497 0.494 0.896 0.504 0.501 0.501 0.513 0.480 0.487 0.489 0.543
0.50 0.654 0.504 0.497 0.494 0.896 0.503 0.501 0.501 0.512 0.480 0.487 0.489 0.543
1.00 0.654 0.504 0.497 0.494 0.895 0.503 0.501 0.501 0.511 0.480 0.487 0.489 0.543
1.50 0.654 0.503 0.497 0.494 0.894 0.502 0.501 0.501 0.510 0.480 0.487 0.489 0.543
1.75 0.655 0.503 0.497 0.494 0.894 0.502 0.501 0.502 0.509 0.480 0.487 0.489 0.543
2.00 0.656 0.503 0.497 0.494 0.893 0.502 0.501 0.502 0.506 0.480 0.487 0.489 0.542
2.25 0.658 0.503 0.497 0.494 0.891 0.502 0.501 0.502 0.502 0.480 0.487 0.489 0.542
2.50 0.659 0.502 0.497 0.494 0.889 0.502 0.501 0.502 0.498 0.480 0.487 0.489 0.542
2.75 0.660 0.502 0.497 0.494 0.888 0.502 0.501 0.502 0.494 0.480 0.486 0.489 0.541
3.00 0.661 0.502 0.497 0.494 0.886 0.502 0.501 0.502 0.489 0.480 0.485 0.489 0.540
4.00 0.662 0.506 0.497 0.493 0.883 0.508 0.502 0.501 0.479 0.480 0.485 0.488 0.540
5.00 0.662 0.512 0.498 0.493 0.883 0.515 0.502 0.499 0.477 0.484 0.485 0.488 0.541
6.00 0.662 0.516 0.500 0.493 0.883 0.519 0.504 0.499 0.477 0.488 0.486 0.488 0.543
8.00 0.662 0.517 0.510 0.492 0.883 0.520 0.513 0.499 0.477 0.489 0.493 0.488 0.545

10.00 0.662 0.517 0.528 0.492 0.883 0.520 0.531 0.498 0.477 0.489 0.505 0.488 0.549
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12. SUPPLEMENTAL APPENDIX E: NONLINEAR REGRESSION EXAMPLE

In this section, we illustrate the verification of the assumptions in AC1 in a
second example, a cross-section nonlinear regression model. We also show that
the framework of Stock and Wright (2000) does not apply to this example.

12.1. Nonlinear Regression Model

This example is a cross-section nonlinear regression model estimated by LS.
The model is

(121) Y= (X, 7))+ Z{*+U; for i=1,...,n,

where h(X;, ) € R is known up to the finite-dimensional parameter 7 € R%".
When the true value 8* is 0, (12.1) becomes a linear model and #* is not iden-
tified.

Suppose the support of X; for all y € I' is contained in a set X'. We assume
here that /(x, ) is twice continuously differentiable w.r.t. w Vor € I, Vx € &,
although the general theory of ACI allows for continuous nonsmooth func-
tions. Let A, (x,7) € R and h,.(x, m) € R%*% denote the first-order and
second-order partial derivatives of A(x, 7) w.r.t. .

The LS sample criterion function is

(122)  Qu(0)=n"") U} (6)/2, where Ui(0) =Y~ Bh(X,, m)— Z{.

i=1

When B = 0, the residual U;(6) and the criterion function Q,(60) do not depend
on 7. Hence, Assumption A holds for this example.

12.2. Parameter Space

In this example, the random variables {(X;, Z;,U;):i =1,...,n} are i.i.d.
with true distribution ¢* € @*, where @* is a compact metric space with some
metric that induces weak convergence. (The results can be extended to allow
for stationary and ergodic observations under suitable weak dependence con-
ditions, such as strong mixing conditions; see Andrews and Cheng (2011a).)
The parameter of interest is 6 = (B, {, ) and the nuisance parameter is ¢,
which is infinite dimensional. The true parameter space for 6 is

(123) O*=B"x Z*xII*, where B*=[-bj,b5]CR

with b} > 0, b3 > 0, b} and b} are not both equal to 0, Z* (C R%) is compact,
and IT* (C R’") is compact. For any 6* € @*, the true parameter space for
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b is
(124) &0 = {¢ e d*:E, (U)X, Z) =0as.,

Ey(UR|X;, Z) = 0*(X;, Z) > 0 as., Ey(sup (X, m][*+

mell

450 (X, )| 4 5p e (X, M) < C,
1rr(Xiy T1) — B (X, m) | < M(X)) |11 — 2|

V., € IT for some function M (X;), E,M (X;)** < C,
E4|Ui|** < C,E4ll Zi||** < C,

Py(a'(h(X;, m), h(X;, m), Z;) =0) <1

Var,, 1, € IT with 7, # m,, Ya € R%"* with a # 0,
Amin(Ed,(h(Xi, ), Z)) (h(X;, ), Zlf)) >¢Vwell, and

Anin( Egdi(m)di(m)) = e ¥ € 11

for some constants C < oo and ¢ > 0, and, by definition, d;(7) = (h(X;, 7), Z;,
h.(X;, 7)). The moment conditions are needed to ensure the uniform conver-
gence of various sample averages. The other conditions are for the identifica-
tion of B and ¢ and the identification of 7 when B # 0.

Given the definitions above, the true parameter space I is of the form in
(2.3). Thus, Assumption B2(i) holds immediately. Assumption B2(ii) follows
from the form of 5* given in (12.3) and the fact that ®* is a product space
and @*(60*) does not depend on B*. Assumption B2(iii) follows from the form
of B*. Hence, the true parameter space I satisfies Assumption B2.

The LS estimator of # minimizes Q,(0) over 6 € @. The optimization pa-
rameter space O takes the form

(125) O =Bx ZxII, where B=[-b;,b,]CR

with b, > b3, b, > b3, Z (C R%) is compact, Il (C R") is compact, Z* €
int(2), and B* € int(B). Given these conditions, Assumption B1(i) and (iii)
follow immediately. Assumption B1(ii) holds by taking 6 < min{bj, b5} and
Z0=int(2).

12.3. Criterion Function Limit Assumption

In this example, the function Q(6; y,) in Assumption B3(i) is
(12.6)  Q(6; vo) = E4, U} /2 + E4,(Boh(X;, )
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where vy = (Bo, {o, M, ¢o) and E,, denotes expectation when the distribution
of (X;, Z;, U;) is ¢. The uniform convergence in Assumption B3(i) holds by
the following uniform weak LLN given the moment and smoothness conditions
in @*(0*) in (12.3).

LEMMA 12.1: Suppose (i) {W;:i > 1} is ani.i.d. sequence under F.. for all y* €
I, (ii) for some function M;(w): W — Rt and all 6 > 0, ||s(w, 6;) —s(w, 6,)| <
M (w)8 V0, 0, € Owith ||0; — 6,]| < 8,Vw e W, (iii) E, sup,.q IIs(W;, 0)||'* +
E, M (W;) < CVvy* el for some C < oo and & > 0, and (iv) O is compact.
Then sup, g In"' Y s(W;, 0) — E, s(W;, 0)| —, 0 under {v,} € I'(yy) and
E, s(W,, 0) is uniformly continuous on ©.

