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7. OUTLINE

WE LET AC1 ABBREVIATE the main paper. This Supplemental Material in-
cludes six appendices.

Supplemental Appendix A provides (i) a verbal description of the steps in
the proofs of the results in AC1, (ii) the vector β version of Assumption V1,
(iii) details concerning the type 2 null-imposed (NI) robust CS, (iv) sufficient
conditions for Assumptions B3, C5, C6, C1, and D1 (in that order), (v) an
initial conditions adjustment to the sufficient conditions for Assumptions C1
and D1 that is useful in some time series contexts, and (vi) a brief discussion of
reparametrization in the bivariate probit model with endogeneity considered
in Han (2009). Sufficient conditions for other assumptions in AC1 are given in
Andrews and Cheng (2011a, 2011b).

Supplemental Appendix B gives the proofs of the results in AC1, and states
and proves results for the restricted estimator θ̃n.

Supplemental Appendix C verifies the assumptions of AC1 for the ARMA(1�
1) example.

Supplemental Appendix D provides some additional simulation results for
the ARMA(1�1) example.

Supplemental Appendix E introduces the nonlinear regression example and
verifies the assumptions of AC1 for it.

Supplemental Appendix F considers the standard linear instrumental vari-
ables regression model with one right-hand side endogenous variable. This Ap-
pendix compares the power of the robust tests introduced in AC1 with the
power of the CLR test of Moreira (2003).

The notational conventions specified at the end of the Introduction to
AC1 are used throughout this Supplemental Material. In addition, let opπ(1),
Opπ(1), and oπ(1) denote terms that are op(1), Op(1), and o(1), respec-
tively, uniformly over a parameter π ∈Π. Thus, Xn(π) = opπ(1) means that
supπ∈Π ‖Xn(π)‖ = op(1), where ‖ · ‖ denotes the Euclidean norm. Let ⇒ de-
note weak convergence of a sequence of stochastic processes indexed by π ∈Π
for some space Π. The definition of weak convergence of Rv-valued functions
onΠ requires the specification of a metric d on the space Ev ofRv-valued func-
tions onΠ. We take d to be the uniform metric. The literature contains several
definitions of weak convergence. We use any of the definitions that are com-
patible with the use of the uniform metric and for which the continuous map-
ping theorem (CMT) holds. These include the definitions employed by Pollard
(1984, p. 65, 1990, p. 44) and van der Vaart and Wellner (1996, p. 17). The
CMT’s that correspond to these definitions are given by Pollard (1984, p. 70,
1990, p. 46) and van der Vaart and Wellner (1996, Theorem 1.3.6, p. 20). In the
event of measurability issues, outer probabilities are used below implicitly in
place of probabilities.
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8. SUPPLEMENTAL APPENDIX A

8.1. Description of Approach

The criterion functions/models considered in AC1 possess the following
characteristics:

(i) The criterion function does not depend on π when β = 0 (Assump-
tion A in Section 1).

(ii) The criterion function viewed as a function of ψ with π fixed has a
(stochastic) quadratic approximation w.r.t. ψ (for ψ close to the true value of
ψ) for each π ∈ Π when the true β is close to the nonidentification value 0
(Assumption C1 in Section 3.3).

(iii) The (generalized) first derivative of this quadratic expansion con-
verges weakly as a process indexed by π ∈Π to a Gaussian process after suit-
able normalization (Assumption C3 in Section 3.3).

(iv) The (generalized) Hessian of this quadratic expansion is nonsingular
asymptotically for all π ∈ Π after suitable normalization (Assumption C4 in
Section 3.3).

(v) The criterion function viewed as a function of θ has a (stochastic)
quadratic approximation w.r.t. θ (for θ close to the true value) whether or
not the true β is close to the nonidentification value 0 (Assumption D1 in Sec-
tion 3.5).

(vi) The (generalized) first derivative of this quadratic expansion has an
asymptotic normal distribution, where a matrix rescaling is employed when β
is local to the nonidentification value 0 (Assumption D3 in Section 3.5).

(vii) The (generalized) Hessian of this quadratic expansion is nonsingular
asymptotically, where a matrix rescaling is used when β is local to the noniden-
tification value 0 (Assumption D2 in Section 3.5).

Now we describe the approach used to establish the asymptotic results. The
estimator θ̂n = (β̂n� ζ̂n� π̂n) is defined to minimize a criterion function Qn(θ)
over θ ∈Θ. Let θn = (βn� ζn�πn) denote the true parameter.

Several steps are employed. The first three steps apply to sequences of true
parameters in categories I and II of Table I.

Step 1. We consider the concentrated estimator ψ̂n(π) that minimizes
Qn(θ)=Qn(ψ�π) over ψ for fixed π ∈Π and the concentrated criterion func-
tion Qc

n(π) = Qn(ψ̂n(π)�π). We show that ψ̂n(π) is consistent for ψn uni-
formly over π ∈Π (Lemma 3.1). The method of proof is a variation of a stan-
dard consistency proof for extremum estimators adjusted to yield uniformity
over π. The proof is analogous to that used in Andrews (1993) for estimators
of structural change models in the situation where no structural change occurs.

Step 2. We employ a stochastic quadratic expansion of Qn(ψ�π) in ψ for
given π about the nonidentification point ψ = ψ0�n = (0� ζn), rather than the
true value ψn, which is key. By expanding about ψ0�n, the leading term of the
expansion, Qn(ψ0�n�π), does not depend on π because Qn(β�ζ�π) does not
depend on π when β = 0. For each π ∈Π, we obtain a linear approximation
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to ψ̂n(π) after centering around ψ0�n and rescaling (Lemma 9.2(b)). At the
same time, we obtain a quadratic approximation of Qc

n(π) (Lemma 9.2(c)).
Both results hold uniformly in π. The method employed has two steps.

The first step of the two-step method involves establishing a rate of conver-
gence result for ψ̂n(π)− ψ0�n. The second step uses this rate of convergence
result to obtain the linear approximation of ψ̂n(π)−ψ0�n (after rescaling) and
the quadratic approximation ofQc

n(π)−Qn(ψ0�n�π) (after rescaling) as a func-
tion of ψ. Because Qn(ψ0�n�π) does not depend on π, it does not effect the
behavior of ψ̂n(π) or π̂n. The two-step method used here is like that used by
Chernoff (1954), Pakes and Pollard (1989), and Andrews (1999), among oth-
ers, except that it is carried out for a family of values π, as in Andrews (2001),
rather than a single value, and the results hold uniformly over π.

Step 3. We determine the asymptotic behavior of the (generalized) first
derivative of Qn(ψ�π) w.r.t. ψ evaluated at ψ0�n (Lemma 9.1). Due to the ex-
pansion about ψ0�n, rather than about the true value ψn, a bias is introduced in
the first derivative—its mean is not zero. The results here differ between the
category I and II sequences of Table I. With category I sequences, one obtains
a stochastic term (the mean zero Gaussian process {G(π) :π ∈Π}) plus a non-
stochastic term due to the bias (K(π;γ0)b in the notation of Assumption C5)
and the two are of the same order of magnitude. With category II sequences,
the true βn is farther from the point of expansion 0 than with category I se-
quences and, in consequence, the nonstochastic bias term is of a larger order
of magnitude than the stochastic term. In this case, the limit is nonstochastic.

We also determine the asymptotic behavior of the (generalized) Hessian ma-
trix of Qn(ψ�π) w.r.t. ψ evaluated at ψ0�n. It has a nonstochastic limit. There is
no problem here with singularity of the Hessian because it is the Hessian for ψ
only, not θ= (ψ�π), and ψ is identified.

For category I sequences, the results of this step combined with those of
Step 2 and the condition n1/2(ψn − ψ0�n)→ (b�0) give the asymptotic distri-
butions of (i) the concentrated estimator ψ̂n(·) viewed as a stochastic process
indexed by π ∈Π, that is, n1/2(ψ̂n(·)−ψn)⇒ τ(·), where τ(·)= τ(·;γ0� b) is a
Gaussian process indexed by π ∈Π whose mean is nonzero unless b= 0, and
(ii) the concentrated criterion functionQc

n(·), that is, n(Qc
n(·)−Qn(ψ0�n�π))⇒

ξ(·), where ξ(·)= ξ(·;γ0� b) is a quadratic form in τ(·).
For category II sequences, putting the results above together yields (i) a rate

of convergence result for ψ̂n(π), that is, supπ∈Π ‖ψ̂n(π) − ψ0�n‖ = Op(‖βn‖),
that is just fast enough to obtain a rate of convergence result for ψ̂n − ψn in
Step 6 below and (ii) the (nonstochastic) probability limit η(π)= η(π;γ0� b)
ofQc

n(π) (after normalization), that is, ‖βn‖−1(Qc
n(π)−Qn(ψ0�n�π))→p η(π)

uniformly over π ∈Π.
Step 4. For category I sequences, we use π̂n = arg minπ∈Π Qc

n(π), n(Q
c
n(·)−

Qn(ψ0�n�π)) ⇒ ξ(·) from Step 3 (where Qn(ψ0�n�π) does not depend on
π) and the continuous mapping theorem (CMT) to obtain π̂n →d π

∗ =
arg minπ∈Π ξ(π) and n(infθ∈ΘQn(θ) − Qn(ψ0�n�π)) = n(infπ∈Π Qc

n(π) −
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Qn(ψ0�n�π))⇒ infπ∈Π ξ(π). In this case, π̂n is not consistent. Given the asymp-
totic distribution of π̂n, the result n1/2(ψ̂n(·) − ψn) ⇒ τ(·) from Step 3, and
the CMT, we obtain the asymptotic distribution of ψ̂n = ψ̂n(π̂n), that is,
n1/2(ψ̂n −ψn)→d τ(π

∗) (Theorem 3.1). This completes the asymptotic results
for (ψ̂n� π̂n) for category I sequences of true parameters.

Step 5. For category II sequences, we obtain the consistency of π̂n by using
the uniform convergence in probability of Qc

n(π) (after normalization) to the
nonstochastic quadratic form, η(π), established in Step 3, combined with the
property that η(π) is uniquely minimized at the limit π0 of the true values πn
(Lemma 3.3). The vector that appears in the quadratic form η(π) is the vector
of biases of the (generalized) first derivative obtained in Step 3, which appears
due to the expansion around ψ0�n rather than around ψn. The weight matrix of
η(π) is the inverse of the Hessian discussed in Step 3.

Step 6. For category II sequences, we use the rate of convergence result
supπ∈Π ‖ψ̂n(π)−ψ0�n‖ =Op(‖βn‖) from Step 3 and a relationship between the
bias of the (generalized) first derivative and the (generalized) Hessian (w.r.t.
ψ) to obtain a rate of convergence result for ψ̂n = ψ̂n(π̂n) centered at the true
value ψn, that is, ψ̂n −ψn = op(‖βn‖) (Lemmas 3.4 and 9.3).

Step 7. For category II and III sequences, we carry out stochastic quadratic
expansions of Qn(θ) about the true value θn. The argument proceeds as in
Step 2 (but the expansion here is in θ, not in ψ with π fixed, and the expansion
is about the true value). First, we obtain a rate of convergence result for θ̂n−θn
and then with this rate, we obtain the asymptotic distribution of θ̂n − θn (after
rescaling) using the quadratic approximation ofQn(θ) in a particular neighbor-
hood of θn. The result obtained is consistency and asymptotic normality (with
mean zero) for θ̂n with rate n1/2 for ψ̂n for category II and III sequences, rate
n1/2 for π̂n for category III sequences, and rate n1/2‖βn‖ (� n1/2) for π̂n for
category II sequences (Theorem 3.2). The last rate result is due to the conver-
gence of βn to 0, albeit slowly. With category II sequences, π̂n is consistent and
asymptotically normal, but has a slower rate of convergence than is standard.

For category II sequences, the results in this step are complicated by two is-
sues. First, the (generalized) Hessian matrix for θ with the standard normaliza-
tion is singular asymptotically because βn → 0 and the random criterion func-
tion Qn(θ) becomes more flat w.r.t. π for β in a neighborhood of βn the closer
is βn to 0. This requires a matrix rescaling of the Hessian based on the mag-
nitude of ‖βn‖. Second, the quadratic approximation of the criterion function
w.r.t. θ around the true value θn only holds for θ close enough to θn; specif-
ically, only for θ ∈ Θn(δn) = {θ ∈ Θ :‖ψ − ψn‖ ≤ δn‖βn‖ & ‖π − πn‖ ≤ δn}
for constants δn → 0. Thus, ψ needs to be very close to the true value ψn for
the quadratic approximation to hold. It is for this reason that the rate of con-
vergence result ψ̂n − ψn = op(‖βn‖) in Step 6 is a key result. The quadratic
approximation requires θ ∈ Θn(δn) because for such θ = (β�ζ�π), we have
‖β‖/‖βn‖ = 1 + o(1) and, hence, the rescaling that enters the Hessian is
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asymptotically equivalent whether it is based on β or the true value βn. (For ex-
ample, see the verification of Assumption Q1(iv) for the LS example in (12.17)
to see that the restriction θ ∈Θn(δn) is required for the quadratic approxima-
tion to hold in this example.)

Step 8. We obtain the asymptotic null distributions of t test statistics for lin-
ear and nonlinear restrictions using the asymptotic distributions of the estima-
tors described in Steps 1–7 plus asymptotic results for the variance matrix and
standard error estimators upon which the test statistics depend (Theorem 4.1).
The latter exhibit nonstandard behavior for category I sequences because π̂n
is random even in the limit. These results yield the asymptotic null rejection
probabilities and coverage probabilities of the standard t test for category I–
III sequences.

For category I sequences, the asymptotic distribution of the t statistic for a
linear or nonlinear restriction that involves both π and ψ is found to depend
only on the randomness in π̂n and not on the randomness in ψ̂n. This occurs
because the former is of a larger order of magnitude than the latter. When a
restriction does not involve π, then the asymptotic null distribution of the t
statistic for category I sequences usually still depends on the (asymptotically
nonstandard) randomness of π̂n through the standard deviation estimator and
implicitly through the effect of the randomness of π̂n on the asymptotic distri-
bution of ψ̂n = ψ̂n(π̂n).

Step 9. Next we consider the QLR test for restrictions of the form r(θ) =
(r1(ψ)� r2(π)). The results of Step 4 give half of the asymptotic distribu-
tion of the QLR statistic for category I sequences, namely, n(infθ∈ΘQn(θ) −
Qn(ψ0�n�π))⇒ infπ∈Π ξ(π); the results of Step 7 provide half for category II
and III sequences. The requisite other halves of the asymptotic null distribu-
tions of the QLR statistic are similar, but minimization is subject to the re-
strictions r(θ)= vn, where vn = r(θn) is the true value of the restrictions. That
is, one needs to establish the asymptotic distributions of n(infθ∈Θr(vn) Qn(θ) −
Qn(ψ0�n�π)), where Θr(vn) = (θ ∈Θ : r(θ) = vn} (Theorems 4.2 and 4.3). De-
termining these asymptotic distributions is noticeably more complicated than
in the unrestricted case and requires innovations to the arguments given in
Steps 1–7.

First, for category I sequences, the restrictions can affect the values that π
can take on. In consequence, the effective parameter space for π becomes a
set of the form Πr(vn�1), where vn�1 = r1(ψn), which is sample-size dependent,
rather than Π. This requires a new version of the standard arg max/min the-
orem (see van der Vaart and Wellner (1996, Lemma 3.2.1)). The new version
is given in Lemma 9.10 below. To apply this lemma, we need to define and
analyze a concentrated restricted estimator ψ̃n(π�v1�n) that is defined for all
π ∈Π so as to determine its asymptotic behavior on Πr(vn�1)⊂Π.

Second, because the criterion function Qn(θ) is not necessarily smooth
(to allow for quantile estimators, etc.), one cannot use standard methods
based on pointwise Taylor expansions to determine the asymptotic behavior
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of ψ̃n(π�v1�n). Instead, one has to approximate the sample-size-dependent re-
stricted parameter space for ψ given π, denoted Ψ̃n(π�v1�n), by a linear sub-
space defined by the derivatives of the restrictions. This uses the Chernoff
(1954) set approximation idea, modified by Andrews (1999) to allow for data-
dependent sequences of sets, and modified further by Andrews (2001) to allow
for dependence on a parameter π.

Third, the quadratic expansion about ψ0�n, rather than the true value ψn,
in the restricted analogue of Step 2 causes new complications. With the un-
restricted concentrated estimator ψ̂n(π), a key inequality, a2

n(γn)(Qn(ψ̂n(π)�
π)−Qn(ψ0�n�π))≤ opπ(1) (see (9.11) below), is obtained from the definition
of ψ̂n(π), that is, Qn(ψ̂n(π)�π)≤ infψ∈Ψ(π) Qn(ψ�π)+ opπ(n−1) in (3.2), com-
bined with ψ0�n ∈ Ψ(π). However, it is not necessarily the case that ψ0�n lies
in the restricted parameter space Ψ̃n(π�v1�n). Hence, the previous argument
fails. Instead, using a new argument, we establish a slightly weaker inequality,
a2
n(γn)(Qn(ψ̃n(π)�π)−Qn(ψ0�n�π)))≤Opπ(1) (see (9.81) below), which turns

out to be sufficient.
The complications that arise in the proofs for the restricted concentrated

estimator ψ̃n(π�v1�n) are responsible for our treatment of restrictions of the
form r(θ)= (r1(ψ)� r2(π))� rather than more general functions of θ.

Step 10. Using the asymptotic results from Steps 8 and 9 for category I–
III sequences of true parameters, combined with an argument that such se-
quences determine the asymptotic size of tests and CS’s (viz., Lemma 2.1 in
Section 2), we obtain a formula for the asymptotic size of standard t and QLR
tests and CS’s (Theorem 4.4). Their behavior under category I sequences de-
termines whether a test overrejects asymptotically and whether a CS undercov-
ers asymptotically. Under category II and III sequences, they perform asymp-
totically as desired.

Step 11. We introduce LF and data-dependent robust critical values that yield
tests and CI’s that have correct asymptotic size, even in the presence of identi-
fication failure and weak identification in part of the parameter space (Theo-
rem 5.1). The adjusted critical values employ the asymptotic formulae derived
in Steps 8–10.

8.2. Assumption V1 for Vector β

The asymptotic behavior of the t statistic relies on Assumption V1, which
concerns the variance matrix estimator. This assumption differs, depending on
whether β is a scalar or a vector. The scalar version in stated in AC1. Here we
state the vector version. When β is a vector (i.e., dβ > 1), we reparametrize
β as (‖β‖�ω), where ω = β/‖β‖ if β 
= 0 and, by definition, ω = 1dβ/‖1dβ‖
with 1dβ = (1� � � � �1) ∈ Rdβ if β = 0. Correspondingly, θ is reparametrized as
θ+ = (‖β‖�ω�ζ�π). Let Θ+ = {θ+ :θ+ = (‖β‖�β/‖β‖� ζ�π)�θ ∈ Θ}. Let θ̂+

n

and θ+
0 be the counterparts of θ̂n and θ0 after reparametrization.
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When β is a vector, let J(θ+;γ0) and V (θ+;γ0) denote some nonstochastic
dθ × dθ matrix-valued functions such that J(θ+

0 ;γ0) = J(γ0) and V (θ+
0 ;γ0) =

V (γ0). Let

Σ(θ+;γ0)= J−1(θ+;γ0)V (θ
+;γ0)J

−1(θ+;γ0)�(8.1)

Σ(π�ω;γ0)= Σ(‖β0‖�ω�ζ0�π;γ0)�

Let Σββ(π�ω;γ0) denote the upper left dβ × dβ submatrix of Σ(π�ω;γ0).
Assumption V1 below applies when β is a vector.

ASSUMPTION V1—Vector β: (i) Ĵn = Ĵn(θ̂
+
n ) and V̂n = V̂n(θ̂

+
n ) for some

(stochastic) dθ×dθ matrix-valued functions Ĵn(θ+) and V̂n(θ+) onΘ+ that satisfy
supθ+∈Θ+ ‖Ĵn(θ+) − J(θ+;γ0)‖ →p 0 and supθ+∈Θ+ ‖V̂n(θ+) − V (θ+;γ0)‖ →p 0
under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞.70

(ii) J(θ+;γ0) and V (θ+;γ0) are continuous in θ+ onΘ+ ∀γ0 ∈ Γ with β0 = 0.
(iii) λmin(Σ(π�ω;γ0)) > 0 and λmax(Σ(π�ω;γ0)) < ∞ ∀π ∈ Π, ∀ω ∈ Rdβ

with ‖ω‖ = 1, ∀γ0 ∈ Γ with β0 = 0.
(iv) P(τβ(π∗(γ0� b);γ0� b)= 0)= 0 ∀γ0 ∈ Γ with β0 = 0 and ∀b with ‖b‖<

∞.71

When β is a vector, the matrix Σ(π;γ0� b) is defined differently from the
scalar β case. It is defined as

Σ(π;γ0� b)= Σ(π�ω∗(π;γ0� b);γ0)� where(8.2)

ω∗(π;γ0� b)= τβ(π;γ0� b)/‖τβ(π;γ0� b)‖�

The upper left dψ × dψ block of Σ(π;γ0� b), denoted Σψψ(π;γ0� b), appears in
the denominator of the asymptotic t statistic in (4.5). The lower right dπ × dπ
block of Σ(π;γ0� b), denoted Σππ(π;γ0� b), appears in the denominator of the
asymptotic t statistic in (4.6).

With the changes above, Theorems 4.1, 4.4(a), and 5.1(a) hold for the t
statistic and t statistic-based CI in the vector β case.

8.3. Details for the Type 2 Robust CS With NI Critical Values

The type 2 NI robust critical value is defined by replacing H with H(v)
(defined in (5.2)) in (5.8) and in the definitions of hmax and bmax, which
are then denoted bmax(v) and hmax(v). The set H1 is replaced with H1(v) =

70The functions J(θ+;γ0) and V (θ+;γ0) do not depend on ω0, only γ0.
71Assumption V1 (vector β) differs from Assumption V1 (scalar β) because in the vector β

case Assumption V1(ii) (scalar β) (i.e., continuity in θ) often fails, but Assumption V1(ii) (vector
β) (i.e., continuity in θ+) holds.
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{(b�γ0) : (b�γ0) ∈H(v) & ‖b‖ ≤ supv0∈Vr ‖bmax(v0)‖ +D}.72 The constants Δ1,
Δ2, Δ1(h), and Δ2(h) in (5.8) are then denoted Δ1(v), Δ2(v), Δ1(h�v), and
Δ2(h�v). By definition, for any v ∈ Vr , NRP(Δ1(v)�Δ2(v);h) ≤ α for all h ∈
H(v). The NI robust critical value is denoted ĉT �1−α�n(v).

For example, consider the construction of a type 2 robust CS with NI crit-
ical values for the parameter π. For each value of v ∈ Π, one first obtains
the LF critical value cLF

T �1−α(v), and then one calculates Δ1(v) and Δ2(v) based
on cLF

T �1−α(v) and the asymptotic distribution of Tn and An under the null
H0 :π0 = v.

A plug-in version of the type 2 robust critical value requires the replacement
ofH with Ĥn throughout (5.8), where Ĥn is defined as in Section 5.1. Similarly,
a plug-in version of the type 2 NI robust critical value is defined like the type 2
NI robust critical value, but with H replaced with H(v)∩ Ĥn throughout.

Note that for a type 2 robust CS with NI critical values for β, under semi-
strong or strong identification, Δ1(v)→ 0 and Δ2(v)→ 0 as ‖b‖ → ∞, and the
NI robust critical value converges to the standard critical value.

For h ∈H and v ∈ Vr , define

ĉT �1−α(h� v)(8.3)

=

⎧⎪⎨⎪⎩
cLF

T �1−α(v)+Δ1(v)� if A(h)≤ κ�
cT �1−α(∞)+Δ2(v)

+ [cLF
T �1−α(v)+Δ1(v)− cT �1−α(∞)−Δ2(v)]

× s(A(h)− κ)� ifA(h) > κ,

where the random variable A(h) is defined in (5.6). It is shown in the proof
of Theorem 5.1 that the asymptotic distribution of ĉT �1−α�n(v) under {γn} ∈
Γ (γ0�0� b) for ‖b‖<∞ is the distribution of ĉT �1−α(h� v).

Theorem 5.1 uses the following d.f. continuity condition.

ASSUMPTION NI-ROB2: (i) P(T (h)= ĉT �1−α(h�v))= 0 ∀h ∈H(v), ∀v ∈ Vr .
(ii) For some v ∈ Vr , Δ2(v)= 0 or NRP(Δ1(v)�Δ2(v);h∗)= α for some point

h∗ ∈H(v)� where Δ1(v) and Δ2(v) are defined after (5.8).

8.4. Assumption B3

Assumption B3(i) can be verified using a uniform LLN, for example, as in
Andrews (1992). Assumption B3∗ provides sufficient conditions for Assump-
tion B3(ii) and (iii).

ASSUMPTION B3∗: (i) Q(θ;γ0) is continuous on Θ ∀γ0 ∈ Γ .

72In the definition of H1(v), the upper bound on ‖b‖ does not vary with v, which improves the
smoothness of Δ1(v) as a function of v.
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(ii) For any π ∈ Π, Q(ψ�π;γ0) is uniquely minimized by ψ0 ∀γ0 ∈ Γ with
β0 = 0.

(iii) Q(θ;γ0) is uniquely minimized by θ0 ∀γ0 ∈ Γ with β0 
= 0.
(iv) Ψ(π) is compact ∀π ∈Π, and Π and Θ are compact.
(v) ∀ε > 0, ∃δ > 0 such that dH(Ψ(π1)�Ψ(π2)) < ε ∀π1�π2 ∈Π with ‖π1 −

π2‖< δ, where dH(·) is the Hausdorff metric.

Assumption B3∗(v) holds immediately in cases whereΨ(π) does not depend
on π. When Ψ(π) depends on π, the boundary of Ψ(π) is often a continuous
linear function of π, as in the ARMA(1�1) example. In such cases, it is simple
to verify Assumption B3∗(v).

LEMMA 8.1: Assumption B3∗ implies Assumption B3(ii) and (iii).

8.5. Assumption C5

The following assumption is sufficient for Assumption C5.

ASSUMPTION C5∗: (i) For any i≥ 1, the marginal distribution of Wi has a den-
sity function fWi(w;γ∗) w.r.t. some σ-finite dominating measure μ that does not
depend on γ∗, ∀γ∗ ∈ Γ .

(ii) fWi(w;γ∗) is partially differentiable in β∗ and the partial derivative is de-
noted by fβ�Wi(w;γ∗) ∀i ≥ 1. Both fWi(w;γ∗) and fβ�Wi(w;γ∗) are continuous in
γ∗ ∀i≥ 1, ∀w ∈ W , ∀γ∗ ∈ Γ , where W denotes the support of μ.

(iii) For some function fβ�W (w;γ∗) ∈ Rdβ , n−1
∑n

i=1 fβ�Wi(w;γ∗) → fβ�W (w;
γ∗) ∀w ∈ W , ∀γ∗ ∈ Γ .

(iv) m(w�θ) is continuous in ψ uniformly over π ∈ Π for θ ∈ Θ with β =
0 ∀w ∈ W (i.e., supπ∈Π |m(w�ψ�π) −m(w�ψ0�π)| → 0 as ψ→ ψ0 = (0� ζ0)
∀θ0 = (ψ0�π0) ∈Θ).

(v) ∫
W

sup
θ∈Θ

‖m(w�θ)‖ · max
i≤1

{
sup

γ∈N(γ∗�δ)
‖fβ�Wi(w;γ)/fWi(w;γ)‖

· sup
γ∈N(γ∗�δ)

|fWi(w;γ)|
}
dμ(w) <∞�

where N(γ∗� δ) is a δ-neighborhood of γ∗ for some δ > 0 ∀γ∗ ∈ Γ .

Assumption C5∗(iii) holds automatically with identically distributed obser-
vations. Assumption C5∗(v) is used for dominated convergence arguments.

LEMMA 8.2: Assumption C5∗ implies that Assumption C5 holds with

Kn(θ;γ∗)= n−1
n∑
i=1

∫
W
m(w�θ)fβ�Wi(w;γ∗)′ dμ(w)�
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K(θ;γ∗)=
∫

W
m(w�θ)fβ�W (w;γ∗)′ dμ(w)�

In the ARMA(1�1) and nonlinear regression models, Assumption C5 can be
verified directly without imposing Assumption C5∗; see Appendices C and E.

8.6. Assumption C6

Using Assumption C1(iii), the quantities ξ(π;γ0� b) and η(π;γ0�ω0) in
Assumptions C6 and C7 can be simplified, which makes the verification of
Assumption C6 easier. Specifically, Assumptions C1(iii) and C2 imply that
m(Wi�θ) can be partitioned as (m1(Wi� θ)

′�m2(Wi� θ)
′)′, wherem2(Wi� θ) ∈Rdζ

does not depend on π when β = 0. In consequence, we can partition the fol-
lowing quantities and obtain certain subquantities that do not depend on π:

H(π;γ0)=
[
H11(π) H12(π)

H21(π) H22

]
� G(π;γ0)=

(
G1(π)

G2

)
�(8.4)

K(π;γ0)=
(
K1(π)

K2

)
�

where H22, G2, and K2 do not depend on π, H11(π) ∈ Rdβ×dβ , H22 ∈ Rdζ×dζ ,
G1(π) ∈Rdβ , G2 ∈Rdζ , K1(π) ∈Rdβ×dβ , and K2 ∈Rdζ×dβ . Define

G∗
1(π;γ0)=G1(π)−H12(π)H

−1
22 G2�(8.5)

K∗
1(π;γ0)=K1(π)−H12(π)H

−1
22 K2�

H∗
11(π;γ0)=H11(π)−H12(π)H

−1
22 H12(π)

′�

ξ1(π;γ0� b)= −1
2
(G∗

1(π;γ0)+K∗
1(π;γ0)b)

′H∗
11(π;γ0)

−1

× (G∗
1(π;γ0)+K∗

1(π;γ0)b)�

ξ2(γ0� b)= −1
2
(G2 +K2b)

′H−1
22 (G2 +K2b)�

η1(π;γ0�ω0)= −1
2
ω′

0K
∗
1(π;γ0)

′H∗
11(π;γ0)

−1K∗
1(π;γ0)ω0�

η2(γ0�ω0)= −1
2
ω′

0K
′
2H

−1
22 K2ω0�

LEMMA 8.3: Suppose Assumptions C1(iii) and C2–C5 hold. Then the follow-
ing equalities hold:

(a) ξ(π;γ0� b)= ξ1(π;γ0� b)+ ξ2(γ0� b).
(b) η(π;γ0�ω0)= η1(π;γ0�ω0)+η2(γ0�ω0).
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COMMENT: By Lemma 8.3, Assumptions C6 and C7 hold if and only if
they hold with ξ1(π;γ0� b) and η1(π;γ0�ω0) in place of ξ(π;γ0� b) and
η(π;γ0�ω0), respectively, because ξ2(γ0� b) and η2(γ0�ω0) do not depend
onπ. The quantities ξ1(π;γ0� b) andη1(π;γ0�ω0) are simpler than ξ(π;γ0� b)
and η(π;γ0�ω0), because they are based on lower dimensional vectors, that
is, the dβ-vectors G∗

1(π;γ0)+K∗
1(π;γ0)b and K∗

1(π;γ0)ω0.

Using Lemma 8.3 and an argument similar to that used to prove Lemma 2.6
of Kim and Pollard (1990; KP) (see Lemma 9.13 below), we obtain the follow-
ing sufficient condition for Assumption C6 when β is a scalar.73

ASSUMPTION C6∗: (i) dβ = 1 (i.e., β is a scalar).
(ii) Var(G∗

1(π1;γ0)−G∗
1(π2;γ0)) 
= 0 and Var(G∗

1(π1;γ0)+G∗
1(π2;γ0)) 
= 0

∀π1�π2 ∈Π with π1 
= π2 ∀γ0 ∈ Γ with β0 = 0.

LEMMA 8.4: Assumption C6∗ implies Assumption C6.

Next, we provide a primitive sufficient condition for Assumption C6∗. We
partition the covariance kernelΩ(π1�π2;γ0) in Assumption C3 analogously to
H(π;γ0) and obtain

Ω(π1�π2;γ0)=
[
Ω11(π1�π2;γ0) Ω12(π1;γ0)

Ω12(π2;γ0)
′ Ω22(γ0)

]
�(8.6)

whereΩ22(γ0) ∈Rdζ×dζ does not depend on π. For any π1�π2 ∈Π and π1 
= π2,
(G1(π1)�G1(π2)�G2)

′ is normally distributed with mean zero and covariance
matrix

ΩG(π1�π2;γ0)=
⎡⎣Ω11(π1�π1;γ0) Ω11(π1�π2;γ0) Ω12(π1;γ0)

Ω11(π2�π1;γ0) Ω11(π2�π2;γ0) Ω12(π2;γ0)

Ω12(π1;γ0)
′ Ω12(π2;γ0)

′ Ω22(γ0)

⎤⎦ �(8.7)

Typically, the covariance matrix ΩG(π1�π2;γ0) takes the form of an outer
product, which facilitates the verification of Assumption C6∗∗, as shown in the
examples.

ASSUMPTION C6∗∗: (i) dβ = 1 (i.e., β is a scalar).
(ii) ΩG(π1�π2;γ0) is positive definite ∀π1�π2 ∈Π with π1 
= π2 ∀γ0 ∈ Γ with

β0 = 0.

LEMMA 8.5: Assumption C6∗∗ implies Assumption C6∗, which in turn implies
Assumption C6.

73Kim and Pollard (1990, Lemma 2.6) provide conditions under which the sample paths of a
Gaussian process are maximized at a unique point with probability 1. Here the process of interest
is a quadratic function of a Gaussian process.
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8.7. Assumptions C1 and D1: Quadratic Expansions for Sample Average
Criterion Functions

The sample criterion function for sample average extremum estimators takes
the form

Qn(θ)= n−1
n∑
i=1

ρ(Wi�θ)�(8.8)

For example, ρ(Wi�θ) is the log-likelihood function of the ith observation in
the case of the ML estimator, ρ(Wi�θ) is the squared regression residual in the
case of the LS estimator, and ρ(Wi�θ) is the check function in the case of the
quantile regression estimator.

For Qn(θ) as in (8.8), Q(θ;γ0)=Eγ0ρ(Wi�θ).

8.7.1. Sufficient Conditions via Smoothness

First, we provide sufficient conditions for Assumptions C1 and D1 when
ρ(Wi�θ) is twice continuously differentiable in θ on the support of Wi. Let
ρψ(Wi�θ) and ρψψ(Wi�θ) denote the first-order and second-order partial
derivatives w.r.t. ψ, and let ρθ(Wi�θ) and ρθθ(Wi� θ) denote the first-order and
second-order partial derivatives w.r.t. θ. The support of Wi for all γ ∈ Γ is con-
tained in a set W .

ASSUMPTION Q1: (i) For some function ρ(w�θ) ∈R,Qn(θ)= n−1
∑n

i=1 ρ(Wi�
θ).

(ii) ρ(w�θ) is twice continuously differentiable in θ on an open set containing
Θ∗ ∀w ∈ W .

(iii) Under {γn} ∈ Γ (γ0�0� b), for all constants δn → 0,

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

∥∥∥∥∥n−1
n∑
i=1

(ρψψ(Wi�ψ�π)

− ρψψ(Wi�ψ0�n�π))

∥∥∥∥∥= opπ(1)�

(iv) Under {γn} ∈ Γ (γ0�∞�ω0), for all constants δn → 0,

sup
θ∈Θn(δn)

∥∥∥∥∥n−1
n∑
i=1

B−1(βn)[ρθθ(Wi� θ)− ρθθ(Wi� θn)]B−1(βn)

∥∥∥∥∥= op(1)�

where Θn(δn)= {θ ∈Θ :‖ψ−ψn‖ ≤ δn‖βn‖ and ‖π −πn‖ ≤ δn}.
Assumption Q1(iii) can be verified by a uniform LLN (e.g., see Andrews

(1992)). Assumption Q1(iv) is stronger than the stochastic equicontinuity
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of n−1
∑n

i=1 ρθθ(Wi� θ) over θ ∈ Θn(δn) because part of the rescaling matrix
B−1(βn) diverges to infinity as βn → 0. The verification of Assumption Q1(iv)
relies on the fact that n−1

∑n

i=1 ρθθ(Wi� θ) is close to singularity for θ ∈Θn(δn).

LEMMA 8.6: Suppose Assumptions B1 and B2 hold.
(a) Assumption Q1 implies that Assumption C1 holds with

DψQn(θ)= n−1
n∑
i=1

ρψ(Wi�θ) and DψψQn(θ)= n−1
n∑
i=1

ρψψ(Wi�θ)�

(b) Assumption Q1 implies that Assumption D1 holds with

DQn(θ)= n−1
n∑
i=1

ρθ(Wi�θ) and D2Qn(θ)= n−1
n∑
i=1

ρθθ(Wi� θ)�

8.7.2. Sufficient Conditions via Stochastic Differentiability

Next, we provide sufficient conditions for Assumptions C1 and D1 that do
not require pointwise smoothness of ρ(w�θ) in θ ∀w ∈ W . These sufficient
conditions rely on stochastic differentiability of Qn(θ), as in Pollard (1985),
van der Vaart and Wellner (1996, Theorem 3.2.16), and Andrews (2001), and
on the smoothness of Eρ(Wi�θ). These sufficient conditions cover quantile re-
gression estimators, censored and truncated regression estimators, Huber re-
gression M-estimators, and so forth.

To provide sufficient conditions via stochastic differentiability, we first define
the stochastic derivative vectors and the associated remainder terms. Let

ρ(w�θ)= ρ(w�θn)+Δ(w�θn)′(θ− θn)+ r(w�θ)�(8.9)

where Δ(w�θn) is a “stochastic derivative” w.r.t. θ at θn and r(w�θ) is the re-
mainder term. Compared with Pollard (1985), the current definition of the re-
mainder term does not have ‖θ − θn‖ in front of r(w�θ) so as to adapt to
the weak-identification situation. The conditions on r(w�θ) given in Assump-
tion Q2 below are adjusted accordingly.

Similarly, for any π ∈Π, let

ρ(w�ψ�π)= ρ(w�ψ0�n�π)+Δψ(w�ψ0�n�π)
′(ψ−ψ0�n)+rψ(w�ψ�π)�(8.10)

where Δψ(w�ψ0�n�π) is a “stochastic partial derivative” w.r.t. ψ at ψ0�n and
rψ(w�ψ�π) is the remainder term. Note that Δψ(w�ψ0�n�π) is a subvector
of Δ(w�θ) evaluated at θ = (ψ0�n�π). (The quantities Δψ(w�ψ0�n�π) and
rψ(w�ψ�π) in (8.10) are not derivatives of Δ(w�θn) and r(w�θ) that appear
in (8.9).)
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For {γn} ∈ Γ (γ0), define the empirical processes {νnr(θ) :θ ∈Θ} by

νnr(θ)= n−1/2
n∑
i=1

(r(Wi� θ)−Eγnr(Wi�θ))�(8.11)

where r(w�θ) is defined in (8.9). Also, define the empirical process {νnrψ(θ) :
θ ∈Θ}, where νnr(θ)= (νnrψ(θ)′� νnrπ(θ)′)′ and rψ(w�θ) is defined in (8.10).

For {γn} ∈ Γ (γ0), define the nonrandom real-valued function

Q∗
n(θ)= n−1

n∑
i=1

Eγnρ(Wi�θ)�(8.12)

When {Wi : 1 ≤ i≤ n} are identically distributed under γn,Q∗
n(θ)=Eγnρ(Wi�θ).

ASSUMPTION Q2: (i) For some function ρ(w�θ) ∈R,Qn(θ)= n−1
∑n

i=1 ρ(Wi�
θ).

(ii) Eγ∗ρ(Wi�θ) is twice continuously differentiable in θ on an open set con-
taining Θ∗ ∀γ∗ ∈ Γ .

(iii) Under {γn} ∈ Γ (γ0�0� b), for all constants δn → 0,

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

an(γn)n
−1/2|νnrψ(ψ�π)|

[1 + ‖an(γn)(ψ−ψ0�n)‖] · ‖ψ−ψ0�n‖ = opπ(1)�

(iv) Under {γn} ∈ Γ (γ0�∞�ω0), for all constants δn → 0,

sup
θ∈Θn(δn)

|νnr(θ)|
[1 + n1/2‖B(βn)(θ− θn)‖] · ‖B(βn)(θ− θn)‖ = op(1)�

where Θn(δn)= {θ ∈Θ :‖ψ−ψn‖ ≤ δn‖βn‖ and ‖π −πn‖ ≤ δn}.
(v) Under {γn} ∈ Γ (γ0�0� b), for all constants δn → 0,

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

∥∥∥∥ ∂2

∂ψ∂ψ′Q
∗
n(ψ�π)− ∂2

∂ψ∂ψ′Q
∗
n(ψ0�n�π)

∥∥∥∥= oπ(1)�

(vi) Under {γn} ∈ Γ (γ0�∞�ω0), for all constants δn → 0,

sup
θ∈Θn(δn)

∥∥∥∥B−1(βn)

[
∂2

∂θ∂θ′Q
∗
n(θ)− ∂2

∂θ∂θ′Q
∗
n(θn)

]
B−1(βn)

∥∥∥∥= o(1)�

Because the expectation operator is a smoothing operator, Eγ∗ρ(Wi�θ) of-
ten is differentiable in θ even though ρ(Wi�θ) is not. For example, Assump-
tion Q2(ii) holds when ρ(Wi�θ) is piecewise differentiable in θ and is only
nonsmooth in θ on a negligible set of {Wi : 1 ≤ i≤ n}. Such cases include quan-
tile regression, censored and truncated regression models, and so forth.
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Assumption Q2(iii) and (iv) are generalizations of the stochastic differen-
tiability condition in Pollard (1985) to the case of drifting sequences of true
parameters. In the special case where ρ(Wi�θ) is twice continuously differen-
tiable, Assumption Q2(iii) and (iv) can be verified easily by omitting the “1”
summand in the denominators. The verification is similar to that in Lemma 8.6
above.