COMMENTS: (i) The centering term in Lemma 12.1 is E, s(W;, 0), rather
than E, s(W,, 6).
(ii) The proof of Lemma 12.1 is given in Andrews and Cheng (2011a).

Next, we verify Assumption B3* given in Supplemental Appendix A, which is
a set of sufficient conditions for Assumption B3(ii) and (iii). Assumption B3*(i)
holds with Q(0; o) defined in (12.6) by the continuity of A(x, 7) in 7, the
moment conditions in (12.4), and the DCT. Assumption B3*(iv) and (v) hold
because ¥'(7) = B x Z is compact and does not depend on 7. To verify As-
sumption B3*(ii), we need that when B, =0,

(12.7) O, m; v9) — Q(ho, 3 o) = Eg (B X, m) + Z( L — 0))?/2> 0
Vi # by, YV € I1. The inequality in (12.7) holds unless
(12.8) Py (Bh(X;, m)+Z({H— ) =0)=1

for some ¢ # o and 7 € I1. But Py (a'(h(X;, ), Z;) =0) < 1 forall a € R% !
and a # 0 by (12.4). Hence, (12.8) cannot hold for any (B, ¢) # (0, {). This
completes the verification of Assumption B3*(ii).

To verify Assumption B3*(iii), we need that when B, # 0,

(12.9)  0(6; vo) — Q(6o; v0)

= E4,(Bh(X;, m) — Boh(Xi, m0) + Zi(& — ))*/2> 0
V6 # 6,. The inequality in (12.9) holds unless
(12.10) Py, (Boh(X;, m) — Bh(X;, m) + Zi({H— ) =0) =1

for some 6 # 6,. Because P, (a' (h(X;, 7), h(X;, m)), Z;) =0) < 1 for all = #
7 and a # 0 by (12.4), the condition B, # 0 implies that (12.10) cannot hold
for any 0 such that 7 # . When 7 = , (12.10) becomes

(12.11) Py, ((Bo — BYW(X;, m0) + Zi(§ — ) =0) =1
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Because P, (a'(h(X;, ), Z;) =0) < 1 for all a € R%*" and a # 0 by (12.4),
equation (12.11) cannot hold for (B, ¢) # (Bo, o). This completes the verifica-
tion of Assumption B3*.

12.4. Close to B = 0 Assumptions
12.4.1. Assumptions CI and D1

The sample criterion function Q,(0) is a smooth sample average:

(12.12) Qu(0)=n"') p(W,0), where p(W;, 0)=U}(6)/2 and

i=1

I/I/i = (Yn Xi, Zl/),

In consequence, we verify Assumptions C1 and D1 by verifying Assumption Q1
of Supplemental Appendix A. The latter is sufficient for the Assumptions C1
and D1 by Lemma 8.6 of Supplemental Appendix A (given Assumptions Bl
and B2).
The first- and second-order partial derivatives of p(W;, 6) w.r.t. to ¢ are
(12.13) py(W;, 0) =-U;(6)d, (w) and
Pw(VVi, 0) = dl/;,i(ﬂ')d(p,i(ﬂ')/, where

dl,//,i(w) == (h(Xla 77)3 Zl,),
Thus, by Lemma 8.6, we verify that Assumption C1 holds with

(12.14) D,Q.(0)=—n""Y Ui(0)d,(7) and

i=1
DyyQu(0) =n""> " dy(m)dyi(m).

i=1

The first- and second-order partial derivatives of p(W¥;, 6) w.r.t. to 0 are
(12.15)  po(W;, 0) = —U(6)B(B)d;(),
pooe(W:, 0) = =Ui(0)Di(0) + B(B)di(m)di(m) B(B), where
dl(ﬂ-) = (h(Xla 7T), Zl/a hﬂ'(Xi’ 7T)/)/,
O led{ h‘n'(Xia 77)/

D;(6) = 04, <1 04, xa, 04, xd, )

hﬂ'(Xia 77) Od,,—xd{ h'mr(Xi’ W)B
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and B(B) depends on 3, not || B]|, because B is a scalar. Hence, by Lemma 8.6,
we verify that Assumption D1 holds with

(1216) DQ,(6)=—n"'> U(6)B(B)di(m),
i=1
D*Q,(6)=n"" Z(B(,B)di(ﬂ')di(ﬂ')/B(B) —Ui(6)D:(0))

i=1

by Lemma 8.6 in Supplemental Appendix A.”

Now, verify Assumption Q1. Assumption Q1(i) and (ii) hold immediately.
Assumption Q1(iii) holds because p,,(W;, ) does not depend on . Now
we verify Assumption Q1(iv). By (12.13), verification of Assumption Q1(iv) is
equivalent to showing the stochastic equicontinuity (SE) of n™' )", U;(0) x
ha(Xe, ™) /By 1Y U)o (X, m) x B/BZ, and n™' Y B(B/B,) x
d;(m)d;(7w)B(B/B,) over 6 € 0,(5,). We now show the SE of these three
terms under {vy,} € I' (v, 00, wy).

The first term is

(1217) nil Z Ui(g)hfr(Xi: 77-)/[))fl

i=1

= (n_l/z Z Uihw(Xiy 77-))/(nl/zﬁn)

i=1

+ <n1 > h(Xi, m)ha (X, w))

i=1

- <n—1 D h(Xi, Mhg (X, w)) B/ B

i=1

+ l’l_l Z Z,,(gn - g)hrr(Xia W)/Bn

i=1

Note that for 8 € ©,(8,), we have |B/B,| =1+ o(1) and ({ — {,)/B. = o(1)
because ||y — || < 6,|8,] and §,, — 0. Hence, under {v,} € I'(yy, 00, wy), the

""This example illustrates why defining B(8) using B8, not ||8]], is preferred in the scalar 8
case. If B(B) is defined with ||3]| in place of B, then d;(7) needs to be replaced by d;(B, m) =
(h(X;, ), Z},sgn(B)h,(X;, m)") . The appearance of sgn(8) complicates matters because it in-
troduces a dependence of d;(3, ) on 3, which otherwise does not appear, and it is a discontin-
uous function of 8.
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SE of n™' Y%, Ui(0)h,(X;, w)/B, is implied by the SE of (i) n™'/*3_" , U; x
h,(X;, o) for meIl, (i) n™' Y. h(X;, m)h,(X;,7) for (m,7) € Il x I, and
(i) n' Y"1, Z:h,(X;, w) for 7 € II. The SE of (i) holds by Theorems 1 and 2
of Andrews (1994) using the type II class with envelope function B(W;) =
U;sup, p |1h-(X;, 7)|, the moment conditions in (12.4), and the compactness
of I1. The SE of (ii) and (iii) follows from Lemma 12.1.