When ρ(Wi�θ) is not pointwise smooth, Assumption Q2(iii) and (iv) can be
verified by methods provided in Pollard (1985). For example, empirical pro-
cess methods can be used to show νnrψ(ψ�π)/‖ψ− ψ0�n‖ = opπ(1) uniformly
for ψ in a neighborhood of ψ0�n to verify Assumption Q2(iii). In this case, only
the ‖ψ − ψ0�n‖ part of the denominator in Assumption Q2(iii) is used. Simi-
larly, empirical process methods can be used to show νnr(θ)/‖B(βn)(θ−θn)‖ =
op(1) uniformly over Θn(δn) to verify Assumption Q2(iv). Pollard (1985) pro-
vides results for empirical processes based on i.i.d. random variables. For de-
pendent random variables, the empirical process results in Doukhan, Massart,
and Rio (1995) and Arcones and Yu (1994) can be used. Hansen (1996) estab-
lishes the stochastic equicontinuity of empirical process of dependent triangu-
lar arrays, which is suitable for asymptotic results under drifting sequences of
true parameters. For other references, see Andrews (1994). Also, the Huber-
type bracketing condition in Pollard (1985) applies with dependent random
variables.

Assumption Q2(v) is not restrictive. It holds by Assumption Q2(ii) when
{Wi : i≥ 1} are identically distributed under γ∗ ∈ Γ .

Assumption Q2(vi) is stronger than uniform continuity of (∂2/∂θ∂θ′)Q∗
n(θ)

because part of B−1(βn) diverges when βn → 0. The verification of Assump-
tion Q2(vi) relies on (∂2/∂θ∂θ′)Q∗

n(θ) being almost singular when β is close
to 0.

For {γn} ∈ Γ (γ0), define the empirical process {νnΔ(θ) :θ ∈Θ} by

νnΔ(θ)= n−1/2
n∑
i=1

(Δ(Wi�θ)−EγnΔ(Wi�θ))�(8.13)

where Δ(w�θ) is defined in (8.9). Also, define the empirical process {νnΔψ(θ) :
θ ∈Θ}, where νnΔ(θ)= (νnΔψ(θ)′� νnΔπ(θ)′)′ and Δψ(θ) is as in (8.10).

LEMMA 8.7: Suppose Assumptions B1 and B2 hold.
(a) Assumption Q2 implies that Assumption C1 holds with

DψQn(θ)= n−1/2νnΔψ(θ)+ ∂

∂ψ
Q∗
n(θ) and

DψψQn(θ)= ∂2

∂ψ∂ψ′Q
∗
n(θ)�
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(b) Assumption Q2 implies that Assumption D1 holds with

DQn(θ)= n−1/2νnΔ(θ)+ ∂

∂θ
Q∗
n(θ) and D2Qn(θ)= ∂2

∂θ∂θ′Q
∗
n(θ)�

COMMENTS: (i) WhenQ∗
n(θ) is minimized at θn under {γn} ∈ Γ (γ0),DQn(θ)

in Lemma 8.7(b) evaluated at θ = θn simplifies to n−1/2νnΔ(θn) because
(∂/∂θ)Q∗

n(θn) = 0. With identically distributed observations, this holds un-
der Assumption B3 because Q∗

n(θ) = Eγnρ(Wi�θ) is minimized at θ = θn. In
Assumption C1, DψQn(θ) is evaluated at θ = (ψ0�n�π). The expression for
DψQn(θ) in Lemma 8.7(a) does not simplify when θ= (ψ0�n�π) becauseQ∗

n(θ)
is not minimized at (ψ0�n�π) under γn.

(ii) In Lemma 8.7,DψψQn(θ) andD2Qn(θ) are both nonrandom. With iden-
tically distributed observations,DψψQn(θ) and D2Qn(θ) are second-order par-
tial derivatives of Eγnρ(Wi�θ) w.r.t. ψ and θ, respectively.

Under Assumptions B1, B2, and Q2, Assumption C2(i) holds with

m(Wi�θ)= Δψ(Wi�θ)−Eγ∗Δψ(Wi�θ)+ ∂

∂ψ
Eγ∗ρ(Wi�θ)�(8.14)

Hence, Eγ∗m(Wi�θ) = (∂/∂ψ)Eγ∗ρ(Wi�θ). Assumption C2(ii) holds provided
Eγ∗ρ(Wi�θ) is minimized at θ∗ when the true parameter is γ∗ ∈ Γ , and Assump-
tion C2(iii) holds provided Eγ∗ρ(Wi�θ) is minimized at (ψ∗�π) ∀π ∈Π when
the true parameter is γ∗ ∈ Γ with β∗ = 0. With identically distributed observa-
tions, Assumption C2(ii) and (iii) are implied by Assumptions B3 and Q2(ii)
with Eγ∗ρ(Wi�θ)=Q(θ;γ∗).

Assumption C3 can be verified with Gn(π) = νnΔψ(ψ0�n�π). Assump-
tion C4(i) holds with H(π;γ0) = limn→∞(∂2/∂ψ∂ψ′)Q∗

n(ψ0�π) provided this
limit exists, which is always true for identically distributed observations. The
verification of Assumption C5 requires regularity conditions on the density
functions of the observations w.r.t. some dominating measure for γ ∈ Γ . As-
sumption C6 can be verified using Lemma 8.4 or 8.5. Assumption C7 can
be verified using the matrix Cauchy–Schwarz inequality; see Tripathi (1999).
Assumption C8 is implied by Assumption C4 because (∂/∂ψ′)EγnDψQn(θ) =
DψψQn(θ).

Assumption D2 can be verified directly with the nonrandom form of
D2Qn(θn) given in Lemma 8.7(b). Assumption D3 can be verified by a triangu-
lar array CLT provided Q∗

n(θ) is minimized at θn ∀n ≥ 1. The latter condition
yields DQn(θn)= n−1/2νnΔψ(θn).

8.7.3. Initial Conditions Adjustment to the Sample Criterion Function

In some stationary time series models, the sample criterion function Qn(θ)
depends on initial conditions and, hence, is not an average of stationary and
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ergodic random variables. In such cases, Assumptions Q1 and Q2 can be ad-
justed to allow Qn(θ) to equal a sample average of stationary summands,
n−1

∑n

i=1 ρ(Wi�θ), plus a term, QIC
n (θ), that is asymptotically negligible in a

suitable sense. A similar adjustment is introduced in Andrews (2001).

ASSUMPTION Q3: (i) For some function ρ(w�θ) ∈R,Qn(θ)= n−1
∑n

i=1 ρ(Wi�
θ)+QIC

n (θ).
(ii) Assumption C1(ii) holds withRn(θ) replaced byQIC

n (θ)−QIC
n (ψ0�n�π) and

Assumption D1(ii) holds with R∗
n(θ) replaced by QIC

n (θ)−QIC
n (θn).

LEMMA 8.8: (a) Lemma 8.6 holds with Assumption Q1(i) replaced by As-
sumption Q3.

(b) Lemma 8.7 holds with Assumption Q2(i) replaced by Assumption Q3.

8.8. Bivariate Probit Model With Endogeneity and Reparametrization

Next, we briefly discuss reparametrization in the simple bivariate probit
model with endogeneity considered in Han (2009) and Han and Vytlacil
(2009). The model is

Yi = 1(λ1 +Diλ2 − εi ≥ 0)�(8.15)

Di = 1(α+Ziβ− νi ≥ 0)�

where (Yi�Di�Zi) is observed, Zi ∈ R, and (εi� νi) has a bivariate normal dis-
tribution with means zero, variances normalized to equal 1, and correlation ρ.
Han and Vytlacil (2009) show that the parameters are identified under some
conditions including β 
= 0. If β= 0, then none of the parameters λ1, λ2, and ρ
is identified, but a two dimensional subspace of the parameter space for these
three parameters is identified. Han (2009) introduces a nonlinear transfor-
mation of (λ1�λ2�ρ), call it (ζ1� ζ2�ρ), such that ρ is not identified if β = 0,
but (ζ1� ζ2) are identified. He shows that the assumptions in AC1 hold with
ζ = (ζ1� ζ2) and π = ρ. This transformation is not unique. One can create
other transformations such that λ1 is not identified when β= 0, but the other
two transformed parameters are. See Han (2009) for details concerning the
reparametrization that he provides.

9. SUPPLEMENTAL APPENDIX B: PROOFS

This appendix contains proofs of the following results given in AC1: (i) the
asymptotic size lemma, Lemma 2.1, (ii) the asymptotic distributions of the un-
restricted estimator, (iii) the asymptotic distributions of the t statistic, (iv) the
asymptotic distributions of the restricted estimator and QLR statistic, and
(v) the asymptotic size results for t and QLR CS’s.

This appendix also provides proofs of the sufficient conditions given in Sup-
plemental Appendix A.
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9.1. Proof of Lemma 2.1

PROOF OF LEMMA 2.1: The proof follows the lines of the argument in An-
drews and Guggenberger (2010). Define gn(γ) = (n1/2‖β‖�‖β‖�β/‖β‖� ζ�π�
φ), where by definition β/‖β‖ = 1dβ/‖1dβ‖ if β = 0 and 1dβ = (1� � � � �1)′ ∈
Rdβ . Define G1 = {g :gn(γn)→ g for some {γn} ∈ Γ (γ0�0� b) with ‖b‖ <∞},
G2 = {g :gn(γn)→ g for some {γn} ∈ Γ (γ0�∞�ω0)}, and G=G1 ∪G2.

First, we show AsySz ≥ min{infh∈H CP(h)�CP∞}. Let {γn ∈ Γ :n ≥ 1} be a
sequence such that lim infn→∞ CPn(γn) = lim infn→∞ infγ∈Γ CPn(γ) (= AsySz).
Such a sequence always exists. Let {wn :n ≥ 1} be a subsequence of {n} such
that limn→∞ CPwn(λwn) exists and equals AsySz. Such a sequence always exists.
Below we show there exists a subsequence {pn} of {wn} such that CPpn(γpn)→
CP(h) for some h ∈H or limn→∞ CPpn(γpn)≥ CP∞. In consequence, AsySz =
limn→∞ CPpn(γpn)≥ min{infh∈H CP(h)�CP∞}.

Now we show that the claim concerning the subsequence {pn} holds. To this
end, we show (a) for any sequence {γn ∈ Γ :n≥ 1} and any subsequence {wn} of
n, there exists a subsequence {pn} of {wn} such that gpn(γpn)→ g for some g ∈
G and (b) for any subsequence {pn} of {n} and any sequence {γpn ∈ Γ :n≥ 1}
for which gpn(γpn)→ g for some g ∈G, CPpn(γpn)→ CP(h) for some h ∈H
if g ∈G1 and lim infn→∞ CPpn(γpn)≥ CP∞ if g ∈G2.

To show (a), let βwn�j denote the jth component of βwn and let p1�n = wn
∀n≥ 1. For j = 1, either (i) lim supn→∞p

1/2
j�n βpj�n�j <∞ or (ii) lim supn→∞p

1/2
j�n ×

βpj�n�j = ∞. If (i) holds, then for some subsequence {pj+1�n} of {pj�n}, p1/2
j+1�n ×

βpj+1�n�j → bj for some bj ∈R. If (ii) holds, then for some subsequence {pj+1�n}
of {pj�n}, p1/2

j+1�nβpj+1�n�j → ∞ or −∞. Applying the same argument succes-
sively for j = 1� � � � � dβ yields a subsequence {p∗

n} = {pdβ+1�n} of {wn} such that
(p∗

n)
1/2βp∗

n
→ b ∈ Rdβ or (p∗

n)
1/2‖βp∗

n
‖ → ∞. Because Γ is compact, there ex-

ists a subsequence {p∗∗
n } of {p∗

n} such that γp∗∗
n

→ γ0 ∈ Γ . Finally, let {pn} be a
subsequence of {p∗∗

n } such that βpn/‖βpn‖ →ω0. By construction, gpn(γpn)→
g= (‖b‖�‖β0‖�ω0� ζ0�π0�φ0), where b ∈ (R∪ {±∞})dβ .

It remains to show that the vector g constructed in the previous paragraph
is in G. (This is needed because G is defined by the limits of full sequences
rather than subsequences.) To this end, it suffices to show that there exists a
sequence {γ∗

n ∈ Γ :n ≥ 1} such that gn(γ∗
n) → g and γ∗

pn
= γpn ∀n ≥ 1. Such

a sequence {γ∗
k :k ≥ 1} can be constructed as follows: (i) ∀k = pn, define

γ∗
k = γpn and (ii) ∀k ∈ (pn�pn+1), define β∗

k = (pn/k)
1/2βpn when ‖b‖ ∈ R

and β∗
k = βpn when ‖b‖ = ∞, and (iii) ζ∗

k = ζpn , π
∗
k = πpn , and φ∗

k = φpn in
both cases. Note that when ‖b‖ ∈ R, γ∗

k = (β∗
k� ζ

∗
k�π

∗
k�φ

∗
k) ∈ Γ for k large by

Assumption ACP(iv). When ‖b‖ ∈ R, gn(γ∗
n) → g because k1/2β∗

k = p1/2
n βpn∀k ∈ [pn�pn+1)� p

1/2
n βpn → b as n → ∞, and βpn/‖βpn‖ → ω0 as n → ∞

imply that k1/2‖β∗
k‖ → ‖b‖ and β∗

k/‖β∗
k‖ → ω0 as k → ∞. When ‖b‖ = ∞,

k1/2‖β∗
k‖ ≥ p1/2

n ‖βpn‖ ∀k ∈ [pn�pn+1). Thus, p1/2
n ‖βpn‖ → ∞ as n→ ∞ implies

‖k1/2β∗
k‖ → ∞ as k→ ∞. In addition, when ‖b‖ = ∞, β∗

k/‖β∗
k‖ = βpn/‖βpn‖
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∀k ∈ [pn�pn+1) and βpn/‖βpn‖ →ω0 as n→ ∞ implies that β∗
k/‖β∗

k‖ →ω0 as
k→ ∞.

To show (b), note that we have shown that for any subsequence {pn} of {n}
and any sequence {γpn ∈ Γ :n ≥ 1} for which gpn(γpn)→ g for some g ∈ G,
there exists a sequence {γ∗

n ∈ Γ :n≥ 1} such that gn(γ∗
n)→ g ∈G and γ∗

pn
= γpn

∀n ≥ 1. This and Assumption ACP(i) and (ii) imply (b). This completes the
proof of AsySz ≥ min{infh∈H CP(h)�CP∞}.

Next, we show AsySz ≤ min{infh∈H CP(h)�CP∞}. First, we show that H
equals

H∗ = {
h= (b�γ0) :n1/2βn → b ∈Rdβ�γn → γ0(9.1)

for some {γn ∈ Γ :n≥ 1}}�
We have H∗ ⊂H because γ0 in H∗ has β0 = 0 since n1/2‖βn‖ → ‖b‖<∞. To
show H ⊂ H∗, we need to show that for all b ∈ Rdβ and γ0 ∈ Γ with β0 = 0,
there exists a sequence {γn ∈ Γ :n ≥ 1} such that n1/2βn → b and γn → γ0.
Take γn = (βn� ζ0�π0�φ0) with βn = b/n1/2 for n ≥ 1. Then n1/2βn = b for all
n, γn → γ0, and γn ∈ Γ for n sufficiently large that b/n1/2 < δ by Assump-
tion ACP(iv).

Given that H =H∗, for any h ∈H, there exists a sequence {γn ∈ Γ :n ≥ 1}
such that {γn} ∈ Γ {γ0�0� b) by the definition of H∗. Then AsySz =
lim infn→∞ infγ∈Γ CPn(γ) ≤ lim infn→∞ CPn(γn) = CP(h), where the last equal-
ity holds by Assumption ACP(i). There also exists a sequence {γn} ∈ Γ (γ0�∞�
ω0) such that CPn(γn) → CP∞ by Assumption ACP(iii). Thus, AsySz ≤
lim infn→∞ CPn(γn) = CP∞. Hence, AsySz ≤ min{infh∈H CP(h)�CP∞} as de-
sired. Q.E.D.

9.2. Proofs of Estimation Results

PROOF OF LEMMA 3.1: The first result of Lemma 3.1(a) is proved along the
lines of the proof of Lemma A1 of Andrews (1993), which is a uniform consis-
tency result under fixed true parameters. Specifically, by Assumption B3(ii),
given any neighborhood Ψ0 of ψ0, there exists a constant ε > 0 such that
∀π ∈Π, infψ∈Ψ(π)/Ψ0 Q(ψ�π;γ0)−Q(ψ0�π;γ0)≥ ε. Thus,

P(ψ̂n(π) ∈Ψ(π)/Ψ0 for some π ∈Π)(9.2)

≤ P(Q(ψ̂n(π)�π;γ0)−Q(ψ0�π;γ0)≥ ε for some π ∈Π)→ 0�

where “→ 0” holds provided supπ∈Π |Q(ψ̂n(π)�π;γ0) − Q(ψ0�π;γ0)| →p 0.
The latter follows from

0 ≤ inf
π∈Π

[
Q(ψ̂n(π)�π;γ0)−Q(ψ0�π;γ0)

]
(9.3)

≤ sup
π∈Π

[
Q(ψ̂n(π)�π;γ0)−Q(ψ0�π;γ0)

]
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≤ sup
π∈Π

[
Q(ψ̂n(π)�π;γ0)−Qn(ψ̂n(π)�π;γ0)

]
+ sup

π∈Π

[
Qn(ψ̂n(π)�π;γ0)−Q(ψ0�π;γ0)

]
≤ sup

π∈Π

[
Q(ψ̂n(π)�π;γ0)−Qn(ψ̂n(π)�π;γ0)

]
+ sup

π∈Π
[Qn(ψ0�π;γ0)−Q(ψ0�π;γ0)] + o(n−1)

≤ 2 sup
ψ∈Ψ(π)�π∈Π

|Qn(ψ�π;γ0)−Q(ψ�π;γ0)| + o(n−1)= op(1)�

where the first inequality holds by Assumption B3(ii) and the fourth inequality
holds by the definition of ψ̂n(π) in (3.2), and the equality holds by Assump-
tion B3(i). This completes the proof of the first result of part (a). The second
result of part (a) follows from the first result because ψ̂n = ψ̂n(π̂n) and π̂n ∈Π.

When β0 
= 0, θ̂n →p θ0 under {γn} such that γn → γ0 with β0 
= 0 by
an analogous argument to that just given for part (a), but with θ̂n, θ0, and
Θ/Θ0 in place of (ψ̂n(π)�π), (ψ0�π), and Ψ(π)/Ψ0, respectively, where Θ0

is some neighborhood of θ0, with infπ∈Π and supπ∈Π deleted, and with As-
sumption B3(iii) used in place of Assumption B3(ii). Because θn → θ0, this
completes the proof of part (b). Q.E.D.

The following two lemmas are used in the proofs of Lemma 3.2 and Theo-
rem 3.1.

LEMMA 9.1: Suppose Assumptions B1, B2, C2, C3, and C5 hold. Under {γn} ∈
Γ (γ0�0� b), there are two alternatives:

(a) When ‖b‖<∞, n1/2DψQn(ψ0�n� ·)⇒G(·;γ0)+K(·;γ0)b.
(b) When ‖b‖ = ∞ and βn/‖βn‖ → ω0 for any ω0 ∈ Rdβ with ‖ω0‖ = 1,

‖βn‖−1DψQn(ψ0�n�π)→p K(π;γ0)ω0 uniformly over π ∈Π.

COMMENT: Lemma 9.1 implies that an(γn)DψQn(ψ0�n�π)=Opπ(1).

Define

Zn(π)= −an(γn)(DψψQn(ψ0�n�π))
−1DψQn(ψ0�n�π)�(9.4)

LEMMA 9.2: Suppose Assumptions A, B1–B3, and C1–C5 hold. Under {γn} ∈
Γ (γ0�0� b), the following equalities hold:

(a) an(γn)(ψ̂n(π)−ψ0�n)=Opπ(1).
(b) an(γn)(ψ̂n(π)−ψ0�n)=Zn(π)+ opπ(1).
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(c)

a2
n(γn)

(
Qn(ψ̂n(π)�π)−Qn(ψ0�n�π)

)
= −1

2
Zn(π)

′DψψQn(ψ0�n�π)Zn(π)+ opπ(1)�

COMMENT: When ‖b‖<∞, Lemma 9.2(b) is used to derive the asymptotic
distribution of ψ̂n. Lemma 9.2(c) is used in the proof of Lemma 3.2 below.

PROOF OF LEMMA 9.1: First, we decompose DψQn(ψ0�n�π) as

DψQn(ψ0�n�π)= n−1/2Gn(π)+ n−1
n∑
i=1

Eγnm(Wi�ψ0�n�π)�(9.5)

To analyze n−1
∑n

i=1Eγnm(Wi�ψ0�n�π) when βn is close to 0, we view this
average expectation as a function of βn and we carry out element-by-element
mean-value expansions around βn = 0. This gives

n−1
n∑
i=1

Eγnm(Wi�ψ0�n�π)(9.6)

= n−1
n∑
i=1

Eγ0�nm(Wi�ψ0�n�π)+Kn(ψ0�n�π; γ̃n)βn

=Kn(ψ0�n�π; γ̃n)βn�
where γ̃n = (β̃n� ζn�πn�φn) may differ across the rows of Kn(ψ0�n�π; γ̃n), β̃n
is on the line segment connecting βn and 0, which implies that β̃n converges
to 0 as γn → γ0 for γ0 with β0 = 0, and the second equality holds by As-
sumption C2(iii) applied with γ∗ = γ0�n because γn = (βn� ζn�πn�φn) ∈ Γ with
‖βn‖< δ, which holds for n large, implies that γ0�n = (0� ζn�πn�φn) ∈ Γ by As-
sumption B2(ii). Furthermore, (ψ0�n�π� γ̃n) is in the domainΘδ×Γ0 of Kn(·; ·)
by Assumption B2(ii).

By Assumption C5,

Kn(ψ0�n�π; γ̃n)→p K(π;γ0)(9.7)

uniformly over π ∈Π. From (9.5)–(9.7), we obtain

DψQn(ψ0�n�π)= n−1/2Gn(π)+K(π;γ0)βn + opπ(‖βn‖)�(9.8)

In part (a), in which case n1/2βn → b with ‖b‖<∞, (9.8) leads to

n1/2DψQn(ψ0�n� ·) = Gn(·)+K(·;γ0)n
1/2βn + opπ(1)(9.9)

⇒G(·;γ0)+K(·;γ0)b�
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where the weak-convergence result holds by Assumption C3.
In part (b), in which case n1/2‖βn‖ → ∞ and βn/‖βn‖ →ω0, (9.8) leads to

‖βn‖−1DψQn(ψ0�n�π)(9.10)

= (
n1/2‖βn‖

)−1
Gn(π)+K(π;γ0)βn/‖βn‖ + opπ(1)

→p K(π;γ0)ω0

uniformly over π ∈Π using Assumption C3. Q.E.D.

PROOF OF LEMMA 9.2: The proof of part (a) is analogous to the proof of
Theorem 1 of Andrews (1999), which in turn uses the method in Chernoff
(1954, Lemma 1). For notational simplicity, DψψQn(ψ0�n�π) is abbreviated as
Dψψ�n(π). Let κn�π =D1/2

ψψ�n(π)an(γn)(ψ̂n(π)−ψ0�n). We have

opπ(1) ≥ a2
n(γn)

(
Qn(ψ̂n(π)�π)−Qn(ψ0�n�π)

)
(9.11)

= an(γn)DψQn(ψ0�n�π)
′D−1/2

ψψ�n(π)κn�π

+ 1
2
‖κn�π‖2 + a2

n(γn)Rn(ψ̂n(π)�π)

= Opπ(‖κn�π‖)+ 1
2
‖κn�π‖2 + (

1 + ∥∥D−1/2
ψψ�n(π)κn�π

∥∥)2
opπ(1)

= Opπ(‖κn�π‖)+ 1
2
‖κn�π‖2 + opπ(‖κn�π‖)

+ opπ
(‖κn�π‖2

)+ opπ(1)�
where the inequality holds ∀π ∈ Π for n large by (3.2) and the fact that
ψ0�n ∈ Ψ(π) ∀π ∈Π for n large, which holds because this condition is equiv-
alent to (ψ0�n�π) ∈ Θ ∀π ∈ Π for n large, and the latter holds because
(i) (ψ0�n�π) = (0� ζn�π) ∈ {β ∈ Rdβ :‖β‖ < δ} × Z 0 ×Π ⊂ Θ ∀π ∈Π by As-
sumption B1(ii) provided ζn ∈ Z 0, and (ii) ζn ∈ Z 0 for n large by Assump-
tion B1(ii) because θn = (βn� ζn�πn)→ θ0 = (0� ζ0�π0) implies that ‖βn‖< δ,
and θn ∈ Θ∗

δ ⊂ {β ∈ Rdβ :‖β‖ < δ} × Z 0 × Π for n large. The first equal-
ity in (9.11) holds by Assumption C1(i) with ψ = ψ̂n(π); the second equal-
ity holds by Lemma 3.1(a), Assumptions C1(ii) and C4, and the implication
of Lemma 9.1 that an(γn)DψQn(ψ0�n�π) = Opπ(1). Rearranging (9.11) gives
‖κn�π‖2 ≤ 2‖κn�π‖Opπ(1)+ opπ(1). Let ξn�π denote the Opπ(1) term. Then we
have

(‖κn�π‖ − ξn�π)2 ≤ ξ2
n�π + opπ(1)�(9.12)

Taking square roots gives ‖κn�π‖ =Opπ(1), which together with Assumption C4
completes the proof of part (a).
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Now, we prove part (b). Define

Δn(π)= an(γn)(ψ̂n(π)−ψ0�n) and ψ†
n(π)=ψ0�n+a−1

n (γn)Zn(π)�(9.13)

First, we apply the quadratic approximation in Assumption C1(i) with ψ =
ψ†
n(π). Rescaling both sides by a2

n(γn), we get

a2
n(γn)

(
Qn(ψ

†
n(π)�π)−Qn(ψ0�n�π)

)
(9.14)

= −1
2
Zn(π)

′Dψψ�n(π)Zn(π)+ opπ(1)�

where the opπ(1) term is obtained from Assumption C1(ii), Lemma 9.1, and
ψ0�n −ψn → 0.

Next, we apply the quadratic approximation in Assumption C1(i) with ψ =
ψ̂n(π) to obtain

a2
n(γn)

(
Qn(ψ̂n(π)�π)−Qn(ψ0�n�π)

)
(9.15)

= −Zn(π)′Dψψ�n(π)Δn(π)+ 1
2
Δn(π)

′Dψψ�n(π)Δn(π)+ opπ(1)

= 1
2
(Δn(π)−Zn(π))′Dψψ�n(π)(Δn(π)−Zn(π))

− 1
2
Zn(π)

′Dψψ�n(π)Zn(π)+ opπ(1)�

where the opπ(1) term in the first equality is obtained from Assumption C1(ii)
and Lemma 9.2(a).

We can write a−1
n (γn)Zn(π) = (β†

n(π)� ζ
††
n (π)), where β†

n(π) = opπ(1) and
ζ††
n (π)= opπ(1) using Assumptions C3 and C4 and a−1

n (γn) ≤ n−1/2 → 0� This
and Assumption B1(ii) lead to

ψ†
n(π)= (0� ζn)+ (β†

n(π)� ζ
††
n (π)) ∈Ψ(π)(9.16)

∀π ∈ Π, where ∈ Ψ(π) holds with probability that goes to 1 as n → ∞.
Specifically, (9.16) holds because (i) γn → γ0 with β0 = 0, (ii) for n large,
(βn� ζn�πn�φn) ∈ Γ satisfies ‖βn‖< δ/2 and ‖ζn − ζ0‖< δζ0/2 for some δ > 0
and δζ0 > 0 chosen such that the ball centered at ζ0 with radius δζ0 is in Z 0,
(iii) the latter, β†

n(π) = opπ(1), and ζ††
n (π) = opπ(1) imply that ‖β†

n(π)‖ < δ,
‖ζn + ζ††

n (π) − ζ0‖ < δζ0 , ζn + ζ††
n (π) ∈ Z 0, and ψ†

n(π) ∈ {β ∈ Rdβ :‖β‖ <
δ} × Z 0 ∀π ∈ Π with probability that goes to 1, and (iv) {β ∈ Rdβ :‖β‖ <
δ} × Z 0 ⊂Ψ(π) ∩ {ψ= (β�ζ) ∈ Rdψ :‖β‖< δ} by Assumption B1(ii). Results
(iii) and (iv) combine to establish (9.16).

Using (9.16) and (3.2), we have

Qn(ψ̂n(π)�π)≤Qn(ψ
†
n(π)�π)+ opπ(n−1)(9.17)
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∀π ∈Π. This, (9.14), and (9.15) give

1
2
(Δn(π)−Zn(π))′Dψψ�n(π)(Δn(π)−Zn(π))≤ opπ(1)�(9.18)

Assumption C4 and (9.18) imply that Δn(π) = Zn(π) + opπ(1), which is the
result of part (b).

Part (c) holds because the first summand on the right-hand side (r.h.s.) of
(9.15) is opπ(1) by Lemma 9.2(b) and Assumption C4. Q.E.D.

PROOF OF LEMMA 3.2: Lemma 9.1(a) and Assumption C4 yield

Zn(·)⇒ −H−1(·;γ0)(G(·;γ0)+K(·;γ0)b)(9.19)

under {γn} ∈ Γ (γ0�0� b) when ‖b‖ < ∞. Lemma 9.1(b) and Assumption C4
yield

Zn(π)→p −H−1(π;γ0)K(π;γ0)ω0(9.20)

uniformly over π ∈Π under {γn} ∈ Γ (γ0�0� b) when ‖b‖ = ∞ and βn/‖βn‖ →
ω0.

The result of part (a) holds by Lemma 9.2(c), (9.19), Assumption C4, and
the CMT. Replacing (9.19) with (9.20) gives the result of part (b). Q.E.D.

PROOF OF THEOREM 3.1: First we prove part (a). We have π̂n →d π
∗(γ0� b)

by (3.3), Lemma 3.2(a), Assumptions A, B1(iii), C3, C4(i), C5(iii), and C6,
and the CMT. For details, see the proof of the arg max/min Theorem 3.2.2
in van der Vaart and Wellner (1996, p. 286). Note that Assumptions C3, C4,
and C5(iii) are used to guarantee that ξ(π;γ0� b) is continuous on Π a.s. and
Assumption B1(iii) guarantees that the sequence of distributions of {π̂n} is
tight.

Define τn(π)= n1/2(ψ̂n(π)−ψn). We have

τn(·) = n1/2(ψ̂n(·)−ψ0�n)− n1/2(ψn −ψ0�n)(9.21)

= Zn(·)− (
n1/2βn�0dζ

)+ opπ(1)
⇒ −H−1(·;γ0)(G(·;γ0)+K(·;γ0)b)− (b�0dζ )�

where the second equality holds by Lemma 9.2(b) and the definition of ψ0�n,
and the weak-convergence result holds by Lemma 9.1(a) and Assumption C4.
Furthermore, joint convergence (τn(·)� π̂n)⇒ (τ(·;γ0� b)�π

∗(γ0� b)) holds be-
cause τn(·) and π̂n are continuous functions of Zn(·) andDψψQn(ψ0�n� ·), which
converge jointly since the limit of the latter, H(·;γ0), is nonrandom.

To prove part (b), we write

Qn(θ̂n)=Qn(ψ̂n(π̂n)� π̂n)=Qc
n(π̂n)= inf

π∈Π
Qc
n(π)+ o(n−1)�(9.22)
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where the first equality holds by assumption (see the paragraph following
(3.3)), the second equality holds by the definition of Qc

n(π) given just above
(3.3), and the third equality holds by (3.3). Part (b) follows from Lemma 3.2(a),
(9.22), and the CMT. Q.E.D.

PROOF OF LEMMA 3.3: When β0 = 0, π̂n →p π0 by a standard consistency
argument, such as a simplification of the argument given in the proof of
Lemma 3.1(a) with π̂n, π0, Π/Π0, ‖βn‖−2(Qc

n(π) − Q0�n), and η(π;γ0�ω0)
in place of (ψ̂n(π)�π), (ψ0�π), Ψ(π)/Ψ0, Qn(ψ�π;γ0), and Q(ψ�π;γ0), re-
spectively, where Π0 is some neighborhood of π0, and with infπ∈Π and supπ∈Π
deleted. The argument uses Lemma 3.2(b) (which applies because the set
of sequences {γn} ∈ Γ (γ0�∞�ω0) with β0 = 0 is the same as the set of se-
quences {γn} ∈ Γ (γ0�0� b) with ‖b‖ = ∞ and βn/‖βn‖ → ω0) in place of As-
sumption B3(i). In place of Assumption B3(ii), the argument uses the fact that
η(π;γ0�ω0) is continuous onΠ by Assumptions C4 and C5(iii) and is uniquely
minimized at π0 by Assumption C7, and Π is compact by Assumption B1(iii).
Because πn → π0, this completes the proof that π̂n −πn →p 0.

When β0 = 0, ψ̂n − ψn →p 0 because ‖ψ̂n − ψn‖ = ‖ψ̂n(π̂n) − ψn‖ ≤
supπ∈Π ‖ψ̂n(π)−ψn‖ = op(1) by Lemma 3.1(a).

When β0 
= 0, the desired results are given in Lemma 3.1(b). Q.E.D.

The following lemma is used in the proof of Lemma 3.4, which is used in the
proof of Theorem 3.2 below. Let Sβ = [Idβ : 0dβ×dζ ] denote the dβ × dψ selector
matrix that selects β out of ψ.

LEMMA 9.3: Suppose Assumptions C2, C4, C5, and C8 hold. Then K(π0;
γ0)= −H(π0;γ0)S

′
β.

PROOF OF LEMMA 9.3: For notational simplicity, define a function

hn(γ∗�ψ)= n−1
n∑
i=1

Eγ∗m(Wi�ψ�π
∗)�(9.23)

Let hnψ∗(γ∗�ψ) denote the partial derivative of hn(γ∗�ψ) w.r.t. ψ∗, which is
a subvector of γ∗, and let hnψ(γ

∗�ψ) denote its partial derivative w.r.t. ψ. By
Assumption C2(ii),

hn(γ∗�ψ∗)= 0 ∀γ∗ ∈ Γ�(9.24)

In (9.24), ψ∗ enters hn(γ∗�ψ∗) through both γ∗ and the second argument of
hn(·� ·). Taking the derivative of hn(γ∗�ψ∗) w.r.t. ψ∗ gives

hnψ∗(γ
∗�ψ∗)+ hnψ(γ∗�ψ∗)= 0 ∀γ∗ ∈ Γ�(9.25)
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The definition of hn(·� ·) in (9.23) and the equality in (9.25) yield

n−1
n∑
i=1

∂

∂ψ∗′Eγ∗m(Wi�ψ
∗�π∗)(9.26)

= hnψ∗(γ∗�ψ∗)= −hnψ(γ∗�ψ∗)

= −n−1
n∑
i=1

∂

∂ψ′Eγ∗m(Wi�ψ
∗�π∗)�

Postmultiplying both sides of (9.26) by S′
β, which selects the first dβ columns,

yields

n−1
n∑
i=1

∂

∂β∗′Eγ∗m(Wi�ψ
∗�π∗)=

(
−n−1

n∑
i=1

∂

∂ψ′Eγ∗m(Wi�ψ
∗�π∗)

)
S′
β�(9.27)

The partial derivative (∂/∂β∗′)Eγ∗m(Wi�ψ
∗�π∗) on the left-hand side (l.h.s.) of

(9.27) denotes the partial derivative of Eγ∗m(Wi�ψ
∗�π∗) w.r.t. β∗, which is a

subvector of the true value γ∗, whereas (∂/∂ψ′)Eγ∗m(Wi�ψ
∗�π∗) on the r.h.s.

of (9.27) denotes the partial derivative w.r.t. ψ, which is an argument of the
function m(Wi�ψ�π).

Under {γn} ∈ Γ (γ0�∞�ω0), (9.27) with γ∗ replaced by γn becomes

n−1
n∑
i=1

∂

∂β∗′Eγnm(Wi�ψn�πn)=
(

−n−1
n∑
i=1

∂

∂ψ′Eγnm(Wi�ψn�πn)

)
S′
β�(9.28)

Under {γn} ∈ Γ (γ0�∞�ω0) with β0 = 0, the l.h.s. of (9.28) satisfies

n−1
n∑
i=1

∂

∂β∗′Eγnm(Wi�ψn�πn)=Kn(ψn�πn;γn)→K(π0;γ0)�(9.29)

where the equality holds by definition and the convergence follows from As-
sumption C5.

Under {γn} ∈ Γ (γ0�∞�ω0) with β0 = 0, the r.h.s. of (9.28) satisfies

n−1
n∑
i=1

∂

∂ψ′Eγnm(Wi�ψn�πn)= ∂

∂ψ′EγnDψQn(ψn�πn)→H(π0;γ0)�(9.30)

where the equality holds by Assumption C2(i) and the convergence follows
from Assumption C8.

Equations (9.28)–(9.30) yield the desired result. Q.E.D.
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PROOF OF LEMMA 3.4: From Lemma 9.2(b), we have

‖βn‖−1(ψ̂n −ψ0�n)(9.31)

= ‖βn‖−1(ψ̂n(π̂n)−ψ0�n)

= −(DψψQn(ψ0�n� π̂n))
−1‖βn‖−1DψQn(ψ0�n� π̂n)+ op(1)

→p −H−1(π0;γ0)K(π0;γ0)ω0 = S′
βω0�

where the convergence in probability holds by Lemma 9.1(b), Assumption C4,
π̂n −πn = op(1) (which holds by Lemma 3.3), and πn = π0 +o(1), and the last
equality holds by Lemma 9.3.

Note that

ψn =ψ0�n + S′
ββn(9.32)

by the definition of ψ0�n. Hence,

‖βn‖−1(ψ̂n −ψn)= ‖βn‖−1(ψ̂n −ψ0�n)− ‖βn‖−1(ψn −ψ0�n)(9.33)

= (S′
βω0 + op(1))− ‖βn‖−1S′

ββn = op(1)�
where the first equality is straightforward, the second equality uses (9.31) and
(9.32), and the last equality holds because ‖βn‖−1βn →ω0. Q.E.D.

PROOF OF THEOREM 3.2: We show n1/2B(βn)(θ̂n−θn)=Op(1) before prov-
ing parts (a) and (b). The proof is similar to the proof of Lemma 9.2. Let
κn = J1/2

n n
1/2B(βn)(θ̂n − θn). We have

op(1) ≥ n(Qn(θ̂n)−Qn(θn))(9.34)

= n1/2(B−1(βn)DQn(θn))
′J−1/2
n κn + 1

2
‖κn‖2 + nR∗

n(θ̂n)

= Op(‖κn‖)+ 1
2
‖κn‖2 + (

1 + ∥∥J−1/2
n κn

∥∥)2
op(1)

= Op(‖κn‖)+ 1
2
‖κn‖2 + op(‖κn‖)+ op(‖κn‖2)+ op(1)�

where the inequality holds by (2.1), the first equality holds by Assump-
tion D1(i) with θ= θ̂n, and the second equality holds by Assumptions D2 and
D3, and the fact that θ̂n ∈Θn(δn) for some δn → 0 with probability that goes to
1 as n→ ∞. To see the latter, note that π̂n −πn = op(1) and ψ̂n −ψn = op(1)
by Lemma 3.3 and ‖βn‖−1(ψ̂n −ψn)= op(1) by Lemma 3.4 when βn → 0. Re-
arranging (9.34) gives ‖κn‖2 ≤ 2‖κn‖Op(1) + op(1). Let ξ∗

n denote the Op(1)
term. Then we have

(‖κn‖ − ξ∗
n)

2 ≤ (ξ∗
n)

2 + op(1)�(9.35)
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Taking square roots gives ‖κn‖ = Op(1), which together with Assumption D2
gives n1/2B(βn)(θ̂n − θn)=Op(1).

Now, we prove parts (a) and (b) of the theorem at the same time. Define

Z∗
n = −n1/2J−1

n B
−1(βn)DQn(θn)� Δ∗

n = n1/2B(βn)(θ̂n − θn)�(9.36)

θ†
n = θn + n−1/2B−1(βn)Z

∗
n�

First, we apply the quadratic approximation in Assumption D1(i) with θ= θ†
n.

Rescaling both sides by n, we get

n(Qn(θ
†
n)−Qn(θn))= −1

2
Z∗′
n JnZ

∗
n + op(1)�(9.37)

where the op(1) term is obtained from Assumption D1(ii) and the fact that
θ†
n ∈Θn(δn) with probability that goes to 1 as n→ ∞ for some δn → 0. To see

the latter, let θ†
n = (ψ†

n�π
†
n). Then (9.36), the structure of B(βn), Z∗

n = Op(1),
and n1/2‖βn‖ → ∞, yield

ψ†
n −ψn = n−1/2Op(1)= op(‖βn‖) and(9.38)

π†
n −πn = n−1/2‖βn‖−1Op(1)= op(1)

under {γn} ∈ Γ (γ0�0�ω0).
Next, we apply the quadratic approximation in Assumption D1(i) with θ= θ̂n

to obtain

n(Qn(θ̂n)−Qn(θn))= −Z∗′
n JnΔ

∗
n + 1

2
Δ∗′
n JnΔ

∗
n + op(1)(9.39)

= 1
2
(Δ∗

n −Z∗
n)

′Jn(Δ∗
n −Z∗

n)− 1
2
Z∗′
n JnZ

∗
n + op(1)�

where the op(1) term in the first equality is obtained from Assumption D1(ii)
and θ̂n ∈ Θn(δn) with probability that goes to 1 for some δn → 0 as shown
above.

We have θ†
n ∈Θ with probability that goes to 1 as n→ ∞ by (9.38), θn ∈Θ∗,

and Assumption B1(i). In consequence,

Qn(θ̂n)≤Qn(θ
†
n)+ op(1)(9.40)

using (2.1). This, (9.37), and (9.39) give

1
2
(Δ∗

n −Z∗
n)

′Jn(Δ∗
n −Z∗

n)≤ op(1)�(9.41)

Assumption D2, (9.39), and (9.41) imply

Δ∗
n =Z∗

n + op(1) and n(Qn(θ̂n)−Qn(θn))= −1
2
Z∗′
n JnZ

∗
n + op(1)�(9.42)
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This, combined with Assumptions D2 and D3, gives the desired results.
Q.E.D.

9.3. Proofs of t Asymptotic Distributions

The proof of Theorem 4.1 given below uses the following lemma. Define
ω̂n = β̂n/‖β̂n‖.

LEMMA 9.4: Suppose Assumptions A, B1–B3, C1–C8, and V1 hold.
(a) Under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, ω̂n →d ω

∗(π∗(γ0� b);γ0� b).
(b) Under {γn} ∈ Γ (γ0�∞�ω0), ω̂n →p ω0.

PROOF OF LEMMA 9.4: To prove Lemma 9.4(a), we have

ω̂n = n1/2β̂n/
∥∥n1/2β̂n

∥∥→d

τβ(π
∗(γ0� b);γ0� b)

‖τβ(π∗(γ0� b);γ0� b)‖(9.43)

=ω∗(π∗(γ0� b);γ0� b)

by the CMT, because n1/2β̂n →d τβ(π
∗(γ0� b);γ0� b) by Theorem 3.1(a) and

Comment (i) to Theorem 3.1, and P(τβ(π
∗;γ0� b) = 0) = 0 by Assump-

tion V1(iv) (vector β).
Next, we prove that Lemma 9.4(b) holds when β0 = 0. By Lemma 3.4,

‖βn‖−1(β̂n − βn) = op(1). This implies that β̂n = βn + ‖βn‖op(1) and ‖β̂n‖/
‖βn‖ = 1 + op(1). Hence,

ω̂n = β̂n

‖β̂n‖
= β̂n −βn

‖βn‖
‖βn‖
‖β̂n‖

+ βn

‖βn‖
‖βn‖
‖β̂n‖

→p ω0�(9.44)

Under {γn} ∈ Γ (γ0�∞�ω0) with β0 
= 0, ω̂n → ω0 by the CMT given that
β̂n →p β0 by Lemma 3.3. Q.E.D.

PROOF OF THEOREM 4.1: Under the null hypothesis H0 : r(θn) = vn, the t
statistic defined in (4.2) with v= vn becomes

Tn = n1/2(r(θ̂n)− r(θn))
(rθ(θ̂n)B−1(β̂n)Σ̂nB−1(β̂n)rθ(θ̂n)′)1/2

�(9.45)

First, we prove Theorem 4.1(a). We start with the case in which β is a scalar.
Because dr = 1, d∗

π = 0 implies that rπ(θ) = 0 ∀θ ∈ Θδ for some δ > 0 by As-
sumption R(iii). In consequence, rθ(θ)= [rψ(θ) : 0] and the denominator of the
t statistic in (9.45) becomes

(rθ(θ̂n)B
−1(β̂n)Σ̂nB

−1(β̂n)rθ(θ̂n)
′)1/2 = (rψ(θ̂n)Σ̂ψψ�nrψ(θ̂n)′)1/2(9.46)
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with probability that goes to 1 as n→ ∞ (w�p�→ 1), where Σ̂ψψ�n is the upper
left ψ×ψ submatrix of Σ̂n. We have r(ψn� π̂n)− r(ψn�πn)= 0 w�p�→ 1 by (i) a
mean-value expansion w.r.t. π, (ii) Assumption R(i) and (iii), (iii) rπ(θ) = 0
∀θ ∈Θδ, and (iv) βn → 0. Hence, we have

r(θ̂n)− r(θn)= r(ψ̂n� π̂n)− r(ψn� π̂n)+ r(ψn� π̂n)− r(ψn�πn)(9.47)

= rψ(ψ̃n� π̂n)(ψ̂n −ψn)
w�p�→ 1, where the first equality is immediate, and the second equality uses
r(ψn� π̂n) − r(ψn�πn) = 0 and a mean-value expansion of r(ψ̂n� π̂n) w.r.t. ψ
around ψn with ψ̃n between ψ̂n and ψn.

Under the conditions of Theorem 4.1(a),

Tn = rψ(ψ̃n� π̂n)n
1/2(ψ̂n −ψn)

(rψ(θ̂n)Σ̂ψψ�nrψ(θ̂n)′)1/2
(9.48)

= rψ(ψ0� π̂n)n
1/2(ψ̂n −ψn)

(rψ(ψ0� π̂n)Σ̂ψψ�nrψ(ψ0� π̂n)′)1/2
+ op(1)

= Tψ�n(π̂n)+ op(1)→d Tψ(π
∗(b�γ0);b�γ0)�

where the first equality follows from (9.45)–(9.47), the second equality holds
by the consistency of ψ̂n(π) uniformly over π ∈Π and the continuity of rψ(θ),
the third equality defines Tψ�n(π) implicitly, and the convergence follows from
the joint convergence (Tψ�n(·)� π̂n) ⇒ (Tψ(·;γ0� b)�π

∗(γ0� b)) and the CMT.
The latter joint convergence holds by τn(π)= n1/2(ψ̂n(π)−ψn)⇒ τ(π;γ0� b)
(which is established in (9.21)), Assumptions V1 (scalar β) and R, Theo-
rem 3.1(a), the uniform consistency of ψ̂n(π) over π ∈ Π, and the fact that
τn(·) and π̂n can be written as continuous functions of the empirical process
Gn(·) plus op(1) terms.

In the case of a vector β, (9.48) holds with Σ̂ψψ�n being the dψ × dψ upper
left submatrix of Σ̂n = Σ̂n(θ̂+

n ) = Ĵ−1
n (θ̂

+
n )V̂n(θ̂

+
n )Ĵ

−1
n (θ̂

+
n ) using Assumption V1

(vector β) and with Tψ�n(π̂n) replaced by Tψ�n(π̂n� ω̂n), which is defined implic-
itly. In this case, the convergence in (9.48) follows from the joint convergence
(Tψ�n(·)� π̂n� ω̂n)⇒ (Tψ(·;γ0� b), π∗(γ0� b), ω∗(π∗(γ0� b);γ0� b)), which holds
by the same argument as above plus Lemma 9.4(a) and Assumption V1 (vec-
tor β). This completes the proof of part (a).

Next, we prove Theorem 4.1(b). Note that

rθ(θ̂n)B
−1(β̂n)= [rψ(θ̂n) : rπ(θ̂n)ι−1(β̂n)](9.49)

= ι−1(β̂n)[rψ(θ̂n)ι(β̂n) : rπ(θ̂n)]
= ι−1(β̂n)

([0 : rπ(θ̂n)] + op(1)
)
�
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where the first equality follows from the definition of B−1(β̂n), the second
equality is straightforward, and the third equality follows from β̂n → 0 by
Lemma 3.1(a).

By a mean value expansion of r(θ̂n)= r(ψ̂n� π̂n) about θ= (ψn� π̂n), we ob-
tain

r(θ̂n)= r(ψn� π̂n)+ rψ(ψn� π̂n)(ψ̂n −ψn) and

n1/2|ι(β̂n)|(r(θ̂n)− r(θn))
= n1/2|ι(β̂n)|(r(ψn� π̂n)− r(ψn�πn))

+ |ι(β̂n)|rψ(ψn� π̂n)n1/2(ψ̂n −ψn)
= |ι(n1/2β̂n)|(r(ψn� π̂n)− r(ψn�πn))+ op(1)�

where ψn lies between ψ̂n and ψn, and hence, ψn →p ψ0 by Lemma 3.1(a),
and the third equality uses |ι(β̂n)| = ‖β̂n‖ = op(1), n1/2(ψ̂n−ψn)=Op(1), and
rψ(ψn� π̂n)=Op(1), which hold by Theorem 3.1(a) and Assumption R(i).

When β is a scalar, in Theorem 4.1(b), the t statistic becomes

Tn = n1/2|ι(β̂n)|(r(θ̂n)− r(θn))
(rπ(θ̂n)Σ̂ππ�nrπ(θ̂n)′)1/2 + op(1)

(9.50)

= |ι(n1/2β̂n)|(r(ψn� π̂n)− r(ψn�πn))
(rπ(ψ0� π̂n)Σ̂ππ�nrπ(ψ0� π̂n)′)1/2

+ op(1)

= Tn�π(π̂n)+ op(1)→d Tπ(π
∗;b�γ0)�

where the first equality uses (9.45) and (9.49), the second equality uses the pre-
viously displayed equation and ψn →p ψ0, the third equality defines Tn�π(β�π)
implicitly, and the convergence holds by arguments analogous to those used to
establish the convergence in (9.48).

In the case of a vector β, (9.50) holds with Σ̂ππ�n being the dπ × dπ lower
right submatrix of Σ̂n = Σ̂n(θ̂+

n )= Ĵ−1
n (θ̂

+
n )V̂n(θ̂

+
n )Ĵ

−1
n (θ̂

+
n ) using Assumption V1

(vector β) and with Tπ�n(π̂n) replaced by Tπ�n(π̂n� ω̂n), which is defined im-
plicitly. In this case, the convergence in (9.50) follows from the joint conver-
gence (Tπ�n(·)� π̂n� ω̂n)⇒ (Tπ(·;γ0� b), π∗(γ0� b), ω∗(π∗(γ0� b);γ0� b)), which
holds by the same argument as used to establish the convergence in (9.48) plus
Lemma 9.4(a) and Assumption V1 (vector β). This completes the proof of
Theorem 4.1(b).

Next, we prove Theorem 4.1(c). The proof is the same for the scalar and
vector β cases because it relies on Assumption V2, which applies in both cases.
First we prove the result when {γn} ∈ Γ (γ0�∞�ω0) and βn → 0. When d∗

π = 0,
the first equality in (9.48) holds by the same arguments as above. This equal-
ity, Assumptions V2 and R, the consistency of θ̂n established in Lemma 3.3,
Theorem 3.2(a), and the delta method together imply that Tn →d N(0�1).
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When d∗
π = 1 and {γn} ∈ Γ (γ0�∞�ω0) with βn → 0, (9.49) still holds using

β̂n → 0 by Lemma 3.3(b). Hence, the first equality in (9.50) also holds. In this
case, the t statistic becomes

Tn = n1/2|ι(β̂n)|(rψ(θ̃n)(ψ̂n −ψn)+ rπ(θ̃n)(π̂n −πn))
(rπ(θ̂n)Σ̂ππ�nrπ(θ̂n)′)1/2 + op(1)

(9.51)

= n1/2|ι(β̂n)|rπ(θ̃n)(π̂n −πn)
(rπ(θ̂n)Σ̂ππ�nrπ(θ̂n)′)1/2 + op(1)

+ op(1)

→d N(0�1)�

where the first equality follows from (9.45), (9.49), and a mean-value expan-
sion of r(θ̂n) w.r.t. θ around θn with θ̃n between θ̂n and θn, the second equality
holds because (i) n1/2(ψ̂n − ψn) = Op(1) by Theorem 3.2(a), (ii) βn → 0 and
the consistency of θ̂n in Lemma 3.3, (iii) the continuity of rθ(θ) in Assump-
tion R, and (iv) Assumption V2, and the convergence in distribution holds by
(i) the consistency of θ̂n, (ii) the continuity of rθ(θ), (iii) n1/2ι(βn)(π̂n−πn)→d

N(0�Σππ(γ0)) by Theorem 3.2(a), where Σππ(γ0) is the lower right dπ × dπ
submatrix of Σ(γ0)= J−1(γ0)V (γ0)J

−1(γ0), (iv) |ι(β̂n)|/|ι(βn)| = ‖βn/‖βn‖ +
(n1/2(β̂n−βn)/‖n1/2βn‖)‖ = ‖ωn+op(1)‖ = 1+op(1), where the third equality
uses n1/2(β̂n − βn)= Op(1), ‖n1/2βn‖ → ∞, ωn = βn/‖βn‖ →ω0, and ‖ω0‖ =
1, (v) if β is a scalar, |ι(βn)|/ι(βn)= sgn(βn)= 1 w�p�→ 1 or = −1 w�p�→ 1
because n1/2βn → ∞ or n1/2βn → −∞, (vi) if β is a vector, |ι(βn)|/ι(βn) = 1
because ι(βn)= ‖βn‖, (vii) Assumption V2, and (viii) the delta method.

Under {γn} ∈ Γ (γ0�∞�ω0) and βn → β0 
= 0,

n1/2(r(θ̂n)− r(θn))→d N(0� rθ(θ0)B
−1(β0)Σ(γ0)B

−1(β0)rθ(θ0)
′)(9.52)

by Theorem 3.2(a) and the delta method. By Assumptions R(i) and V2 and the
consistency of θ̂n established in Lemma 3.3,

rθ(θ̂n)B
−1(β̂n)Σ̂nB

−1(β̂n)rθ(θ̂n)
′(9.53)

→p rθ(θ0)B
−1(β0)Σ(γ0)B

−1(β0)rθ(θ0)
′�

The desired result follows from (9.45), (9.52), and (9.53). Q.E.D.

9.4. Proofs of QLR Asymptotic Distributions and Restricted Estimator Results
and Proofs

In this section, we prove Theorems 4.2 and 4.3 concerning the asymptotic
distribution of the QLR statistic. We also state and prove results concerning
the asymptotic distribution of the restricted estimator θ̃n. The QLR proofs rely
on some of the results for the restricted estimator.
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When γn is the true value, the set of π values that satisfies the re-
strictions r(θ) = vn is Πr(vn�2), defined in (4.10), where vn = (vn�1� vn�2) =
(r1(ψn)� r2(πn)) = r(θn). We let Πr�0 = Πr(v0�2), where v0�2 = limvn�2 =
lim r2(πn). Throughout this section, we let opπ(1) and Opπ(1) denote quan-
tities that are op(1) and Op(1), respectively, uniformly over π ∈ Π (not just
over the restricted set Πr(vn�2)) as n→ ∞. Thus, Xn(π)= opπ(1) means that
supπ∈Π ‖Xn(π)‖ = op(1), where ‖ · ‖ denotes the Euclidean norm.

As in AC1, we define

an(γn)=
{
n1/2� if {γn} ∈ Γ (γ0�0� b) and ‖b‖<∞,
‖βn‖−1� if {γn} ∈ Γ (γ0�0� b) and ‖b‖ = ∞.

(9.54)

For notational simplicity, throughout this section we abbreviate an(γn) by an
and Qn(ψ0�n�π) (which does not depend on π) by Q0�n.

9.4.1. Close to β= 0 Results

In this subsection, we provide results for sequences {γn} ∈ Γ (γ0�0� b) for
which ‖b‖<∞, and {γn} ∈ Γ (γ0�0� b) for which ‖b‖ = ∞ and βn/‖βn‖ →ω0

for some ω0 ∈Rdβ with ‖ω0‖ = 1.
The results of this subsection prove Theorem 4.2 and include results that

are required for the proof of Theorem 4.3, which is given in Section 9.4.3. The
proofs of the results in this subsection are given in Section 9.4.2.

To obtain the asymptotic distribution of the restricted estimators (ψ̃n� π̃n)
under sequences {γn} ∈ Γ (γ0�0� b) with ‖b‖ <∞, we need the following as-
sumption. It is not needed to obtain the asymptotic distribution of the QLR
test statistic.

The stochastic process {ξr(π;γ0� b) :π ∈ Π} is the limit under {γn} ∈
Γ (γ0�0� b) with ‖b‖<∞ of the restricted concentrated criterion function after
suitable normalization. It is defined in (4.13).

ASSUMPTION C6r: Each sample path of the stochastic process {ξr(π;γ0� b) :
π ∈Πr�0} in some set Ar(γ0� b) with Pγ0(Ar(γ0� b)) = 1 is minimized over Πr�0

at a unique point (which may depend on the sample path), denoted π∗
r (γ0� b),

∀γ0 ∈ Γ with β0 = 0, ∀b with ‖b‖<∞.

In Assumption C6r, π∗
r (γ0� b) is random. By Assumption C6r,

π∗
r (γ0� b)= arg min

π∈Πr�0
ξr(π;γ0� b)�(9.55)

The following matrix appears in the asymptotic distribution of the restricted
estimators (ψ̃n� π̃n):

P⊥
ψ (π;γ0)= Idψ − Pψ(π;γ0)�(9.56)
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where Pψ(π;γ0) is defined in (4.13). The matrix P⊥
ψ (π;γ0) projects obliquely

onto the orthogonal complement of the space spanned by the rows of r1�ψ(ψ0).
The following result gives the asymptotic distribution of the QLR statistic

and the restricted estimators (ψ̃n� π̃n) under sequences {γn} ∈ Γ (γ0�0� b) with
‖b‖<∞.

THEOREM 9.1: Suppose Assumptions A, B1–B3, C1–C5, and RQ1 hold. Un-
der {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, the following statements hold:

(a) n(Qn(θ̃n)−Q0�n)→d infπ∈Πr�0 ξr(π;γ0� b).
(b) QLRn →d 2(infπ∈Πr�0 ξr(π;γ0� b) − infπ∈Π ξ(π;γ0� b))/s(γ0), provided

Assumption RQ3 also holds.
(c) (

n1/2(ψ̃n −ψn)
π̃n

)
→d

(
P⊥
ψ (π

∗
r (γ0� b);γ0)τ(π

∗
r (γ0� b);γ0� b)

π∗
r (γ0� b)

)
provided Assumption C6r also holds.

COMMENTS: (i) Theorem 9.1(b) is the same as Theorem 4.2. Hence, to
prove Theorem 4.2, it suffices to prove Theorem 9.1.

(ii) Define the Gaussian process {τr�β(π;γ0� b) :π ∈Π} by

τr�β(π;γ0� b)= SβP⊥
ψ (π;γ0)τ(π;γ0� b)+ b�(9.57)

where Sβ = [Idβ : 0dβ×dζ ] is the dβ × dψ selector matrix that selects β out
of ψ. The asymptotic distribution of n1/2β̃n (without centering at βn) under
Γ (γ0�0� b) with ‖b‖ < ∞ is given by τr�β(π∗

r (γ0� b);γ0� b). This quantity ap-
pears in the NI-ICS statistic An(vn) defined in Section 5.2 of AC1.

(iii) Suppose the assumptions of Theorem 9.1(c) hold, and Assumptions V1
and V2 hold with J̃n and Ṽn in place of Ĵn and V̂n� respectively. Then in the
scalar β case, the NI-ICS statistic An(vn) satisfies

An(vn)→d A(h�v0) under {γn} ∈ Γ (γ0�0� b)(9.58)

with ‖b‖<∞� where

A(h�v0)= (τr�β(π∗
r ;γ0� b)

′Σ−1
r�ββ(π

∗
r ;γ0)τr�β(π

∗
r ;γ0� b)/dβ)

1/2�

v0 = r(θ0), π∗
r abbreviates π∗

r (γ0� b), and Σr�ββ(π;γ0) is the upper left dβ × dβ
submatrix of Σr(π;γ0). The matrix Σr(π;γ0) is defined by

Σr(π;γ0)= Σr(ψ0�π;γ0)�(9.59)

Σr(θ;γ0)= P⊥
θ (γ0)J

−1(θ;γ0)V (θ;γ0)J
−1(θ;γ0)P

⊥
θ (γ0)

′�

P⊥
θ (γ0)= Idθ − Pθ(γ0)�

Pθ(γ0)= J−1(γ0)rθ(θ0)
′(rθ(θ0)J

−1(γ0)rθ(θ0)
′)−1rθ(θ0)�
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In the vector β case, β is reparametrized as (‖β‖�ω), as in Section 8.2
in Supplemental Appendix A. Correspondingly, θ is reparametrized as θ+ =
(‖β‖�ω�ζ�π). In the vector β case, Σr�ββ(π;γ0) is replaced in (9.58) by
Σr�ββ(π�ω

∗
r (π;γ0� b);γ0), where ω∗

r (π;γ0� b) = τr�β(π;γ0� b)/‖τr�β(π;γ0� b)‖
(defined analogously toω∗(π;γ0� b) in (8.2) in Supplemental Appendix A) and
Σr�ββ(π�ω;γ0) is the upper left dβ × dβ submatrix of Σr(π�ω;γ0). The matrix
Σr(π�ω;γ0) is defined by

Σr(π�ω;γ0)= Σr(‖β0‖�ω�ζ0�π;γ0)�(9.60)

Σr(θ
+;γ0)= P⊥

θ (γ0)J
−1(θ+;γ0)V (θ

+;γ0)J
−1(θ+;γ0)P

⊥
θ (γ0)

′

(analogously to the definitions in (8.1)), where J(θ+;γ0) and V (θ+;γ0) are
the nonstochastic dθ × dθ matrix-valued functions that appear in Assump-
tion V1 (vector β) in Section 8.2 in Supplemental Appendix A and are such
that J(θ+

0 ;γ0)= J(γ0) and V (θ+
0 ;γ0)= V (γ0).

Note that when the type 2 robust critical value is considered in the vec-
tor β case, h is defined to include ω0 ∈ Rdβ with ‖ω0‖ = 1 as an element,
that is, h = (b�γ0�ω0) and H(v) = {h = (b�γ0�ω0) :‖b‖ < ∞�γ0 ∈ Γ with
β0 = 0�‖ω0‖ = 1� r(θ0)= v}.

To prove Theorem 9.1, we start by defining a concentrated restricted estima-
tor ψ̃n(π�v1) of ψ. This estimator is restricted only by the restrictions on ψ.
It is defined for all π ∈ Π, not just for those π that satisfy the restrictions
r2(π)= vn�2, that is, π ∈Πr(vn�2). This is important for the use of the extended
CMT and the extended arg max/min theorems below. For given π ∈ Π and
v= (v1� v2) ∈ r(Θ), let

ψ̃n(π�v1) ∈Ψr(π�v1) and(9.61)

Qn(ψ̃n(π�v1)�π)= inf
ψ∈Ψr(π�v1)

Qn(ψ�π)+ o(n−1)� where

Ψr(π�v1)= {ψ : (ψ�π) ∈Θ�r1(ψ)= v1}
and the o(n−1) term does not depend on π.

Let Qcr
n (π�v1) denote the concentrated restricted criterion function

Qn(ψ̃n(π�v1)�π) for π ∈ Π. Define a restricted extremum estimator π̃n(v)
∈Πr(v2) by

Qcr
n (π̃n(v)� v1)= inf

π∈Πr(v2)
Qcr
n (π�v1)+ o(n−1)�(9.62)

Analogously to θ̂n, we assume θ̃n(v) can be written as

θ̃n(v)= (
ψ̃n(π̃n(v)� v1)� π̃n(v)

)
�(9.63)
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In this section, we use the notational simplifications

QLRn = QLRn(vn)� θ̃n = θ̃n(vn)� ψ̃n(π)= ψ̃n(π�vn�1)�(9.64)

π̃n = π̃n(vn)� where

vn = (vn�1� vn�2)= r(θn) and γn = (θn�φn)�
Thus, the asymptotic results given below are results that hold when the restric-
tions are true.

The first result is a uniform consistency result for the concentrated estimator
ψ̃n(π).

LEMMA 9.5: Suppose Assumptions A, B3, and RQ1 hold. Under {γn} ∈ Γ (γ0),
where γ0 = (β0� ζ0�π0�φ0) and β0 = 0, supπ∈Π ‖ψ̃n(π)−ψn‖ →p 0.

COMMENT: Assumption RQ1(v), defined in Section 4.5, is used in the proof
of this lemma and nowhere else. Assumption RQ1(vi) is used in the proof of
Lemma 9.11 below and nowhere else.

The second result is a uniform rate of convergence result for ψ̃n(π).

LEMMA 9.6: Suppose Assumptions A, B1–B3, C1–C5, and RQ1 hold. Under
{γn} ∈ Γ (γ0�0� b), ∀π ∈Π, the following results hold:

(a) an(ψ̃n(π)−ψ0�n)=Opπ(1).
(b) an(ψ̃n(π)−ψn)=Opπ(1).
Let Dψψ�n(π) abbreviate DψψQn(ψ0�n�π). The key to the results that follow

is to rewrite the quadratic approximation in Assumption C1 as follows: For
π ∈Π,

a2
n(Qn(ψ�π)−Q0�n)(9.65)

= anDψQn(ψ0�n�π)
′an(ψ−ψ0�n)

+ 1
2
an(ψ−ψ0�n)

′Dψψ�n(π)an(ψ−ψ0�n)+ a2
nRn(ψ�π)

= −1
2
Zn(π)

′Dψψ�n(π)Zn(π)+ 1
2
qn(an(ψ−ψn)�π)+ a2

nRn(ψ�π)�

where

Zn(π)= −anD−1
ψψ�n(π)DψQn(ψ0�n�π)�(9.66)

qn(λ�π)= (λ− τn(π;γn))′Dψψ�n(π)(λ− τn(π;γn))�
τn(π;γn)=Zn(π)+ an(ψ0�n −ψn)

= −anD−1
ψψ�n(π)DψQn(ψ0�n�π)− (anβn�0dζ )�
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Now we define the limits of Zn(π), τn(π�γn), and qn(λ�π). For π ∈Π, let

Z(π;γ0)=

⎧⎪⎨⎪⎩
−H−1(π;γ0)(G(π;γ0)+K(π;γ0)b)�

if ‖b‖<∞�
−H−1(π;γ0)K(π;γ0)ω0�

if ‖b‖ = ∞ & βn/‖βn‖ →ω0�

(9.67)

The split definition of Z(π;γ0) appears here because, by the definition of
an in (3.4), anβn = n1/2βn → b if {γn} ∈ Γ (γ0�0� b) and ‖b‖ < ∞, whereas
anβn = βn/‖βn‖ →ω0 if {γn} ∈ Γ (γ0�0� b), ‖b‖ = ∞, andβn/‖βn‖ →ω0. Note
that Z(π;γ0) is stochastic if ‖b‖<∞ because G(π;γ0) is stochastic, whereas
Z(π;γ0) is nonstochastic if ‖b‖ = ∞.

For π ∈Π, define

τ(π;γ0)=
{
Z(π;γ0)− (b�0dζ )� if ‖b‖<∞,
Z(π;γ0)− (ω0�0dζ )� if ‖b‖ = ∞ & βn/‖βn‖ →ω0,(9.68)

=

⎧⎪⎨⎪⎩
−H−1(π;γ0)(G(π;γ0)+K(π;γ0)b)− (b�0dζ )�

if ‖b‖<∞�
−H−1(π;γ0)K(π;γ0)ω0 − (ω0�0dζ )�

if ‖b‖ = ∞ & βn/‖βn‖ →ω0�

Note that τ(π;γ0)=Z(π;γ0)+ limn→∞ an(ψ0�n−ψn). The difference between
τ(π;γ0) and Z(π;γ0) is due to the quadratic expansion in Assumption C1
being aroundψ0�n, rather than around the true valueψn. Also note that if ‖b‖<
∞, then τ(π;γ0)= τ(π;γ0� b), where τ(π;γ0� b) is defined in (3.9).

For π ∈Π, define

q(λ�π)= (λ− τ(π;γ0))
′H(π;γ0)(λ− τ(π;γ0))�(9.69)

Next, we define a minimizer, ψ̃n�q(π), of the concentrated quadratic ap-
proximation to Qn(ψ�π) (which is given by the right-hand side of (9.65) with
a2
nRn(ψ�π) omitted). By definition, for π ∈ Π, ψ̃n�q(π) satisfies ψ̃n�q(π) ∈
Ψr(π�vn�1) and

qn(an(ψ̃n�q(π)−ψn)�π)= inf
ψ∈Ψr(π�vn�1)

qn(an(ψ−ψn)�π)+ opπ(1)�(9.70)

Note that

inf
ψ∈Ψr(π�vn�1)

qn(an(ψ−ψn)�π)= inf
λ∈an(Ψr(π�vn�1)−ψn)

qn(λ�π)� where(9.71)

an(Ψr(π�vn�1)−ψn)
= {λ ∈Rdψ :λ= an(ψ−ψn) for some ψ ∈Ψr(π�vn�1)}�

The restricted concentrated estimators ψ̃n(π) and ψ̃n�q(π) and the criterion
function Qn(ψ�π) evaluated at these estimators satisfy the following proper-
ties.
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LEMMA 9.7: Suppose Assumptions A, B1–B3, C1–C5, and RQ1 hold. Under
{γn} ∈ Γ (γ0�0� b), ∀π ∈Π, the following results hold:

(a) an(ψ̃n�q(π)−ψn)=Opπ(1)�
(b) a2

n

(
Qn(ψ̃n(π)�π)−Q0�n

)
= −1

2
Zn(π)

′Dψψ�n(π)Zn(π)

+ 1
2
qn
(
an(ψ̃n(π)−ψn)�π

)+ opπ(1)�

(c) a2
n

(
Qn(ψ̃n�q(π)�π)−Q0�n

)
= −1

2
Zn(π)

′Dψψ�n(π)Zn(π)

+ 1
2
qn
(
an(ψ̃n�q(π)−ψn)�π

)+ opπ(1)�

(d) a2
n

(
Qn(ψ̃n(π)�π)−Qn(ψ̃n�q(π)�π)

)= opπ(1)�
(e) qn

(
an(ψ̃n(π)−ψn)�π

)= qn(an(ψ̃n�q(π)−ψn)�π)+ opπ(1)�
(f) a2

n

(
Qn(ψ̃n(π)�π)−Q0�n

)
= −1

2
Zn(π)

′Dψψ�n(π)Zn(π)

+ 1
2
qn
(
an(ψ̃n�q(π)−ψn)�π

)+ opπ(1)�

We approximate the sequence of sets {Ψr(π�vn�1)−ψn :n≥ 1} by the linear
subspace Λ of Rdψ defined by

Λ= {λ ∈Rdψ : r1�ψ(ψ0)λ= 0}�(9.72)

The approximation is in the sense of Chernoff (1954), as modified in An-
drews (1999) to cover drifting sequences of sets and as modified here to cover
uniformity over π ∈ Π. We say that a sequence of sets indexed by π ∈ Π,
{An(π) :n ≥ 1}, is locally approximated (at the origin) by a cone Λs ⊂ Rs uni-
formly over π ∈Π if

sup
π∈Π

dist(αn(π)�Λs)= o
(

sup
π∈Π

‖αn(π)‖
)

∀{αn(π) ∈An(π) :n≥ 1}(9.73)

such that sup
π∈Π

‖αn(π)‖ → 0�
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sup
π∈Π

dist(λn(π)�An(π))= o
(

sup
π∈Π

‖λn(π)‖
)

∀{λn(π) ∈Λs :n≥ 1}

such that sup
π∈Π

‖λn(π)‖ → 0�

LEMMA 9.8: Suppose Assumptions B1 and RQ1 hold. Then the sequence of
sets {Ψr(π�vn�1)−ψn :n≥ 1} is locally approximated (at the origin) by the cone Λ
uniformly over π ∈Π.

The following result is analogous to Lemma 2 in Andrews (1999). Lemma 9.8
is used in its proof.

LEMMA 9.9: Suppose Assumptions A, B1–B3, C1–C5, and RQ1 hold. Then,
under {γn} ∈ Γ (γ0�0� b), ∀π ∈Π, the following results hold:

(a) infλ∈Λ qn(λ�π)= infλ∈an(Ψr(π�vn�1)−ψn) qn(λ�π)+ opπ(1).
(b) a2

n(Qn(ψ̃n(π)�π) − Q0�n) = − 1
2Zn(π)

′Dψψ�n(π)Zn(π) + 1
2 infλ∈Λ qn(λ�

π)+ opπ(1).

Let λ̃n(π) ∈ Λ be the unique random vector that minimizes qn(λ�π) over
λ ∈Λ; that is,

qn(̃λn(π)�π)= inf
λ∈Λ
qn(λ�π) ∀π ∈Π�(9.74)

Correspondingly, let λ̃(π) ∈Λ be the unique random vector that minimizes
q(λ�π), the asymptotic analogue of qn(λ�π), over λ ∈ Λ. Specifically, define
λ̃(π) ∈Λ to be such that

q(̃λ(π)�π)= inf
λ∈Λ
q(λ�π) ∀π ∈Π�(9.75)

Standard Lagrangean calculations for the minimum of a quadratic form subject
to linear constraints yield a closed form expression for λ̃(π): For π ∈Π,

λ̃(π)= P⊥
ψ (π;γ0)τ(π;γ0)�(9.76)

where P⊥
ψ (π;γ0) is defined in (9.56) (e.g., see Andrews (1999, p. 1361)).

Now we define the limit, ξr(π;γ0), of the normalized restricted concentrated
criterion function, a2

n(Qn(ψ̃n(π)�π)−Q0�n): For π ∈Π,

ξr(π;γ0)= −1
2
Z(π;γ0)

′H(π;γ0)Z(π;γ0)+ 1
2

inf
λ∈Λ
q(λ�π)(9.77)

= −1
2
Z(π;γ0)

′H(π;γ0)Z(π;γ0)+ 1
2
q(̃λ(π)�π)
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= −1
2
Z(π;γ0)

′H(π;γ0)Z(π;γ0)

+ 1
2
τ(π;γ0)

′Pψ(π;γ0)
′H(π;γ0)Pψ(π;γ0)τ(π;γ0)�

As defined,

ξr(π;γ0)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξr(π;γ0� b)= ξ(π;γ0� b)+ 1

2
inf
λ∈Λ
q(λ�π)�

if ‖b‖<∞�
η(π;γ0�ω0)+ 1

2
inf
λ∈Λ
q(λ�π)�

if ‖b‖ = ∞ and βn/‖βn‖ →ω0�

(9.78)

where ξr(π;γ0� b) is defined in (4.13), ξ(π;γ0� b) is defined in (3.8), η(π;γ0�
ω0) is defined in (3.8), and the equality for ‖b‖ <∞ holds because ξ(π;γ0�
b)= −(1/2)Z(π;γ0)

′H(π;γ0)Z(π;γ0).
Note that if Λ = Rdψ , which corresponds to the case where there are no

restrictions on ψ, then infλ∈Λ q(λ�π) = 0, ξr(π;γ0)= ξ(π;γ0� b) when ‖b‖<
∞, and ξr(π;γ0)= η(π;γ0�ω0) when ‖b‖ = ∞ and βn/‖βn‖ →ω0.

When ‖b‖ <∞ and Assumption C6r holds or if ‖b‖ = ∞, βn/‖βn‖ → ω0,
and Assumption C7 holds, we define the unique minimizer of ξr(π;γ0) over
the restricted set Πr�0 to be

π∗
r (γ0)= arg min

π∈Πr�0
ξr(π;γ0)�(9.79)

When ‖b‖ < ∞ and Assumption C6r holds, π∗
r (γ0) = π∗

r (γ0� b) =
arg minπ∈Πr�0 ξr(π;γ0� b), where π∗

r (γ0� b) is defined in (9.55) and π∗
r (γ0) is

random.
When ‖b‖ = ∞, βn/‖βn‖ → ω0, and Assumption C7 holds, ξr(π;γ0) is

uniquely minimized over π ∈ Πr�0 by π = π0, that is, π∗
r (γ0) = π0, because

(i) (as shown below) τ(π0;γ0) = 0, which implies that infλ∈Λ q(λ�π0) =
q(0dψ�π0)= 0, and (ii) η(π;γ0�ω0) is uniquely minimized over π ∈Πr�0 ⊂Π
by π = π0 by Assumption C7 ∀γ0 ∈ Γ with β0 = 0. Hence, in this case, we have

inf
π∈Πr�0

ξr(π;γ0)= η(π0;γ0�ω0)(9.80)

=ω′
0K(π0;γ0)H

−1(π0;γ0)K(π0;γ0)ω0�

Next we state a result that, in conjunction with Theorem 3.1(b), establishes
Theorem 9.1. It also establishes some key results that are used in the proof of
Theorem 4.3 in Section 9.4.3.
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THEOREM 9.2: Suppose Assumptions A, B1–B3, C1–C5, and RQ1 hold.
Then, under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞ and under {γn} ∈ Γ (γ0�0� b) with
‖b‖ = ∞ and βn/‖βn‖ →ω0, the following statements hold:

(a) an(ψ̃n(π)−ψn)= λ̃n(π)+ opπ(1).
(b) Zn(·)⇒Z(·;γ0) and τn(·;γn)⇒ τ(·;γ0).
(c) λ̃n(·)⇒ λ̃(·) and an(ψ̃n(·)−ψn)⇒ λ̃(·).
(d) a2

n(Qn(ψ̃n(·)� ·)−Q0�n)⇒ ξr(·;γ0).
(e) a2

n(Qn(θ̃n)−Q0�n)→d infπ∈Πr�0 ξr(π;γ0).
(f) (an(ψ̃n − ψn)� π̃n)→d (τ(π

∗
r (γ0);γ0)�π

∗
r (γ0)) provided Assumption C6r

also holds when ‖b‖ <∞ and provided Assumption C7 also holds when ‖b‖ =
∞.

(g) τ(π0;γ0) = 0, π∗
r (γ0) = π0, π̃n →p π0, and ‖βn‖−1(ψ̃n − ψn) = op(1)

when ‖b‖ = ∞ and βn/‖βn‖ →ω0 provided Assumptions C7 and C8 also hold.

COMMENTS: (i) The results in Theorem 9.2(a)–(d) are for processes indexed
by π ∈Π.

(ii) Theorem 9.2(e) for the case ‖b‖ < ∞ establishes Theorem 9.1(a).
Theorem 9.2(e) for the case ‖b‖ < ∞, combined with Theorem 3.1(b) and
Assumption RQ3, establish Theorem 9.1(b) and hence Theorem 4.2. Theo-
rem 9.2(f) for the case ‖b‖<∞ establishes Theorem 9.1(c).

(iii) Theorem 9.2(g) for the case where ‖b‖ = ∞ and βn/‖βn‖ →ω0 is used
below in the proofs of Theorems 4.2 and 9.3.

The proof of Theorem 9.2(f) requires the following “extended” arg max/min
lemma, which is analogous to the arg max Lemma 3.2.1 of van der Vaart and
Wellner (1996, p. 286), but allows the set over which the max/min is taken to
depend on n.

LEMMA 9.10: Let Mn and M be stochastic processes indexed by a metric
space H. Let An ⊂ H and A0 ⊂ H be such that dH(An�A0) → 0, where dH
denotes the Hausdorff metric. Suppose M is continuous on H almost surely.
Suppose there exists a random element ĥ ∈A0 such that almost surely M(ĥ) >
suph/∈G�h∈A0

M(h) for every open setG⊂A0 that contains ĥ. Suppose the sequence
{ĥn ∈ An :n ≥ 1} satisfies Mn(ĥn) ≥ suph∈An Mn(h) + op(1). If Mn ⇒ M, then
ĥn →d ĥ.

COMMENTS: (i) The condition on ĥ is satisfied if ĥ uniquely maximizes
M(h) over A0 a.s., A0 is compact, and M is continuous on A0 a.s.

(ii) Mn ⇒ M means Mn � M in !∞(H) in the terminology and notation of
van der Vaart and Wellner (1996).

9.4.2. Proofs of Close to β= 0 Results

PROOF OF LEMMA 9.5: The proof is the same as that for Lemma 3.1(a)
with ψ̃n(π) in place of ψ̂n(π) except that (9.3) needs to be altered because
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ψ0 does not necessarily satisfy the restriction r1(ψ0) = vn�1 (= r1(ψn)), which
invalidates the fourth inequality in (9.3). However, the fourth inequality holds
with Qn(ψn�π;γ0) in place of Qn(ψ0�π;γ0) in the second summand on the
right-hand side of the fourth inequality because the true value ψn satisfies the
restriction r1(ψn)= vn�1. With this change, the fifth inequality in (9.3) has the
additional term supπ∈Π |Q(ψn�π;γ0)−Q(ψ0�π;γ0)| on the r.h.s., which is o(1)
by Assumption RQ1(v). This completes the proof. Q.E.D.

PROOF OF LEMMA 9.6: The proof of part (a) is the same as that of
Lemma 9.2(a) with ψ̃n(π) in place of ψ̂n(π) and with Lemma 9.5 employed
in place of Lemma 3.1(a), except that the inequality in (9.11) does not hold by
the argument given, because (3.2) may not hold with the restricted estimator
ψ̃n(π) in place of ψ̂n(π) and (9.61) cannot be substituted in the proof for (3.2)
because ψ0�n may not lie in the restricted set Ψr(π�vn�1).

Instead of the inequality in (9.11), we establish the inequality

Opπ(1)≥ a2
n

(
Qn(ψ̃n(π)�π)−Q0�n

)
�(9.81)

Although the left-hand side of (9.81) is Opπ(1) whereas that of (9.11) is
opπ(1), (9.81) is enough for the remainder of the argument in the proof of
Lemma 9.2(a) to go through.

We prove (9.81) by showing

(i) o(1)≥ a2
n sup
π∈Π

(
Qn(ψ̃n(π)�π)−Qn(ψn�π)

)
�(9.82)

(ii) a2
n(Qn(ψn�π)−Q0�n)=Opπ(1)�

Condition (i) holds because r1(ψn)= vn�1, which implies that ψn ∈ Ψr(π�vn�1),
ψ̃n(π) minimizes (up to an o(n−1) term) Qn(ψ�π) over ψn ∈ Ψr(π�vn�1), and
a2
n ≤ n−1.
To show condition (ii), we apply the quadratic approximation in Assump-

tion C1(i) with ψ=ψn to obtain, for π ∈Π,

a2
n(Qn(ψn�π)−Q0�n)(9.83)

= anDψQn(ψ0�n�π)
′an(ψn −ψ0�n)

+ an(ψn −ψ0�n)
′DψψQn(ψ0�n�π)an(ψn −ψ0�n)+ a2

nRn(ψn�π)

=Opπ(1)�
where the last equality holds because (i) an(ψn − ψ0�n) = (anβn�0dζ ),
anβn = n1/2βn = O(1) if ‖b‖ < ∞, and anβn = βn/‖βn‖ = O(1) if ‖b‖ = ∞,
(ii) DψψQn(ψ0�n�π) = Opπ(1) by Assumption C4, (iii) anDψQn(ψ0�n�π) =
Opπ(1) by Lemma 9.1 (see the Comment following Lemma 9.1), and (iv) a2

n ×
Rn(ψn�π)= opπ(1) by Assumption C1(ii) because ‖ψn−ψ0�n‖ = ‖(βn�0dζ )‖ =
‖βn‖ → 0 since β0 = 0.
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Part (b) follows from part (a) and the definitions of ψ0�n and an. Q.E.D.