Similarly, we can show the SE of n™'Y""  Ui(0)h,.(X:, m)B/B> by re-
placing 4,(X;, m) with h,,.(X;, w) in the foregoing argument and using
IB/Bal =1+ o(1). To verify the SE of n'2Y""  Uh,,(X;, 7) for 7 € II
(element by element), we use the type II class in Andrews (1994) with en-
velope function B(W;) = U;M (X;) and the Lipschitz condition in (12.4). The
SE of n 'Y  h(X;, m)h,(X;,7) and n' Y| Z;h,.(X;, w) follows from
Lemma 12.1.

Finally, the SE of n='Y""_ | B(B/B,)d;(m)d;(7)' B(B/B,) follows from Lem-
ma 12.1 using |B/B,| =1+ o(1). This completes the verification of Assump-
tion Q1.

12.4.2. Assumption C2
Assumption C2(i) holds in this example with

(12.18)  m(W,, ) = —U;(0)d,,. ().

Assumption C2(ii) holds because E,-m(W;, 6*) = —E .U;(h(X;, m*), Z!)' =0
Vy* € I'. Assumption C2(iii) holds because E,m(W,, y*, 7) = —E(U; +
B*h(X;, ) — B*h(X;, m))(h(X;, 7), Z!) =0 V7 € Il when B*=0.

12.4.3. Assumption C3

To verify Assumption C3, we have

(1219) Ui((po,naﬂ-):Yi_Zlfgn:Ui—i_Bnh(Xi,Wn)a

Gu(m)=—n"""Y " (Uidy.i(m)

i=1
+ Bulh(X;, m)dy (7)) — E,, h(X;, 7Tn)d¢:,i(77)])-

Under {v,} € I'(v,0,b), G,(7m) = G(m; yy), Where G(m;7y,) is a Gaus-
sian process with bounded continuous sample paths and covariance kernel
O(my, m; y9) = Eg,Urdy, i(m1)dy (). This weak convergence follows from
Andrews (1994, p. 2251) because (i) 11 is compact, (ii) the finite-dimensional
convergence holds by the CLT for a triangular array of rowwise i.i.d. random
variables, where the Lindeberg condition holds by the L?**-boundedness of
its summands, and B, — 0, and (iii) the stochastic equicontinuity (SE) holds
by applying the type II class (Lipschitz functions) using the differentiability of
h(x, ) in .
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12.4.4. Assumption C4
Assumption C4(i) holds in this example with

(1220) H(m;y) = Eg,dyi(m)dy ()

by applying a uniform LLN for drifting true distributions, specifically, Lem-
ma 12.1, to n' Y7 d, ;(m)d, (). The continuity of H(; v,) is implied by
the continuity of A(X;, 7) in 7, Ey sup,__p lldy(m)d, (7)|| < oo, and the
DCT. Assumption C4(ii) follows immediately from the conditions in (12.4).

12.4.5. Assumption C5
To verify Assumption C5(i), we have

N .
J
= —ﬁ—B*Ew(Yi = Bh(Xi, m) — Z;{)dy ()
d * *
— Bh(X;, m) — Z({ — {")dy.i(m)
= _Ed;*h(Xia W*)dl/,,l(’ﬂ)

Next, we verify that Assumption C5(ii) and (iii) hold with
(12-22) K(; v0) = K(po, ;5 v0) = —E¢0h(Xi7 Wo)d.p,i(ﬂ)-

They hold provided E,; h(X;, m)d, (m) — E4 h(X;, m)d, (m,) uniformly
over (m,m) € Il x I as ¢, — ¢¢ and E, h(X;, m)d, (m) is continu-
ous in (7, m). The continuity holds by the continuity of A(X;, m)d, ()
in (m,m), Ey4, SUP (7, my elixil |A(X;, m)dy,(m)] < oo, and the DCT. By
Lemma 8.2 in Andrews and Cheng (2011a), the uniform convergence follows
from the pointwise convergence and the equicontinuity of Ey+h(X;, m)dy ()
in (m, m) over ¢* € @*(6*). The pointwise convergence E,, h(X;, m) x
dyi(m) — Es h(X;,m)d, () holds by the convergence in distribution
of ¢, to ¢y (since ¢, - ¢y and the metric on @* induces weak con-
vergence) and the L'*? boundedness of h(X;, m)d, (m) under ¢ € P,
that is, sup, g E¢|lA(Xi, m)d,(m)|'"° < C < 0o (e.g., see Theorem 2.20
and Example 2.21 of van der Vaart (1998)). Equicontinuity holds because
h(X;, m)d, () is partially differentiable in (7, m,) and the partial deriva-
tives are uniformly bounded, that is, E - SUP (., et h(X;, m) dy.(m)| +
lA(X;, m)(ddy (m)/dm)|) < C for some C < oo for all p* € D*(6*).
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12.4.6. Assumption C6

Next, we verify Assumption C6**, which implies Assumption C6 by Lem-
ma 8.5 in Supplemental Appendix A. Assumption C6**(i) holds because S is
a scalar. By the discussion following (12.19), a'(G, (), G(m,), G,) has vari-
ance E, U?d>(m, m), where d,(m, m) = a' (h(X;, m), h(X;, m), Z;). By the
conditions in (12.4), Py, (d, (7, m) =0) < 1 Va € R%* with a # 0, Vi, # m,
Voo € P*(6y), and E, (U?|X;, Z;) > 0 a.s. Hence, E4 Ud*(mm, m) > 0Va #0
and Assumption C6**(ii) holds.

12.4.77. Assumption C7

We verify Assumption C7 as follows. Given the form of H(m; y,) and
K(7; v) in (12.20) and (12.22), respectively, we have

(12.23)  K(m; ) H™' (5 y0)K (773 o)
= [Ep h(X:, m0)dy,i () [Epydy,i(m)dy ()]
X [Eg,dyi(m)h(X;, m))]
< E¢0h2(Xi, m),

where the inequality holds by the matrix Cauchy-Schwarz inequality in Tii-
pathi (1999). The inequality holds as an equality if and only if A(X;, m)a; +
d, () a, = 0 with probability 1 for some a; € R, a, € R%*!, and (a,, d,) # 0.
The inequality holds as an equality uniquely at 7 = 7, because for any 7 # ,
Py, (c'(h(X;, m), h(X;, m), Z;) =0) < 1 for any ¢ # 0 by (12.4). This com-
pletes the verification of Assumption C7.

12.4.8. Assumption C8

Last, we verify Assumption C8. To verify Assumption C8, we have

(1224) ([)/(ﬁp/)Ey,,Di// Qn(lp, Wn)lwztp,, = E¢vnd(1/,i(77n)dtp,i(77n)/

by the form of D,0,(6,) given in (12.14). Assumption C8 holds provided
Ey,dy(m)d, () converges to E, dy (m)d, () uniformly over 7 € II and
Ey,dy i(m)d, () is continuous in 7. This holds by the same argument as in
the verification of Assumption C5 above by replacing h(X;, m)d, () with
dy.;(m)dy (). The smoothness and moment conditions are satisfied by the
conditions in (12.4).
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12.5. Distant From 3 = 0 Assumptions
12.5.1. Assumption D2
To verify Assumption D2 with D>Q,,(0) given in (12.16), we have

(12.25) J,=n")_di(m)di(m,)

i=1

_ (nl/an)—l

n

0 014, nil/ZZUihﬂ-(Xi’ )
i=1

X Odgxl Odgxdg Odgxdﬂ

nfl/ZZUihw(X,', 7Tn) Odﬁxdg nil/zzUihaﬂr(Xia 77)

— i=1 i=1 .