PROOF OF LEMMA 9.7: The proof is analogous to the proof of Theorem 2
in Andrews (1999). To prove part (a), let κn�q(π)=D1/2

ψψ�n(π)an(ψ̃n�q(π)−ψn)
∀π ∈Π. We have∥∥κn�q(π)−D1/2

ψψ�n(π)(an(ψ0�n −ψn)+Zn(π))
∥∥2

(9.84)

= qn
(
an(ψ̃n�q(π)−ψn)�π

)
≤ qn(0�π)+ opπ(1)
= ∥∥D1/2

ψψ�n(π)(an(ψ0�n −ψn)+Zn(π))
∥∥2 + opπ(1)=Opπ(1)�

where the inequality holds by (9.70) because the true value ψn is in Ψr(π�vn�1)
and the last equality holds by Assumption C4, Lemma 9.1, and ‖anβn‖ =O(1).
Hence, κn�q(π)=D1/2

ψψ�n(π)(an(ψ0�n −ψn)+Zn(π))+Opπ(1)=Opπ(1).
Parts (b) and (c) hold by (9.65), Assumption C1, Lemma 9.6, and part (a),

using the fact that part (a) implies that an(ψ̃n�q(π)−ψ0�n)=Opπ(1).
Parts (d) and (e) hold by parts (b) and (c), (9.61), and (9.70):

o(1) ≥ a2
n sup
π∈Π

(
Qn(ψ̃n(π)�π)−Qn(ψ̃n�q(π)�π)

)
(9.85)

≥ inf
π∈Π

1
2
(
qn
(
an(ψ̃n(π)−ψn)�π

)− qn
(
an(ψ̃n�q(π)−ψn)�π

))
+ opπ(1)

≥ opπ(1)�
Part (f) holds by parts (b) and (e). Q.E.D.

PROOF OF LEMMA 9.8: The proof is similar to the proof of Lemma 4 in
Andrews (2002). Let An(π) = Ψr(π�vn�1)− ψn and mn(ψ) = r1(ψ)− vn�1. By
assumption, mn(ψn) = 0 ∀n ≥ 1, where γn = (ψn�πn�φn). Let Γa = r1�ψ(ψ0)
(= (∂/∂ψ′)r1(ψ0)). Define

Γ∗ =
[
Γa
Γb

]
and m+

n (ψ)=
(

mn(ψ)

Γb(ψ−ψn)
)
�(9.86)

where Γb ∈R(dψ−dr1 )×dψ is chosen such that Γ∗ ∈Rdψ×dψ is nonsingular.
Given {αn(π) ∈An(π) :n≥ 1} with supπ∈Π ‖αn(π)‖ → 0, define

λ∗
n(π)= Γ −1

∗ m+
n (ψn + αn(π))�(9.87)

Then Γ∗λ∗
n(π) =m+

n (ψn + αn(π)) and Γaλ∗
n(π) =mn(ψn + αn(π)) = r1(ψn +

αn(π)) − vn�1 = 0, where the last equality holds because ψn + αn(π) ∈
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Ψr(π�vn�1) since αn(π) ∈An(π). Hence, λ∗
n(π) ∈ Λ ∀π ∈Π, by the definition

of Λ in (9.72).
Element-by-element mean-value expansions yield

λ∗
n(π)= Γ −1

∗ m+
n (ψn + αn(π))(9.88)

= Γ −1
∗ m+

n (ψn)+ Γ −1
∗

∂

∂ψ′m
+
n (ψn)αn(π)+ o(‖αn(π)‖)

= 0 + αn(π)+ o(‖αn(π)‖)�
where the last equality uses the continuity of r1�ψ(ψ) at ψ0 and ψn →ψ0 to give
Γ∗ − (∂/∂ψ′)m+

n (ψn)→ 0. Using (9.88), we conclude that

sup
π∈Π

dist(αn(π)�Λ)≤ sup
π∈Π

‖αn(π)− λ∗
n(π)‖ = o

(
sup
π∈Π

‖αn(π)‖
)
�(9.89)

which verifies the first condition in (9.73), as desired.
Next, the function m̃n(α) = m+

n (ψn + α) for α in a neighborhood N0 of 0
(∈ Rdψ) is continuously differentiable on a neighborhood N1 (⊂N0) of 0 with
nonsingular Jacobian matrix at 0 and m̃n(0) = 0. Hence, by the inverse func-
tion theorem, there exists an Rdψ -valued function m̃−1

n (α) for α in a neighbor-
hoodN2 of 0 (∈Rdψ) that satisfies m̃−1

n (α) is continuously differentiable onN2,
m̃n(m̃

−1
n (α))= α for all α ∈N2, m̃−1

n (0)= 0, and

∂

∂α′ m̃
−1
n (0)=

[
∂

∂α′ m̃n(0)
]−1

=
[
∂

∂ψ′m
+
n (ψn)

]−1

= Γ −1
∗ + o(1)�(9.90)

Given any {λn(π) ∈Λ :n≥ 1} with supπ∈Π ‖λn(π)‖ → 0, define

α∗
n(π)= m̃−1

n (Γ∗λn(π))�(9.91)

We have m+
n (ψn + α∗

n(π)) = m̃n(α
∗
n(π)) = m̃n(m̃

−1
n (Γ∗λn(π))) = Γ∗λn(π),

which implies that mn(ψn + α∗
n(π)) = Γaλn(π) = 0, where the last equality

holds for λn(π) ∈Λ by the definition of Λ in (9.72); that is, r1(ψn + α∗
n(π))=

vn�1 ∀π ∈ Π. In addition, supπ∈Π ‖α∗
n(π)‖ → 0 and Assumption B1(ii) yield

(ψn + α∗
n(π)�π) ∈ Θ ∀π ∈ Π for n large. These results combine to give

α∗
n(π) ∈An(π) ∀π ∈Π for n large.
Element-by-element mean-value expansions yield

α∗
n(π)= m̃−1

n (Γ∗λn(π))(9.92)

= m̃−1
n (0)+ ∂

∂α′ m̃
−1
n (0)Γ∗λn(π)+ o(‖λn(π)‖)

= 0 + λn(π)+ o(‖λn(π)‖)�
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where the last equality uses (9.90). Hence,

sup
π∈Π

dist(λn(π)�An(π))≤ sup
π∈Π

‖λn(π)− α∗
n(π)‖ = o

(
sup
π∈Π

‖λn(π)‖
)
�(9.93)

which verifies the second condition in (9.73) and completes the proof. Q.E.D.

PROOF OF LEMMA 9.9: The proof of part (a) is analogous to the proof of
Lemma 2 of Andrews (1999) with (i) qn(λ�π) in place of qT (λ), (ii) an(ψ0�n −
ψn) + Zn(π) in place ZT , and (iii) Dψψ�n(π) in place of JT , provided
{Ψr(π�vn�1)−ψn :n≥ 1} is locally approximated by the cone (in this case, lin-
ear subspace) Λ defined in (9.72) uniformly over π ∈Π. The latter holds by
Lemma 9.8. The quantities an(Ψr(π�vn�1)−ψn), anIdψ and an play the roles of
BT(Θ− θ0), BT , and bT , respectively, that appear in Assumption 5 of Andrews
(1999), which is used in the proof of Lemma 2 of Andrews (1999).

Part (b) holds by part (a), Lemma 9.7(f), (9.70), and (9.71). Q.E.D.

PROOF OF THEOREM 9.2: The proof of part (a) holds by an argument that
is analogous to the argument given in the proof of Theorem 3(a) of Andrews
(1999) with (i) an(ψ0�n − ψn) + Zn(π) in place ZT , (ii) Dψψ�n(π) in place of
JT , and (iii) indexing of the quantities by π ∈ Π, which does not create any
difficulty. Theorem 3(a) of Andrews (1999) relies on Assumptions 4–6 of that
paper. The analogue of Assumption 4 in the present paper is an(ψ̃n(π)−ψn)=
Opπ(1), which holds by Lemma 9.6(b). The analogue of Assumption 5 is the
local approximation of {Ψr(π�vn�1)−ψn :n≥ 1} by the cone Λ uniformly over
π ∈Π, which holds by Lemma 9.8. Assumption 6 holds because Λ is a convex
cone. Lemma 9.9(a) of this paper is used in the proof of part (a) because the
proof of Theorem 3(a) of Andrews (1999) makes use of Lemma 2 of Andrews
(1999) and Lemma 9.9(a) of this paper is the analogue of the latter.

The first result of part (b) holds by (9.19) and (9.20). The second result of
part (b) holds by the first result, the fact that τn(π;γn)=Zn(π)+an(ψ0�n−ψn)
by (9.66), an(ψ0�n −ψn)→ (−b�0dζ ) if ‖b‖<∞, an(ψ0�n −ψn)→ (−ω0�0dζ ) if
‖b‖ = ∞ and βn/‖βn‖ →ω0, and the definition of τ(π;γ0) in (9.68).

The first result of part (c) holds by the CMT because λ̃n(·) is a continuous
function of (τn(·;γn)�Dψψ�n(·)) and (τn(·;γn)�Dψψ�n(·))⇒ (τ(·;γ0)�H(·;γ0))
by part (b) and Assumption C4. Continuity holds because the oblique projec-
tion onto a convex cone Λ is both unique and continuous provided the weight-
ing matrix H(π;γ0) for the oblique projection is nonsingular, which holds be-
cause infπ∈Π λmin(H(π;γ0)) > 0 by Assumption C4. The second result of part
(c) holds by the first result of part (c) and part (a).

Part (d) holds by the CMT using Lemma 9.9(b), part (b) of the theorem,
Assumption C4, and (9.77).
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To prove part (e), we use the result of part (d), that is, a2
n(Qn(ψ̃n(·)� ·) −

Q0�n)⇒ ξr(·;γ0), and the extended CMT (see van der Vaart and Wellner (1996,
Theorem 1.11.1, p. 67)) applied to the right-hand side of the equation

a2
n(Qn(θ̃n)−Q0�n)= inf

π∈Πr(vn�2)
a2
n

(
Qn(ψ̃n(π)�π)−Q0�n

)
�(9.94)

which holds by (9.61)–(9.63) with v = vn. The extended CMT is a generaliza-
tion of the CMT that allows the continuous map to depend on n. The extended
CMT is applied here with the functions gn(x) = infπ∈Πr(vn�2) x(π) ∀n ≥ 1 and
g(x)= infπ∈Πr�0 x(π), where x= x(π) is a real-valued function on Π. The ex-
tended CMT is required here because the restricted setsΠr(vn�2) depend on n.
For the extended CMT to apply, we need to show that whenever xn → x (i.e.,
supπ∈Π ‖xn(π)− x(π)‖ → 0), where xn and x are real-valued functions on Π
with x continuous onΠ, we have gn(xn)→ g(x). (Continuity of x onΠ can be
assumed because the limit process ξr(·;γ0) in our application has continuous
sample paths a.s.) Suppose xn → x. Then we have

|gn(xn)− gn(x)| =
∣∣∣ inf
π∈Πr(vn�2)

xn(π)− inf
π∈Πr(vn�2)

x(π)
∣∣∣(9.95)

≤ inf
π∈Π

|xn(π)− x(π)| → 0�

In addition, by standard arguments, gn(x)→ g(x) because x is continuous on
Π and dH(Πr(vn�2)�Πr�0)→ 0 by Assumption RQ1(iv). Hence, we obtain the
desired result gn(xn)→ g(x) and the proof of part (e) is complete.

Now we establish part (f). First, we show π̃n →d π
∗
r (γ0). We use the extended

arg max lemma, Lemma 9.10, with H = Π, h = π, Mn(h) = −a2
n(Qn(ψ̃n(π)�

π) − Q0�n), M(h) = −ξr(π;γ0), An = Πr(vn�2), A0 = Πr�0, ĥn = π̃n, and ĥ =
π∗
r (γ0). (The minus signs in Mn(h) and M(h) convert the minimization prob-

lem to a maximization problem.) The conditions of Lemma 9.10 hold because
(i) a2

n(Qn(ψ̃n(π)�π) − Q0�n)⇒ ξr(·;γ0) by part (d); (ii) ξr(π;γ0) is continu-
ous on Π a.s. by Assumptions C3–C5, RQ1(i), and RQ1(ii); (iii) dH(Πr(vn�2)�
Πr�0) → 0 by Assumption RQ1(iv); (iv) π∗

r (γ0) satisfies the condition on
ĥ using Comment (i) to Lemma 9.10 because π∗

r (γ0) uniquely maximizes
−ξr(π;γ0) over Πr�0 by Assumption C6r when ‖b‖ < ∞ and by Assump-
tion C7 when ‖b‖ = ∞, Πr�0 is compact by the compactness of Π using As-
sumption B1(iii) and the continuity of r2(π) on Π using Assumption RQ1(i),
and ξr(π;γ0) is continuous on Πr�0 a.s.; and (v) π̃n satisfies the conditions on
ĥn because π̃n maximizes −a2

n(Qn(ψ̃n(π)�π) −Q0�n) over π ∈Πr(vn�2) up to
o(n−1) by (9.62) and (9.64). The result of Lemma 9.10 is π̃n →d π

∗
r (γ0).

Using π̃n →d π
∗
r (γ0), we complete the proof of part (f). By (9.63) and

(9.64), an(ψ̃n − ψn) = an(ψ̃n(π̃n) − ψn). We have (i) (an(ψ̃n(·) − ψn)� π̃n)⇒
(̃λ(·)�π∗

r (γ0)) as processes on Π by part (c) and π̃n →d π
∗
r (γ0), (ii) λ̃(π) =

P⊥
ψ (π;γ0)τ(π;γ0) by (9.76), and (iii) P⊥

ψ (π;γ0)τ(π;γ0) is a continuous func-
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tion of π on Π a.s. by Assumptions RQ1(i) and C3–C5. Hence, by the CMT,
an(ψ̃n(π̃n) − ψn) →d τ(π

∗
r (γ0);γ0) and the convergence is joint with π̃n →d

π∗
r (γ0). This completes the proof of part (f).
The first result of part (g) holds because

τ(π0;γ0)= −H−1(π0;γ0)K(π0;γ0)ω0 − (
ω0�0dζ

)
(9.96)

= S′
βω0 − (

ω0�0dζ
)= 0�

where the second equality holds by Lemma 9.3, which employs Assumption C8.
The second result of part (g) holds because (i) when ‖b‖ = ∞, π∗

r (γ0) mini-
mizes

ξr(π;γ0)= η(π;γ0�ω0)(9.97)

+ 1
2
τ(π;γ0)

′Pψ(π;γ0)
′H(π;γ0)Pψ(π;γ0)τ(π;γ0)

over Πr�0 by (9.77), (ii) the first summand on the r.h.s. of (9.97) is uniquely
minimized over Πr�0 by π0 by Assumption C7, and (iii) the second summand
on the r.h.s. of (9.97) is minimized over Πr�0 by π0 by the first result of part (g)
and the positive semidefiniteness of Pψ(π;γ0)

′H(π;γ0)Pψ(π;γ0).
The third and fourth results of part (g) hold by part (f) and the first two

results of part (g). Q.E.D.

PROOF OF LEMMA 9.10: The proof is a variation of the proof of Lemma 3.2.1
of van der Vaart and Wellner (1996, p. 286). First, by the extended CMT (see
van der Vaart and Wellner (1996, Theorem 1.11.1, p. 67)), we have

sup
h∈F∩An

Mn(h)− sup
h∈An

Mn(h)→d sup
h∈F∩A0

M(h)− sup
h∈A0

M(h)�(9.98)

The verification of the condition required by the extended CMT, that xn → x
implies gn(xn)→ g(x), is essentially the same as that given in the paragraph
containing (9.95). In the present case, gn(x) = suph∈F∩An x(h)− suph∈An x(h),
where x is a real-valued function on H.

Now, for all closed sets F ⊂H,

lim sup
n→∞

P∗(ĥn ∈ F)(9.99)

≤ lim sup
n→∞

P∗
(

sup
h∈F∩An

Mn(h)≥ sup
h∈An

Mn(h)+ op(1)
)

≤ P
(

sup
h∈F∩A0

M(h)≥ sup
h∈A0

M(h)
)

≤ P
(

sup
h∈F∩A0

M(h)≥ sup
h∈Fc∩A0

M(h)
)

≤ P(ĥ ∈ F)�
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where P∗ denotes outer probability, the first inequality holds by the definition
of ĥn, the second inequality holds by (9.98) and the portmanteau theorem (see
Theorem 1.3.4 of van der Vaart and Wellner (1996, p. 18)), the third inequality
holds because Fc ∩A0 ⊂A0, and the last inequality holds by the argument in
the following paragraph. Equation (9.99) and the portmanteau theorem give
the result that ĥn →d ĥ.

Suppose ĥ ∈ Fc . Then, by the assumption on ĥ,

M(ĥ) > sup
h/∈Fc�h∈A0

M(h)= sup
h∈F∩A0

M(h)(9.100)

because Fc is open. Thus, ĥ ∈ Fc implies that

sup
h∈Fc∩A0

M(h) > sup
h∈F∩A0

M(h)�(9.101)

The contrapositive is suph∈Fc∩A0
M(h) ≤ suph∈F∩A0

M(h) implies ĥ ∈ F , which
verifies the last inequality in (9.99). Q.E.D.

9.4.3. Distant From β= 0 Case

Next, we provide results under sequences {γn} ∈ Γ (γ0�∞�ω0). We prove
Theorem 4.3. We also state and prove results concerning the asymptotic distri-
bution of the restricted estimator θ̃n under {γn} ∈ Γ (γ0�∞�ω0).

Let P⊥
θ (γ0) denote a dθ ×dθ oblique projection matrix that projects onto the

orthogonal complement of the space spanned by the rows of rθ(θ0):

P⊥
θ (γ0)= Idθ − Pθ(γ0)�(9.102)

where Pθ(γ0) is defined in (4.14).
The following theorem shows that the normalized restricted criterion func-

tion, n(Qn(θ̃n)−Qn(θn)), converges in distribution under {γn} ∈ Γ (γ0�∞�ω0)
to ξ∗

r (γ0) and the QLR statistic converges in distribution to λQLR(γ0)/s(γ0),
which are defined by

ξ∗
r (γ0)= ξ∗(γ0)+ 1

2
λQLR(γ0)(9.103)

= −1
2
G∗(γ0)

′J−1(γ0)P
⊥
θ (γ0)

′J(γ0)P
⊥
θ (γ0)J

−1(γ0)G
∗(γ0)� where

ξ∗(γ0)= −1
2
G∗(γ0)

′J−1(γ0)G
∗(γ0)�

λQLR(γ0)=G∗(γ0)
′J−1(γ0)Pθ(γ0)

′J(γ0)Pθ(γ0)J
−1(γ0)G

∗(γ0)�

where J(γ0) andG∗(γ0) are defined in Assumptions D2 and D3. Note that the
normalized unrestricted criterion function, n(Qn(θ̂n) − Qn(θn)), converges in
distribution to ξ∗(γ0) under {γn} ∈ Γ (γ0�∞�ω0) by Theorem 3.2(b).
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The following theorem also shows that the normalized restricted estimator,
n1/2B(βn)(θ̃n − θn), is asymptotically normal under {γn} ∈ Γ (γ0�∞�ω0).

THEOREM 9.3: Suppose Assumptions A, B1–B3, C1–C5, C7, C8, D1–D3, and
RQ1 hold. Under {γn} ∈ Γ (γ0�∞�ω0), the following statements hold:

(a) n(Qn(θ̃n)−Qn(θn))→d ξ
∗
r (γ0).

(b) QLRn →d λQLR(γ0)/s(γ0), provided Assumption RQ3 also holds.
(c)

n1/2B(βn)(θ̃n − θn)→d −P⊥
θ (γ0)J

−1(γ0)G
∗(γ0)

∼ N
(
0dθ�P

⊥
θ (γ0)J

−1(γ0)V (γ0)J
−1(γ0)P

⊥
θ (γ0)

′)�
COMMENT: Theorem 9.3(b) is the same as Theorem 4.3. Hence, to prove

Theorem 4.3, it suffices to prove Theorem 9.3.

The proof of Theorem 9.3 uses the following preliminary results. The first
result establishes the consistency of θ̃n.

LEMMA 9.11: Suppose Assumptions A, B1–B3, C1–C5, C7, C8, and RQ1
hold. Under {γn} ∈ Γ (γ0�∞�ω0), θ̃n − θn →p 0.

Next, by Theorem 9.2(g), we have the following “intermediate” rate of con-
vergence result for ψ̃n for sequences {γn} ∈ Γ (γ0�∞�ω0) with β0 = 0 (which
are also in Γ (γ0�0� b) when ‖b‖ = ∞ and βn/‖βn‖ →ω0):

‖βn‖−1(ψ̃n −ψn)= op(1)�(9.104)

Using this intermediate rate result and Lemma 9.11, we obtain the sharp rate
of convergence for θ̃n in the following lemma.

LEMMA 9.12: Suppose Assumptions A, B1–B3, C1–C5, C7, C8, D1–D3, and
RQ1 hold. Then n1/2B(βn)(θ̃n − θn)=Op(1).

We now prove Theorem 9.3 using Lemma 9.12.

PROOF OF THEOREM 9.3: First, we rewrite the quadratic approximation in
Assumption D1 as

n(Qn(θ)−Q(θn))(9.105)

= (
n1/2B−1(βn)DQn(θn)

)′
n1/2B(βn)(θ− θn)

+ 1
2
(
n1/2B(βn)(θ− θn)

)′
Jnn

1/2B(βn)(θ− θn)+ n2R∗
n(θ)

= −1
2
Z∗′
n JnZ

∗
n + 1

2
q∗
n

(
n1/2B(βn)(θ− θn)

)+ n2R∗
n(θ)�
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where

Z∗
n = −n1/2J−1

n B
−1(βn)DQn(θn)�(9.106)

Jn = B−1(βn)D
2Qn(θn)B

−1(βn)�

q∗
n(λ)= (λ−Z∗

n)
′Jn(λ−Z∗

n)�

Now, the proof of the theorem is analogous to the proof of Theorem 9.1
using (9.105) in place of (9.65). The proof of Theorem 9.1 uses Lemma 9.7,
Lemma 9.9, and Theorem 9.2. The main changes to the proof of Theorem 9.1
and the accompanying lemmas and theorem are the following:

(i) The dependence of various quantities on π is deleted.
(ii) The quantities Zn(π), τn(π;γn), Dψψ�n(π), qn(λ�π), and an(ψ̃n(π)−

ψn) are replaced by Z∗
n , Z

∗
n , Jn, q

∗
n(λ), and n1/2B(βn)(θ̃n − θn), respectively.74

(iii) The limit quantities Z(π;γ0), τ(π;γ0), H(π;γ0), q(λ�π), and ξr(π;
γ0) are replaced by Z∗, Z∗, J(γ0), q∗(λ), and ξ∗

r (γ0), respectively, where

Z∗ = −J−1(γ0)G
∗(γ0) and q∗(λ)= (λ−Z∗)′J(γ0)(λ−Z∗)�(9.107)

(iv) The normalized parameter space an(Ψr(π�vn�1) − ψn) is replaced by
n1/2B(βn)(Θr(vn)− θn), where

Θr(v)= {θ= (ψ�π) ∈Θ�r1(ψ)= v1� & r2(π)= v2}(9.108)

for v= (v1� v2)�

(v) Lemma 9.12 is employed in place of Lemma 9.6.
(vi) The quantity ψ̃n�q(π) is replaced by θ̃n�q, where θ̃n�q ∈Θr(vn) is defined

to satisfy

q∗
n

(
n1/2B(βn)(θ̃n�q − θn)

)= inf
θ∈Θr(vn)

q∗
n

(
n1/2B(βn)(θ− θn)

)+ op(1)�(9.109)

(vii) The definition of Λ is changed to

Λ= {λ ∈Rdθ : rθ(θ0)λ= 0}�(9.110)

(viii) The quantities Pψ(π;γ0), P⊥
ψ (π;γ0), and λ̃(π) are replaced by Pθ(γ0),

P⊥
θ (γ0), and λ̃, respectively, where λ̃ ∈ Λ is defined to minimize q∗(λ) over
λ ∈Λ and

λ̃= P⊥
θ (γ0)Z

∗ = −P⊥
θ (γ0)J

−1(γ0)G
∗(γ0)�(9.111)

74The quantities Zn(π) and τn(π;γn) differ by the amount an(γn)(ψ0�n − ψn) because the
quadratic expansion in Assumption C1 is around ψ0�n, rather than the true value ψn. In contrast,
the quadratic expansion in Assumption D1 is around the true value θn. In consequence, the same
quantity Z∗

n replaces both Zn(π) and τn(π;γn) in the proof of Theorem 9.3.
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where the closed form expression for λ̃ is as in Andrews (1999, p. 1361).
With these changes, the proof of Theorem 9.1 yields the proof of the results

stated in Theorem 9.3. Q.E.D.

PROOF OF LEMMA 9.11: When β0 = 0, π̃n − πn →p 0 by Theorem 9.2(g)
because sequences {γn} in Γ (γ0�0� b) with ‖b‖ = ∞ and βn/‖βn‖ →ω0 are in
Γ (γ0�∞�ω0) with β0 = 0. When β0 = 0, ψ̃n −ψn →p 0 because ‖ψ̃n −ψn‖ =
‖ψ̃n(π̃n)−ψn‖ ≤ supπ∈Π ‖ψ̃n(π)−ψn‖ = op(1) by Lemma 9.5(a).

When β0 
= 0, θ̃n →p θ0 holds by an argument analogous to that given in
the proof of Lemma 3.1(a) with θ̃n, θ0, and Θ/Θ0, in place of (ψ̂n(π)�π),
(ψ0�π), and Ψ(π)/Ψ0, respectively, where Θ0 is some neighborhood of θ0,
with infπ∈Π and supπ∈Π deleted, and with Assumption B3(iii) in place of As-
sumption B3(ii), except that (9.3) needs to be altered. An alteration is needed
because θ0 does not necessarily satisfy the restrictions r(θ0) = vn (= r(θn)),
which invalidate the fourth inequality in (9.3). However, the fourth inequal-
ity holds with Qn(θn;γ0) in place of Qn(ψ0�π;γ0) in the second summand on
the right-hand side of the fourth inequality, because the true value θn satisfies
the restriction r(θn)= vn. With this change, the fifth inequality in (9.3) has the
additional term |Q(θn;γ0)−Q(θ0;γ0)| on the r.h.s., which is o(1) by Assump-
tion RQ1(vi). This completes the proof. Q.E.D.

PROOF OF LEMMA 9.12: The proof is the same as the proof that n1/2B(βn)×
(θ̂n−θn)=Op(1), which is given at the beginning of the proof of Theorem 3.2.
In the proof, (9.104) is used in place of Lemma 3.4, and π̃n − πn = op(1) and
ψ̃n−ψn = op(1) by Lemma 9.11 are used in place of π̂n−πn = op(1) and ψ̂n−
ψn = op(1) by Lemma 3.3. The key inequality in (9.34) holds in the present
case because the true value θn satisfies the restrictions. Q.E.D.

9.4.4. QLR Statistic With Restrictions on π +β
Here we provide more details concerning the claim in Comment (iv) follow-

ing Theorem 4.2 that the QLR statistic has the same asymptotic distribution
for restrictions of the form r(θ)= (r1(ψ)�π+β) as for restrictions of the form
r(θ)= (r1(ψ)�π).

Roughly speaking, the reason the comment holds is as follows. First, sup-
pose {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞. The restrictions do not effect the second
component of the QLR statisticQn(θ̂n) and we already have its asymptotic dis-
tribution after suitable normalization, so it suffices to focus on the first com-
ponent Qn(θ̃n). The limit set Πr�0 is the same whether the restrictions are on
π +β or π because βn → 0. This leads to the same asymptotic distribution of
n(Qn(θ̃n)−Q0�n) for these two restrictions. Next, under {γn} ∈ Γ (γ0�∞�ω0),
weak identification is not an issue and so the QLR statistic has a χ2

dr
asymptotic

distribution whether π +β or π is restricted (as in (4.15)).
Now we provide more details. As just stated, it suffices to focus on the nor-

malized first component n(Qn(θ̃n) − Q0�n). We consider a reparametrization
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of the model/criterion function. The original model based on (β�ζ�π) can
be reparametrized to depend on (β�ζ�π1), where π1 = π + β. The results
of Theorem 9.1(a) can be applied to the reparametrized model with param-
eters (β�ζ�π1). Denote the criterion function for the reparametrized model
by Qn(β�ζ�π1)=Qn(β�ζ�π1 −β).

First, consider the asymptotic distribution n(Qn(θ̃n) − Q0�n) under {γn} ∈
Γ (γ0�0� b) with ‖b‖<∞ with the restrictions based on r(θ)= (r1(ψ)�π +β).
Given these restrictions, for the results of Theorem 9.1(a), we do not need a
quadratic expansion to hold for all π1 in some set Π1 that is analogous to Π
in Assumption C1. Rather, we just need a version of Assumption C1 to hold
for Qn(β�ζ�π1) when π1 = π1�n = πn + βn, that is, for Qn(β�ζ�π1�n). This is
obtained for the reparametrized criterion function when Assumptions C1–C4
hold for the original criterion function:

Qn(β�ζ�π1�n)(9.112)

=Qn(β�ζ�π1�n −β)
=Qn(0� ζ�π1�n −β)+DψQn(ψ0�n�π1�n −β)′(ψ−ψ0�n)

+ 1
2
(ψ−ψ0�n)

′DψψQn(ψ0�n�π1�n −β)(ψ−ψ0�n)

+Rn(ψ�π1�n −β)
=Qn(0� ζ�π1�n)+DψQn(ψ0�n�π1�n)

′(ψ−ψ0�n)

+ 1
2
(ψ−ψ0�n)

′DψψQn(ψ0�n�π1�n)(ψ−ψ0�n)

+Rn(ψ�π1�n −β)+R2�n(ψ)�

where R2�n(ψ) is defined implicitly by the third equality, the first equality holds
by the definition of Qn(β�ζ�π1), the second equality holds by Assumption C1
forQn(θ), and the third equality uses the fact thatQn(0� ζ�π) does not depend
on π. The additional remainder term R2�n(ψ) satisfies Assumption C1(ii) with
R2�n(ψ) in place of Rn(ψ�π), using Assumptions C2–C4 for Qn(θ). This relies
on the fact that the true values θn = (βn� ζn�πn) ∈ Θ∗ ⊂ int(Θ) by Assump-
tion B1(i). In consequence, for some set Π∗, we have πn ∈Π∗ ⊂ int(Π) for all
n and, hence, π1�n −β (= πn +βn −β) is in Π for all β with ‖β‖ ≤ δn for all n
large, where δn → 0.

Similarly, under the given restrictions, for the results of Theorem 9.1(a)
to hold for Qn(β�ζ�π1), Assumptions B1–B3 and C2–C5 for Qn(β�ζ�π1)
do not need to hold for all π1 − βn ∈ Π. It suffices for them to hold with
π1 ∈Π∗ +βn ⊂Π, which they do by Assumptions B1–B3 and C2–C5 forQn(θ).
Assumption A clearly holds forQn(β�ζ�π1). This completes the verification of
the required assumptions forQn(β�ζ�π1). In turn, this completes the proof for
sequences {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞.
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Next, suppose {γn} ∈ Γ (γ0�∞�ω0)� We apply the results of Theorem 9.3(a)
to the reparametrized model with criterion function Qn(β�ζ�π1). In addition
to Assumptions C1–C5, we suppose Assumptions D1–D3 and C8 hold for the
original criterion function Qn(θ). Then Assumption D1 holds for Qn(β�ζ�π1)
by the following calculation. For notational simplicity, suppose no parameter
ζ appears. For π1 = π +β and π1�n = πn +βn, we have

Qn(β�π1)(9.113)

=Qn(β�π)

=Qn(θn)+DQn(θn)′(θ− θn)+ 1
2
(θ− θn)D2Qn(θn)(θ− θn)+R∗

n(θ)

=Qn(βn�π1�n)+
(
∂βQn(θn)
∂πQn(θn)

)′(
β−βn

π1 −π1�n − (β−βn)
)

+ 1
2

(
β−βn

π1 −π1�n − (β−βn)
)′ [

∂ββQn(θn) ∂βπQn(θn)
∂πβQn(θn) ∂ππQn(θn)

]
×
(

β−βn
π1 −π1�n − (β−βn)

)
+R∗

n(θ)

=Qn(βn�π1�n)+
(
∂βQn(θn)− ∂πQn(θn)

∂πQn(θn)

)′(
β−βn
π1 −π1�n

)
+ 1

2

(
β−βn
π1 −π1�n

)′

×
[
∂ββQn(θn)− 2∂βπQn(θn)+ ∂ππQn(θn) ∂βπQn(θn)− ∂ππQn(θn)

∂πβQn(θn)− ∂ππQn(θn) ∂ππQn(θn)

]
×
(
β−βn
π1 −π1�n

)
+R∗

n(θ)�

where the first equality holds by definition, the second equality holds by As-
sumption D1 for Qn(θ), the quantities ∂βQn(θn), ∂πQn(θn), ∂ββQn(θn)� � � � ,
on the r.h.s. of the third equality are subvectors and submatrices of DQn(θn)
and D2Qn(θn) by definition, and the fourth equality holds by algebra. Equa-
tion (9.113) establishes Assumption D1 for Qn(β�π1) because the properties
of R∗

n(θ) in Assumption D2(ii) for Qn(θ) yield the appropriate properties for
the remainder R∗

n(θ)=R∗(β�π1 −β) for Qn(β�π1).
Assumptions D2 and D3 for Qn(θ) imply Assumptions D2 and D3 for

Qn(β�π1) with the limit quantities J(γ0) and V (γ0) changed to correspond
to the changes in (9.113) from DQn(θn) and D2Qn(θn) to(

∂βQn(θn)− ∂πQn(θn)
∂πQn(θn)

)
and(9.114) [

∂ββQn(θn)− 2∂βπQn(θn)+ ∂ππQn(θn) ∂βπQn(θn)− ∂ππQn(θn)
∂πβQn(θn)− ∂ππQn(θn) ∂ππQn(θn)

]
�
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respectively. Assumption C7 for Qn(β�π1) is not needed to obtain the result
in Theorem 9.1(a) for the restrictions given because there is a unique value
of π1 that satisfies the restrictions. Assumption C8 for Qn(β�π1) is implied by
Assumption C8 for Qn(β�π). This completes the verification of the assump-
tions needed for Qn(β�π1) in Theorem 9.1(a). Combining this result with the
asymptotic distribution of n(Qn(θ̂n) − Q0�n), which does not depend on the
form of the restrictions, yields the result of Theorem 9.1(b), which is the same
as the result in Theorem 4.2. This result, combined with (4.15) (using the as-
sumption that Assumption RQ2 holds), yields a χ2

dr
distribution for the QLR

statistic under {γn} ∈ Γ (γ0�∞�ω0) when r(θ)= (r1(ψ)�π +β), just as it does
when r(θ)= (r1(ψ)�π).

This completes the proof of the assertion in Comment (iv) to Theorem 4.2.

9.5. Proofs of Asymptotic Size Results

PROOF OF THEOREM 4.4: We only prove the asymptotic size result of Theo-
rem 4.4 for the symmetric two-sided CI, which is based on |Tn|. The proofs for
the one-sided CI’s and the QLR CS, which are based on Tn, −Tn, and QLRn,
respectively, are analogous. For the QLR CS, one uses Theorems 9.1 and 9.3
in place of Theorem 4.1 in the proof below.

By definition, CPn(γn) = Pγn(|Tn| ≤ z1−α/2). By Theorem 4.1 and Assump-
tion V3, CPn(γn) → P(|T(h)| ≤ z1−α/2) under {γn} ∈ Γ (γ0�0� b) with ‖b‖ <
∞ and CPn(λn) → P(|Z| ≤ z1−α/2) = 1 − α under {γn} ∈ Γ (γ0�∞�ω0). This
implies Assumption ACP(i)–(iii). Assumption ACP(iv) holds by Assump-
tion B2(ii). Given this, the desired result holds by Lemma 2.1. Q.E.D.

PROOF OF THEOREM 5.1: The proof of Theorem 5.1(a)(i) for the LF
critical value is the same as that of Theorem 4.4 but with cLF

T �1−α (=
max{suph∈H cT �1−α(h)� cT �1−α(∞)}) for Tn = |Tn|, Tn, −Tn, and QLRn in place
of z1−α/2� z1−α, z1−α, and χ2

dr �1−α, respectively, using Assumption LF(i) in place
of Assumption V3. For the case of Tn = |Tn|, this proof delivers

AsySz = min
{

inf
h∈H
P
(|T(h)| ≤ cLF

|t|�1−α
)
�P

(|Z| ≤ cLF
|t|�1−α

)}
�(9.115)

where Z ∼N(0�1). The r.h.s. of (9.115) is greater than or equal to 1 − α be-
cause (i) P(|T(h)| ≤ cLF

|t|�1−α) ≥ P(|T(h)| ≤ c|t|�1−α(h)) ≥ 1 − α ∀h ∈H, where
the second inequality holds by the definition of the quantile c|t|�1−α(h), and
(ii) P(|Z| ≤ cLF

|t|�1−α)≥ P(|Z| ≤ z1−α/2)= 1 − α. The r.h.s. of (9.115) is less than
or equal to 1 − α because if cLF

|t|�1−α = z1−α/2, then P(|Z| ≤ cLF
|t|�1−α) = 1 − α and

if cLF
|t|�1−α > z1−α/2, then P(|T(hmax)| ≤ cLF

|t|�1−α) = P(|T(hmax)| ≤ c|t|�1−α(hmax)) =
1 −α, where both equalities hold using Assumption LF. Hence, AsySz = 1 −α.
The proofs for Tn = Tn, −Tn, and QLRn are analogous using Theorems 9.1
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and 9.3 in place of Theorem 4.1 when considering QLR CS’s. The assumptions
are different for QLR CS’s because of the latter change.

The proofs of Theorem 5.1(a)(ii) and (b)(ii) for the NI-LF critical value
are the same as that just given for the LF critical value except that H,
cLF

|t|�1−α, hmax, and Assumption LF are replaced by H(v), cLF
|t|�1−α(v) (=

max{suph∈H(v) c|t|�1−α(h)� z1−α/2}), hmax(v), and Assumption NI-LF, respectively,
for v ∈ Vr and the r.h.s. of (9.115) has infv∈Vr added.

Theorem 5.1(a)(iii) is proved by verifying Assumption ACP and invoking
Lemma 2.1. Consider the case where Tn = |Tn|. First, we show c̃|t|�1−α�n →p

cLF
|t|�1−α under {γn} ∈ Γ (γ0�0� b) with ‖b‖ <∞. By the construction of c̃|t|�1−α�n,

it suffices to show that Pγn(An ≤ κn) → 1. This holds if An = Op(1) under
{γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, because κn → ∞ by Assumption K(i).

When β is a scalar, we have

An = (
n1/2β̂′

nΣ̂
−1
ββ�nn

1/2β̂n/dβ
)1/2

(9.116)

→d (τβ(π
∗)′Σ−1

ββ(π
∗;γ0)τβ(π

∗)/dβ)1/2�

where π∗ and τβ(·) abbreviate π∗(γ0� b) and τ(·;γ0� b), respectively, and the
convergence in distribution holds by Theorem 3.1(a) and Assumption V1. By
Assumptions B1(iii) and V1(ii) and (iii), infπ∈Π Σββ(π;γ0) > 0. Hence, An =
Op(1) under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, as desired.

When β is a vector, (9.116) holds with Σββ(π∗;γ0) replaced by Σββ(π∗�
ω∗(π∗);γ0�ω0) by Theorem 3.1(a), Assumption V1, and the joint convergence
(n1/2β̂n� π̂n� ω̂n)→d (τβ(π

∗)�π∗�ω∗(π∗)). By Assumptions B1(iii) and V1(ii)
and (iii), infπ∈Π�‖ω‖=1 λmin(Σββ(π�ω;γ0�ω0)) > 0. Hence, An = Op(1) under
{γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, as desired.

Using Theorem 4.1(a) and (b), c̃|t|�1−α�n →p c
LF
|t|�1−α, and Assumption V3,

we obtain CPn(γn) = Pγn(|Tn| ≤ c̃|t|�1−α�n) → P(|T(h)| ≤ cLF
|t|�1−α) under {γn} ∈

Γ (γ0�0� b) with ‖b‖ < ∞. Hence, Assumption ACP(i) holds with CP(h) =
P(|T(h)| ≤ cLF

|t|�1−α).
By the construction of c̃|t|�1−α�n, we have z1−α/2 ≤ c̃|t|�1−α�n ≤ cLF

|t|�1−α. Hence,

Pγn
(|Tn| ≤ z1−α/2

)≤ Pγn
(|Tn| ≤ c̃|t|�1−α�n

)≤ Pγn
(|Tn| ≤ cLF

|t|�1−α
)
�(9.117)

Under {γn} ∈ Γ (γ0�∞�ω0),

Pγn
(|Tn| ≤ z1−α/2

)→ P
(|Z| ≤ z1−α/2

)= 1 − α�(9.118)

Pγn
(|Tn| ≤ cLF

|t|�1−α
)→ P

(|Z| ≤ cLF
|t|�1−α

)≥ 1 − α�
By (9.117) and (9.118), Assumption ACP(ii) holds with CP∞ = 1 − α.