Under {y,} € I'(y, 00, wg), n™' Y"1 di(m,)di(m,) — , Eg,di(m0)d;(7m)) be-
cause n 'y . di(m)di(mw) —, E4di(m)d;(w) uniformly over 7 € II by
Lemma 12.1 (stated earlier in this appendix) and the continuity of E, d;(7) x
di(w)" in m. The second line of (12.25) is 0,(1) because n'?|B,| — oo,
n 2y Uih(Xi, m,) = 0,(1),and n= 23" | Uih,n(X;, m,) = O,(1) under
{vx} € I'(7y9, 00, wy). The latter two terms are O, (1) by the CLT for a trian-
gular array of rowwise i.i.d. random variables under the moment conditions in
(12.4). Hence, Assumption D2 holds with the matrix

(12.26)  J(y) = Eg,di(mo)d; (),
which is nonsingular by the conditions in (12.4).

12.5.2. Assumption D3

To verify Assumption D3 in this example, we have

(1227) n'”B(B)DQ.(0,) =—n"""> " Uidi(m,)

i=1
=>4 N (04, V(v0)), where
V (y0) = Eg,U?di(mm0)d; () .
The convergence in distribution holds by the CLT for a triangular array of row-

wise i.i.d. random variables. Assumption D3(ii) holds because E d;(m)d; ()’
is nonsingular and E,,(U?|X;, Z;) > 0 a.s. by (12.4).



ESTIMATION AND INFERENCE 127

12.6. Key Quantities

In this example, the components of the stochastic processes &(7r; 7y, b) and
7(1; Y9, b), the function n(7; vy, wy), and the matrices J(vy,) and V' (vy,) that
appear in the asymptotic results in Section 3 of AC1 are

(12.28) H(;vy) = Ey,dyi(m)dy (),

K(m;v0) = —Ey, h(X;, mp)dy (1),

Oy, 705 Y9) = E¢0U,~2d¢,i(771)dxp,i(772)/,

J(yo) = E(j)odi(ﬂ'())di(ﬂ'()),,

V(v0) = EUld;(my)d;(m)',  where

dyi(m)=(h(X;,m),Z), di(m)=h(X;,m), Zi, h(X;, 7)),
and G(7; y,) is a mean zero Gaussian process with covariance kernel (7,
5 Y0)-

12.7. Variance Matrix Estimators

In this example, we estimate J(vy,) and V' (vy,) by .’I; = JA,,(@,) and 17,1 = Z(@n),
respectively, where

(1229) T,(0)=n"">"di(m)d;(m),
i=1

Vi(0) =n"1 Y UXO)di(m)di(m

i=1

=n! Z Uld;(m)d;(m)'

i=1

+2n7" Y U Buh(X, m,) — Bh(X, )
i=1
+ (& — O/ Zi]di(m)d ()
+n" ) [Buh(X;, ) — Bh(X;, )
i=1
+ (L — O/ Z ) di(mydi (Y.

These variance matrix estimators are used to construct ¢+ and Wald statistics,
and also to construct the identification-category-selection statistic 4, in (5.3)
of AC1.
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Assumption V1(i) (scalar 8) holds with

(12.30)  J(6; y) = Eg,di(m)di(m),
V(O, ’yo) = Ed,OUlzdl(W')dl(’iT)/ + E¢0 [B()h(Xia 770) - Bh(XU 77)

+ (L — O Z] di(m)di(m)

by Lemma 12.1, using the conditions in (12.4). Assumption V1(ii) holds by
the continuity of A(x, 7) and h,(x, ) in = and the moment conditions in
(12.4).

The quantity 3(7; y,) in (4.4) takes the form

(12.31) (75 v9) = (Egydi(m)dy(m)' )" Eg, Ul di(m)di(m) (Eg di(m)di(m) )~

Given this, Assumption V1(iii) holds by the nonsingularity conditions in (12.4).

Assumption V1(i) and (ii) hold not only under {y,} € I'(y, 0, b), but also
under {y,} € I'(7, 00, o) in this example. This and 6, —, 6, under {vy,} €
I'(7yp, 00, wg), which holds by Lemma 3.3 of AC1, imply that Assumption V2
holds.

12.8. Failure of Assumption C of Stock and Wright (2000)

In this section, we show that the main assumption of Stock and Wright (2000)
(SW)—Assumption C—fails for the GMM estimator based on the nonlinear
LS first-order conditions in the nonlinear regression model of (12.1). The im-
plication is that the range of applicability of this paper and that of SW are
different, as discussed in the Introduction of ACI. In particular, in SW, the es-
timator criterion function cannot be indexed by parameters that determine the
strength of identification, whereas in this paper it does.

Consider the model in (12.1) and, for simplicity, suppose no Z{ summand
appears:

(1232) Yi=B-h(X;, ) + U,

The parameters (3, 7r) in our notation correspond to (83, «) in SW; that is, B is
strongly identified and 7 (= «) is potentially weakly identified. We switch no-
tation from 7 to « and back whenever it is convenient. To generate weak iden-
tification of 7 in (12.32), suppose the true parameters are vy, = (B,, m, $o),
where B8, = Cn~'/? for n > 1 for some 0 < C < co. The nonlinear LS first-order
conditions yield the moment functions

h(Xb 77) )

(12.33) E,, (Y: — Bh(X;, m)) (hﬂ'(Xi? )
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which equal 0, when (B, ) = (B,, 7). To apply SW’s results, one takes their
Z, =1Vt and their moment function ¢,(8) to equal the function in (12.33),
where their ¢, T, and 6 correspond to our i, n, and (S, ), respectively.
SW’s population moments equal
~ _ h(Xi7 7T)
(12.34) my(a, B) =E, (Y; — Bh(X;, 7)) (h,,(X,-, 77))
hﬁ(Xi7 77)

X,
= E4,(B.h(X;, m) — Bh(X;, '77))( h(X;, m) )

Next, SW use an identity mir(a, B) = myr(ay, B,) + Mur(a, B) + m,(B), where

(12.35) mir(a, B) = mr(a, B) — mr(ay, B)

E(b B h T h Xia T
0( i (Xi’ 0) Bh(Xla 7T)) (‘ (()k ; 77))>
Ed) B T — h X[, TT(
0( nh(Xi) 0) Bh(Xla 770)) (‘ ((X ”00))>

= Aln(ﬂ-) + AZ(W? ﬁ);
where

(12.36) Ay, ()

— n—l/zc . E¢0h(Xi, 77_0) ( h(Xi’ 7T) - h(Xi, 770) ) ,

hw(Xia 77) - hﬂ(Xi7 770)
Ay (7, B)

_ h'(Xi, 770) h(Xia 7T)
= BEy, |:h(Xi, M) <h,,(X,-, ’iTo)) — h(X;, m) (hw(Xi; 'rr))] .

The first component, Ay,(7), of 7m,7(a, B) has the form required by As-
sumption C(i) of SW. It is n~'/? times a function, call it s,(7), that has a limit
as n — oo uniformly over = that is continuous, is bounded, and equals 0 when
7 = . (In fact, in the present case, s,(7) does not depend on #, so the limit
holds trivially.)

However, the second component, 4,(r, B8), does not have the form specified
in Assumption C(i). It does not depend on 7 and is not identically zero. In
consequence, Assumption C(i) of SW fails in this example.

In words, SW state “The key idea in this paper, made precise in Assump-
tion C below, is to treat 71,(B) as large for 8 outside By, but 72,7 (a, B) as small
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for all « and B”; see p. 1060 of SW. As shown in (12.35) and (12.36), in this ex-
ample, 77 (e, B) is not small for all « and B. The same feature arises in other
examples in which a parameter that determines the strength of identification
appears in the estimator criterion function.

13. SUPPLEMENTAL APPENDIX F: LIML EXAMPLE

In this example, we consider a linear IV regression model estimated by the
ML estimator, which is the limited information ML (LIML) estimator. We con-
sider robust QLR-based tests concerning the coefficient 7 (in our notation) on
the endogenous variable in the structural equation. The objective of this sec-
tion is to compare the robust tests introduced in AC1 with the conditional like-
lihood ratio (CLR) test of Moreira (2003), the LM test of Kleibergen (2002)
and Moreira (2009), and the well known Anderson—Rubin (AR in this section
only) test. The CLR test is known to have approximate asymptotic optimal-
ity properties in the classes of invariant similar tests and invariant tests; see
Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and
Jansson (2009). Hence, this is a good benchmark test and model to assess the
performance of the robust tests of ACL.

The asymptotic distributions of the LIML estimator and the QLR statistic,
which are obtained here, also are given in Staiger and Stock (1997), Moreira
(2003), and Andrews, Moreira, and Stock (2006). Hence, the point of this sec-
tion is not to derive new asymptotic results, but rather to link the general re-
sults of AC1 to existing results in the literature and, more importantly, to assess
the power properties of the robust tests introduced in AC1. A numerical study
is conducted to compare the asymptotic power of the type 2 robust QLR test
with that of the CLR, LM, and AR tests.

In short, we find that the type 2 robust test based on the NI-ICS statistic
has power that is essentially equal to that of the CLR test. Hence, this robust
test has approximately asymptotically optimal power in the same sense as the
CLR test. The type 2 robust test based on the unrestricted ICS statistic has
lower power than the CLR test in some areas of the parameter space and equal
power in others.

13.1. Key Quantities

The structural model is
(13.1)  yi=ym+ul, y,=ZB+],

where (uf, vi) ~ N(0,Y™*) for a p.d. 2 x 2 matrix Y*, (u},v}) and Z; are in-

1271 1271

dependent, {(Z], uf,v}) :i=1,...,n} are i.i.d., yi;, Yo, Ui, vf € R, Z; € R¥,

127
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€ R, and B € R*."” The reduced-form equations are
(132)  yu=m-ZB+u, yi=ZB+uv,

where u; = u; + viw, v; =}, and (u;, v;)’ ~ N(0, Y). Note that the reparame-
trization between (7, Y*) and (77, Y') is one-to-one and Y is p.d.

Define ¢ =vech(Y ') =S -vec(Y™!) € R?, where S € R>* is a selector ma-
trix.

The log-likelihood function for 6 = (B, £, 7) multiplied by —n~! and ignor-
ing a constant is

(13.3)  Q.(6) = %log Y|+ %n" Z gi(B,m)Y e, (B, m), where

i=1
g(B,m)=,i—7- Z;B, Wi — Z,{ﬁ), €R.

Assumption A holds because Q, (6) does not depend on 7 when 8 = 0. Define
e = (u;, v)' = &i(Bo, m)-

Below we verify Assumptions B1-B3, C1-C5, C7, C8, D1-D3, and RQ1-
RQ3, and provide key quantities in these assumptions. We do not give all of the
details of the verification, which are similar to those in the nonlinear regression
example in Supplemental Appendix E.

The optimization and true parameter spaces ® and O* are O = szl[—bL, is
by j1x Z x I and O =X, [~b; ;, b}, 1x Z* x II*,where by ;, by j, b, by €
R,0< bz,j <b;,0< b;,’j <buj, b;i and b*H,j are not both 0 for j=1,...,k,
Z*cint(Z) C {{ € R*:{ =vech(A) for some 2 x 2 symmetric p.d. matrix
A}, IT* Cint(Il) C R, and Z*, Z,II*, and II are compact. Let ¢ denote the
distribution of Z; Vi > 1. The true parameter space for y = (0, ¢) is

(134) T'={y=(0,):0€0", ¢cd,

where @* is some compact subset of @ w.r.t. the metric dy and @ =
{¢p:E4Z.Z; = I}, where dy is some metric on the space of distributions on

We use the notation of AC1 in which the parameters (8, 7) are reversed from the usual
notation in the literature. The reason is that, in AC1, the parameter B is the parameter that
determines the strength of identification of the parameter .

For simplicity, we consider a model without exogenous variables X; in either equation. As is
well known, such variables can be projected out and the results given here apply with Z; being
viewed as the projection residual; for example, see Section 2 of Andrews, Moreira, and Stock
(2006) and consider a population projection in place of a sample projection. Provided X; includes
an intercept, this yields that Z; has mean zero. Also for simplicity, we assume the errors are
normally distributed. The results can be extended to nonnormal finite variance errors, provided
(u}, v}) is symmetrically distributed or the instruments have mean zero. By the discussion above,
the latter is not restrictive.
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RF that induces weak convergence.® With these definitions, Assumptions B1
and B2 hold.
In the LIML example, the function Q(6; y,) in Assumption B3(i) is

1
(13.5)  Q(6: %) = E(IOgIYl +Ey (B, m)'Y e B, m))

1
= E(lolel +trace(Y'Yy) + A(B, 7; vo)), where

A(B7 5 70) = E‘yo(si(ﬁa ;5 YO),Y_ISi(Ba ;5 YO) = 07
8i(B7 ;5 70)_ ( Z;BO ) ( ZI/B )‘

Because Y is p.d. and Z!B8 =0 a.s. if and only if B =0, we have (i) when
Bo =0, Vr € I, 6;(B, m; vo) = 0 if and only if 8 =0 and (ii) when B, # 0,
6:;(B, m; yo) =0 if and only if (B, 7) = (Bo, 7). For any 6 € O,

2

Y1

1%

(136)  —o

1
(0, 70)25(—Y+Y0) and Q0;v) =L® 1.