Next, we verify Assumption ACP(iii) by showing c̃|t|�1−α�n →p z1−α/2 under
{γn} ∈ Γ (γ0�∞�ω0) with β0 
= 0. It suffices to show that Pγn(An > κn)→ 1. We
have

κ−1
n An = (

n1/2κ−1
n

)
(β̂′

nΣ̂
−1
ββ�nβ̂n/dβ)

1/2 →p ∞�(9.119)
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where the divergence to infinity holds because n1/2κ−1
n → ∞ by Assump-

tion K(ii), β̂n →p β0 
= 0 by Lemma 3.1(b), Σ̂ββ�n →p Σββ(γ0) by Assump-
tion V2, where Σββ(γ0) denotes the upper left dβ × dβ submatrix of Σ(γ0) =
J−1(γ0)V (γ0)J

−1(γ0), and Σββ(γ0) is nonsingular by Assumptions D2 and D3.
Hence, Pγn(An > κn)→ 1.

Using |Tn| →d |Z| by Theorem 4.1(c), c̃|t|�1−α�n →p z1−α/2, and the continu-
ity of the d.f. of Z, we obtain CPn(γn) = Pγn(|Tn| ≤ c̃|t|�1−α�n)→ 1 − α under
{γn} ∈ Γ (γ0�∞�ω0) with β0 
= 0. This completes the verification of Assump-
tion ACP(iii). Assumption ACP(iv) holds by Assumption B2(ii).

Applying Lemma 2.1, we conclude that the nominal 1 −α type 1 robust two-
sided t CI has AsySz = 1 − α. This completes the proof of Theorem 5.1(a)(iii)
for Tn = |Tn|. The proofs for one-sided t CI’s and QLR CS’s are analogous.
Note that the use of Theorem 3.1(a) above can be replaced by Lemma 9.2(a),
which shows that n1/2β̂n =Op(1) under {γn} ∈ Γ (γ0�0� b). In consequence, the
proof of Theorem 5.1(b)(iii) for QLR CS’s requires Assumptions V1 and V2,
but not C6. (The same is true for Theorem 5.1(b)(iv), but Theorem 5.1(b)(v)
and (vi) require Assumptions V1, V2, and C6 because the asymptotic distribu-
tion of n1/2β̂n under {γn} ∈ Γ (γ0�0� b) given in Theorem 3.1(a) is required.)

The proofs of Theorem 5.1(a)(iv) and 5.1(b)(iv) for the type 1 NI robust crit-
ical value are analogous to that just given for the type 1 robust critical value ex-
cept thatH, cLF

|t|�1−α, and c̃|t|�1−α�n are replaced byH(v), cLF
|t|�1−α(v), and c̃|t|�1−α�n(v),

respectively, for v ∈ Vr .
The proof of Theorem 5.1(a)(v) for the type 2 robust critical value is proved

by verifying Assumption ACP and invoking Lemma 2.1. Again, consider the
case when Tn = |Tn|. First, under {γn} ∈ Γ (γ0�0� b) with ‖b‖<∞, we have(|Tn|� ĉ|t|�1−α�n

)→d

(|T(h)|� ĉ|t|�1−α(h)
)
�(9.120)

because (i) Tn →d T (h) by Theorem 4.1, (ii) An →d A(h) by (9.116),
(iii) ĉ|t|�1−α�n →d ĉ|t|�1−α(h) by the continuous mapping theorem using result (ii),
(5.5), (8.3), and the continuity of s(x) for x ∈ [0�∞) (which implies that
ĉ|t|�1−α(h) is a continuous function of A(h)), and (iv) the convergence is joint
because |Tn| and ĉ|t|�1−α�n are functions of the same underlying statistics.

Equation (9.120) and Assumption Rob2(i) imply that under {γn} ∈ Γ (γ0�0�
b) with ‖b‖<∞,

P
(|Tn| ≤ ĉ|t|�1−α�n

)→d P
(|T(h)| ≤ ĉ|t|�1−α(h)

) ∀h= (b�γ0) ∈H�(9.121)

This verifies Assumption ACP(i) with CP(h)= P(|T(h)| ≤ ĉ|t|�1−α(h)).
Second, under {γn} ∈ Γ (γ0�∞�ω0)� we have (i) An →p ∞ by Theo-

rem 4.1(c) with r(θ) = β plus the fact that the estimator β̂n in An is cen-
tered at 0, rather than at βn, which causes the divergence in probability to ∞,
(ii) s(An − κ)→p 0 by results (i) and (ii) and the assumption that s(x)→ 0
as x→ ∞, and (iii) ĉ|t|�1−α�n →p c|t|�1−α(∞)+ Δ2 = z1−α/2 + Δ2 using result (ii)
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and (5.5). Result (iii) and |Tn| →d |Z| for Z ∼N(0�1), which holds by Theo-
rem 4.1(c), yield that under {γn} ∈ Γ (γ0�∞�ω0),

P
(|Tn| ≤ ĉ|t|�1−α�n

)→d P
(|Z| ≤ z1−α/2 +Δ2

)
�(9.122)

This verifies Assumption ACP(ii) and (iii) with CP∞ = P(|Z| ≤ z1−α/2 +Δ2).
Lemma 2.1 now gives

AsySz = min
{

inf
h∈H
P
(|T(h)| ≤ ĉ|t|�1−α(h)

)
�P

(|Z| ≤ z1−α/2 +Δ2

)}
�(9.123)

It remains to show that the right-hand side equals 1 − α. We have

AsySz = min
{

inf
h∈H
(1−NRP(Δ1�Δ2;h))�P

(|Z| ≤ z1−α/2 +Δ2

)}≥ 1−α�(9.124)

where NRP(Δ1�Δ2;h) is defined in (5.7) with T (h) = |T(h)|, the equality
holds by (5.7) and (8.3) with T (h) = |T(h)| and (9.123), and the inequality
holds by the definitions of Δ1 and Δ2 in (5.8), P(|Z| ≤ z1−α/2) = 1 − α, and
Δ2 ≥ 0.

If Δ2 = 0, then P(|Z| ≤ z1−α/2 + Δ2) = 1 − α and AsySz ≤ 1 − α by (9.124).
Alternatively, if Δ2 > 0, we have

AsySz ≤ 1 − NRP(Δ1�Δ2;h∗)= 1 − α�(9.125)

where the inequality holds using the equality in (9.124) and the equality holds
by Assumption Rob2(ii). This completes the proof that AsySz = 1 − α in
Theorem 5.1(a)(v) for the case Tn = |Tn|. The proofs of Theorem 5.1(a)(v)
and (b)(v) for the cases Tn = Tn −Tn and QLRn are analogous.

The proofs of Theorem 5.1(a)(vi) and (b)(vi) are analogous to that of The-
orem 5.1(a)(v) using Assumption NI-Rob2 in place of Assumption Rob2.

Q.E.D.

9.6. Proofs of Sufficient Conditions

9.6.1. Assumption B3

PROOF OF LEMMA 8.1: Assumption B3∗(i) and (iii) and the compactness
of Θ lead to Assumption B3(iii) by a standard argument. For any π ∈ Π,
we have q(π) = infψ∈Ψ(π)/Ψ0 Q(ψ�π;γ0) − Q(ψ0�π;γ0) > 0, where Ψ0 is de-
fined in Assumption B3(ii), by the same standard argument using Assump-
tion B3∗(ii) in place of Assumption B3∗(iii). To show infπ∈Π q(π) > 0, as is re-
quired by Assumption B3(ii), it suffices to show q(π) is continuous on the com-
pact setΠ. For any π ∈Π, Ψ(π)/Ψ0 is compact and infψ∈Ψ(π)/Ψ0 Q(ψ�π;γ0)=
Q(ψ∗(π)�π;γ0) for some ψ∗(π) ∈ Ψ(π) by Assumption B3∗(i) and (iv). To
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show q(π) is continuous onΠ, it is equivalent to show Q(ψ∗(π)�π;γ0) is con-
tinuous on Π.

For any ε > 0, there exists δ1 > 0 such that ‖ψ1 − ψ∗(π2)‖ < δ1 and
‖π1 − π2‖< δ1 imply that |Q(ψ1�π1;γ0)−Q(ψ∗(π2)�π2;γ0)|< ε by the con-
tinuity of Q(θ;γ0). By Assumption B3∗(v), for any δ1 > 0, there exists a δ2 > 0
such that ‖π1 − π2‖ < δ2 implies that dH(Ψ(π1)�Ψ(π2)) < δ1. The condi-
tion dH(Ψ(π1)�Ψ(π2)) < δ1 implies that infψ∈Ψ(π1) ‖ψ − ψ∗(π2)‖ < δ1. Be-
cause Ψ(π1) is compact, there exists ψ∗∗(π1) ∈ Ψ(π1) such that ‖ψ∗∗(π1) −
ψ∗(π2)‖ = infψ∈Ψ(π1) ‖ψ − ψ∗(π2)‖. Hence, ‖ψ∗∗(π1) − ψ∗(π2)‖ < δ1 if ‖π1 −
π2‖< δ2. Take δ= min{δ1� δ2}. Then∣∣Q(ψ∗∗(π1)�π1;γ0)−Q(ψ∗(π2)�π2;γ0)

∣∣< ε(9.126)

for any ‖π1 −π2‖< δ. Hence,

Q(ψ∗(π1)�π1;γ0)≤Q(ψ∗∗(π1)�π1;γ0) < Q(ψ
∗(π2)�π2;γ0)+ ε(9.127)

for any ‖π1 −π2‖< δ, where the first inequality is implied by the definition of
ψ∗(π1) and the second inequality holds by (9.126).

Similarly, we can show Q(ψ∗(π2)�π2;γ0) < Q(ψ
∗(π1)�π1;γ0) + ε for any

‖π1 −π2‖< δ. Hence, for any ε > 0, there exists δ > 0 such that |Q(ψ∗(π1)�π1;
γ0) − Q(ψ∗(π2)�π2;γ0)| < ε for any ‖π1 − π‖ < δ. This completes the
proof. Q.E.D.

9.6.2. Assumption C5

PROOF OF LEMMA 8.2: We now verify Assumption C5. Without loss of gen-
erality, suppose β ∈R. Let {β∗

k :k≥ 1} be a sequence that converges to β∗ and
suppose γ∗

k only differs from γ∗ by replacing β∗ with β∗
k. The partial derivative

of Eγ∗m(Wi�θ) w.r.t. β∗ is

lim
k→∞

Eγ∗
k
m(Wi�θ)−Eγ∗m(Wi�θ)

β∗
k −β∗(9.128)

= lim
k→∞

∫
W
m(w�θ)

fWi(w;γ∗
k)− fWi(w;γ∗)
β∗
k −β∗ dμ(w)

=
∫

W
m(w�θ)

(
lim
k→∞

fWi(w;γ∗
k)− fWi(w;γ∗)
β∗
k −β∗

)
dμ(w)

=
∫

W
m(w�θ)fβ�Wi(w;γ∗)dμ(w)�

where the first equality holds by Assumption C5∗(i), the second equality holds
by the dominated convergence theorem (DCT), and the last equality holds
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by the differentiability of fWi(w;γ∗) w.r.t. β∗. The DCT holds in the second
equality using

fWi(w;γ∗
k)− fWi(w;γ∗)
β∗
k −β∗ = fβ�Wi(w; γ̃k(w))�(9.129) ∫

W
sup
θ∈Θ

‖m(w�θ)‖ · sup
γ∈N(γ∗�ε)

∣∣fβ�Wi(w;γ)∣∣dμ(w) <∞�

where the equality holds by the mean-value expansion with γ̃k(w) between
γ∗
k and γ∗, and the inequality holds by Assumption C5∗(v). Hence, Assump-

tion C5(i) holds with Kn(θ;γ∗)= n−1
∑n

i=1

∫
W m(w�θ)fβ�Wi(w;γ∗)dμ(w).

We now show Assumption C5(ii) holds with K(ψ0�π;γ0) = ∫
W m(w�ψ0�

π)fβ�W (w;γ0)dμ(w). To show Assumption C5(ii), we have

sup
π∈Π

|Kn(ψn�π; γ̃n)−K(ψ0�π;γ0)|(9.130)

≤
∫

sup
π∈Π

∣∣∣∣∣m(w�ψn�π)
(
n−1

n∑
i=1

fβ�Wi(w; γ̃n)
)

−m(w�ψ0�π)fβ�W (w;γ0)

∣∣∣∣∣dμ(w)
≤
∫

sup
θ∈Θ

|m(w�θ)| ·
∣∣∣∣∣n−1

n∑
i=1

fβ�Wi(w; γ̃n)− fβ�W (w;γ0)

∣∣∣∣∣dμ(w)
+
∫

sup
π∈Π

|m(w�ψn�π)−m(w�ψ0�π)|fβ�W (w;γ0)dμ(w)�

where the first inequality is obvious and the second inequality holds by the
triangle inequality. The fourth line of (9.130) converges to 0 by the DCT
under Assumption C5∗(ii), (iii), and (v) using γ̃n → γ0. The fifth line of
(9.130) converges to 0 by Assumption C5∗(iv) and (v). This yields Assump-
tion C5(ii).

Assumption C5(iii) holds by the DCT using Assumption C5∗(iv) and (v).
Q.E.D.

9.6.3. Assumption C6

PROOF OF LEMMA 8.3: We block diagonalize H(π;γ0) using the dψ × dψ
matrix A(π) defined by

A(π)=
[
Idβ −H12(π)H

−1
22

0dζ×dβ Idζ

]
�(9.131)
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Simple calculations yield

A(π)H(π;γ0)A(π)
′ =

[
H∗

11(π) 0dβ×dζ
0dζ×dβ H22

]
�(9.132)

A(π)[G(π;γ0)+K(π;γ0)b] =
[
G∗

1(π;γ0)+K∗
1(π;γ0)b

G2 +K2b

]
�

A(π)K(π;γ0)ω0 =K∗
1(π;γ0)ω0�

In consequence, we have

ξ(π;γ0� b)(9.133)

= −1
2
(G(π;γ0)+K(π;γ0)b)

′A(π)′[A(π)H(π;γ0)A(π)
′]−1

×A(π)(G(π;γ0)+K(π;γ0)b)

= ξ1(π;γ0� b)+ ξ2(γ0� b)�

Similarly, we have

η(π;γ0�ω0)(9.134)

= −1
2
ω′

0K(π;γ0)
′A(π)′[A(π)H(π;γ0)A(π)

′]−1A(π)K(π;γ0)ω0

= η1(π;γ0�ω0)+η2(γ0�ω0)�

which completes the proof. Q.E.D.

Lemma 8.4 follows immediately from the following lemma, which is an ex-
tension of Lemma 2.6 of Kim and Pollard (1990).

LEMMA 9.13: Let {Z(t) : t ∈ T } be a univariate Gaussian process with continu-
ous sample paths, indexed by a σ-compact metric space T . If Var(Z(s)−Z(t)) 
=
0 and Var(Z(s)+Z(t)) 
= 0 ∀s� t ∈ T with s 
= t, then, with probability 1, no sam-
ple path of Z2(·) can achieve its supremum at two distinct points of T .

PROOF OF LEMMA 9.13: A sample path of Z2 achieves its supremum only
whereZ achieves its supremum or infimum. By Lemma 2.6 of KP, if Var(Z(s)−
Z(t)) 
= 0 ∀s 
= t, no sample path of Z achieves its supremum at two distinct
points of T with probability 1. By the same argument, no sample path of Z
achieves its infimum at two distinct points in T with probability 1.

It only remains to show that with probability 1, no sample path of Z has its
supremum equal to minus its infimum at two distinct points. To show this, we
use the condition

Var(Z(s)+Z(t)) 
= 0 ∀s 
= t�(9.135)
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The argument is analogous to that in KP. For each pair of distinct points t0 and
t1, instead of taking the supremum of Z(t) over neighborhoods N0 of t0 and
N1 of t1 as in KP, take the supremum of Z(t) over N0 and the supremum of
−Z(t) over N1. Using the notation in KP, Cov(Z(t0)�−Z(t1)) = −H(t0� t1).
By (9.135), −H(t0� t1) cannot equal both H(t0� t0) and H(t1� t1). Suppose
H(t0� t0) >−H(t0� t1) (the other cases are handled similarly). Then h(t0)= 1>
−h(t1), where h(t) =H(t1� t0)/H(t0� t0) as in KP. The rest of the proof is the
same as in KP, except that β1 = supt∈N1

h(t) and Γ1(z)= supt∈N1
(Y(t)+h(t)z)

are changed to β1 = supt∈N1
(−h(t)) and Γ1(z) = supt∈N1

(−Y(t)− h(t)z), re-
spectively. This leads to the desired result P{supt∈N0

Z(t) =
supt∈N1

(−Z(t))} = 0. Q.E.D.

PROOF OF LEMMA 8.5: For any π1�π2 ∈Π,

Var(G∗
1(π1;γ0)−G∗

2(π2;γ0))(9.136)

= Var
(
G1(π1)−G2(π2)− (H12(π1)−H12(π2))H

−1
22 G2

)
= a′ΩG(π1�π2;γ0)a > 0�

where a= (1�−1�−(H12(π1)−H12(π2))H
−1
22 )

′ and the inequality holds by As-
sumption C6∗∗(ii). Similarly, we can show that Var(G∗

1(π1;γ0)+G∗
1(π2;γ0)) 
=

0 ∀π1�π2 ∈ Π with π1 
= π2. Hence, Assumption C6∗ holds. By Lemma 8.4,
Assumption C6 holds as well. Q.E.D.

9.6.4. Quadratic Expansions: Assumptions C1 and D1

PROOF OF LEMMA 8.6: We first prove part (a). Let δn be any sequence of
constants such that δn → 0 as n→ ∞. By a second-order Taylor expansion of
Qn(ψ�π) about ψ0�n, for ψ ∈Ψ(π) with ‖ψ−ψ0�n‖ ≤ δn and π ∈Π, we have

|Rn(ψ�π)|(9.137)

=
∣∣∣∣∣12(ψ−ψ0�n)

′
(
n−1

n∑
i=1

(
ρψψ(Wi�ψ

†
0�n(π)�π)− ρψψ(Wi�ψ0�n�π)

))

× (ψ−ψ0�n)

∣∣∣∣∣
≤ ‖(ψ−ψ0�n)‖2

∥∥∥∥∥n−1
n∑
i=1

(
ρψψ(Wi�ψ

†
0�n(π)�π)− ρψψ(Wi�ψ0�n�π)

)∥∥∥∥∥
= opπ

(‖ψ−ψ0�n‖2
)
�

where ψ†
0�n(π) lies between ψ and ψ0�n, and the opπ(‖ψ−ψ0�n‖2) term follows

from Assumption Q1(iii). This immediately implies Assumption C1 using the
‖an(γn)(ψ−ψ0�n)‖ part of the denominator in Assumption C1(ii).
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Next, we show part (b). By a second-order Taylor expansion ofQn(θ) w.r.t. θ,

|R∗
n(θ)| =

∣∣∣∣∣12(θ− θn)′
(
n−1

n∑
i=1

(ρθθ(Wi� θ
†
n)− ρθθ(Wi� θn))

)
(θ− θn)

∣∣∣∣∣(9.138)

=
∣∣∣∣∣12(B(βn)(θ− θn))′

×
[
B−1(βn)n

−1
n∑
i=1

(ρθθ(Wi� θ
†
n)− ρθθ(Wi� θn))B

−1(βn)

]

×B(βn)(θ− θn)
∣∣∣∣∣

≤ ‖B(βn)(θ− θn)‖2

×
∥∥∥∥∥B−1(βn)n

−1
n∑
i=1

(ρθθ(Wi� θ
†
n)− ρθθ(Wi� θn))B

−1(βn)

∥∥∥∥∥
= op

(‖B(βn)(θ− θn)‖2
)
�

where θ†
n is between θ and θn, and the op(‖B(βn)(θ − θn)‖2) term follows

from Assumption Q1(iv). This immediately implies Assumption D1 using
the ‖n1/2B(βn)(θ − θn)‖ part of the denominator in Assumption D1(ii).

Q.E.D.

PROOF OF LEMMA 8.7: We first prove part (a). For any function f (w�θ),
define the empirical process {νnf (θ) :θ ∈Θ} by νnf (θ)= n−1/2

∑n

i=1(f (Wi�θ)−
Eγnf (Wi�θ)). Note that

Qn(θ)−Qn(ψ0�n�π)(9.139)

= n−1/2(νnρ(θ)− νnρ(ψ0�n�π))+Q∗
n(θ)−Q∗

n(ψ0�n�π)�

The expansion in (8.10) implies that

νnρ(θ)− νnρ(ψ0�n�π)= νnΔψ(ψ0�n�π)
′(ψ−ψ0�n)+ νnrψ(θ)�(9.140)

Under {γn} ∈ Γ (γ0�0� b), a second-order Taylor expansion of Q∗
n(θ) w.r.t. ψ

gives

Q∗
n(θ)−Q∗

n(ψ0�n�π)(9.141)

= ∂

∂ψ
Q∗
n(ψ0�n�π)

′(ψ−ψ0�n)
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+ 1
2
(ψ−ψ0�n)

′
(

∂2

∂ψ∂ψ′Q
∗
n(ψ0�n�π)

)
(ψ−ψ0�n)

+ oπ
(‖ψ−ψ0�n‖2

)
�

using Assumption Q2(v) (where oπ(·) denotes o(·) uniformly over π ∈ Π).
From (9.139)–(9.141), we have

Qn(θ)−Qn(ψ0�n�π)(9.142)

=
(
n−1/2νnΔψ(ψ0�n�π)+ ∂

∂ψ
Q∗
n(ψ0�n�π)

)′
(ψ−ψ0�n)

+ 1
2
(ψ−ψ0�n)

′ ∂2

∂ψ∂ψ′Q
∗
n(ψ0�n�π)(ψ−ψ0�n)

+ n−1/2νnrψ(θ)+ oπ
(‖ψ−ψ0�n‖2

)
�

When DψQn(θ) and DψψQn(θ) take the form as in Lemma 8.7(a), the
quadratic approximation in Assumption C1(i) holds with

Rn(ψ�π)= n−1/2νnrψ(θ)+ oπ
(‖ψ−ψ0�n‖2

)
�(9.143)

To verify Assumption C1(ii), we have

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

|a2
n(γn)Rn(ψ�π)|

(1 + ‖an(γn)(ψ−ψ0�n)‖)2
(9.144)

≤ sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

|a2
n(γn)n

−1/2νnrψ(θ)|
(1 + ‖an(γn)(ψ−ψ0�n)‖)2

+ oπ(1)= opπ(1)�

where the inequality follows from (9.143) and the triangle inequality, and the
equality is implied by Assumption Q2(iii) by using [1 + ‖an(γn)(ψ− ψ0�n)‖] ·
‖an(γn)(ψ−ψ0�n)‖ in the denominator.

Next, we prove part (b). The sample criterion function satisfies

Qn(θ)−Qn(θn)= n−1/2(νnρ(θ)− νnρ(θn))+Q∗
n(θ)−Q∗

n(θn)�(9.145)

The expansion in (8.9) gives

νnρ(θ)− νnρ(θn)= νnΔ(θn)′(θ− θn)+ νnr(θ)�(9.146)

A second-order Taylor expansion of Q∗
n(θ) about θn gives

Q∗
n(θ)−Q∗

n(θn)(9.147)

= ∂

∂θ
Q∗
n(θn)

′(θ− θn)+ 1
2
(θ− θn)′ ∂2

∂θ∂θ′Q
∗
n(θ

†
n)(θ− θn)�
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where θ†
n is between θ and θn. By Assumption Q2(vi),

B−1(βn)
∂2

∂θ∂θ′Q
∗
n(θ

†
n)B

−1(βn)(9.148)

= B−1(βn)
∂2

∂θ∂θ′Q
∗
n(θn)B

−1(βn)+ o(1)�

where the o(1) term holds uniformly over θ ∈Θn(δn).
Equations (9.145)–(9.148) yield

Qn(θ)−Qn(θn)=
(
n−1/2νnΔ(θn)+ ∂

∂θ
Q∗
n(θn)

)′
(θ− θn)(9.149)

+ 1
2
(θ− θn)′ ∂2

∂θ∂θ′Q
∗
n(θn)(θ− θn)+ n−1/2νnr(θ)

+ o(‖B(βn)(θ− θn)‖2
)
�

When DQn(θ) and D2Qn(θ) take the form in Lemma 8.7(b), the quadratic
approximation in Assumption D1 holds with

R∗
n(θ)= n−1/2νnr(θ)+ o(‖B(βn)(θ− θn)‖2

)
�(9.150)

To verify Assumption D1(ii), we have

sup
θ∈Θn(δn)

|nR∗
n(θ)|

(1 + n1/2‖B(βn)(θ− θn)‖)2
(9.151)

≤ sup
θ∈Θn(δn)

|n1/2νnr(θ)|
(1 + n1/2‖B(βn)(θ− θn)‖)2

+ o(1)= op(1)�

where the inequality holds by (9.150) and the triangle inequality, and the
equality is implied by Assumption Q2(iv) by using [1 + n1/2‖B(βn)(θ− θn)‖] ·
n1/2‖B(βn)(θ− θn)‖ in the denominator. Q.E.D.

PROOF OF LEMMA 8.8: Lemma 8.8(a) is proved using the proof of Lem-
ma 8.6 with (9.137) and (9.138) changed to

|Rn(ψ�π)| ≤ opπ
(‖ψ−ψ0�n‖2

)+ |QIC
n (ψ�π)−QIC

n (ψ0�n�π)| and(9.152)

|R∗
n(θ)| ≤ op

(‖B(βn)(θ− θn)‖2
)+ |QIC

n (θ)−QIC
n (θn)|�

respectively. By Assumption Q3(ii), Assumptions C1 and D1 follow from the
same arguments as those in the proof of Lemma 8.6.
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Lemma 8.8(b) is proved using the proof of Lemma 8.7 with (9.143) and
(9.150) changed to

Rn(ψ�π)= n−1/2νnrψ(θ)+ oπ
(‖ψ−ψ0�n‖2

)
(9.153)

+QIC
n (ψ�π)−QIC

n (ψ0�n�π) and

R∗
n(θ)= n−1/2νnr(θ)+ o(‖B(βn)(θ− θn)‖2

)+QIC
n (θ)−QIC

n (θn)�

respectively. By Assumption Q3(ii), Assumptions C1 and D1 follow from the
same arguments as those in the proof of Lemma 8.7. Q.E.D.

10. SUPPLEMENTAL APPENDIX C: VERIFICATION OF ASSUMPTIONS FOR THE
ARMA(1�1) EXAMPLE

This appendix verifies the assumptions of AC1 for the ARMA(1�1) example
of Section 6.

First, we give some details concerning the form of the criterion function
Qn(θ) for this example. To specify the quasi-log-likelihood function, it is use-
ful to write the innovations as a function of the observations and the unknown
parameters. By repeated substitution for εt−1� � � � � ε1 in (1.1), we have

εt =
t−1∑
j=0

π
j
0(Yt−j − ρ0Yt−j−1)+πt0ε0�(10.1)

The Gaussian quasi-log-likelihood function for θ= (β�ζ�π) conditional on
Y0 and ε0 is a constant plus

−n
2

logζ − 1
2ζ

n∑
t=1

(
t−1∑
j=0

πj[Yt−j − (π +β)Yt−j−1] +πtε0

)2

�(10.2)

The conditioning value ε0 is asymptotically negligible, so for simplicity (and
wlog for the asymptotic results), we set ε0 = Y0 in the log likelihood. Thus, the
(conditional) QML criterion function for θ = (β�ζ�π)′ (multiplied by −n−1

and ignoring a constant) is

Qn(θ)= 1
2

logζ + 1
2ζ
n−1

n∑
t=1

(
Yt −β

t−1∑
j=0

πjYt−j−1

)2

�(10.3)

10.1. ARMA Example: Initial Conditions Adjustment

We use the initial conditions adjustment of the criterion function given in
Lemma 8.8(a) of Section 8.7.3. This lemma implies that it suffices to establish
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Assumptions C1–C8 and D1–D3 with Qn(θ) replaced by an approximation
Q∞
n (θ). Lemma 8.8(a) relies on Assumption Q3. We verify Assumption Q3

with

Q∞
n (θ)= n−1

n∑
t=1

ρt(θ)� where(10.4)

ρt(θ)= 1
2

logζ + 1
2ζ

(
Yt −β

∞∑
j=0

πjYt−j−1

)2

�

QIC
n (θ)=Qn(θ)−Q∞

n (θ)

= −β
2

2ζ
n−1

n∑
t=1

( ∞∑
j=t
πjYt−j−1

)2

+ β

ζ
n−1

n∑
t=1

(
Yt −β

t−1∑
j=0

πjYt−j−1

) ∞∑
j=t
πjYt−j−1�

Note that the difference between Q∞
n (θ) and Qn(θ) is that the sum over j goes

to ∞ in the former and to t − 1 in the latter. In (10.4), Wt = (Yt�Yt−1)
′ and

ρt(θ) depends not only on Wt , but also on Wt−1� � � � �W1. This does not affect
the results in Lemma 8.8(a).

LEMMA 10.1: For the ARMA(1�1) model, {QIC
n (θ) :n ≥ 1} satisfies the fol-

lowing statements:
(a) Under {γn} ∈ Γ (γ0), supθ∈Θ |QIC

n (θ)| →p 0.
(b) Under {γn} ∈ Γ (γ0�0� b),

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

|a2
n(γn)(Q

IC
n (ψ�π)−QIC

n (ψ0�n�π))|
(1 + an(γn)‖ψ−ψ0�n‖)2

= opπ(1)

for all constants δn → 0.
(c) Under {γn} ∈ Γ (γ0�∞�ω0),

sup
θ∈Θn(δn)

|n(QIC
n (θ)−QIC

n (θn))|
(1 + ‖n1/2B(βn)(θ− θn)‖)2

= op(1)

for all δn → 0, where Θn(δn)= {θ ∈Θ :‖ψ−ψn‖ ≤ δn|βn| and |π −πn| ≤ δn}.
COMMENTS: (i) Lemma 10.1(a) implies that it suffices to establish Assump-

tion B3 with Q∞
n (θ) in place of Qn(θ).

(ii) Assumption Q3 holds by Lemma 10.1(b) and (c).

The proof of Lemma 10.1 is given in Section 10.4 below.
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10.2. ARMA Example: Derivation of Formulae for Key Quantities

The quantities that appear in Assumptions B1–B3, C1–C8, and D1–D3,
namely, Q(θ;γ0), DψQn(θ), Ω(π1�π2;γ0), DψψQn(θ), H(π;γ0), K(π;γ0),
ΩG(π1�π2;γ0), DQn(θ), D2Qn(θ), J(γ0), and V (γ0), as well as π∗(γ0� b)
and Σππ(π), are specified in Section 3 of AC1. In this section, we derive
the formulae for these quantities based on the criterion function Q∞

n (θ) =
n−1

∑n

t=1 ρt(θ). (For convenience, the formula for K(π;γ0) is derived in Sec-
tion 10.3.4 below.)

The expressions for DψQn(θ) and DψψQn(θ) are the ordinary first and sec-
ond partial derivatives of n−1

∑n

t=1 ρt(θ) w.r.t. ψ for ρt(θ) defined in (10.4).
Analogously, DQn(θ) and D2Qn(θ) are the ordinary first and second partial
derivatives of n−1

∑n

t=1 ρt(θ) w.r.t. θ.
Now, we derive the formula forΩ(π1�π2;γ0). For any sequence {γn} ∈ Γ (γ0)

with β0 = 0, we have

Ω(π1�π2;γ0)(10.5)

= lim
n→∞

Covγn

(
n−1/2

n∑
t=1

ρψ�t(ψ0�n�π1)�n
−1/2

n∑
t=1

ρψ�t(ψ0�n�π2)

)

=
∞∑

m=−∞
Covγ0(ρψ�t(ψ0�π1)�ρψ�t+m(ψ0�π2))

= Covγ0(ρψ�t(ψ0�π1)�ρψ�t(ψ0�π2))

=
[
(1 −π1π2)

−1 0
0 (1/4)ζ−4

0 Eγ0(ε
2
t − ζ0)

2

]
�

where the first equality holds by the definition of Gn(π) in Assumption C3
with ψ0�n = (0� ζn), the second equality holds by strict stationarity for given γn
and γn → γ0, and the third and fourth equalities hold because {εt : t ≥ 1} are
independent and have mean zero plus

ρβ�t(ψ0�π)= −ζ−1
0 εt

∞∑
j=0

πjεt−j−1�(10.6)

ρζ�t(ψ0�π)= −(1/2)ζ−2
0 (ε

2
t − ζ0)

when the true parameter is γ0 with β0 = 0, using the definitions of ρβ�t(θ) and
ρζ�t(θ) in (6.5). The off-diagonal elements in (10.5) are zero becauseEγ0εt(ε

2
t −

ζ0)εt−j−1 =Eγ0εt(ε
2
t − ζ0)Eγ0εt−j−1 = 0 ∀j ≥ 0.
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Next, we derive the formula for H(π;γ0), which is shown in Section 10.3.3
to equal Eγ0ρψψ�t(ψ0�π). Using the definitions of ρψψ�t(θ)� � � � � ρζζ�t(θ) in (6.8),
when the true parameter is γ0 with β0 = 0, we have

ρββ�t(ψ0�π)= ζ−1
0

( ∞∑
j=0

πjεt−j−1

)2

�(10.7)

ρβζ�t(ψ0�π)= ζ−2
0 εt

∞∑
j=0

πjεt−j−1�

ρζζ�t(ψ0�π)= −(1/2)ζ−2
0 + ζ−3

0 ε
2
t �

Using these expressions, we obtain

H(π;γ0)= Eγ0ρψψ�t(ψ0�π)=
⎡⎢⎣ζ−1

0 Eγ0

( ∞∑
j=0

πjεt−j−1

)2

0

0 (2ζ2
0)

−1

⎤⎥⎦(10.8)

=
⎡⎢⎣

∞∑
j=0

π2j 0

0 (2ζ2
0)

−1

⎤⎥⎦=
[
(1 −π2)−1 0

0 (2ζ2
0)

−1

]
�

Now, we calculate the covariance kernel ΩG(π1�π2;γ0) that appears in As-
sumption C6∗∗. For β0 = 0, we define

ρ∗
ψ�t(ψ0�π1�π2)= (ρβ�t(ψ0�π1)�ρβ�t(ψ0�π2)�ρζ�t(ψ0�π)

′)′� where(10.9)

ρβ�t(ψ0�π)= −ζ−1
0 εt

∞∑
k=0

πkYt−k−1 = −ζ−1
0 εt

∞∑
k=0

πkεt−k−1�

ρζ�t(ψ0�π)= −(1/2)ζ−2
0 (ε

2
t − ζ0)�

Using these definitions, for β0 = 0, we have

ΩG(π1�π2;γ0)(10.10)

=
∞∑

m=−∞
Covγ0(ρ

∗
ψ�t(ψ0�π1�π2)�ρ

∗
ψ�t+m(ψ0�π1�π2))

= Varγ0(ρ
∗
ψ�t(ψ0�π1�π2))
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
1εt−j−1

)2

ζ−1
0 Eγ0

( ∞∑
j=0

π
j
1εt−j−1

)( ∞∑
j=0

π
j
2εt−j−1

)
0

ζ−1
0 Eγ0

( ∞∑
j=0

π
j
1εt−j−1

)( ∞∑
j=0

π
j
2εt−j−1

)

ζ−1
0 Eγ0

( ∞∑
j=0

π
j
2εt−j−1

)2

0

0
��� 0
(1/4)ζ−4

0 Eγ0(ε
2
t − ζ0)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎣ (1 −π2

1)
−1 (1 −π1π2)

−1 0
(1 −π1π2)

−1 (1 −π2
2)

−1 0
0 0 (1/4)ζ−4

0 Eγ0(ε
2
t − ζ0)

2

⎤⎦ �
The second and third equalities of (10.10) hold using (10.9) and Eγ0εt(ε

2
t −

ζ0)εt−j−1 =Eγ0εt(ε
2
t − ζ0)Eγ0εt−j−1 = 0 ∀j ≥ 0.

To determine J(γ0), we first provide the (generalized) second-derivative ma-
trix

D2Qn(θ)= n−1
n∑
t=1

ρθθ�t(θ)(10.11)

= n−1
n∑
t=1

⎡⎣ρββ�t(θ) ρβζ�t(θ) ρβπ�t(θ)
ρβζ�t(θ) ρζζ�t(θ) ρζπ�t(θ)
ρβπ�t(θ) ρζπ�t(θ) ρππ�t(θ)

⎤⎦ �
where

ρββ�t(θ)= ζ−1

( ∞∑
j=0

πjYt−j−1

)2

�(10.12)
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ρβζ�t(θ)= ζ−2

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

πkYt−k−1�

ρβπ�t(θ)= ζ−1

( ∞∑
j=0

πjYt−j−1

)
β

∞∑
k=0

kπk−1Yt−k−1

− ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1

and

ρζζ�t(θ)= −(1/2)ζ−2 + ζ−3

(
Yt −β

∞∑
j=0

πjYt−j−1

)2

�(10.13)

ρζπ�t(θ)= ζ−2

(
Yt −β

∞∑
j=0

πjYt−j−1

)
β

∞∑
k=0

kπk−1Yt−k−1�

ρππ�t(θ)= ζ−1

(
β

∞∑
j=0

jπj−1Yt−j−1

)
β

∞∑
k=0

kπk−1Yt−k−1

− ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

)
β

∞∑
k=0

k(k− 1)πk−2Yt−k−1�

To determine J(γ0) via the expression J(γ0) = Eγ0ρ
†
θθ�t(θ0) given in (10.51)

below (in the verification of Assumption D2), we define ρ†
θθ�t(θ) and χt(θ) via

B−1(β)ρθθ�t(θ)B
−1(β)= ρ†

θθ�t(θ)+β−1χt(θ)�(10.14)

where ρθθ�t(θ) is defined in (10.11)–(10.13) and ρ†
θθ�t(θ) is defined by

ρ†
θθ�t(θ)=

⎡⎣ρββ�t(θ) ρβζ�t(θ) ρ†
βπ�t(θ)

ρβζ�t(θ) ρζζ�t(θ) ρ†
ζπ�t(θ)

ρ†
βπ�t(θ) ρ†

ζπ�t(θ) ρ†
ππ�t(θ)

⎤⎦ �(10.15)

ρ†
βπ�t(θ)= ζ−1

( ∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�

ρ†
ζπ�t(θ)= β−1ρζπ�t(θ)= ζ−2

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�
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ρ†
ππ�t(θ)= ζ−1

( ∞∑
j=0

jπj−1Yt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�

The matrix χt(θ) is defined by

χt(θ)=
⎡⎣ 0 0 χβπ�t(θ)

0 0 0
χβπ�t(θ) 0 χππ�t(θ)

⎤⎦ � where(10.16)

χβπ�t(θ)= −ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�

χππ�t(θ)= −ζ−1

(
Yt −β

∞∑
j=0

πjYt−j−1

) ∞∑
k=0

k(k− 1)πk−2Yt−k−1�

Now, using J(γ0)=Eγ0ρ
†
θθ�t(θ0) and (10.12), (10.13), and (10.15), we have

J(γ0)= Eγ0ρ
†
θθ�t(θ0)(10.17)

= Diag

{
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

)2

�
1

2ζ2
0

�

ζ−1
0 Eγ0

( ∞∑
j=0

jπ
j−1
0 Yt−j−1

) ∞∑
k=0

kπk−1
0 Yt−k−1

}

+
(
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

) ∞∑
k=0

kπk−1
0 Yt−k−1

)

×
[0 0 1

0 0 0
1 0 0

]
�

As shown in Section 10.3.7 below, the matrix n−1
∑n

t=1β
−1χt(θ) evaluated at

θ= θn (→ θ0) does not contribute to J(γ0) because its probability limit is zero.
To derive the formulae for V (γ0), we define

ρ†
θ�t(θ)= B−1(β)ρθ�t(θ)= (ρβ�t(θ)�ρζ�t(θ)�β−1ρπ�t(θ))

′�(10.18)

V †(θ1� θ2;γ0)=
∞∑

m=−∞
Covγ0(ρ

†
θ�t(θ1)�ρ

†
θ�t+m(θ2))�
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For any sequence {γn} ∈ Γ (γ0), we have

V (γ0)= lim
n→∞

Varγn
(
n1/2B−1(βn)DQn(θn)

)
(10.19)

= lim
n→∞

Varγn

(
n−1/2

n∑
t=1

ρ†
θ�t(θn)

)
= V †(θ0� θ0;γ0)

= Varγ0(ρ
†
θ�t(θ0))

= Diag

{
ζ−1

0 Eγ0

( ∞∑
k=0

πk0Yt−k−1

)2

� (1/4)ζ−4
0 Eγ0(ε

2
t − ζ0)

2�

ζ−1
0 Eγ0

( ∞∑
j=0

jπ
j−1
0 Yt−j−1

)2}

+
(
ζ−1

0 Eγ0

( ∞∑
j=0

π
j
0Yt−j−1

) ∞∑
k=0

kπk−1
0 Yt−k−1

)
×
[0 0 1

0 0 0
1 0 0

]
�

where the first equality holds because the convergence in distribution result in
Assumption D3(i) is obtained by a CLT (see (10.56) below), the second equal-
ity holds by definition, and the third equality holds by strict stationarity for
given γn, γn → γ0, and the continuity of Eγ0ρ

†
θ�t(θ0)ρ

†
θ�t(θ0)

′ in γ0 = (θ0�φ0),
which follows straightforwardly from the form of ρ†

θ�t(θ0) given in (10.20) be-
low. The last two equalities in (10.19) hold because

ρβ�t(θ0)= −ζ−1
0 εt

∞∑
j=0

π
j
0Yt−j−1� ρζ�t(θ0)= −(1/2)ζ−2

0 (ε
2
t − ζ0)�(10.20)

ρ†
π�t(θ0)= −ζ−1

0 εt

∞∑
j=0

jπ
j−1
0 Yt−j−1� and

Eγ0εt(ε
2
t − ζ0)Yt−k−1 = 0 ∀k≥ 0�

where the last equality holds because εt and Yt−j−1 are independent and
Eγ0Yt−j−1 = 0.