Hence, Q(6; yy) is minimized at { = Vech(YO‘l) for any B and =. In conse-
quence, Assumption B3 is verified using Assumption B3* and Lemma 8.1 in
Supplemental Appendix A.

Denote the first derivative of ¢;(B, m) w.r.t. 8 as

13.7)  qpi(m)=—(7Z;, Z;) = —(m, 1)/®ZEGR2X1‘.
Note that E,,qg(m)' Y, 'qp.i(m) = a(m)'Y, 'a(m)I;, where a(mr) = (1, 1) €

Rk,
Assumption Cl1 is verified with

(138)  DpQ.(0)=n""Y qpi(m)Y 'ei(B, m) € R,
i=1

DgsQ,(0) =n""Y " qpi(m) Y qpi(m) € RO,

i=1

D0,(6) = %vech(—w Y e B, mei By w)/) R,

i=1

1
DQu(0)= 35 (Y®Y)-S e R,

8There is no loss of generality in assuming E4Z;Z, = I because B and Z; in the original
model can be reparametrized as B* = (E4 Z,;Z))"*B and Z} = (E4 Z: Z))"'? Z,.
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n

Dy 0,(0)=n"" Z &(B, ) ® qpi(m) - S € RF3.

i=1

Assumption Cl1 is verified using the sufficient condition Assumption Q1 and
Lemma 8.6 in Supplemental Appendix A. Assumption Q1 holds by a uniform
LLN.

Assumption C2 holds with

qpi(m) Y ei(B, ) )
c R¥+3

(13.9) mW,0) =11
3 vech(=Y + &(B, m)e:(B, m)")
because Vrr € I1, ¢;(0, m) = &; when By =0and &; ~ N(0, Y).
Assumption C3 holds with

(13.10) G,(m)=n""?)"

i=1

n (CIB,i(W)’YJlSi - Emﬂls,i(ﬂ)’y’flgi)

1
3 vech(g;e, — E,, &;&})

The weak convergence of the empirical process {G,(7) : 7 € I1} is straightfor-
ward because g ;(7) = —(m, 1) ® Z;. The limit process {G(; vy): 7 € II} in
Assumption C3 is the mean zero Gaussian process with covariance kernel

a(m)' Yy a(m)I O x3

13.11) Q(my, mo; =
( ) (71, 23 %0) ( O3k Qgg(’)’o)

> ,  where

1 1
Q;(y) = ZS -Var, (&;®¢&;)-§' = ZS(I4 +K) (Yo ®Y))S,

I, € R is the identity matrix, and K, € R** is the communication matrix
that transforms vec(A4) to vec(A’) for any A € R***. The equalities for 2.,(y,)
hold by Theorem 4.3(iv) of Magnus and Neudecker (1979). In (13.11), the off-
diagonal elements are zeros because the bivariate normal distribution is sym-
metric around 0.3

Assumption C4 holds with

a(m)'Yy a(m)l O3 )

13.12) H(; v) = 1
( ) ’ ( O35 ES (Yo ®Y) S

by a uniform LLN, where the off-diagonal elements are zeros because
£;(0,7) = &; when By =0.

81 Alternatively, the off-diagonal elements are zeros if EZ; = 0 and &; has a nonsymmetric
distribution.
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To verify Assumption C5, note that

E, qpi(m)Y ' e;(B, m) )
k+3

13.13) E W, 0) =
( ) Eym( ) <%Vech(—Y+Ey03i(Ba m)e(B, m)")

—E,,qp.(7m)Y ' qp.i(7m0)

Kn 0, =
w (%S -Ey (gi(B, m) ® 15)qp,i(m))

k+3)xk
)ER( )x’

where the second equality uses (9/dA)(AA) = AR I, for A € R*>. Assump-
tion C5 holds with

—a(m)' Yy a(m)l

(13.14) K7 y0) = (
O3><k

k+3)xk
)ER( )X,

where the second element is zero because ¢;(0, m) = &; when B, = 0.
Assumption C6 is not needed in deriving the asymptotic null distributions of
the QLR statistic for 7 and the null-imposed ICS statistic.**> Assumption C7
holds by the matrix Cauchy-Schwarz inequality because K(; yo) H'(7r;
YOK (v = a(m) Yy a(m)la(m) Yy a(m)] a(w) Yy a(m)l,. Assump-
tion C8 follows from the switch of E and ¢ and a uniform LLN.
Define

(13.15) qni(B) = %exﬁ, ™= —(ZB. 0 e R,
qﬁﬂ',i = _(Zi’ 0k><1)/ € RZXka
() = 4ri(B)/I1B = —(Zw, 0) € R.

Assumption D1 holds with the partial derivatives in (13.8) plus

n

(13.16) D,Q.,(0)=n""Y " g..(m)Y '&i(B, 7) €R,
i=1

D7 0u(0) =n""Y " qni(m)Y ' qri(m) €R,

i=1

Dgr0n(0) =1n""> (g, Y "B, ™) + qpi(m) Y ' qi(B)) € R,

i=1

D Qu(0) =n"" Y "S- (&:(B, m) ® )qri(m) € R,

i=1

821f the ICS statistic involves an unrestricted estimator, we assume Assumption C6 holds.



ESTIMATION AND INFERENCE 135
Assumption D1 is verified using the sufficient condition Assumption Q1 and

Lemma 8.6 in Supplemental Appendix A.
Assumption D2 holds with

(13.17)  J(yo)

E«m615,;‘(770)’1”071%,5(770) O x3 Eyqp,i(m0)' Yy qi(wo)
1
= O3k ES-(Y()@Y())-S, 03 R
Eyqi(w0)' Yy " qp,i(m0) 04 Ey,qi(00)' Yy ' qi(wo)

where the zero elements follow from &;(B,, my) = &;. Assumption D3 holds
with V' (yy) equal to J(y,) except that %S - (Yo ® Yy) - S is replaced by
iS(I4 + K4)(Yy ® Yp)S'. Because H (r; yy) and J(y,) are block diagonal, the
first- and second-order derivatives of Q,(0) w.r.t. { do not effect the asymp-
totic distributions of the estimators and the QLR statistic for .

We consider the QLR test and CI’s involving 7r. In consequence, Assump-
tion RQ2(ii) holds for the QLR statistic with 5, = 1 and the standard critical
value is x7,_,. Assumptions RQ1 and RQ3 hold automatically.

13.2. Asymptotic Distributions of the Statistics

Let QLR (7y,) denote the QLR statistic for the null hypothesis H,: 7 =
Ty, Where y, may be different from the limit 7, of the true value of 7.