The expression for π∗(γ0� b) given in (6.19) holds using the expression for
ξ(π;γ0� b) for this example given in (6.10) plus simplifications based on (6.7)–
(6.9). In particular, it uses the block diagonality of H(π;γ0) in (6.8) and the
fact that the second element of G(π;γ0) in (6.7) does not depend on π. The
expression for Σππ(π) in (6.19) uses the expression for τβ(π;γ0� b) given just
above (6.16) and the equality Σππ(π;γ0� b)= Σππ(π)22, which holds using the
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expressions for J(θ;γ0) and V (θ;γ0) in (10.57) and (10.58) and some calcula-
tions.

10.3. ARMA Example: Verification of Assumptions

Here, we verify Assumptions A, B1–B3, C1–C8, and D1–D3 for the criterion
function Q∞

n (θ)= n−1
∑n

t=1 ρt(θ).

10.3.1. ARMA Example: Verification of Assumptions A and B1–B3

Assumption A holds immediately given the definition of ρt(θ) in (10.4).
Assumption B1(i) holds by the definitions of Θ and Θ∗ in (6.1). Assump-

tion B1(ii) holds with Z 0 = (ζ∗∗
L � ζ

∗∗
U ), where ζ∗∗

J is between ζJ and ζ∗
J for J =

L�U , using the fact that ρL < πL and ρU > πU imply that, for θ= (β�ζ�π) ∈Θ,
β can take values in a neighborhood of zero for any value of π ∈Π. Assump-
tion B1(iii) holds by the definition of Π in (6.1).

Assumption B2(i) holds by the definition of Γ in (6.2). Assumption B2(ii)
holds by the definitions of Γ and Θ∗, and the conditions ρ∗

L < π
∗
L and π∗

U < ρ
∗
U ,

which guarantee that, for θ = (β�ζ�π) ∈Θ∗, θa = (aβ�ζ�π) ∈Θ∗ ∀a ∈ [0�1].
Assumption B2(iii) holds by the definitions of Γ and Θ∗, and the condition
ρ∗
L < π

∗
L < π

∗
U < ρ

∗
U .

Assumption B3(i) holds with Q(θ;γ0) = Eγ0ρt(θ) by the following argu-
ment. By Theorem 1 of Andrews (1992), uniform convergence in probabil-
ity is implied by pointwise convergence in probability, stochastic equicontinu-
ity, and boundedness of Θ. Pointwise convergence in probability is implied by
mean square convergence. In the present case, the latter is straightforward,
but tedious, to establish by writing out the square that appears in ρt(θ), us-
ing the expression Yt = ∑∞

j=0(πn + βn)j(εt−j−1 − πnεt−j−2) under γn, which is
obtained by repeated substitution in (1.1), and using the moment condition
supγ∈Γ Eγ|εt |4 <∞, which appears in the definition of Γ . Because the norm-
ing is by n−1, not n−1/2, stochastic equicontinuity also is straightforward, but
tedious, to establish by applying Markov’s inequality and standard manipula-
tions (along the lines of those in (10.33) below). For brevity, the details are
omitted.

Assumption B3(ii) and (iii) are verified using Assumption B3∗ and Lem-
ma 8.1 in Supplemental Appendix A. Assumption B3∗(i) holds because
Q(θ;γ0) is a quadratic function of β, and {πj : j ≥ 1} and the log function is
continuous onR+. Assumption B3∗(iv) holds becauseΨ(π)= {ψ= (β�ζ) :β ∈
[ρ∗
L −π�ρ∗

U −π] & ζ ∈ [ζ∗
L� ζ

∗
U ]} is compact ∀π ∈Π, Π = [πL�πU ] is compact,

and Θ is compact by its definition in (6.1). Assumption B3∗(v) holds because
dH(Ψ(π1)�Ψ(π2))= |π1 −π2|.

Assumption B3∗(ii) is verified by showing that when β0 = 0, Eγ0ρt(ψ�π)
is uniquely minimized by ψ0 ∀π ∈ Π. This holds by the following argument.
When β0 = 0, by (1.1), we have Yt = πYt−1 + εt − πεt−1 and so Yt = εt . Thus,
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when β0 = 0, we have

2Eγ0ρt(ψ�π)− 2Eγ0ρt(ψ0�π)(10.21)

= logζ + 1
ζ
Eγ0

(
εt −β

∞∑
j=0

πjεt−j−1

)2

− logζ0 − 1
ζ0
Eγ0ε

2
t

= logζ + ζ0

ζ
+ β2ζ0

ζ(1 −π2)
− logζ0 − 1

≥ log(ζ/ζ0)+ ζ0

ζ
− 1 + β2ζ0

ζU
�

using ζ0 =Eγ0ε
2
t ∀t = 0�1� � � � . The l.h.s. is zero for ψ=ψ0; the r.h.s. is positive

for ψ= (β�ζ) 
= ψ0 = (0� ζ0) ∀π ∈Π. This holds by writing ζ/ζ0 = 1 + x and
noting that the function s(x)= log(1+x)+1/(1+x)−1 is uniquely minimized
over x ∈R+ at x= 0. This property of s(x) holds because its derivative, x/(1 +
x)2, is zero for x = 0, is strictly negative for x < 0, and is strictly positive for
x > 0. Hence, Assumption B3∗(ii) holds.

Next, we establish Assumption B3∗(iii), that is, Q(θ;γ0) is uniquely mini-
mized by θ0 ∀γ0 ∈ Γ with β0 
= 0. Using (10.4), we have

2Eγ0ρt(θ)− 2Eγ0ρt(θ0)(10.22)

= logζ + 1
ζ
Eγ0

(
Yt −β

∞∑
j=0

πjYt−j−1

)2

− logζ0 − 1
ζ0
Eγ0

(
Yt −β0

∞∑
j=0

π
j
0Yt−j−1

)2

= logζ + 1
ζ
Eγ0

(
εt −β

∞∑
j=0

πjYt−j−1 +β0

∞∑
j=0

π
j
0Yt−j−1

)2

− logζ0 − 1
ζ0
Eγ0ε

2
t

=
(

log(ζ/ζ0)+ ζ0

ζ
− 1

)

+ 1
ζ
Eγ0

(
β

∞∑
j=0

πjYt−j−1 −β0

∞∑
j=0

π
j
0Yt−j−1

)2

�

The first summand on the r.h.s. is uniquely minimized by ζ = ζ0 by the argu-
ment following (10.21).
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We now show that the second summand on the r.h.s. of (10.22) equals zero
when (β�π)= (β0�π0) and is positive for (β�π) 
= (β0�π0). We have

Eγ0

( ∞∑
j=0

[βπj −β0π
j
0]Yt−j−1

)2

(10.23)

=Eγ0

(
(β−β0)εt−1 + (β−β0)(ρ0Yt−2 −π0εt−2)

+
∞∑
j=1

[βπj −β0π
j
0]Yt−j−1

)2

= (β−β0)
2ζ0

+Eγ0

(
(β−β0)(ρ0Yt−2 −π0εt−2)+

∞∑
j=1

[βπj −β0π
j
0]Yt−j−1

)2

�

where the first equality uses (1.1) and the second equality uses the indepen-
dence of εt−1, and (Yt−2� εt−2� � � �) and Eεt−1 = 0. The r.h.s. of (10.23) is zero if
β= β0 and is positive if β 
= β0 because ζ0 > 0.

Next, we suppose β= β0 ( 
= 0). Then we have

Eγ0

( ∞∑
j=0

[β0π
j −β0π

j
0]Yt−j−1

)2

(10.24)

= β2
0Eγ0

(
(π −π0)εt−2 + (π −π0)(ρ0Yt−3 −π0εt−3)

+
∞∑
j=2

[πj −πj0]Yt−j−1

)2

= (π −π0)
2β2

0ζ0

+β2
0Eγ0

(
(π −π0)(ρ0Yt−3 −π0εt−3)+

∞∑
j=2

[πj −πj0]Yt−j−1

)2

�

The r.h.s. of (10.24) is zero if π = π0 and is positive if π 
= π0, because ζ0 > 0
and β0 
= 0.

We conclude that when β0 
= 0, the second summand on the r.h.s. of (10.22)
is zero if and only if (iff) (β�π)= (β0�π0). Hence, Assumption B3∗(iii) holds.
This completes the verification of Assumption B3∗.
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10.3.2. ARMA Example: Verification of Assumptions C1 and D1

We verify the quadratic expansions that appear in Assumptions C1 and D1
using Lemma 8.6, which relies on Assumption Q1. Assumption Q1(i) holds
with ρt(θ) in place of ρ(Wt�θ). (The fact that ρt(θ) depends on Yt�Yt−1� � � � ,
rather than just Wt , does not effect the result of Lemma 8.6.) Assump-
tion Q1(ii) holds given the form of ρt(θ).

Assumption Q1(iii) holds by (i) a uniform LLN for n−1
∑n

t=1 ρψψ�t(θ) −
Eγnρψψ�t(θ) over θ ∈ Θ under {γn} ∈ Γ (γ0�0� b) and (ii) the convergence
supπ∈Π supψ∈Ψ(π):‖ψ−ψ0�n‖≤δn |Eγnρψψ�t(ψ�π) − Eγnρψψ�t(ψ0�n�π)| → 0 under
{γn} ∈ Γ (γ0�0� b) for all constants δn → 0. The uniform LLN holds by the
same type of argument as used to verify Assumption B3(i) using the definition
of ρψψ�t(θ) in (10.11)–(10.13). The convergence in (ii) holds by fairly straight-
forward calculations. For example, for the (1�1) element of ρψψ�t(θ), the dif-
ference is zero for all n≥ 1 and hence the limit is zero. For the (1�2) element
of ρψψ�t(θ), we have

sup
π∈Π

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

∣∣Eγnρβζ�t(ψ�π)−Eγnρβζ�t(ψ0�n�π)
∣∣(10.25)

= sup
π∈Π

sup
β:|β|≤δn

∣∣∣∣∣ζ−1β

∞∑
j=0

∞∑
k=0

πjπkEγnYt−j−1Yt−k−1

∣∣∣∣∣
≤ ζ−1

L δn

∞∑
j=0

∞∑
k=0

π
j
+π

k
+EγnY

2
t → 0�

where π+ = max{|πL|� |πU |}< 1 and EγnY 2
t →Eγ0Y

2
t =Eγ0ε

2
t = ζ0 <∞.

To verify Assumption Q1(iv), for θ ∈Θn(δn), we write

B−1(βn)n
−1

n∑
t=1

ρθθ�t(θ)B
−1(βn)(10.26)

= B(β/βn)
(
n−1

n∑
t=1

(ρ†
θθ�t(θ)+β−1χt(θ))

)
B(β/βn)

=
(
n−1

n∑
t=1

ρ†
θθ�t(θ)

)
(1 + o(1))+

(
n−1/2

n∑
t=1

(
χt(θ)−Eγnχt(θ)

))

× (
n1/2βn

)−1
(1 + o(1))+ (

Eγnχt(θ)/βn
)
(1 + o(1))�

where ρ†
θθ�t(θ) and χt(θ) are defined in (10.14). In (10.26), the second equal-

ity holds because |β| ≤ |β − βn| + |βn| ≤ (1 + δn)|βn| and δn = o(1). By
(10.26) and the fact that n1/2|βn| → ∞ for {γn} ∈ Γ (γ0�∞�ω0), to verify
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Assumption Q1(iv), it suffices to establish the stochastic equicontinuity of
n−1

∑n

t=1 ρ
†
θθ�t(θ) and n−1/2

∑n

t=1(χt(θ) − Eγnχt(θ)) over θ ∈ Θn(δn), and the
equicontinuity of Eγnχt(θ)/|βn| over θ ∈ Θn(δn). The stochastic equicontinu-
ity of n−1

∑n

t=1 ρ
†
θθ�t(θ) follows by the same argument as used above to verify

Assumption B3(i) with ρ†
θθ�t(θ) in place of ρt(θ). For brevity, details are not

given.
The stochastic equicontinuity of n−1/2

∑n

t=1(χt(θ)− Eγnχt(θ)) follows from
the stochastic equicontinuity of terms of the form

v∗
n(π)= n−1/2

n∑
t=1

∞∑
j=0

∞∑
k=0

πjkπk−1
(
Yt−j−1Yt−k−1 −EγnYt−j−1Yt−k−1

)
(10.27)

over θ ∈ Θn(δn) under {γn} ∈ Γ (γ0�∞�ω0); see the definition of χt(θ) in
(10.16). For any ε > 0, we have

ε2Pγn

(
sup

|π1−π2|<δ
|v∗
n(π1)− v∗

n(π2)|> ε
)

(10.28)

≤Eγn sup
|π1−π2|<δ

( ∞∑
j=0

∞∑
k=0

k
(π

j+k−1
1 −πj+k−1

2 )

a1/2
jk

× a1/2
jk n

−1/2
n∑
t=1

(Yt−j−1Yt−k−1 −EγnYt−j−1Yt−k−1)

)2

≤ sup
|π1−π2|<δ

∞∑
j=0

∞∑
k=0

k2 (π
j+k−1
1 −πj+k−1

2 )2

ajk

×
∞∑
j=0

∞∑
k=0

ajkEγn

(
n−1/2

n∑
t=1

(Yt−j−1Yt−k−1 −EγnYt−j−1Yt−k−1)

)2

≤ ε3

for δ > 0 sufficiently small, where ajk = π
j+k
# , π# is some number between

max{|πL|� |πU |} and 1, the first inequality holds by Markov’s inequality, the
second inequality holds by the Cauchy–Schwarz inequality, and the third
inequality holds because (i) limδ→0 sup|π1−π2|<δ

∑∞
j=0

∑∞
k=0 k

2((π1/π#)
j+k−1 −

(π2/π#)
j+k−1)2 = 0, which can be established using the fact that |π!/π#|< 1 for

!= 1�2 and using mean-value expansions of (π1/π#)
j+k−1 around (π2/π#)

j+k−1

∀j�k ≥ 0, (ii) Varγn(n−1/2
∑n

t=1Yt−j−1Yt−k−1) ≤ C ∀n ≥ 1 for some C <∞ by
standard calculations, and (iii)

∑∞
j=0

∑∞
k=0 ajk <∞.

It remains to show that supθ1�θ2∈Θn(δn) |βn|−1Eγn(χt(θ1) − χt(θ2)) = o(1). It
suffices to show that supθ∈Θn(δn) |βn|−1Eγnχt(θ)= o(1). For any θ ∈Θn(δn), we
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have

|βn|−1Eγnχt(θ)(10.29)

= |βn|−1
(
Eγnχt(θ)−Eγnχt(ψn�π)

)+ |βn|−1Eγnχt(ψn�π)�

To show that the first term on the r.h.s. of (10.29) is o(1), we write

Eγnχβπ�t(θ)(10.30)

= −ζ−1Eγn

(
βn

∞∑
j=0

πjnYt−j−1 −β
∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�

Eγnχβπ�t(ψn�π)

= −ζ−1
n Eγn

(
βn

∞∑
j=0

(πjn −πj)Yt−j−1

) ∞∑
k=0

kπk−1Yt−k−1�

using the definition of χβπ�t(θ) in (10.16).
For θ ∈Θn(δn),∣∣ζEγnχβπ�t(θ)− ζnEγnχβπ�t(ψn�π)

∣∣(10.31)

=
∣∣∣∣∣(β−βn)

∞∑
j=0

∞∑
k=0

πjkπk−1EγnYt−j−1Yt−k−1

∣∣∣∣∣≤ δn|βn|C
for some constant C <∞, where the inequality uses the definition of Θn(δn)
and |EγnYt−j−1Yt−k−1| ≤ EγnY 2

t ≤ C1 ∀n ≥ 1 for some constant C1 <∞. Com-
bining (10.30), (10.31), and supn≥1 |ζnEγnχβπ�t(θn)| <∞ (which holds by stan-
dard calculations) establishes that the (3�1) element (i.e., the βπ element) of
the first term on the r.h.s. of (10.29) is o(1):

sup
θ∈Θn(δn)

∣∣Eγnχβπ�t(θ)−Eγnχβπ�t(ψn�π)
∣∣(10.32)

≤ sup
θ∈Θn(δn)

ζ−1
∣∣ζEγnχβπ�t(θ)− ζnEγnχβπ�t(ψn�π)

∣∣
+ sup

θ∈Θn(δn)

∣∣ζ−1(ζn − ζ)Eγnχβπ�t(ψn�π)
∣∣

= o(|βn|)�
using ζn − ζ =O(δn|βn|) by the definition of Θn(δn) and ζ ≥ ζL > 0.

The proof for the (3�3) element (i.e., the ππ element) of the first term on
the r.h.s. of (10.29), which is the only other nonzero element of χt(θ), is the
same with k(k− 1)πk−2 in place of kπk−1. This completes the proof that the
first summand on the r.h.s. of (10.29) is o(1).
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Let cj = |Eγ0Y1Y1+j|. The second summand on the r.h.s. of (10.29) isO(δn)=
o(1) by the following calculations. For θ ∈Θn(δn), we have∣∣β−1

n Eγnχβπ�t(ψn�π)
∣∣(10.33)

=
∣∣∣∣∣β−1

n ζ
−1
n Eγn

(
βn

∞∑
j=0

(πjn −πj)Yt−j−1

) ∞∑
k=1

kπk−1Yt−k−1

∣∣∣∣∣
≤ ζ−1

L

∞∑
j=1

|πj −πjn|
∞∑
k=1

kπk−1
U cj−k

≤ Cζ−1
L

∞∑
j=1

jπ
j−1
U |π −πn|

∞∑
k=1

kπk−1
U

≤ δnCζ−1
L

( ∞∑
j=1

jπ
j−1
U

)2

= o(1)�

where the first equality holds by (10.30), the second inequality holds because
|πj −πjn| ≤ |jπj−1

n∗ (π−πn)| ≤ jπj−1
U |π−πn| for some πn∗ between π and πn by

a mean-value expansion and supj≥1 cj <∞, and the last equality holds because∑∞
j=1 jπ

j−1
U <∞ and δn = o(1).

For the (3�3) element of χt(ψn�π), we obtain |β−1
n Eγnχππ�t(ψn�π)| ≤ |π −

πn|C∗ = O(δn) = o(1) for a constant C∗ < ∞ by the same argument as in
(10.33) with k(k − 1)πk−2 in place of kπk−1. This concludes the proof that
the second summand on the r.h.s. of (10.29) is o(1), which completes the ver-
ification of Assumption Q1(iv). In turn, this completes the verification of As-
sumptions C1 and D1.

10.3.3. ARMA Example: Verification of Assumptions C2–C4

Assumption C2 is verified in AC1.
The empirical process {Gn(π) :π ∈ Π} that appears in Assumption C3 is

defined in (6.6). The covariance matrix of the stochastic process {G(π;γ0) :π ∈
Π} that appears in Assumption C3 is defined and derived in (10.5). The weak
convergenceGn(·)⇒G(·;γ0) holds by the proof of Theorem 1(a) of Andrews
and Ploberger (1996, pp. 1339–1340).

Assumption C4(i) holds by a uniform LLN for n−1
∑n

t=1(ρψψ�t(ψ0�n�π) −
Eγnρψψ�t(ψ0�n�π)) over π ∈ Π under {γn} ∈ Γ (γ0�0� b) and the convergence
result supπ∈Π |Eγnρψψ�t(ψ0�n�π) − Eγ0ρψψ�t(ψ0�π)| → 0. Using the definition
of ρψψ�t(ψ0�n�π) in (6.8), the uniform LLN holds by the same sort of argu-
ment as used to prove Assumption B3(i). For brevity, the details are not
given. The convergence result holds by the same calculations as in the ver-
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ification of Assumption Q1(iii); see (10.25). The simplified expression for
H(π;γ0)=Eγ0ρψψ�t(ψ0�π) is derived in (10.8).

Assumption C4(ii) holds because H(π;γ0) = Diag{(1 − π2)−1� (2ζ2
0)

−1} by
(10.8), infπ∈Π(1 −π2)−1 ≥ 1, and ζ∗ ≥ ζ∗

L > 0 by the definition of Θ∗.

10.3.4. ARMA Example: Verification of Assumption C5

The quantity Kn(θ;γ∗) that appears in Assumption C5 is

Kn(θ;γ∗)= n−1
n∑
t=1

∂

∂β∗Eγ∗ρψ�t(θ)=
⎛⎜⎝

∂

∂β∗Eγ∗ρβ�t(θ)

∂

∂β∗Eγ∗ρζ�t(θ)

⎞⎟⎠ �(10.34)

The terms on the r.h.s. of (10.34) are calculated as

Eγ∗ρβ�t(θ)(10.35)

= −ζ−1Eγ∗

(
εt +β∗

∞∑
j=0

π∗jYt−j−1 −β
∞∑
j=0

πjYt−j−1

) ∞∑
k=0

πkYt−k−1

= −ζ−1β∗
∞∑
j=0

∞∑
k=0

π∗jπkEγ∗Yt−j−1Yt−k−1

+ ζ−1β

∞∑
j=0

∞∑
k=0

πjπkEγ∗Yt−j−1Yt−k−1

and

∂

∂β∗Eγ∗ρβ�t(θ)= −ζ−1
∞∑
j=0

∞∑
k=0

π∗jπkEγ∗Yt−j−1Yt−k−1(10.36)

− ζ−1β∗
∞∑
j=0

∞∑
k=0

π∗jπk
∂

∂β∗Eγ∗Yt−j−1Yt−k−1

+ ζ−1β

∞∑
j=0

∞∑
k=0

πjπk
∂

∂β∗Eγ∗Yt−j−1Yt−k−1�

In addition, we have

Eγ∗ρζ�t(θ)(10.37)

= −(1/2)ζ−2

(
Eγ∗

(
εt +β∗

∞∑
j=0

π∗jYt−j−1 −β
∞∑
j=0

πjYt−j−1

)2

− ζ
)
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= −(1/2)ζ−2

(
ζ∗ − ζ +Eγ∗

(
β∗

∞∑
j=0

π∗jYt−j−1 −β
∞∑
j=0

πjYt−j−1

)2)

= −(1/2)ζ−2

(
ζ∗ − ζ +

∞∑
j=0

∞∑
k=0

(
β∗2π∗(j+k) − 2β∗βπ∗jπk +β2πj+k

)

×Eγ∗Yt−j−1Yt−k−1

)
�

This gives

∂

∂β∗Eγ∗ρζ�t(θ)(10.38)

= −(1/2)ζ−2

( ∞∑
j=0

∞∑
k=0

(
2β∗π∗(j+k) − 2βπ∗jπk

)
Eγ∗Yt−j−1Yt−k−1

)

− (1/2)ζ−2
∞∑
j=0

∞∑
k=0

(
β∗2π∗(j+k) − 2β∗βπ∗jπk +β2πj+k

)
× ∂

∂β∗Eγ∗Yt−j−1Yt−k−1�

From (10.36), if γ̃n → γ0 with β0 = 0 (for nonstochastic γ̃n) and ψn → ψ0 =
(0� ζ0), as in Assumption C5, then

∂

∂β̃n
Eγ̃nρβ�t(ψ0�π)(10.39)

→ −ζ−1
0

∞∑
j=0

∞∑
k=0

π
j
0π

kEγ0Yt−j−1Yt−k−1

= −ζ−1
0

∞∑
j=0

∞∑
k=0

π
j
0π

kEγ0εt−j−1εt−k−1

= −
∞∑
j=0

π
j
0π

j = − 1
1 −π0π

�

The convergence is uniform in π ∈ Π because (i) |π| ≤ max{|πL|� |πU |} < 1
∀π ∈Π and (ii) the term (∂/∂β̃n)Eγ̃nYt−j−1Yt−k−1 is well defined and is bounded
in absolute value uniformly over n ≥ 1. This holds because when the true pa-
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rameter is γ̃n, we can write

Yt = (π̃n + β̃n)Yt−1 + ut =
∞∑
j=0

(π̃n + β̃n)jut−j−1� where(10.40)

ut = εt − π̃nεt−1 and
∂

∂β̃n
Eγ̃nYsYt

=
∞∑
j=0

∞∑
k=0

∂

∂β̃n

[
(π̃n + β̃n)j(π̃n + β̃n)k

]
Eγ̃nus−j−1ut−k−1�

From (10.38), if γ̃n → γ0 with β0 = 0 and ψn → ψ0 = (0� ζ0), as in Assump-
tion C5, then

∂

∂β̃n
Eγ̃nρζ�t(ψn�π)→ 0(10.41)

due to the multiplicative terms β∗, β, β∗2� β∗β, and β2 that appear in (10.38)
and that converge to 0 when β∗ = β̃n → 0 and β= βn → 0.

Combining (10.34), (10.39), and (10.41) verifies Assumption C5(i) and (ii)
with K(π;γ0) = (−(1 − π0π)

−1�0). Assumption C5(iii) holds because 1 −
π0π 
= 0 ∀π ∈Π.

10.3.5. ARMA Example: Verification of Assumption C6

Now, we verify Assumption C6 using Assumption C6∗∗, which is shown in
Lemma 8.5 to be sufficient for Assumption C6. Assumption C6∗∗(i) holds be-
cause β is a scalar. Assumption C6∗∗(ii) requires ΩG(π1�π2;γ0) to be positive
definite ∀π1�π2 ∈ Π with π1 
= π2, ∀γ0 ∈ Γ with β0 = 0. The expression for
ΩG(π1�π2;γ0) given in the r.h.s. matrix in (10.10) is positive definite because
the determinant of the upper left 2 × 2 matrix is zero iff π1 = π2 by straight-
forward calculations, and ζ−4

0 Eγ0(ε
2
t − ζ0)

2 > 0 by the definitions of Θ∗ and Φ∗

in (6.1) and (6.2). This completes the verification of Assumption C6∗∗. Hence,
Assumption C6 holds.

10.3.6. ARMA Example: Verification of Assumption C8

Here we verify Assumption C8. Suppose {γn} ∈ Γ (γ0�0� b), which implies
that β0 = 0. From (10.35), we have

∂

∂β
Eγ∗ρβ�t(θ)= ζ−1

∞∑
j=0

∞∑
k=0

πjπkEγ∗Yt−j−1Yt−k−1�(10.42)
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which leads to

∂

∂β
Eγnρβ�t(ψ�πn)

∣∣∣∣
ψ=ψn

= ζ−1
n

∞∑
j=0

∞∑
k=0

πjnπ
k
nEγnYt−j−1Yt−k−1(10.43)

→ ζ−1
0

∞∑
j=0

∞∑
k=0

π
j
0π

k
0Eγ0Yt−j−1Yt−k−1

= ζ−1
0

∞∑
j=0

π
2j
0 Eγ0ε

2
t−j−1

= 1
1 −π2

0

�

where the second to last equality uses Eγ0Yt−j−1Yt−k−1 = Eγ0εt−j−1εt−k−1 be-
cause β0 = 0 and Eγ0εt−j−1εt−k−1 = 0 for j 
= k because {εt : t ≤ n} are mean
zero and independent.

From (10.35), we also have

∂

∂ζ
Eγ∗ρβ�t(θ)= ζ−2β∗

∞∑
j=0

∞∑
k=0

π∗jπkEγ∗Yt−j−1Yt−k−1(10.44)

− ζ−2β

∞∑
j=0

∞∑
k=0

πjπkEγ∗Yt−j−1Yt−k−1�

which yields

∂

∂ζ
Eγnρβ�t(ψ�πn)

∣∣∣∣
ψ=ψn

= 0 ∀n≥ 1�(10.45)

From (10.37), we have

∂

∂β
Eγ∗ρζ�t(θ)(10.46)

= ζ−2

( ∞∑
j=0

∞∑
k=0

(β∗π∗jπk −βπj+k)Eγ∗Yt−j−1Yt−k−1

)
�

which yields

∂

∂β
Eγnρζ�t(ψ�πn)

∣∣∣∣
ψ=ψn

= 0 ∀n≥ 1�(10.47)



ESTIMATION AND INFERENCE 85

From (10.37), we also have

∂

∂ζ
Eγ∗ρζ�t(θ)(10.48)

= ζ−3

(
ζ∗ − ζ +

∞∑
j=0

∞∑
k=0

(
β∗2π∗(j+k) − 2β∗βπ∗jπk +β2πj+k

)

×Eγ∗Yt−j−1Yt−k−1

)
+ (1/2)ζ−2�

which yields

∂

∂ζ
Eγnρζ�t(ψ�πn)

∣∣∣∣
ψ=ψn

= (1/2)ζ−2
n → (1/2)ζ−2

0 �(10.49)

Combining (10.43), (10.45), (10.47), and (10.49) gives

∂

∂ψ′EγnDψQn(ψ�πn)

∣∣∣∣
ψ=ψn

= ∂

∂ψ′Eγnρψ�t(ψ�πn)

∣∣∣∣
ψ=ψn

(10.50)

→
[
(1 −π2

0)
−1 0

0 (1/2)ζ−2
0

]
=H(π0;γ0)�

where the first equality holds by (6.5). This completes the verification of As-
sumption C8.

10.3.7. ARMA Example: Verification of Assumption D2

Next, we verify Assumption D2. By (10.26), we have

Jn = B−1(βn)n
−1

n∑
t=1

ρθθ�t(θn)B
−1(βn)(10.51)

=
(
n−1

n∑
t=1

ρ†
θθ�t(θn)

)
(1 + o(1))

+
(
n−1/2

n∑
t=1

(
χt(θn)−Eγnχt(θn)

))(
n1/2βn

)−1
(1 + o(1))

+ (
Eγnχt(θn)/βn

)
(1 + o(1))

=
(
n−1

n∑
t=1

ρ†
θθ�t(θn)

)
(1 + o(1))+ o(1)

= Eγnρ†
θθ�t(θn)+ op(1)→p Eγ0ρ

†
θθ�t(θ0)= J(γ0)�
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where the third equality holds because n1/2|βn| → ∞ for {γn} ∈ Γ (γ0�∞�ω0),
Eγnχt(θn)= 0 by the equation for Eγnχβπ�t(ψn�π) in (10.30) evaluated at π =
πn and an analogous equation for Eγnχππ�t(ψn�π), and n−1/2

∑n

t=1(χt(θn) −
Eγnχt(θn)) = Op(1) because Varγn(n−1/2

∑n

t=1χβπ�t(θn))
2 = O(1) by straight-

forward calculations using the fact that χβπ�t(θn) = −ζ−1εt
∑∞

k=0 kπ
k−1Yt−k−1

is a martingale difference sequence for t = 1� � � � � n and likewise for n−1/2 ×∑n

t=1χππ�t(θn); the fourth equality holds by the mean square convergence of
n−1

∑n

t=1 ρ
†
θθ�t(θn) − Eγnρ

†
θθ�t(θn) to zero, which holds by straightforward, but

tedious, calculations that are not given here for brevity; and the convergence
in the last line holds straightforwardly by the form of ρ†

θθ�t(θn) given in (10.12)–
(10.15) and γn → γ0.

The form of the matrix J(γ0) given in (6.13) is derived in (10.11)–(10.17)
above.

Assumption D2 requires that J(γ0) is nonsingular. To show this, note that
J(γ0) = Eγ0ρ

†
θθ�t(θ0), as specified in (10.17), is block diagonal between its

(β�π) and ζ elements. Since (2ζ2
0)

−1 > 0 by the definition of Θ∗, it suffices
to show that the 2 × 2 submatrix of Eγ0ρ

†
θθ�t(θ0) that corresponds to (β�π) is

positive definite. The latter multiplied by ζ0 equals

Eγ0AtA
′
t � where At =

(
A1t

A2t

)
=

⎛⎜⎜⎜⎜⎝
∞∑
j=0

π
j
0Yt−j−1

∞∑
j=1

jπ
j−1
0 Yt−j−1

⎞⎟⎟⎟⎟⎠ �(10.52)

Now, by (1.1), Yt = εt + (π0 +β0)Yt−1 −π0εt−1. Hence,

A1t = Yt−1 +
∞∑
j=1

π
j
0Yt−j−1 = εt−1 + ξt−2� where(10.53)

ξt−2 = (π0 +β0)Yt−2 −π0εt−2 +
∞∑
j=1

π
j
0Yt−j−1

and ξt−2 is independent of εt−1. For λ= (λ1�λ2)
′ ∈R2 with λ 
= 0, we have

λ′Eγ0AtA
′
tλ= Eγ0

(
λ1εt−1 + λ1ξt−2 + λ2

∞∑
j=1

jπ
j−1
0 Yt−j−1

)2

(10.54)

= λ2
1Eγ0ε

2
t−1 +Eγ0

(
λ1ξt−2 + λ2

∞∑
j=1

jπ
j−1
0 Yt−j−1

)2

�
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The r.h.s. is positive if λ1 
= 0. Alternatively, suppose λ1 = 0. Then λ2
2 > 0 and

the r.h.s. divided by λ2
2 equals

Eγ0

( ∞∑
j=1

jπ
j−1
0 Yt−j−1

)2

(10.55)

=Eγ0

(
Yt−2 +

∞∑
j=2

jπ
j−1
0 Yt−j−1

)2

=Eγ0

(
εt−2 + (π0 +β0)Yt−3 −π0εt−3 +

∞∑
j=2

jπ
j−1
0 Yt−j−1

)2

=Eγ0ε
2
t−2 +Eγ0

(
(π0 +β0)Yt−3 −π0εt−3 +

∞∑
j=2

jπ
j−1
0 Yt−j−1

)2

≥ ζ0 > 0�

We conclude that λ′Eγ0AtA
′
tλ > 0 ∀λ= (λ1�λ2)

′ ∈R2 with λ 
= 0 and, hence,
Eγ0AtA

′
t is positive definite (p.d.). This completes the verification that J(γ0) is

positive definite.

10.3.8. ARMA Example: Verification of Assumption D3

Assumption D3(i) is verified as follows. By the definitions in (6.5) and (6.12),
and B(β)= Diag{1�1�β}, we have

n1/2B−1(βn)DQn(θn)(10.56)

= n−1/2
n∑
t=1

B−1(βn)ρθ�t(θn)

= −n−1/2
n∑
t=1

⎛⎜⎜⎜⎜⎜⎜⎝
ζ−1
n εt

∞∑
k=0

πknYt−k−1

(1/2)ζ−2
n (ε

2
t − ζn)

ζ−1
n εt

∞∑
k=0

kπk−1
n Yt−k−1

⎞⎟⎟⎟⎟⎟⎟⎠
→d N(0� V (γ0))�

where the convergence in distribution holds by a triangular array martingale
difference CLT for rowwise stationary random variables (e.g., see Hall and
Hyde (1980, Theorem 3.1)) and V (γ0) = limn→∞ Varγn(n−1/2

∑n

t=1B
−1(βn)×

ρθ�t(θn)). The verification of the conditions of Hall and Hyde’s martin-
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gale difference CLT is essentially the same as given in the proof of Theo-
rem 1(b) of Andrews and Ploberger (1996, p. 1339) and uses the condition
Eφn |ζ−1/2

n εt |4+δ ≤K <∞, which appears in the definition ofΦ in (6.2), to verify
a Lyapounov-type condition. The formula for V (γ0) given in (6.15) is derived
in (10.18)–(10.20).

To verify Assumption D3(ii), note that the matrix V (γ0) = V †(θ0� θ0;γ0) is
the same as J(γ0) = Eγ0ρ

†
θθ�t(θ0) but with (1/4)ζ−4

0 Eγ0(ε
2
t − ζ0)

2 in place of
(2ζ2

0)
−1; see (10.17) and (10.19). Because (1/4)ζ−4

0 Eγ0(ε
2
t − ζ0)

2 > 0 by the def-
inition of the parameter spacesΘ∗ andΦ∗, the same argument as used above to
show that J(γ0) is p.d. also shows that V (γ0) is p.d. Hence, Assumption D3(ii)
holds.

10.3.9. ARMA Example: Verification of Assumptions V1 and V2

Assumption V1(i) (for scalar β) holds with

J(θ;γ0)(10.57)

= Diag

{
ζ−1Eγ0

( ∞∑
j=0

πjYt−j−1

)2

� (2ζ2)−1�

ζ−1Eγ0

( ∞∑
j=0

jπj−1Yt−j−1

)2}

+
(
ζ−1Eγ0

( ∞∑
j=0

πjYt−j−1

) ∞∑
k=0

kπk−1Yt−k−1

)
×
[0 0 1

0 0 0
1 0 0

]

by the same type of argument as used to verify Assumption B3(i). Assump-
tion V1(i) (for scalar β) holds with V (θ;γ0) defined just as J(θ;γ0) is defined,
but with

(4ζ2)−1Eγ0

((
Yt −β

∞∑
j=0

πjYt−j−1

)2

− ζ
)2

(10.58)

in place of (2ζ2)−1, by the same type of argument as used to verify Assump-
tion B3(i). This argument requires the additional condition Eφ|ξt |8+δ2 ≤ K in
the definition of Φ in (6.2).

Assumption V1(ii) holds by the functional forms of J(θ;γ0) and V (θ;γ0).
Next, we verify Assumption V1(iii). By definition, Σ(π;γ0) = J−1(ψ0�π;

γ0)V (ψ0�π;γ0)J
−1(ψ0�π;γ0). Because the matrices J(θ;γ0) and V (θ;γ0) are

block diagonal between the parameters (β�π) and ζ, and these matrices are
equal when their second rows and columns are deleted, it suffices to show that
(i) Assumption V1(iii) holds for Σ(π;γ0) replaced by J−1(ψ0�π;γ0) with its
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second row and column deleted, which we call A−1(π), and (ii) the (2�2) el-
ement of Σ(π;γ0), call it Σ22(π;γ0), is in (0�∞) for all π ∈Π. When β0 = 0,
we have

A(π)= ζ−1
0 Eγ0

⎛⎜⎜⎜⎜⎝
∞∑
j=0

πjYt−j−1

∞∑
j=0

jπj−1Yt−j−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∞∑
j=0

πjYt−j−1

∞∑
j=0

jπj−1Yt−j−1

⎞⎟⎟⎟⎟⎠
′

(10.59)

=

⎛⎜⎜⎜⎜⎝
∞∑
j=0

π2j
∞∑
j=0

jπ2j−1

∞∑
j=0

jπ2j−1
∞∑
j=0

j2π2(j−1)

⎞⎟⎟⎟⎟⎠ �

where the first equality holds by (10.57) and the second equality holds because
Yt = εt under γ0 when β0 = 0, which is the case in Assumption V1(iii). We have
‖A(π)‖<∞ because |π|< 1 ∀π ∈Π. In addition, det(A(π)) > 0 because

( ∞∑
j=0

jπ2j−1

)2

<

( ∞∑
j=0

π2j

)( ∞∑
j=0

j2π2(j−1)

)
∀π ∈Π(10.60)

by the Cauchy–Schwarz inequality. This implies λmin(A
−1(π)) > 0 and

λmax(A
−1(π)) < ∞ ∀π ∈ Π. Next, when β0 = 0, using (10.57) and (10.58),

we have Σ22(π;γ0)= (2ζ2
0)(4ζ

2
0)

−1Eγ0(Y
2
t − ζ0)

2(2ζ2
0)= ζ2

0Eγ0(ε
2
t − ζ0)

2, which
lies in (0�∞) because ζ0 = Var(εt) > 0 and Eγ0ε

4
t < ∞. This completes the

verification of Assumption V1(iii).
Assumption V1(i) and (ii) hold not only under {γn} ∈ Γ (γ0�0� b), but also

under {γn} ∈ Γ (γ0�∞�ω0). This and θ̂n →p θ0 under {γn} ∈ Γ (γ0�∞�ω0),
which holds by Lemma 3.3, imply that Assumption V2 holds.

10.3.10. ARMA Example: Verification of Assumptions RQ and RQ3

Assumptions RQ2(ii) and RQ3 hold with s(γ0)= ŝn = 1 in the ARMA(1�1)
example for restrictions r(θ) that only involve the parameters (β�π) because
(i) V (γ0) and J(γ0) are block diagonal between the parameters (β�π) and ζ,
where ζ is the innovation variance, and (ii) the blocks of V (γ0) and J(γ0) that
correspond to (β�π) are equal whether or not the innovations are normally
distributed. (In contrast, the blocks corresponding to ζ are equal under nor-
mality, but not for more general error distributions.)
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10.4. Proof of the ARMA Initial Conditions Lemma

PROOF OF LEMMA 10.1: To prove part (a), we write

2ζLQIC
n (θ)= 2ζL|Q∞

n (θ)−Qn(θ)|(10.61)

≤
∣∣∣∣∣n−1

n∑
t=1

[
(At −Bt)2 −A2

t

]∣∣∣∣∣
=
∣∣∣∣∣n−1

n∑
t=1

[−2AtBt +B2
t ]
∣∣∣∣∣

≤ 2

(
n−1

n∑
t=1

A2
t

)1/2(
n−1

n∑
t=1

B2
t

)1/2

+ n−1
n∑
t=1

B2
t �

where

At =At(θ)= Yt −β
t−1∑
j=0

πjYt−j−1 and(10.62)

Bt = Bt(θ)= β
∞∑
j=t
πjYt−j−1�

Hence, to show part (a), it suffices to show that under {γn} ∈ Γ (γ0) ∀γ0 ∈ Γ ,

sup
θ∈Θ
n−1

n∑
t=1

A2
t (θ)=Op(1) and sup

θ∈Θ
n−1

n∑
t=1

B2
t (θ)= op(1)�(10.63)

To show (10.63), we have

n−1
n∑
t=1

B2
t (θ)= β2n−1

n∑
t=1

( ∞∑
j=t
πjYt−j−1

)2

(10.64)

= β2n−1
n∑
t=1

( ∞∑
k=0

πt+kY−k−1

)2

≤ n−1β2
U

∞∑
t=1

π2t
+

∞∑
j=0

∞∑
k=0

π
j+k
+ |Y−j−1Y−k−1|�
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where the second equality holds by change of variables with k = j − t, βU =
max{ρU −πL�πU − ρL}, and π+ = max{|πL|� |πU |}. Using (10.64), we obtain

Eγn sup
θ∈Θ
n−1

n∑
t=1

B2
t (θ)≤ n−1β2

U

∞∑
t=1

π2t
+

∞∑
j=0

∞∑
k=0

π
j+k
+ EγnY

2
1 → 0�(10.65)

where the inequality uses Eγn |Y−j−1Y−k−1| ≤ supn≥1EγnY
2
1 ≤ C < ∞ by the

Cauchy–Schwarz inequality and stationarity.
Next, we have

Eγn sup
θ∈Θ
n−1

n∑
t=1

A2
t (θ)(10.66)

≤ sup
t≥1
Eγn sup

θ∈Θ
A2
t (θ)

≤ 2 sup
t≥1
EγnY

2
t + 2 sup

t≥1
Eγn sup

θ∈Θ

(
β

t−1∑
j=0

πjYt−j−1

)2

≤ 2 sup
n�t≥1

EγnY
2
t

+ 2β2
U

∞∑
j=0

∞∑
k=0

π
j+k
+ sup

n�t≥1�j�k≥0
Eγn |Yt−j−1Yt−k−1|<∞�

This completes the proof of part (a).
Next, we establish part (b). By (10.61) and (10.62),

At(ψ0�n�π)= Yt� Bt(ψ0�n�π)= 0� and QIC
n (ψ0�n�π)= 0�(10.67)

Hence, for part (b), it suffices to show that

sup
π∈Π

sup
ψ∈Ψ(π):‖ψ−ψ0�n‖≤δn

|a2
n(γn)Q

IC
n (ψ�π)|

(1 + ‖an(γn)(ψ−ψ0�n)‖)2
= op(1)(10.68)

for all constants δn → 0. The l.h.s. of (10.68) is less than or equal to

sup
θ∈Θ:|β|≤δn

|nQIC
n (θ)| = op(1)�(10.69)

where the equality holds by (10.61) and (10.64)–(10.66) because (10.64) and
(10.65) hold with βU replaced by δn and δn → 0.

Last, we establish part (c). It suffices to show that

sup
θ∈Θn(δn)

|QIC
n (θ)−QIC

n (θn)| = op(n−1)(10.70)
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for all δn → 0, where Θn(δn)= {θ ∈Θ :‖ψ−ψn‖ ≤ δn|βn| and |π −πn| ≤ δn}.
Let At�n =At(θn) and Bt�n = Bt(θn).
First, suppose ζ = ζn. Then, using (10.61), we have

2ζL|QIC
n (θ)−QIC

n (θn)|(10.71)

≤ 2ζL|Q∞
n (θ)−Qn(θ)−Q∞

n (θn)+Qn(θn)|

≤
∣∣∣∣∣n−1

n∑
t=1

[−2AtBt + 2At�nBt�n +B2
t −B2

t�n]
∣∣∣∣∣

≤
∣∣∣∣∣n−1

n∑
t=1

[−2At(Bt −Bt�n)− 2(At −At�n)Bt�n +B2
t −B2

t�n]
∣∣∣∣∣

≤ 2n−1
n∑
t=1

|At | · |Bt −Bt�n| + 2n−1
n∑
t=1

|At −At�n| · |Bt�n|

+
∣∣∣∣∣n−1

n∑
t=1

(B2
t −B2

t�n)

∣∣∣∣∣�
where the first inequality uses ζ = ζn.

To bound the first two terms on the r.h.s. of (10.71), we have

sup
θ∈Θn(δn)

|At(θ)| ≤ |Yt | +βU
∞∑
j=0

π
j−1
+ |Yt−j−1|�(10.72)

At(θ)−At(θn)= −(β−βn)
t−1∑
j=0

πjYt−j−1 −βn
t−1∑
j=0

(πj −πjn)Yt−j−1�

sup
θ∈Θn(δn)

|At(θ)−At(θn)|

≤ |β−βn|
∞∑
j=0

π
j
+|Yt−j−1| +βU

∞∑
j=0

|πj −πjn| · |Yt−j−1|

≤ δnβU
∞∑
j=1

[πj+ + jπj−1
+ ]|Yt−j−1|�

where the last inequality holds by mean-value expansions of πj around πjn for
j ≥ 1 and π+ = max{|πL|� |πU |}, and

Bt(θ)= β
∞∑
j=t
πjYt−j−1 = β

∞∑
k=0

πt+kY−k−1�(10.73)
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|Bt(θ)−Bt(θn)|

≤
∣∣∣∣∣(β−βn)

∞∑
k=0

πt+kY−k−1 +βn
∞∑
k=0

(πt+k −πt+kn )Y−k−1

∣∣∣∣∣
≤ δnβU

∞∑
k=0

πt+k+ |Y−k−1| + |π −πn|βU
∞∑
k=0

(t + k)πt+k−1
+ |Y−k−1|�

sup
θ∈Θn(δn)

|Bt(θ)−Bt(θn)| ≤ δnβUπt+
∞∑
k=0

[πk+ + (t + k)πk−1
+ ]|Y−k−1|�

where the second equality holds by change of variables and the second inequal-
ity holds by mean-value expansions of πt+k around πt+kn for k≥ 0.

Using (10.72) and (10.73), we have the following bound on the expectation
of the supremum over θ ∈Θn(δn) of the first term on the r.h.s. of (10.71):

2Eγn sup
θ∈Θn(δn)

n−1
n∑
t=1

|At(θ)| · |Bt(θ)−Bt(θn)|(10.74)

≤ 2n−1δn

∞∑
t=1

πt+

∞∑
k=0

[πk+ +βU(t + k)πk−1
+ ]Eγn |YtY−k−1|

+ 2n−1δnβU

∞∑
t=1

πt+

∞∑
j=0

π
j−1
+

∞∑
k=0

[πk+ +βU(t + k)πk−1
+ ]

×Eγn |Yt−j−1Y−k−1| = o(n−1)�

using Eγn |Yt−j−1Y−k−1| ≤ supn≥1EγnY
2
1 ≤ C <∞ and π+ ∈ (0�1). By Markov’s

inequality, (10.74) implies that the l.h.s. quantity with Eγn deleted is op(n−1),
as desired.

Similarly, using (10.72) and (10.73), we have the following bound on the
expectation of the supremum over θ ∈Θn(δn) of the second term on the r.h.s.
of (10.71):

Eγn sup
θ∈Θn(δn)

n−1
n∑
t=1

|At(θ)−At(θn)| · |Bt(θn)|(10.75)

≤ n−1δnβ
2
U

∞∑
t=1

πt+

∞∑
j=1

[πj+ + jπj−1
+ ]

∞∑
k=0

πk+

× sup
n�t≥1�j�k≥0

Eγn |Yt−j−1Y−k−1| = o(n−1)�

Hence, the l.h.s. of (10.75) with Eγn deleted is op(n−1).



94 D. W. K. ANDREWS AND X. CHENG

Next, we consider the third term on the r.h.s. of (10.71):

n−1
n∑
t=1

(B2
t (θ)−B2

t (θn))(10.76)

= β2n−1
n∑
t=1

( ∞∑
k=0

πt+kY−k−1

)2

−β2
nn

−1
n∑
t=1

( ∞∑
k=0

πt+kn Y−k−1

)2

= (β2 −β2
n)n

−1
n∑
t=1

( ∞∑
j=0

πt+jY−j−1

)2

+β2
nn

−1
n∑
t=1

∞∑
j=0

∞∑
k=0

(πt+j+k −πt+j+kn )Y−j−1Y−k−1�

The supremum over θ ∈ Θn(δn) of the absolute value of the first term on
the r.h.s. of (10.76) is Op(supθ∈Θn(δn) |β2 − β2

n|n−1) = op(n
−1) by calculations

analogous to those in (10.64) and (10.65). The expectation of the supremum
over θ ∈Θn(δn) of the absolute value of the second term on the r.h.s. of (10.76)
is bounded by

β2
Un

−1
∞∑
t=1

∞∑
j=0

∞∑
k=0

sup
|π−πn|≤δn

|πt+j+k −πt+j+kn | · sup
n≥1
EγnY

2
1 = o(n−1)�(10.77)

The equality in (10.77) holds because

∞∑
t=1

∞∑
j=0

∞∑
k=0

sup
|π−πn|≤δn

|πt+j+k −πt+j+kn |(10.78)

≤ sup
|π−πn|≤δn

|π −πn|
∞∑
t=1

∞∑
j=0

∞∑
k=0

(t + j + k)πt+j+k−1
+ = o(1)�

where the inequality holds by mean-value expansions of πt+j+k around πt+j+kn

for t ≥ 1, j�k≥ 0 and the equality holds because π+ ∈ (0�1). Equation (10.77)
implies that the supremum over θ ∈Θn(δn) of the absolute value of the second
term on the r.h.s. of (10.76) is op(n−1). Hence, we conclude that the supremum
over θ ∈Θn(δn) of the absolute value of the l.h.s. of (10.76), which is the third
summand in (10.71), is op(n−1).

This completes the verification of (10.70) for the case where ζ = ζn.
Last, we consider the case where ζ 
= ζn. We have

|QIC
n (θ)−QIC

n (θn)| = |QIC
n (θ)−QIC

n (βn� ζ�πn)|(10.79)

+ |QIC
n (βn� ζ�πn)−QIC

n (βn� ζn�πn)|�
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The proof of part (c) for the case where ζ = ζn gives supθ∈Θn(δn) |QIC
n (θ) −

QIC
n (βn� ζ�πn)| = op(n−1). It remains to show

sup
θ∈Θn(δn)

|QIC
n (βn� ζ�πn)−QIC

n (βn� ζn�πn)| = op(n−1)�(10.80)

We have

QIC
n (βn� ζ�πn)=Qn(βn� ζ�πn)−Q∞

n (βn� ζ�πn)(10.81)

= 1
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�

The quantity QIC
n (βn� ζn�πn) is the same, but with ζn in place of ζ. Hence,

|QIC
n (βn� ζ�πn)−QIC

n (βn� ζn�πn)|(10.82)

≤ |ζ − ζn|
ζζn
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We have

Eγn sup
θ∈Θn(δn)

∣∣∣∣∣n−1
n∑
t=1

εtβn

∞∑
k=0

πt+kn Y−k−1

∣∣∣∣∣(10.83)

≤ n−1βU

∞∑
t=1

∞∑
k=0

πt+k+ sup
n≥1�k≥0

Eγn |εtY−k−1| =O(n−1)�
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where π+ = max{|πL|� |πU |} and

Eγnn
−1

n∑
t=1

(
βn

∞∑
k=0

πt+kn Y−k−1

)2

(10.84)

≤ n−1β2
U

∞∑
t=1

∞∑
j=0

∞∑
k=0

π
t+j
+ πt+k+ sup

n≥1�j�k≥0
Eγn |Y−j−1Y−k−1| =O(n−1)�

Equations (10.83) and (10.84) and Markov’s inequality, coupled with (10.82)
and supθ∈Θn(δn) |ζ − ζn| ≤ δn = o(1), establish (10.80), which completes the
proof of part (c). Q.E.D.

11. SUPPLEMENTAL APPENDIX D: ARMA(1�1) NUMERICAL RESULTS

This appendix provides (i) a table containing the constants cLF
T �1−α(v), Δ1(v),

and Δ2(v) that are used to compute the type 2 NI robust critical values that
are used to construct CI’s for the MA and AR CI’s, (ii) details concerning the
ARMA(1�1) simulation computations, and (iii) additional numerical results.

11.1. Table of Constants for Type 2 Robust CI’s With NI Critical Values

Table S-I provides the cLF
T �1−α(v), Δ1(v), and Δ2(v) values necessary to com-

pute the type 2 NI robust critical values for the |t| and QLR test statistics for
computing CI’s for the MA and AR parameters. These CI’s employ the unre-
stricted ICSAn. (The same values apply to both the MA and AR parameters.)
In this case, v denotes the null hypothesis value of π (or ρ), which we denote
by πH0 (or ρH0 ) in the table. For πH0 (or ρH0 ) values between those given in
Table S-I, linear interpolation can be used.

11.2. Simulation Details

To achieve an approximately stationary startup, the first innovation is set
equal to 0 and the first 200 realizations of the process are discarded. For pur-
poses of speed, matrix/vector calculations are employed to compute the time
series Yt and the log likelihood. In these calculations, lags are truncated at 100.

The Matlab function fmincon is used in all cases where optimization is re-
quired. When the optimization is in more than one dimension, such as with
the finite-sample unconstrained optimization, six independent random start-
ing values are used. The random starting values are uniformly distributed in the
parameter space of the parameters. When the optimization is one dimensional,
such as with the asymptotic results and with the finite-sample constrained op-
timization, the starting value for the fmincon function is obtained by a grid
search. In all cases, the grids divide the optimization parameter space into 50
intervals of equal length.
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TABLE S-I

NI-LF CRITICAL VALUES AND VALUES OF Δ1(πH0) AND Δ2(πH0) FOR SIZE CORRECTION IN
THE ARMA(1�1) MODEL

|t| πH0
/ρH0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

cLF
|t|�0�95(πH0) 6.43 6.43 6.43 6.43 6.57 6.81 7.09 7.39 7.69 8.01 8.31
Δ1(πH0) 1.22 1.21 1.19 1.12 0.90 0.64 0.32 0.22 0.20 0.19 0.20
Δ2(πH0) 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.05 0.06 0.06

πH0
/ρH0

0.55 0.60 0.625 0.65 0.675 0.70 0.725 0.75 0.775 0.80 0.825

cLF
|t|�0�95(πH0) 8.62 8.94 9.09 9.24 9.40 9.55 9.70 9.86 10.01 10.17 10.25
Δ1(πH0) 0.21 0.22 0.22 0.23 0.24 0.25 0.25 0.26 0.26 0.27 0.26
Δ2(πH0) 0.05 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01

QLR πH0
/ρH0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

cLF
QLR�0�95(πH0) 4.30 4.31 4.32 4.32 4.33 4.32 4.31 4.30 4.29 4.28 4.25
Δ1(πH0) 0.60 0.62 0.71 0.73 0.76 0.81 0.82 0.77 0.68 0.64 0.55
Δ2(πH0) 0.08 0.08 0.08 0.09 0.10 0.10 0.08 0.09 0.09 0.09 0.09

πH0
/ρH0

0.55 0.60 0.625 0.65 0.675 0.70 0.725 0.75 0.775 0.80 0.825

cLF
QLR�0�95(πH0) 4.21 4.13 4.08 4.07 4.09 4.12 4.16 4.22 4.29 4.36 4.37
Δ1(πH0) 0.57 0.55 0.54 0.45 0.29 0.18 0.07 0.09 0.11 0.12 0.12
Δ2(πH0) 0.06 0.04 0.04 0.03 0.04 0.04 0.04 0.02 0.01 0.00 0.00

For the finite-sample and asymptotic results for both the MA and AR param-
eters, the constrained and unconstrained criterion functions often are found to
have multiple local minima for small values of |b|. Hence, the grid search and
multiple starting values are useful.

In all figures concerning the MA parameter π for which the x axis is b or |b|,
such as Figures 4, 6, and 7 of AC1, the discrete values of b for which compu-
tations are made run from 0 to −20 (although only values from 0 to −15 are
reported), with a grid of 0�1 for b between 0 and −5, a grid of 0�2 for b between
−5 and −10, and a grid of 1 for b between −10 and −20. For the analogous fig-
ures concerning the AR parameter ρ, the same grids are used but the b values
are nonnegative.

For the finite-sample simulations concerning the MA parameter, for each
b, the true value of β is βn = −b/√n and the AR parameter is ρn = π0 +
βn = π0 − b/√n. The value of b is restricted such that ρn belongs to its true
parameter space, that is, ρn ∈ [−0�85�0�85]. Note that the b values are negative.
Positive values of b also could be considered, but if π0 is positive, then the
range of positive b values is more restricted (by the requirement that ρn ∈
[−0�85�0�85]) than the range of negative b values.

For the finite-sample simulations concerning the AR parameter, for each b,
the true value of β is βn = b/√n and the MA parameter is πn = ρ0 −βn = π0 −
b/

√
n. The value of b is restricted such that πn belongs to its true parameter

space, that is, πn ∈ [−0�8�0�8].
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In Figure 1 of AC1 and Figures S-1 and S-2 below, the asymptotic den-
sity of the ML estimator of the MA parameter π is given by π∗(γ0� b)
(= arg minπ∈Π ξ(π;γ0� b)) for b= 0, −2, −4, and −12. Similarly, in Figures S-
11–S-13 below, the asymptotic density of the ML estimator of the AR parame-
ter ρ= π+β is given byπ∗(γ0� b) for b= 0, 2, 4, and 12 (because its asymptotic
distribution is the same as that of the MA parameter when |b|<∞).

In Figure 2 of AC1, the asymptotic density of the ML estimator of β centered
at the true value is equal to the first element of τ(π∗(γ0� b);γ0� b) divided by
n1/2 with n= 250, so that it has the same scale as the finite-sample (n= 250) es-
timator. In this ARMA example, the first element of τ(π∗(γ0� b);γ0� b) equals

−(1 −π2)

( ∞∑
j=0

πjZj − (1 −π0π)
−1b

)
+ b�(11.1)

Figures that give densities for the estimators of π and ρ are constructed
using histograms with 40 bins. Figures that give densities for the estimator of β
and for the test statistics use 100 bins. The areas under the histograms equal 1.

When determining κ for use with the robust CI’s, we compute FCP’s using
n= 500.

11.3. Additional Simulation Results

In this section, we provide additional numerical results to those given in
AC1. Figures S-1–S-9 provide results analogous to those in AC1, but for
π = 0�0 and 0�7, rather thanπ = 0�4. Figure S-10 gives asymptotic 0.95 quantile

FIGURE S-1.—Asymptotic and finite-sample (n = 250) densities of the estimator of the MA
parameter π in the ARMA(1�1) model when π0 = 0.
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FIGURE S-2.—Asymptotic and finite-sample (n = 250) densities of the estimator of the MA
parameter π in the ARMA(1�1) model when π0 = 0�7.

graphs for the |t| and QLR statistics for tests concerning β. Figures S-11–S-25
provide figures for the AR parameter ρ that are analogous to the figures given
for the MA parameter π.

FIGURE S-3.—Asymptotic and finite-sample (n = 250) densities of the t statistic for the MA
parameter π in the ARMA(1�1) model when π0 = 0 and the standard normal density (black
line).
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FIGURE S-4.—Asymptotic and finite-sample (n = 250) densities of the t statistic for the MA
parameter π in the ARMA(1�1) model when π0 = 0�7 and the standard normal density (black
line).

FIGURE S-5.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
MA parameter π in the ARMA(1�1) model when π0 = 0 and the χ2

1 density (black line).
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FIGURE S-6.—Asymptotic and finite-sample (n = 250) densities of the QLR statistic for the
MA parameter π in the ARMA(1�1) model when π0 = 0�7 and the χ2

1 density (black line).

FIGURE S-7.—Coverage probabilities of standard |t| and QLR CI’s for the MA parameter π
in the ARMA(1�1) model when π0 = 0�4.
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FIGURE S-8.—Coverage probabilities of standard |t| and QLR CI’s for the MA parameter π
in the ARMA(1�1) model when π0 = 0�7.

FIGURE S-9.—Coverage probabilities of robust |t| and QLR CI’s for the MA parameter π in
the ARMA(1�1) model when π0 = 0�7, κ= 1�5, and s(x)= exp(−x/2).
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FIGURE S-10.—Asymptotic 0.95 quantiles of the |t| and QLR statistics for tests concerning β
in the ARMA(1�1) model.

FIGURE S-11.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR
parameter ρ in the ARMA(1�1) model when ρ0 = 0.
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FIGURE S-12.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR
parameter ρ in the ARMA(1�1) model when ρ0 = 0�4.

FIGURE S-13.—Asymptotic and finite-sample (n = 250) densities of the estimator of the AR
parameter ρ in the ARMA(1�1) model when ρ0 = 0�8.
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FIGURE S-14.—Asymptotic and finite-sample (n= 250) densities of the t statistic for the AR
parameter ρ in the ARMA(1�1)model when ρ0 = 0 and the standard normal density (black line).

FIGURE S-15.—Asymptotic and finite-sample (n= 250) densities of the t statistic for the AR
parameter ρ in the ARMA(1�1) model when ρ0 = 0�4 and the standard normal density (black
line).
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FIGURE S-16.—Asymptotic and finite-sample (n= 250) densities of the t statistic for the AR
parameter ρ in the ARMA(1�1) model when ρ0 = 0�8 and the standard normal density (black
line).

FIGURE S-17.—Asymptotic and finite-sample (n= 250) densities of the QLR statistic for the
AR parameter ρ in the ARMA(1�1) model when ρ0 = 0 and the χ2

1 density (black line).
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FIGURE S-18.—Asymptotic and finite-sample (n= 250) densities of the QLR statistic for the
AR parameter ρ in the ARMA(1�1) model when ρ0 = 0�4 and the χ2

1 density (black line).

FIGURE S-19.—Asymptotic and finite-sample (n= 250) densities of the QLR statistic for the
AR parameter ρ in the ARMA(1�1) model when ρ0 = 0�8 and the χ2

1 density (black line).
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FIGURE S-20.—Coverage probabilities of standard |t| and QLR CI’s for the AR parameter ρ
in the ARMA(1�1) model when ρ0 = 0.

FIGURE S-21.—Coverage probabilities of standard |t| and QLR CI’s for the AR parameter ρ
in the ARMA(1�1) model when ρ0 = 0�4.
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FIGURE S-22.—Coverage probabilities of standard |t| and QLR CI’s for the AR parameter ρ
in the ARMA(1�1) model when ρ0 = 0�8.

FIGURE S-23.—Coverage probabilities of robust |t| and QLR CI’s for the AR parameter ρ in
the ARMA(1�1) model when ρ0 = 0, κ= 1�5, and s(x)= exp(−x/2).
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FIGURE S-24.—Coverage probabilities of robust |t| and QLR CI’s for the AR parameter ρ in
the ARMA(1�1) model when ρ0 = 0�4, κ= 1�5, and s(x)= exp(−x/2).

FIGURE S-25.—Coverage probabilities of robust |t| and QLR CI’s for the AR parameter ρ in
the ARMA(1�1) model when ρ0 = 0�8, κ= 1�5, and s(x)= exp(−x/2).
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TABLE S-II

ASYMPTOTIC COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% STANDARD
CI’S FOR π AND ρ IN THE ARMA(1�1) MODEL

π0/ρ0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Asy Size

|t| 0.523 0.527 0.534 0.552 0.578 0.612 0.642 0.643 0.627 0.523
QLR 0.935 0.933 0.933 0.934 0.935 0.936 0.940 0.941 0.933 0.933

Tables S-II to S-X provide (i) asymptotic and finite-sample coverage proba-
bilities for |t| and QLR CI’s for π and ρ and (ii) FCP results for NI-LF and
type 2 robust CI’s for π and ρ.

Table S-II provides the minimum over b asymptotic CP’s for π for a range
of true π0 values. It shows that the asymptotic size of the |t| CI for π is 0�523.75

Table S-II also shows that the undercoverage of the standard QLR CI for π
is much less severe than for the |t| CI. It shows that the asymptotic size of the
nominal 95% standard QLR CI for π is 0�933. The results of Table S-II also
apply to CI’s for ρ.

Table S-III provides a summary of the finite-sample (n = 250) CP’s of the
CI’s for both π and ρ based on critical values that are standard (normal or
χ2

1), NI-LF, and type 2 robust (using NI critical values and ICS statistic An).
The standard |t| CI’s undercover considerably. The standard QLR CI’s only
undercover by a small amount. The NI-LF |t| CI’s overcover by a small amount.

TABLE S-III

FINITE-SAMPLE COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% CI’S FOR π
AND ρ IN THE ARMA(1�1) MODEL, n= 250

|t| QLR

Std LF Rob Std LF Rob

MA π0 = 0�0 0.569 0.965 0.952 0.937 0.951 0.951
π0 = 0�4 0.613 0.961 0.943 0.937 0.953 0.951
π0 = 0�7 0.673 0.962 0.930 0.944 0.953 0.946

AR ρ0 = 0�0 0.573 0.967 0.955 0.937 0.952 0.950
ρ0 = 0�4 0.632 0.966 0.953 0.939 0.954 0.953
ρ0 = 0�8 0.660 0.965 0.952 0.936 0.954 0.950

75This is based on a grid of π0 values with grid size 0�05 for |π0| ≤ 0�60 and grid size 0�025 for
0�625 ≤ |π0| ≤ 0�825.
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TABLE S-IV

FINITE-SAMPLE COVERAGE PROBABILITIES (MINIMUM OVER b) OF NOMINAL 95% CI’S FOR π
AND ρ IN THE ARMA(1�1) MODEL, n= 100, 500

|t| QLR

Std LF Rob Std LF Rob

n= 100
MA π0 = 0�0 0.572 0.970 0.956 0.936 0.950 0.950

π0 = 0�4 0.630 0.971 0.933 0.935 0.951 0.948
π0 = 0�7 0.678 0.972 0.903 0.944 0.953 0.946

AR ρ0 = 0�0 0.589 0.982 0.974 0.938 0.954 0.953
ρ0 = 0�4 0.651 0.982 0.957 0.938 0.953 0.952
ρ0 = 0�8 0.661 0.982 0.952 0.929 0.947 0.946

n= 500
MA π0 = 0�0 0.565 0.956 0.951 0.935 0.951 0.951

π0 = 0�4 0.613 0.958 0.946 0.937 0.952 0.951
π0 = 0�7 0.676 0.959 0.937 0.944 0.953 0.947

AR ρ0 = 0�0 0.567 0.965 0.953 0.938 0.952 0.953
ρ0 = 0�4 0.619 0.962 0.955 0.937 0.952 0.953
ρ0 = 0�8 0.662 0.961 0.953 0.936 0.952 0.950

The type 2 robust |t| CI’s are close to 0�95 except for some undercoverage for
π when π0 = 0�4 and 0�7. The NI-LF and type 2 robust QLR CI’s are quite
close to 0�95.

Table S-IV provides analogous results to Table S-III, but for n = 100 and
500. The results for the standard CI’s are very similar to those in Table S-III.
The discrepancies between the CP’s and 0�95 for the NI-LF and type 2 robust
|t| CI’s are magnified for n = 100 and lessened for n = 500. The CP’s for the
NI-LF and type 2 robust QLR CI’s are quite close to 0�95 for n= 100 and 500.

Table S-V provides finite-sample FCP results for the NI-LF and type 2 ro-
bust CI’s for the MA parameter π for n = 500.76 Table S-V shows that the |t|
statistic combined with the NI-LF critical value yields a CI whose FCP’s are
very high—close to 1�0 for most values of b and π0. This illustrates the poor
performance of NI-LF critical values when a substantial amount of size cor-
rection is required. The NI-LF critical value performs much better in terms of
FCP’s when combined with the QLR statistic (because much less size correc-

76The true values considered are π0 = 0�0, 0�4, and 0�7 and b = −2�−5�−10, and −∞. The
null values πH0 are provided in the table. They are selected so that the robust QLR CI has FCP
close to 0�50 for those cases where that is possible. When b= 0 or |b| is small, all CI’s have FCP
greater than 0�50 for all values of πH0 in the parameter space.
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TABLE S-V

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF 95% LEAST FAVORABLE AND ROBUST |t|
AND QLR CI’S FOR THE MA PARAMETER π IN THE ARMA(1�1) MODEL, n= 500

π0 = 0�0 π0 = 0�4 π0 = 0�7

b −2 −5 −10 −∞ −2 −5 −10 −∞ −2 −5 −10 −∞
πH0

0.800 0.410 0.200 0.048 0.000 0.010 0.205 0.290 0.000 0.460 0.570 0.615 Avg

|t|
LF 0.97 1.00 1.00 1.00 0.93 0.96 1.00 1.00 0.76 0.99 1.00 1.00 0.97
Rob 0.95 0.78 0.56 0.90 0.91 0.64 0.49 0.49 0.68 0.57 0.44 0.44 0.65

QLR
LF 0.68 0.51 0.55 0.52 0.88 0.52 0.55 0.55 0.59 0.53 0.54 0.53 0.58
Rob 0.67 0.50 0.51 0.49 0.89 0.50 0.51 0.51 0.62 0.51 0.51 0.51 0.56

tion is needed). The type 2 robust critical values work quite well in terms of
FCP’s with both the |t| and QLR statistics. Overall, the type 2 robust QLR CI
performs best, followed closely by the NI-LF QLR CI, followed by the type 2
robust |t| CI.

Analogous results to those in Table S-V, but for the AR parameter ρ, are
provided in Table S-VI. Most of the results are quite similar.

Tables S-VII–S-X provide finite-sample false coverage probabilities of robust
|t| and QLR CI’s for π and ρ for a range of values of κ in the ARMA(1�1)
model with n= 500.

TABLE S-VI

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF 95% LEAST FAVORABLE AND ROBUST
(WITH κ= 1�5) |t| AND QLR CI’S FOR THE AR PARAMETER ρ IN THE ARMA(1�1) MODEL,

n= 500

ρ0 = 0�0 ρ0 = 0�4 ρ0 = 0�8

b 2 5 10 ∞ 2 5 10 ∞ 2 5 10 ∞
ρH0

0.800 0.400 0.200 0.110 0.000 0.000 0.200 0.287 0.200 0.625 0.700 0.730 Avg

|t|
LF 0.97 0.99 1.00 1.00 0.94 0.97 1.00 1.00 0.69 1.00 1.00 1.00 0.96
Rob 0.93 0.77 0.54 0.56 0.93 0.65 0.49 0.50 0.58 0.57 0.45 0.47 0.62

QLR
LF 0.66 0.52 0.53 0.53 0.88 0.52 0.54 0.54 0.48 0.49 0.51 0.52 0.56
Rob 0.65 0.50 0.50 0.49 0.89 0.50 0.50 0.50 0.51 0.48 0.49 0.49 0.54
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TABLE S-VII

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST |t| CI’S FOR THE MA PARAMETER π FOR DIFFERENT VALUES OF κ IN THE
ARMA(1�1) MODEL, n= 500

π0 = 0�0 π0 = 0�4 π0 = 0�7

b −2 −5 −10 −∞ −2 −5 −10 −∞ −2 −5 −10 −∞
πH0

0.800 0.740 0.220 0.110 0.000 0.000 0.210 0.293 0.000 0.410 0.580 0.623 Avg

LF 0.968 0.994 1.000 1.000 0.928 0.957 0.997 1.000 0.760 0.958 1.000 1.000 0.964
κ

0�00 0.944 0.395 0.483 0.490 0.912 0.628 0.506 0.512 0.682 0.433 0.491 0.504 0.582
0�50 0.944 0.395 0.483 0.490 0.912 0.628 0.506 0.512 0.682 0.433 0.491 0.504 0.582
1�00 0.944 0.395 0.483 0.490 0.911 0.627 0.506 0.512 0.681 0.433 0.491 0.504 0.581
1�50 0.947 0.415 0.483 0.490 0.911 0.627 0.506 0.512 0.681 0.444 0.493 0.503 0.584
1�75 0.954 0.455 0.484 0.490 0.911 0.627 0.507 0.511 0.680 0.465 0.496 0.503 0.590
2�00 0.958 0.498 0.486 0.489 0.916 0.641 0.508 0.509 0.697 0.490 0.500 0.503 0.600
2�25 0.962 0.544 0.490 0.488 0.917 0.659 0.511 0.508 0.706 0.516 0.504 0.503 0.609
2�50 0.964 0.594 0.495 0.487 0.919 0.680 0.515 0.508 0.718 0.545 0.510 0.503 0.620
2�75 0.966 0.643 0.501 0.486 0.921 0.706 0.520 0.507 0.731 0.576 0.517 0.503 0.631
3�00 0.967 0.694 0.508 0.485 0.924 0.731 0.525 0.506 0.739 0.609 0.524 0.502 0.643
4�00 0.968 0.870 0.547 0.482 0.928 0.831 0.555 0.504 0.758 0.751 0.560 0.503 0.688
5�00 0.968 0.963 0.610 0.480 0.928 0.909 0.603 0.502 0.760 0.878 0.619 0.503 0.727
6�00 0.968 0.990 0.707 0.480 0.928 0.946 0.671 0.501 0.760 0.940 0.697 0.503 0.758
8�00 0.968 0.994 0.936 0.479 0.928 0.957 0.851 0.501 0.760 0.958 0.889 0.506 0.811

10�00 0.968 0.994 0.999 0.477 0.928 0.957 0.974 0.499 0.760 0.958 0.988 0.514 0.835
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TABLE S-VIII

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST QLR CI’S FOR THE MA PARAMETER π FOR DIFFERENT VALUES OF κ IN THE
ARMA(1�1) MODEL, n= 500

π0 = 0�0 π0 = 0�4 π0 = 0�7

b −2 −5 −10 −∞ −2 −5 −10 −∞ −2 −5 −10 −∞
πH0

0.800 0.410 0.200 0.048 0.000 0.010 0.205 0.290 0.000 0.460 0.570 0.615 Avg

LF 0.678 0.510 0.546 0.524 0.876 0.524 0.546 0.552 0.594 0.531 0.539 0.533 0.579
κ

0�00 0.669 0.497 0.509 0.485 0.887 0.505 0.508 0.510 0.620 0.513 0.511 0.508 0.560
0�50 0.669 0.496 0.509 0.485 0.887 0.505 0.508 0.510 0.619 0.513 0.511 0.508 0.560
1�00 0.669 0.496 0.509 0.485 0.886 0.505 0.508 0.510 0.618 0.513 0.511 0.508 0.560
1�50 0.669 0.496 0.509 0.485 0.886 0.504 0.508 0.510 0.617 0.512 0.511 0.508 0.560
1�75 0.669 0.496 0.509 0.485 0.886 0.504 0.508 0.510 0.616 0.512 0.511 0.508 0.560
2�00 0.671 0.496 0.509 0.485 0.885 0.504 0.508 0.510 0.615 0.512 0.511 0.508 0.560
2�25 0.673 0.495 0.509 0.485 0.884 0.504 0.508 0.510 0.612 0.512 0.511 0.508 0.559
2�50 0.675 0.495 0.509 0.485 0.882 0.504 0.508 0.510 0.609 0.512 0.511 0.508 0.559
2�75 0.676 0.495 0.509 0.485 0.880 0.504 0.508 0.510 0.605 0.511 0.511 0.508 0.559
3�00 0.677 0.494 0.509 0.485 0.878 0.504 0.508 0.510 0.601 0.511 0.511 0.508 0.558
4�00 0.678 0.499 0.509 0.485 0.876 0.510 0.508 0.509 0.595 0.516 0.511 0.508 0.559
5�00 0.678 0.505 0.510 0.485 0.876 0.519 0.509 0.508 0.594 0.524 0.512 0.507 0.561
6�00 0.678 0.509 0.513 0.485 0.876 0.523 0.511 0.507 0.594 0.530 0.513 0.506 0.562
8�00 0.678 0.510 0.523 0.485 0.876 0.524 0.522 0.507 0.594 0.531 0.520 0.506 0.565

10�00 0.678 0.510 0.541 0.485 0.876 0.524 0.540 0.507 0.594 0.531 0.534 0.506 0.569
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TABLE S-IX

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST |t| CI’S FOR THE AR PARAMETER ρ FOR DIFFERENT VALUES OF κ IN THE
ARMA(1, 1) MODEL, n= 500

ρ0 = 0�0 ρ0 = 0�4 ρ0 = 0�8

b 2 5 10 ∞ 2 5 10 ∞ 2 5 10 ∞
ρH0

0.800 0.725 0.212 0.117 0.000 0.000 0.200 0.287 0.075 0.595 0.705 0.735 Avg

LF 0.967 0.990 1.000 1.000 0.942 0.973 0.999 1.000 0.588 0.995 1.000 1.000 0.955
κ

0�00 0.925 0.400 0.495 0.504 0.932 0.656 0.492 0.497 0.501 0.445 0.482 0.517 0.573
0�50 0.925 0.399 0.495 0.504 0.932 0.656 0.492 0.497 0.501 0.445 0.482 0.517 0.572
1�00 0.925 0.399 0.495 0.504 0.932 0.655 0.492 0.497 0.501 0.445 0.482 0.517 0.572
1�50 0.930 0.416 0.495 0.504 0.930 0.655 0.492 0.497 0.500 0.457 0.484 0.517 0.575
1�75 0.941 0.454 0.496 0.504 0.926 0.655 0.493 0.496 0.498 0.476 0.487 0.517 0.581
2�00 0.948 0.496 0.497 0.503 0.929 0.670 0.494 0.495 0.506 0.503 0.491 0.516 0.590
2�25 0.953 0.543 0.500 0.502 0.932 0.688 0.497 0.494 0.520 0.536 0.495 0.516 0.600
2�50 0.958 0.591 0.504 0.502 0.936 0.708 0.502 0.493 0.537 0.566 0.501 0.515 0.612
2�75 0.961 0.635 0.510 0.501 0.938 0.731 0.506 0.492 0.552 0.600 0.507 0.515 0.623
3�00 0.963 0.688 0.517 0.500 0.940 0.756 0.511 0.491 0.564 0.635 0.513 0.515 0.635
4�00 0.967 0.851 0.556 0.498 0.941 0.859 0.542 0.490 0.585 0.794 0.551 0.515 0.681
5�00 0.967 0.951 0.615 0.497 0.942 0.935 0.590 0.487 0.588 0.922 0.612 0.515 0.720
6�00 0.967 0.982 0.709 0.496 0.942 0.965 0.664 0.486 0.588 0.986 0.696 0.516 0.750
8�00 0.967 0.990 0.923 0.497 0.942 0.973 0.851 0.485 0.588 0.995 0.908 0.519 0.803

10�00 0.967 0.990 0.997 0.501 0.942 0.973 0.978 0.484 0.588 0.995 0.997 0.529 0.829
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TABLE S-X

FINITE-SAMPLE FALSE COVERAGE PROBABILITIES OF ROBUST QLR CI’S FOR THE AR PARAMETER ρ FOR DIFFERENT VALUES OF κ IN THE
ARMA(1�1) MODEL, n= 500

ρ0 = 0�0 ρ0 = 0�4 ρ0 = 0�8

b 2 5 10 ∞ 2 5 10 ∞ 2 5 10 ∞
ρH0

0.800 0.400 0.200 0.110 0.000 0.000 0.200 0.287 0.200 0.625 0.700 0.730 Avg

LF 0.662 0.517 0.533 0.535 0.883 0.520 0.538 0.537 0.477 0.489 0.511 0.518 0.560
κ

0�00 0.654 0.504 0.497 0.494 0.896 0.504 0.501 0.501 0.513 0.480 0.487 0.489 0.543
0�50 0.654 0.504 0.497 0.494 0.896 0.503 0.501 0.501 0.512 0.480 0.487 0.489 0.543
1�00 0.654 0.504 0.497 0.494 0.895 0.503 0.501 0.501 0.511 0.480 0.487 0.489 0.543
1�50 0.654 0.503 0.497 0.494 0.894 0.502 0.501 0.501 0.510 0.480 0.487 0.489 0.543
1�75 0.655 0.503 0.497 0.494 0.894 0.502 0.501 0.502 0.509 0.480 0.487 0.489 0.543
2�00 0.656 0.503 0.497 0.494 0.893 0.502 0.501 0.502 0.506 0.480 0.487 0.489 0.542
2�25 0.658 0.503 0.497 0.494 0.891 0.502 0.501 0.502 0.502 0.480 0.487 0.489 0.542
2�50 0.659 0.502 0.497 0.494 0.889 0.502 0.501 0.502 0.498 0.480 0.487 0.489 0.542
2�75 0.660 0.502 0.497 0.494 0.888 0.502 0.501 0.502 0.494 0.480 0.486 0.489 0.541
3�00 0.661 0.502 0.497 0.494 0.886 0.502 0.501 0.502 0.489 0.480 0.485 0.489 0.540
4�00 0.662 0.506 0.497 0.493 0.883 0.508 0.502 0.501 0.479 0.480 0.485 0.488 0.540
5�00 0.662 0.512 0.498 0.493 0.883 0.515 0.502 0.499 0.477 0.484 0.485 0.488 0.541
6�00 0.662 0.516 0.500 0.493 0.883 0.519 0.504 0.499 0.477 0.488 0.486 0.488 0.543
8�00 0.662 0.517 0.510 0.492 0.883 0.520 0.513 0.499 0.477 0.489 0.493 0.488 0.545

10�00 0.662 0.517 0.528 0.492 0.883 0.520 0.531 0.498 0.477 0.489 0.505 0.488 0.549
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12. SUPPLEMENTAL APPENDIX E: NONLINEAR REGRESSION EXAMPLE

In this section, we illustrate the verification of the assumptions in AC1 in a
second example, a cross-section nonlinear regression model. We also show that
the framework of Stock and Wright (2000) does not apply to this example.

12.1. Nonlinear Regression Model

This example is a cross-section nonlinear regression model estimated by LS.
The model is

Yi = β∗ · h(Xi�π
∗)+Z′

iζ
∗ +Ui for i= 1� � � � � n�(12.1)

where h(Xi�π) ∈R is known up to the finite-dimensional parameter π ∈Rdπ .
When the true value β∗ is 0, (12.1) becomes a linear model and π∗ is not iden-
tified.

Suppose the support of Xi for all γ ∈ Γ is contained in a set X . We assume
here that h(x�π) is twice continuously differentiable w.r.t. π ∀π ∈Π, ∀x ∈ X ,
although the general theory of AC1 allows for continuous nonsmooth func-
tions. Let hπ(x�π) ∈ Rdπ and hππ(x�π) ∈ Rdπ×dπ denote the first-order and
second-order partial derivatives of h(x�π) w.r.t. π.

The LS sample criterion function is

Qn(θ)= n−1
n∑
i=1

U2
i (θ)/2� where Ui(θ)= Yi −βh(Xi�π)−Z′

iζ�(12.2)

Whenβ= 0, the residualUi(θ) and the criterion functionQn(θ) do not depend
on π. Hence, Assumption A holds for this example.