Under {y,} € I'(v,0,b) with b € R*, the asymptotic distribution of
QLR, (my,) is the distribution of

(13.18) QLR(h,ﬂ-HO)=2<§(77H0;y0,b)— inf £(: yo,b)>, where
e

&(m; v0, b)
_ (Gp(m o) — a(m)' Yy a(my)bY (Gp(m: vo) — a(m)' Yy a(m)b)
2a(my Yy ta(m)

>

~1/2
Gp(m: yo) = (a(m)' Y, *n) € R,
N=MM1---,Mk) € RZXk, n;~N(0,I) areiid.
for j=1,...,k.
By construction, {Gz(m; yy):m € II} is a Gaussian process with covariance

kernel a(m)'Y; 'a(mm) 1. Under {y,} € I'(yy, 00, ®o), QLR (7y,) ~ x? when

THy, = T70-
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The null-imposed ICS statistic is*

(13.19) A, () = (0B (711,) S g5 1 (712, Bu (g ) / K) 2, wherre

. 4
gﬁﬁ,n(ﬂHo) = (a(WHq)/?nl(ﬂ'Ho)a(WHo)nl Z ZiZ;) )

i=1

Yo(mu) =n"" Y ei(Bu(m,), my) e Bu( ), 7y ) -

i=1

Under {v.} € T'(7y,0,b) with b € R¥, Y (my,) =, Yo by a uniform LLN,

,B,,(7THO) —, 0,and &;(0, 7) does not depend on 7. Under {v.} € I' (v, 00, ),

Y (7H,) = » Yo when 7y, = my by a uniform LLN and ,8,,(770) —, Bo. This re-

places the Verlﬁcatlon of Assumptions V1 (Vector B) and V2 for the type 2

robust QLR test and CI because the asymptotic variance of n'/?( B,,(WHO) B,)

is (a(7y,)' Yy 'a(my,)) I, under {y,} € I'(v0,0, b} and {y,} € I'(y0, 00, wy).
In this example,

Gﬁ(ﬂ' Yo) —a(m) Yy ﬂ(ﬂ'o)b
a(m)Yy Ya(ar)

(13.20) 75(m; 0, b) =

Under {v,} € I'(y, 0, b) with b € R*, the asymptotic distribution of A, (my,) is

(13.21)  A(h, my,) = (a(my,)' Yy a(mwy,) T8 (THy; Yo, D) Ta(7T,; Yo, b)) K)'?
= (_25(77-1‘10; Yo, b)/k)l/z.

Under {y,} € I'(y, 00, wo), A, (7,) ~ (x3/k)'* when 7y, = m.

13.3. Simplified Representation

In this section, we simplify the expressions in (13.18) and (13.21) for the
asymptotic distributions of QLR, (7y,) and A4,(my,). We show that they cor-
respond to the asymptotic distributions in Moreira (2003) and Andrews, Mor-
eira, and Stock (2006) when II = R. Above, we assume II is compact because
the general assumptions for nonlinear models used in ACI rely on bounded-
ness of the parameter space, as is common in the extremum estimator litera-
ture. In the linear model considered here that could be relaxed.

8By definition of E,,(Tr), for the restriction Hy:m = my,, the restricted estimator En
equals B,,(WHO) Also, for this restriction, some (lengthy) algebra shows that Eﬁ,g » reduces to
JBB Vs, ,,JBB " where JBB . and Vg, are the upper left dg x djg blocks of J, and ¥, respectively,

and, in turn, J 25, ,,V;;ﬁ ,,J s> Feduces to the expression in (13.19) for ZBB a(THy)-
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Define two independent random variable S and T by

(13.22) S~ N(c,b,I;) and T~ N(d,b,I;), where
Cr= (79— Tp,) - (a/lyotu)fl/z €R,
d,=a,Yy'a-(@Y;'a)""? R,

aL:(l? _WHU),7 a:(’]THoal)/a and ap = (77071)/'

Now we show that under {v,} € I'(y,, 0, b) with b € R¥, the distributions of
QLR(h, my,) and A(h, 7y,) in (13.18) and (13.21) satisfy

1
(13.23) QLR(h, my,) ~ E(QS - 0Or+ \/(Qs — 07> +405,),

A(h, wy,) ~+/Qr/k, where
Qs=S8S, Or=TT, and Qs =ST.

The result for QLR (%, y,) is analogous to the combination of (3.4) and
Lemma 4 of Andrews, Moreira, and Stock (2006), but is obtained by a different
route.

Define a*(7) = Yofl/za(ﬂ-), where as above a(7) = (, 1)’ € R*,and a* (7) =
Y,%a, (), where a, () = (1, —m) € R®. Then G4(m;v,) = n'a*(w) and
a(w)/YO‘la(mJ)b = ba*(my) a* (7). The chi-square process &(7r; vy, b) can be
written as

a*(m)yM'Ma*(m)
2a*(m) a*(m)

M = ”f]/ — ba*(’JTo)/ S kaz,

vec(M) ~ N(—a*(m) ® b, I),

(13.24)  &(m; y0,b) = — ,  where

and 7 is defined in (13.18). Define a 2 x 2 orthogonal matrix

(13.25) L=[Ly, L]

_ [ —a’ (my,) —a*(my,)
V& ()@ (m,) /a () a (my,

ML=[ML,ML,]=[n'Ly+c,b,n'L,+d,b]
~[S, T,

) :| ,  which yields

where the distribution holds because n'L, n'L, ~ N(0, I;), 'L, and n’'L, are
independent, and a*(m)'a’ (my,) = m — 7y,. Using the expressions above, we
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obtain
1 , 1., 1

. 1 1
inf £ 0, 5) = =3 Ao M'M) = = Ao (ML) (ML)

1
~ _E)\max([S, T],[S: T])

1 2
(054 0+ (- 007 1 403).

This implies the desired results in (13.23) because QLR (%, 7y,) = 2(&(7h,; Yo,
b) —inf,cg £(7; 0, b)) and A(my,; yo, b) = (=2&(mp,; vo, b)/ k)2

13.4. Unrestricted ICS Statistic

Next we provide an unrestricted ICS statistic using a LS estimator of 8 and
show that the asymptotic distribution of this statistic is a function of S and 7.
In the numerical study, we compare the powers of the type 2 robust QLR tests
with null-imposed and unrestricted ICS statistics.

Let B, = (Z'Z)"'Z'Ye, be the LS estimator of 8 based on the second
reduced-form equation, where Z = (Zy, ..., Z,) € R™* Y = (Y}, Y,) € R,
Yi=(Y1,---,Yn) € R for j=1and 2, and e, = (0, 1)". The asymptotic vari-
ance of n'2(B, — B,,) is e, YpeyI,. The unrestricted ICS statistic is

n 1/2
(1327) A, = (?n,;znﬁ; <n1 Zz,-z;) En/k) ,  where
i=1

~

Y, = n! Z(J’Li - Z;En)z-
i=1

Now we show that under I'(vy,, 0, b) with b € R*,
(13.28) A, —q A" (7 Y0, b) ~ (@18 + @2T) (1S + 92 T)/ k)", where

e=(¢1, ) =D"'e;e R,
D =[(&)Yoer) ?a (a, Yoa )™, (&,Yoe) Yy a(a Yy a) ™,

where a, and a are defined in (13.22). Define

(1329) 8, =(Z'2)"'?Z'Yd, - (d Yoa ) ',
Tn = (Z/Z)—I/ZZ/YYO—Ia . (a/YU—la)—1/2.
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Note that

(13.30)  @uS, + @:T, = [S,: Thle = (e,Yoer) V(2 Z) P Z'Y Do
= (&,Yoe2) A(Z'Z/n)""n'B,
= (e)Yoer) *n'?B, + 0,(1).

Hence,

(1331) A, = (918, + @:T,) (918, + ¢:T,)/ k) > + 0, (1)

by (13.27) and (13.30). This implies the desired result because under {y,} €
I'(v,0,b), S, >4 S and T,, —, T by arguments analogous to those used to
establish Lemma 4 of Andrews, Moreira, and Stock (2006).

13.5. Simulation Design

The model considered is the same as that in the numerical section in An-
drews, Moreira, and Stock (2006). The parameters that characterize the distri-
butions of the tests are A = b’b, the number of IV’s k, the correlation between

(a)k=2,p=05, A=5, k=1 (b) k=2,p=0.5, 1=20, k=1
— 1 =
0.8 08
06 06
04 04
02 \ 02
0 0
6-5-4-3-2-1012 3456 6-5-4-3-2-1012 3456
112 1/2
A A
(c)k=10,p=05, 2=5, k=05 (d)k=10,p=0.5, 1=20,x=05
—— 1=
TN —CLR — CLR
08 ---Rob ] 08 ---Rob
S N - LM N\ |- LM ER
06 Lo AR T { o086 N N i AR | /7
04 A1 04 '
'.‘ /./
02 ST ’ 1 02
0 N

0 Nieratidl
-6-5-4-3-2-101 2 3 456 -6-5-4-3-2-1 01 2 3 45 6
112 112
A A

FIGURE S-26.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter 7 in the linear IV model, k = 2, 10, p = 0.5, A =5, 20. The ICS statistic for the robust
QLR test is the null-imposed Wald statistic.



140 D. W. K. ANDREWS AND X. CHENG

(a) k=5,p=095, \=5, k=15

(b) k=5,p=095, A=20, k=15

08 0.8t
06 06}
04 04t
0.2 0.2+
N o= ~ >

Tcsz

(c)k=5,p=05, A=5,«=0.5

0 L L L L L= L L L L L
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04 \‘ . o 04t
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02 T i 02}
\\ # \
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-6-5-4-3-2-1 012 3 456 -6-5-4-3-2-1 01 2 3 456
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FIGURE S-27.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter 7 in the linear IV model, k =5, p = 0.95,0.5, A =5, 20. The ICS statistic for the
robust QLR test is the unrestricted Wald statistic.

the reduced-form errors p, and 7, — . The significance level of the tests is
5% and the parameter space for 7 is R. All results are based on 50,000 simu-
lation repetitions.

We plot the power functions of the CLR, LM, and Anderson—Rubin (de-
noted AR in Figures S-26-S-28) tests together with the power function of the
type 2 robust QLR test. For the robust test, we consider both the null-imposed
ICS statistic 4,(my,) and the unrestricted ICS statistic A,.

For the type 2 robust test, the LF critical value is obtained over discrete
values of A from 0 to 40 with a grid of 1. The transition function s(x) equals
exp(—2x) and the constant D equals 0. The choices of s(x) and D were deter-
mined via some experimentation to be good choices in terms of yielding null
rejection probabilities that are relatively close to the nominal size 5% across
different values of A. Given s(x) and D, the choice of k was determined by
maximizing average power against the alternatives plotted in the figures. The
choice set of k runs from 0 to 3 with a grid 0.5. A wide range of « values yields
similar average power.

The conditional critical values for the CLR test are based on tables in the
Supplemental Appendix of Andrews, Moreira, and Stock (2006) and are com-
puted with linear interpolation.
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(a)k=2,p=05, 1=5, k=05 (b) k=2,p=05, 1=20, k=05
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FIGURE S-28.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter 7 in the linear IV model, k =2, 10, p = 0.5, A =5, 20. The ICS statistic for the robust
QLR test is the unrestricted Wald statistic.

13.6. Results

The results are given in Figure 8 of AC1, as well as Figures S-26-S-32. Fig-
ure S-26 shows that the robust QLR test based on the NI-ICS statistic has

(a) k=5,p=095, k=1, k*=15 (b) k=5,p=05, k=05, K*=0.5

0.09 0.09
097 097 I

0.95 0957%i;‘_‘—’_““—-lllllllll:
09350 15 ap 25 30 35 40 0% 5 10 15 %p 25 30 35 40

FIGURE S-29.—Coverage probabilities of robust QLR CI’s for the structural parameter 7 in
the linear IV model, k£ =5, p = 0.95, 0.5. The ICS statistics for Rob and Rob* are the null-im-
posed and unrestricted Wald statistics.



D. W. K. ANDREWS AND X. CHENG
(b)k=10,0=05, k=05, k*=0.5
7 [—Rob
-—Rob’“

142
(a)k=2,p=05, x=1,x*=0.5
[ —Rob
099 =R | 00
{1 097 o

0.95
10 15 20 25 30 35 40
A

097

0.95
0.93 0.93
0 5 10 15 20 25 30 35 40 0 5
A
FIGURE S-30.—Coverage probabilities of robust QLR CI’s for the structural parameter 7 in
the linear IV model, £ =2, 10, p = 0.5. The ICS statistics for Rob and Rob* are the null-imposed
and unrestricted Wald statistics.
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FIGURE S-31.—Asymptotic densities of the QLR statistic for the structural parameter 7 in the
linear IV model when k =35, p = 0.5 and the x? density (black line).
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abilities of standard CI’s concerning the structural parameter 7 in the linear IV model.

FIGURE S-32.—Asymptotic 95% quantiles of the QLR statistic and asymptotic coverage prob-
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power that is essentially equal to that of the CLR test. Figures S-27 and S-28
show that the type 2 robust test based on the unrestricted ICS statistic has
lower power than the CLR test.

Figures S-29 and S-30 show the coverage probabilities of the two robust QLR
tests as a function of A, which measures the strength of the IV’s. The robust
test based on the NI-ICS statistic is close to being asymptotically similar. The
robust test based on the unrestricted ICS statistic overcovers in some scenarios.

Figure S-31 graphs the density of the QLR statistic under the null hypothe-
sis and compares it to a chi-square distribution with 1 degree of freedom, x?
(which is its distribution under strong identification). It is clear that for weak
IV’s (i.e., small A), the x? distribution does not provide a good approximation
in the upper tail to the actual asymptotic distribution.

The first set of graphs in Figure S-32 shows that the 95% quantiles of the
asymptotic distribution of the QLR statistic increase noticeably as A decreases
to 0. The second set of graphs in Figure S-32 show that the standard QLR test,
which uses the 95% quantile from the y? distribution, undercovers noticeably
with weak I'V’s. The asymptotic size of the standard QLR test varies from 60%
to 90%, depending on the parameter configuration.
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