12.2. Parameter Space

In this example, the random variables {(Xi�Zi�Ui) : i = 1� � � � � n} are i.i.d.
with true distribution φ∗ ∈Φ∗, where Φ∗ is a compact metric space with some
metric that induces weak convergence. (The results can be extended to allow
for stationary and ergodic observations under suitable weak dependence con-
ditions, such as strong mixing conditions; see Andrews and Cheng (2011a).)
The parameter of interest is θ = (β�ζ�π) and the nuisance parameter is φ,
which is infinite dimensional. The true parameter space for θ is

Θ∗ = B∗ × Z ∗ ×Π∗� where B∗ = [−b∗
1� b

∗
2] ⊂R(12.3)

with b∗
1 ≥ 0, b∗

2 ≥ 0, b∗
1 and b∗

2 are not both equal to 0, Z ∗ (⊂ Rdζ ) is compact,
and Π∗ (⊂ Rdπ ) is compact. For any θ∗ ∈ Θ∗, the true parameter space for
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φ is

Φ∗(θ∗)=
{
φ ∈Φ∗ :Eφ(Ui|Xi�Zi)= 0 a.s.,(12.4)

Eφ(U
2
i |Xi�Zi)= σ2(Xi�Zi) > 0 a.s., Eφ

(
sup
π∈Π

‖h(Xi�π)‖4+ε

+ sup
π∈Π

‖hπ(Xi�π)‖4+ε + sup
π∈Π

‖hππ(Xi�π)‖2+ε
)

≤ C�

‖hππ(Xi�π1)− hππ(Xi�π2)‖ ≤M(Xi)‖π1 −π2‖
∀π1�π2 ∈Π for some functionM(Xi)�EφM(Xi)

2+ε ≤ C�
Eφ|Ui|4+ε ≤ C�Eφ‖Zi‖4+ε ≤ C�
Pφ

(
a′(h(Xi�π1)�h(Xi�π2)�Zi)= 0

)
< 1

∀π1�π2 ∈Π with π1 
= π2� ∀a ∈Rdζ+2 with a 
= 0�

λmin

(
Eφ(h(Xi�π)�Z

′
i)

′(h(Xi�π)�Z
′
i)
)≥ ε ∀π ∈Π� and

λmin(Eφdi(π)di(π)
′)≥ ε ∀π ∈Π

}
for some constants C <∞ and ε > 0, and, by definition, di(π)= (h(Xi�π)�Zi�
hπ(Xi�π))

′. The moment conditions are needed to ensure the uniform conver-
gence of various sample averages. The other conditions are for the identifica-
tion of β and ζ and the identification of π when β 
= 0.

Given the definitions above, the true parameter space Γ is of the form in
(2.3). Thus, Assumption B2(i) holds immediately. Assumption B2(ii) follows
from the form of B∗ given in (12.3) and the fact that Θ∗ is a product space
and Φ∗(θ∗) does not depend on β∗. Assumption B2(iii) follows from the form
of B∗. Hence, the true parameter space Γ satisfies Assumption B2.

The LS estimator of θ minimizes Qn(θ) over θ ∈ Θ. The optimization pa-
rameter space Θ takes the form

Θ= B × Z ×Π� where B = [−b1� b2] ⊂R(12.5)

with b1 > b
∗
1, b2 > b

∗
2, Z (⊂ Rdζ ) is compact, Π (⊂ Rdπ ) is compact, Z ∗ ∈

int(Z), and B∗ ∈ int(B). Given these conditions, Assumption B1(i) and (iii)
follow immediately. Assumption B1(ii) holds by taking δ < min{b∗

1� b
∗
2} and

Z 0 = int(Z).

12.3. Criterion Function Limit Assumption

In this example, the function Q(θ;γ0) in Assumption B3(i) is

Q(θ;γ0)= Eφ0U
2
i /2 +Eφ0(β0h(Xi�π0)(12.6)

+Z′
iζ0 −βh(Xi�π)−Z′

iζ)
2/2�
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where γ0 = (β0� ζ0�π0�φ0) and Eφ0 denotes expectation when the distribution
of (Xi�Zi�Ui) is φ0. The uniform convergence in Assumption B3(i) holds by
the following uniform weak LLN given the moment and smoothness conditions
in Φ∗(θ∗) in (12.3).

LEMMA 12.1: Suppose (i) {Wi : i≥ 1} is an i.i.d. sequence under Fγ∗ for all γ∗ ∈
Γ , (ii) for some functionM1(w) : W →R+ and all δ > 0, ‖s(w�θ1)−s(w�θ2)‖ ≤
M1(w)δ ∀θ1� θ2 ∈Θ with ‖θ1 −θ2‖ ≤ δ, ∀w ∈ W , (iii) Eγ∗ supθ∈Θ ‖s(Wi� θ)‖1+ε+
Eγ∗M1(Wi) ≤ C ∀γ∗ ∈ Γ for some C < ∞ and ε > 0, and (iv) Θ is compact.
Then supθ∈Θ ‖n−1

∑n

i=1 s(Wi� θ) − Eγ0s(Wi� θ)‖ →p 0 under {γn} ∈ Γ (γ0) and
Eγ0s(Wi� θ) is uniformly continuous on Θ.

COMMENTS: (i) The centering term in Lemma 12.1 is Eγ0s(Wi� θ), rather
than Eγns(Wi� θ).

(ii) The proof of Lemma 12.1 is given in Andrews and Cheng (2011a).

Next, we verify Assumption B3∗ given in Supplemental Appendix A, which is
a set of sufficient conditions for Assumption B3(ii) and (iii). Assumption B3∗(i)
holds with Q(θ;γ0) defined in (12.6) by the continuity of h(x�π) in π, the
moment conditions in (12.4), and the DCT. Assumption B3∗(iv) and (v) hold
because Ψ(π) = B × Z is compact and does not depend on π. To verify As-
sumption B3∗(ii), we need that when β0 = 0,

Q(ψ�π;γ0)−Q(ψ0�π;γ0)=Eφ0(βh(Xi�π)+Z′
i(ζ0 − ζ))2/2> 0(12.7)

∀ψ 
=ψ0, ∀π ∈Π. The inequality in (12.7) holds unless

Pφ0(βh(Xi�π)+Z′
i(ζ0 − ζ)= 0)= 1(12.8)

for someψ 
=ψ0 and π ∈Π. But Pφ0(a
′(h(Xi�π)�Zi)= 0) < 1 for all a ∈Rdζ+1

and a 
= 0 by (12.4). Hence, (12.8) cannot hold for any (β�ζ) 
= (0� ζ0). This
completes the verification of Assumption B3∗(ii).

To verify Assumption B3∗(iii), we need that when β0 
= 0,

Q(θ;γ0)−Q(θ0;γ0)(12.9)

=Eφ0(βh(Xi�π)−β0h(Xi�π0)+Z′
i(ζ0 − ζ))2/2> 0

∀θ 
= θ0. The inequality in (12.9) holds unless

Pφ0(β0h(Xi�π0)−βh(Xi�π)+Z′
i(ζ0 − ζ)= 0)= 1(12.10)

for some θ 
= θ0. Because Pφ0(a
′(h(Xi�π)�h(Xi�π0)�Zi)= 0) < 1 for all π 
=

π0 and a 
= 0 by (12.4), the condition β0 
= 0 implies that (12.10) cannot hold
for any θ such that π 
= π0. When π = π0, (12.10) becomes

Pφ0((β0 −β)h(Xi�π0)+Z′
i(ζ0 − ζ)= 0)= 1�(12.11)
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Because Pφ0(a
′(h(Xi�π)�Zi) = 0) < 1 for all a ∈ Rdζ+1 and a 
= 0 by (12.4),

equation (12.11) cannot hold for (β�ζ) 
= (β0� ζ0). This completes the verifica-
tion of Assumption B3∗.

12.4. Close to β= 0 Assumptions

12.4.1. Assumptions C1 and D1

The sample criterion function Qn(θ) is a smooth sample average:

Qn(θ)= n−1
n∑
i=1

ρ(Wi�θ)� where ρ(Wi�θ)=U2
i (θ)/2 and(12.12)

Wi = (Yi�Xi�Z
′
i)

′�

In consequence, we verify Assumptions C1 and D1 by verifying Assumption Q1
of Supplemental Appendix A. The latter is sufficient for the Assumptions C1
and D1 by Lemma 8.6 of Supplemental Appendix A (given Assumptions B1
and B2).

The first- and second-order partial derivatives of ρ(Wi�θ) w.r.t. to ψ are

ρψ(Wi�θ)= −Ui(θ)dψ�i(π) and(12.13)

ρψψ(Wi�θ)= dψ�i(π)dψ�i(π)′� where

dψ�i(π)= (h(Xi�π)�Z
′
i)

′�

Thus, by Lemma 8.6, we verify that Assumption C1 holds with

DψQn(θ)= −n−1
n∑
i=1

Ui(θ)dψ�i(π) and(12.14)

DψψQn(θ)= n−1
n∑
i=1

dψ�i(π)dψ�i(π)
′�

The first- and second-order partial derivatives of ρ(Wi�θ) w.r.t. to θ are

ρθ(Wi�θ)= −Ui(θ)B(β)di(π)�(12.15)

ρθθ(Wi� θ)= −Ui(θ)Di(θ)+B(β)di(π)di(π)′B(β)� where

di(π)= (h(Xi�π)�Z
′
i� hπ(Xi�π)

′)′�

Di(θ)=
⎡⎣ 0 01×dζ hπ(Xi�π)

′

0dζ×1 0dζ×dζ 0dζ×dπ
hπ(Xi�π) 0dπ×dζ hππ(Xi�π)β

⎤⎦ �
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and B(β) depends on β, not ‖β‖, because β is a scalar. Hence, by Lemma 8.6,
we verify that Assumption D1 holds with

DQn(θ)= −n−1
n∑
i=1

Ui(θ)B(β)di(π)�(12.16)

D2Qn(θ)= n−1
n∑
i=1

(B(β)di(π)di(π)
′B(β)−Ui(θ)Di(θ))

by Lemma 8.6 in Supplemental Appendix A.77

Now, verify Assumption Q1. Assumption Q1(i) and (ii) hold immediately.
Assumption Q1(iii) holds because ρψψ(Wi�θ) does not depend on ψ. Now
we verify Assumption Q1(iv). By (12.13), verification of Assumption Q1(iv) is
equivalent to showing the stochastic equicontinuity (SE) of n−1

∑n

i=1Ui(θ)×
hπ(Xi�π)/βn, n−1

∑n

i=1Ui(θ)hππ(Xi�π) × β/β2
n, and n−1

∑n

i=1B(β/βn)×
di(π)di(π)

′B(β/βn) over θ ∈ Θn(δn). We now show the SE of these three
terms under {γn} ∈ Γ (γ0�∞�ω0).

The first term is

n−1
n∑
i=1

Ui(θ)hπ(Xi�π)/βn(12.17)

=
(
n−1/2

n∑
i=1

Uihπ(Xi�π)

)
/(n1/2βn)

+
(
n−1

n∑
i=1

h(Xi�πn)hπ(Xi�π)

)

−
(
n−1

n∑
i=1

h(Xi�π)hπ(Xi�π)

)
β/βn

+ n−1
n∑
i=1

Z′
i(ζn − ζ)hπ(Xi�π)/βn�

Note that for θ ∈ Θn(δn), we have |β/βn| = 1 + o(1) and (ζ − ζn)/βn = o(1)
because ‖ψ−ψn‖ ≤ δn|βn| and δn → 0. Hence, under {γn} ∈ Γ (γ0�∞�ω0), the

77This example illustrates why defining B(β) using β, not ‖β‖, is preferred in the scalar β
case. If B(β) is defined with ‖β‖ in place of β, then di(π) needs to be replaced by di(β�π) =
(h(Xi�π)�Z

′
i� sgn(β)hπ(Xi�π)

′)′. The appearance of sgn(β) complicates matters because it in-
troduces a dependence of di(β�π) on β, which otherwise does not appear, and it is a discontin-
uous function of β.
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SE of n−1
∑n

i=1Ui(θ)hπ(Xi�π)/βn is implied by the SE of (i) n−1/2
∑n

i=1Ui ×
hπ(Xi�π) for π ∈Π, (ii) n−1

∑n

i=1 h(Xi�π)hπ(Xi�π) for (π�π) ∈Π ×Π, and
(iii) n−1

∑n

i=1Zihπ(Xi�π)
′ for π ∈Π. The SE of (i) holds by Theorems 1 and 2

of Andrews (1994) using the type II class with envelope function B(Wi) =
Ui supπ∈Π ‖hππ(Xi�π)‖, the moment conditions in (12.4), and the compactness
of Π. The SE of (ii) and (iii) follows from Lemma 12.1.

Similarly, we can show the SE of n−1
∑n

i=1Ui(θ)hππ(Xi�π)β/β
2
n by re-

placing hπ(Xi�π) with hππ(Xi�π) in the foregoing argument and using
|β/βn| = 1 + o(1). To verify the SE of n−1/2

∑n

i=1Uihππ(Xi�π) for π ∈ Π
(element by element), we use the type II class in Andrews (1994) with en-
velope function B(Wi) = UiM(Xi) and the Lipschitz condition in (12.4). The
SE of n−1

∑n

i=1 h(Xi�π)hππ(Xi�π) and n−1
∑n

i=1Zihππ(Xi�π)
′ follows from

Lemma 12.1.
Finally, the SE of n−1

∑n

i=1B(β/βn)di(π)di(π)
′B(β/βn) follows from Lem-

ma 12.1 using |β/βn| = 1 + o(1). This completes the verification of Assump-
tion Q1.

12.4.2. Assumption C2

Assumption C2(i) holds in this example with

m(Wi�θ)= −Ui(θ)dψ�i(π)�(12.18)

Assumption C2(ii) holds because Eγ∗m(Wi�θ
∗) = −Eγ∗Ui(h(Xi�π

∗)�Z′
i)

′ = 0
∀γ∗ ∈ Γ . Assumption C2(iii) holds because Eγ∗m(Wi�ψ

∗�π) = −Eγ∗(Ui +
β∗h(Xi�π

∗)−β∗h(Xi�π))(h(Xi�π)�Z
′
i)

′ = 0 ∀π ∈Π when β∗ = 0.

12.4.3. Assumption C3

To verify Assumption C3, we have

Ui(ψ0�n�π)= Yi −Z′
iζn =Ui +βnh(Xi�πn)�(12.19)

Gn(π)= −n−1/2
n∑
i=1

(
Uidψ�i(π)

+βn[h(Xi�πn)dψ�i(π)−Eφnh(Xi�πn)dψ�i(π)]
)
�

Under {γn} ∈ Γ (γ0�0� b), Gn(π) ⇒ G(π;γ0), where G(π;γ0) is a Gaus-
sian process with bounded continuous sample paths and covariance kernel
Ω(π1�π2;γ0) = Eφ0U

2
i dψ�i(π1)dψ�i(π2)

′. This weak convergence follows from
Andrews (1994, p. 2251) because (i) Π is compact, (ii) the finite-dimensional
convergence holds by the CLT for a triangular array of rowwise i.i.d. random
variables, where the Lindeberg condition holds by the L2+δ-boundedness of
its summands, and βn → 0, and (iii) the stochastic equicontinuity (SE) holds
by applying the type II class (Lipschitz functions) using the differentiability of
h(x�π) in π.
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12.4.4. Assumption C4

Assumption C4(i) holds in this example with

H(π;γ0)=Eφ0dψ�i(π)dψ�i(π)
′(12.20)

by applying a uniform LLN for drifting true distributions, specifically, Lem-
ma 12.1, to n−1

∑n

i=1 dψ�i(π)dψ�i(π). The continuity of H(π;γ0) is implied by
the continuity of h(Xi�π) in π, Eφ0 supπ∈Π ‖dψ�i(π)dψ�i(π)′‖ < ∞, and the
DCT. Assumption C4(ii) follows immediately from the conditions in (12.4).

12.4.5. Assumption C5

To verify Assumption C5(i), we have

Kn(θ;γ∗)= ∂

∂β∗Eφ∗m(Wi�θ)(12.21)

= − ∂

∂β∗Eφ∗(Yi −βh(Xi�π)−Z′
iζ)dψ�i(π)

= − ∂

∂β∗Eφ∗(Ui +β∗h(Xi�π
∗)

−βh(Xi�π)−Z′
i(ζ − ζ∗))dψ�i(π)

= −Eφ∗h(Xi�π
∗)dψ�i(π)�

Next, we verify that Assumption C5(ii) and (iii) hold with

K(π;γ0)=K(ψ0�π;γ0)= −Eφ0h(Xi�π0)dψ�i(π)�(12.22)

They hold provided Eφnh(Xi�π1)dψ�i(π2) → Eφ0h(Xi�π1)dψ�i(π2) uniformly
over (π1�π2) ∈ Π × Π as φn → φ0 and Eφ0h(Xi�π1)dψ�i(π2) is continu-
ous in (π1�π2). The continuity holds by the continuity of h(Xi�π1)dψ�i(π2)
in (π1�π2), Eφ0 sup(π1�π2)∈Π×Π ‖h(Xi�π1)dψ�i(π2)‖ < ∞, and the DCT. By
Lemma 8.2 in Andrews and Cheng (2011a), the uniform convergence follows
from the pointwise convergence and the equicontinuity ofEφ∗h(Xi�π1)dψ�i(π2)
in (π1�π2) over φ∗ ∈ Φ∗(θ∗). The pointwise convergence Eφnh(Xi�π1)×
dψ�i(π2) → Eφ0h(Xi�π1)dψ�i(π2) holds by the convergence in distribution
of φn to φ0 (since φn → φ0 and the metric on Φ∗ induces weak con-
vergence) and the L1+δ boundedness of h(Xi�π1)dψ�i(π2) under φ ∈ Φ∗,
that is, supφ∈Φ∗ Eφ‖h(Xi�π1)dψ�i(π2)‖1+δ ≤ C < ∞ (e.g., see Theorem 2.20
and Example 2.21 of van der Vaart (1998)). Equicontinuity holds because
h(Xi�π1)dψ�i(π2) is partially differentiable in (π1�π2) and the partial deriva-
tives are uniformly bounded, that is, Eφ∗ sup(π1�π2)∈Π×Π(‖hπ(Xi�π1)

′dψ�i(π2)‖+
‖h(Xi�π1)(∂dψ�i(π2)/∂π

′)‖)≤ C for some C <∞ for all φ∗ ∈Φ∗(θ∗).
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12.4.6. Assumption C6

Next, we verify Assumption C6∗∗, which implies Assumption C6 by Lem-
ma 8.5 in Supplemental Appendix A. Assumption C6∗∗(i) holds because β is
a scalar. By the discussion following (12.19), a′(G1(π1)�G1(π2)�G2) has vari-
ance Eφ0U

2
i d

2
a(π1�π2), where da(π1�π2)= a′(h(Xi�π1)�h(Xi�π2)�Zi). By the

conditions in (12.4), Pφ0(da(π1�π2)= 0) < 1 ∀a ∈ Rdζ+2 with a 
= 0, ∀π1 
= π2,
∀φ0 ∈Φ∗(θ0), and Eφ0(U

2
i |Xi�Zi) > 0 a.s. Hence, Eφ0U

2
i d

2
a(π1�π2) > 0 ∀a 
= 0

and Assumption C6∗∗(ii) holds.

12.4.7. Assumption C7

We verify Assumption C7 as follows. Given the form of H(π;γ0) and
K(π;γ0) in (12.20) and (12.22), respectively, we have

K(π;γ0)
′H−1(π;γ0)K(π;γ0)(12.23)

= [Eφ0h(Xi�π0)dψ�i(π)]′[Eφ0dψ�i(π)dψ�i(π)
′]−1

× [Eφ0dψ�i(π)h(Xi�π0)]
≤Eφ0h

2(Xi�π0)�

where the inequality holds by the matrix Cauchy–Schwarz inequality in Tri-
pathi (1999). The inequality holds as an equality if and only if h(Xi�π0)a1 +
dψ�i(π)

′a2 = 0 with probability 1 for some a1 ∈ R, a2 ∈ Rdζ+1, and (a1� a
′
2) 
= 0.

The inequality holds as an equality uniquely at π = π0 because for any π 
= π0,
Pφ0(c

′(h(Xi�π0)�h(Xi�π)�Zi) = 0) < 1 for any c 
= 0 by (12.4). This com-
pletes the verification of Assumption C7.

12.4.8. Assumption C8

Last, we verify Assumption C8. To verify Assumption C8, we have

(∂/∂ψ′)EγnDψQn(ψ�πn)|ψ=ψn =Eφndψ�i(πn)dψ�i(πn)′(12.24)

by the form of DψQn(θn) given in (12.14). Assumption C8 holds provided
Eφndψ�i(π)dψ�i(π)

′ converges to Eφ0dψ�i(π)dψ�i(π)
′ uniformly over π ∈Π and

Eφ0dψ�i(π)dψ�i(π)
′ is continuous in π. This holds by the same argument as in

the verification of Assumption C5 above by replacing h(Xi�π1)dψ�i(π2) with
dψ�i(π)dψ�i(π)

′. The smoothness and moment conditions are satisfied by the
conditions in (12.4).
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12.5. Distant From β= 0 Assumptions

12.5.1. Assumption D2

To verify Assumption D2 with D2Qn(θ) given in (12.16), we have

Jn = n−1
n∑
i=1

di(πn)di(πn)
′(12.25)

− (
n1/2βn

)−1

×

⎡⎢⎢⎢⎢⎢⎢⎣
0 01×dζ n−1/2

n∑
i=1

Uihπ(Xi�πn)
′

0dζ×1 0dζ×dζ 0dζ×dπ

n−1/2
n∑
i=1

Uihπ(Xi�πn) 0dπ×dζ n−1/2
n∑
i=1

Uihππ(Xi�π)

⎤⎥⎥⎥⎥⎥⎥⎦ �

Under {γn} ∈ Γ (γ0�∞�ω0), n−1
∑n

i=1 di(πn)di(πn)
′ →p Eφ0di(π0)di(π0)

′ be-
cause n−1

∑n

i=1 di(π)di(π)
′ →p Eφ0di(π)di(π)

′ uniformly over π ∈ Π by
Lemma 12.1 (stated earlier in this appendix) and the continuity of Eφ0di(π)×
di(π)

′ in π. The second line of (12.25) is op(1) because n1/2|βn| → ∞,
n−1/2

∑n

i=1Uihπ(Xi�πn)
′ =Op(1), and n−1/2

∑n

i=1Uihππ(Xi�πn)=Op(1) under
{γn} ∈ Γ (γ0�∞�ω0). The latter two terms are Op(1) by the CLT for a trian-
gular array of rowwise i.i.d. random variables under the moment conditions in
(12.4). Hence, Assumption D2 holds with the matrix

J(γ0)=Eφ0di(π0)di(π0)
′�(12.26)

which is nonsingular by the conditions in (12.4).

12.5.2. Assumption D3

To verify Assumption D3 in this example, we have

n1/2B−1(βn)DQn(θn)= −n−1/2
n∑
i=1

Uidi(πn)(12.27)

→d N(0dθ� V (γ0))� where

V (γ0)=Eφ0U
2
i di(π0)di(π0)

′�

The convergence in distribution holds by the CLT for a triangular array of row-
wise i.i.d. random variables. Assumption D3(ii) holds becauseEφ0di(π0)di(π0)

′

is nonsingular and Eφ0(U
2
i |Xi�Zi) > 0 a.s. by (12.4).
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12.6. Key Quantities

In this example, the components of the stochastic processes ξ(π;γ0� b) and
τ(π;γ0� b), the function η(π;γ0�ω0), and the matrices J(γ0) and V (γ0) that
appear in the asymptotic results in Section 3 of AC1 are

H(π;γ0)=Eφ0dψ�i(π)dψ�i(π)
′�(12.28)

K(π;γ0)= −Eφ0h(Xi�π0)dψ�i(π)�

Ω(π1�π2;γ0)=Eφ0U
2
i dψ�i(π1)dψ�i(π2)

′�

J(γ0)= Eφ0di(π0)di(π0)
′�

V (γ0)=Eφ0U
2
i di(π0)di(π0)

′� where

dψ�i(π)= (h(Xi�π)�Z
′
i)

′� di(π)= (h(Xi�π)�Zi�hπ(Xi�π))
′�

and G(π;γ0) is a mean zero Gaussian process with covariance kernel Ω(π1�
π2;γ0).

12.7. Variance Matrix Estimators

In this example, we estimate J(γ0) and V (γ0) by Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n),
respectively, where

Ĵn(θ)= n−1
n∑
i=1

di(π)di(π)
′�(12.29)

V̂n(θ)= n−1
n∑
i=1

U2
i (θ)di(π)di(π)

′

= n−1
n∑
i=1

U2
i di(π)di(π)

′

+ 2n−1
n∑
i=1

Ui
[
βnh(Xi�πn)−βh(Xi�π)

+ (ζn − ζ)′Zi
]
di(π)di(π)

′

+ n−1
n∑
i=1

[
βnh(Xi�πn)−βh(Xi�π)

+ (ζn − ζ)′Zi
]2
di(π)di(π)

′�

These variance matrix estimators are used to construct t and Wald statistics,
and also to construct the identification-category-selection statistic An in (5.3)
of AC1.
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Assumption V1(i) (scalar β) holds with

J(θ;γ0)=Eφ0di(π)di(π)
′�(12.30)

V (θ;γ0)=Eφ0U
2
i di(π)di(π)

′ +Eφ0

[
β0h(Xi�π0)−βh(Xi�π)

+ (ζ0 − ζ)′Zi
]2
di(π)di(π)

′

by Lemma 12.1, using the conditions in (12.4). Assumption V1(ii) holds by
the continuity of h(x�π) and hπ(x�π) in π and the moment conditions in
(12.4).

The quantity Σ(π;γ0) in (4.4) takes the form

Σ(π;γ0)= (Eφ0di(π)di(π)
′)−1Eφ0U

2
i di(π)di(π)

′(Eφ0di(π)di(π)
′)−1�(12.31)

Given this, Assumption V1(iii) holds by the nonsingularity conditions in (12.4).
Assumption V1(i) and (ii) hold not only under {γn} ∈ Γ (γ0�0� b), but also

under {γn} ∈ Γ (γ0�∞�ω0) in this example. This and θ̂n →p θ0 under {γn} ∈
Γ (γ0�∞�ω0), which holds by Lemma 3.3 of AC1, imply that Assumption V2
holds.

12.8. Failure of Assumption C of Stock and Wright (2000)

In this section, we show that the main assumption of Stock and Wright (2000)
(SW)—Assumption C—fails for the GMM estimator based on the nonlinear
LS first-order conditions in the nonlinear regression model of (12.1). The im-
plication is that the range of applicability of this paper and that of SW are
different, as discussed in the Introduction of AC1. In particular, in SW, the es-
timator criterion function cannot be indexed by parameters that determine the
strength of identification, whereas in this paper it does.

Consider the model in (12.1) and, for simplicity, suppose no Z′
iζ summand

appears:

Yi = β · h(Xi�π)+Ui�(12.32)

The parameters (β�π) in our notation correspond to (β�α) in SW; that is, β is
strongly identified and π (= α) is potentially weakly identified. We switch no-
tation from π to α and back whenever it is convenient. To generate weak iden-
tification of π in (12.32), suppose the true parameters are γn = (βn�π0�φ0),
where βn = Cn−1/2 for n≥ 1 for some 0<C <∞. The nonlinear LS first-order
conditions yield the moment functions

Eγn(Yi −βh(Xi�π))

(
h(Xi�π)

hπ(Xi�π)

)
�(12.33)
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which equal 02 when (β�π)= (βn�π0). To apply SW’s results, one takes their
Zt = 1 ∀t and their moment function φt(θ) to equal the function in (12.33),
where their t�T , and θ correspond to our i� n, and (β�π)� respectively.

SW’s population moments equal

m̃T (α�β)= Eγn(Yi −βh(Xi�π))

(
h(Xi�π)

hπ(Xi�π)

)
(12.34)

= Eφ0(βnh(Xi�π0)−βh(Xi�π))

(
h(Xi�π)

hπ(Xi�π)

)
�

Next, SW use an identity m̃T (α�β)= m̃T (α0�βn)+ m̃1T (α�β)+ m̃2(β), where

m̃1T (α�β)= m̃T (α�β)− m̃T (α0�β)(12.35)

= Eφ0(βnh(Xi�π0)−βh(Xi�π))

(
h(Xi�π)

hπ(Xi�π)

)
−Eφ0(βnh(Xi�π0)−βh(Xi�π0))

(
h(Xi�π0)

hπ(Xi�π0)

)
=A1n(π)+A2(π�β)�

where

A1n(π)(12.36)

= n−1/2C ·Eφ0h(Xi�π0)

(
h(Xi�π)− h(Xi�π0)

hπ(Xi�π)− hπ(Xi�π0)

)
�

A2(π�β)

= βEφ0

[
h(Xi�π0)

(
h(Xi�π0)

hπ(Xi�π0)

)
− h(Xi�π)

(
h(Xi�π)

hπ(Xi�π)

)]
�

The first component, A1n(π), of m̃1T (α�β) has the form required by As-
sumption C(i) of SW. It is n−1/2 times a function, call it sn(π), that has a limit
as n→ ∞ uniformly over π that is continuous, is bounded, and equals 0 when
π = π0. (In fact, in the present case, sn(π) does not depend on n, so the limit
holds trivially.)

However, the second component,A2(π�β), does not have the form specified
in Assumption C(i). It does not depend on n and is not identically zero. In
consequence, Assumption C(i) of SW fails in this example.

In words, SW state “The key idea in this paper, made precise in Assump-
tion C below, is to treat m̃2(β) as large for β outside β0, but m̃1T (α�β) as small
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for all α and β”; see p. 1060 of SW. As shown in (12.35) and (12.36), in this ex-
ample, m̃1T (α�β) is not small for all α and β. The same feature arises in other
examples in which a parameter that determines the strength of identification
appears in the estimator criterion function.

13. SUPPLEMENTAL APPENDIX F: LIML EXAMPLE

In this example, we consider a linear IV regression model estimated by the
ML estimator, which is the limited information ML (LIML) estimator. We con-
sider robust QLR-based tests concerning the coefficient π (in our notation) on
the endogenous variable in the structural equation. The objective of this sec-
tion is to compare the robust tests introduced in AC1 with the conditional like-
lihood ratio (CLR) test of Moreira (2003), the LM test of Kleibergen (2002)
and Moreira (2009), and the well known Anderson–Rubin (AR in this section
only) test. The CLR test is known to have approximate asymptotic optimal-
ity properties in the classes of invariant similar tests and invariant tests; see
Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and
Jansson (2009). Hence, this is a good benchmark test and model to assess the
performance of the robust tests of AC1.

The asymptotic distributions of the LIML estimator and the QLR statistic,
which are obtained here, also are given in Staiger and Stock (1997), Moreira
(2003), and Andrews, Moreira, and Stock (2006). Hence, the point of this sec-
tion is not to derive new asymptotic results, but rather to link the general re-
sults of AC1 to existing results in the literature and, more importantly, to assess
the power properties of the robust tests introduced in AC1. A numerical study
is conducted to compare the asymptotic power of the type 2 robust QLR test
with that of the CLR, LM, and AR tests.

In short, we find that the type 2 robust test based on the NI-ICS statistic
has power that is essentially equal to that of the CLR test. Hence, this robust
test has approximately asymptotically optimal power in the same sense as the
CLR test. The type 2 robust test based on the unrestricted ICS statistic has
lower power than the CLR test in some areas of the parameter space and equal
power in others.

13.1. Key Quantities

The structural model is

y1�i = y2�iπ + u∗
i � y2�i =Z′

iβ+ v∗
i �(13.1)

where (u∗
i � v

∗
i )

′ ∼ N(0�Υ ∗) for a p.d. 2 × 2 matrix Υ ∗, (u∗
i � v

∗
i ) and Zi are in-

dependent, {(Z′
i� u

∗
i � v

∗
i )

′ : i = 1� � � � � n} are i.i.d., y1�i� y2�i� u
∗
i � v

∗
i ∈ R, Zi ∈ Rk,
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π ∈R, and β ∈Rk.78,79 The reduced-form equations are

y1�i = π ·Z′
iβ+ ui� y2�i =Z′

iβ+ vi�(13.2)

where ui = u∗
i + v∗

i π, vi = v∗
i , and (ui� vi)′ ∼N(0�Υ). Note that the reparame-

trization between (π�Υ ∗) and (π�Υ) is one-to-one and Υ is p.d.
Define ζ = vech(Υ−1)= S · vec(Υ−1) ∈ R3, where S ∈ R3×4 is a selector ma-

trix.
The log-likelihood function for θ= (β�ζ�π) multiplied by −n−1 and ignor-

ing a constant is

Qn(θ)= 1
2

log |Υ | + 1
2
n−1

n∑
i=1

εi(β�π)
′Υ−1εi(β�π)� where(13.3)

εi(β�π)= (y1�i −π ·Z′
iβ� y2�i −Z′

iβ)
′ ∈R2�

Assumption A holds becauseQn(θ) does not depend on π when β= 0. Define
εi = (ui� vi)′ = εi(β0�π0).

Below we verify Assumptions B1–B3, C1–C5, C7, C8, D1–D3, and RQ1–
RQ3, and provide key quantities in these assumptions. We do not give all of the
details of the verification, which are similar to those in the nonlinear regression
example in Supplemental Appendix E.

The optimization and true parameter spaces Θ and Θ∗ are Θ=×k

j=1[−bL�j�
bH�j]×Z ×Π andΘ∗ =×k

j=1[−b∗
L�j� b

∗
H�j]×Z ∗×Π∗, where bL�j� bH�j� b∗

L�j� b
∗
H�j ∈

R, 0 ≤ b∗
L�j < bL�j , 0 ≤ b∗

H�j < bH�j , b
∗
L�j and b∗

H�j are not both 0 for j = 1� � � � �k,
Z ∗ ⊂ int(Z) ⊂ {ζ ∈ R3 :ζ = vech(A) for some 2 × 2 symmetric p.d. matrix
A}, Π∗ ⊂ int(Π) ⊂ R, and Z ∗�Z�Π∗, and Π are compact. Let φ denote the
distribution of Zi ∀i≥ 1. The true parameter space for γ = (θ�φ) is

Γ = {γ = (θ�φ) :θ ∈Θ∗�φ ∈Φ∗}�(13.4)

where Φ∗ is some compact subset of Φ w.r.t. the metric dΦ and Φ =
{φ :EφZiZ′

i = Ik}, where dΦ is some metric on the space of distributions on

78We use the notation of AC1 in which the parameters (β�π) are reversed from the usual
notation in the literature. The reason is that, in AC1, the parameter β is the parameter that
determines the strength of identification of the parameter π.

79For simplicity, we consider a model without exogenous variables Xi in either equation. As is
well known, such variables can be projected out and the results given here apply with Zi being
viewed as the projection residual; for example, see Section 2 of Andrews, Moreira, and Stock
(2006) and consider a population projection in place of a sample projection. ProvidedXi includes
an intercept, this yields that Zi has mean zero. Also for simplicity, we assume the errors are
normally distributed. The results can be extended to nonnormal finite variance errors, provided
(u∗

i � v
∗
i ) is symmetrically distributed or the instruments have mean zero. By the discussion above,

the latter is not restrictive.
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Rk that induces weak convergence.80 With these definitions, Assumptions B1
and B2 hold.

In the LIML example, the function Q(θ;γ0) in Assumption B3(i) is

Q(θ;γ0)= 1
2
(log |Υ | +Eγ0εi(β�π)

′Υ−1εi(β�π))(13.5)

= 1
2
(log |Υ | + trace(Υ−1Υ0)+Δ(β�π;γ0))� where

Δ(β�π;γ0)=Eγ0δi(β�π;γ0)
′Υ−1δi(β�π;γ0)≥ 0�

δi(β�π;γ0)=
(
π0Z

′
iβ0

Z′
iβ0

)
−
(
πZ′

iβ

Z′
iβ

)
�

Because Υ is p.d. and Z′
iβ = 0 a.s. if and only if β = 0, we have (i) when

β0 = 0, ∀π ∈ Π, δi(β�π;γ0) = 0 if and only if β = 0 and (ii) when β0 
= 0,
δi(β�π;γ0)= 0 if and only if (β�π)= (β0�π0). For any θ ∈Θ,

∂

∂Υ−1
Q(θ;γ0)= 1

2
(−Υ +Υ0) and

∂2

∂2Υ−1
Q(θ;γ0)= I2 ⊗ I2�(13.6)

Hence, Q(θ;γ0) is minimized at ζ = vech(Υ−1
0 ) for any β and π. In conse-

quence, Assumption B3 is verified using Assumption B3∗ and Lemma 8.1 in
Supplemental Appendix A.

Denote the first derivative of εi(β�π) w.r.t. β as

qβ�i(π)= −(πZi�Zi)′ = −(π�1)′ ⊗Z′
i ∈R2×k�(13.7)

Note that Eγ0qβ�i(π1)
′Υ−1

0 qβ�i(π2)= a(π1)
′Υ−1

0 a(π2)Ik, where a(π)= (π�1)′ ∈
Rk.

Assumption C1 is verified with

DβQn(θ)= n−1
n∑
i=1

qβ�i(π)
′Υ−1εi(β�π) ∈Rk�(13.8)

DββQn(θ)= n−1
n∑
i=1

qβ�i(π)
′Υ−1qβ�i(π) ∈Rk×k�

DζQn(θ)= 1
2

vech

(
−Υ + n−1

n∑
i=1

εi(β�π)εi(β�π)
′
)

∈R3�

DζζQn(θ)= 1
2
S · (Υ ⊗Υ) · S′ ∈R3×3�

80There is no loss of generality in assuming EφZiZ′
i = Ik because β and Zi in the original

model can be reparametrized as β∗ = (EφZiZ′
i)

1/2β and Z∗
i = (EφZiZ′

i)
−1/2Zi .
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DβζQn(θ)= n−1
n∑
i=1

εi(β�π)
′ ⊗ qβ�i(π)′ · S′ ∈Rk×3�

Assumption C1 is verified using the sufficient condition Assumption Q1 and
Lemma 8.6 in Supplemental Appendix A. Assumption Q1 holds by a uniform
LLN.

Assumption C2 holds with

m(Wi�θ)=
(

qβ�i(π)
′Υ−1εi(β�π)

1
2

vech(−Υ + εi(β�π)εi(β�π)′)

)
∈Rk+3(13.9)

because ∀π ∈Π, εi(0�π)= εi when β0 = 0 and εi ∼N(0�Υ).
Assumption C3 holds with

Gn(π)= n−1/2
n∑
i=1

(
qβ�i(π)

′Υ−1
n εi −Eγnqβ�i(π)′Υ−1

n εi
1
2

vech(εiε′
i −Eγnεiε′

i)

)
�(13.10)

The weak convergence of the empirical process {Gn(π) :π ∈Π} is straightfor-
ward because qβ�i(π)′ = −(π�1)⊗Zi. The limit process {G(π;γ0) :π ∈Π} in
Assumption C3 is the mean zero Gaussian process with covariance kernel

Ω(π1�π2;γ0)=
(
a(π1)

′Υ−1
0 a(π2)Ik 0k×3

03×k Ωζζ(γ0)

)
� where(13.11)

Ωζζ(γ0)= 1
4
S · Varγ0(εi ⊗ εi) · S′ = 1

4
S(I4 +K4)(Υ0 ⊗Υ0)S

′�

I4 ∈ R4×4 is the identity matrix, and K4 ∈ R4×4 is the communication matrix
that transforms vec(A) to vec(A′) for anyA ∈R4×4. The equalities forΩζζ(γ0)
hold by Theorem 4.3(iv) of Magnus and Neudecker (1979). In (13.11), the off-
diagonal elements are zeros because the bivariate normal distribution is sym-
metric around 0.81

Assumption C4 holds with

H(π;γ0)=
(
a(π)′Υ−1

0 a(π)Ik 0k×3

03×k
1
2
S · (Υ0 ⊗Υ0) · S′

)
(13.12)

by a uniform LLN, where the off-diagonal elements are zeros because
εi(0�π)= εi when β0 = 0.

81Alternatively, the off-diagonal elements are zeros if EZi = 0 and εi has a nonsymmetric
distribution.
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To verify Assumption C5, note that

Eγ0m(Wi�θ)=
(

Eγ0qβ�i(π)
′Υ−1εi(β�π)

1
2

vech(−Υ +Eγ0εi(β�π)εi(β�π)
′)

)
∈Rk+3�(13.13)

Kn(θ;γ0)=
( −Eγ0qβ�i(π)

′Υ−1qβ�i(π0)

1
2
S ·Eγ0(εi(β�π)⊗ I2)qβ�i(π0)

)
∈R(k+3)×k�

where the second equality uses (∂/∂A)(AA′) =A⊗ I2 for A ∈ R2. Assump-
tion C5 holds with

K(π;γ0)=
(−a(π)′Υ−1

0 a(π0)Ik
03×k

)
∈R(k+3)×k�(13.14)

where the second element is zero because εi(0�π)= εi when β0 = 0.
Assumption C6 is not needed in deriving the asymptotic null distributions of

the QLR statistic for π and the null-imposed ICS statistic.82 Assumption C7
holds by the matrix Cauchy–Schwarz inequality because K(π;γ0)

′H−1(π;
γ0)K(π;γ0) = a(π)′Υ−1

0 a(π0)[a(π)′Υ−1
0 a(π)]−1a(π)′Υ−1

0 a(π0)Ik. Assump-
tion C8 follows from the switch of E and ∂ and a uniform LLN.

Define

qπ�i(β)= ∂

∂π
εi(β�π)= −(Z′

iβ�0k×1)′ ∈R2�(13.15)

qβπ�i = −(Zi�0k×1)′ ∈R2×k�

qi(ω)= qπ�i(β)/‖β‖ = −(Z′
iω�0)′ ∈R2�

Assumption D1 holds with the partial derivatives in (13.8) plus

DπQn(θ)= n−1
n∑
i=1

qπ�i(π)
′Υ−1εi(β�π) ∈R�(13.16)

DππQn(θ)= n−1
n∑
i=1

qπ�i(π)
′Υ−1qπ�i(π) ∈R�

DβπQn(θ)= n−1
n∑
i=1

(q′
βπ�iΥ

−1εi(β�π)+ qβ�i(π)′Υ−1qπ�i(β)) ∈Rk�

DζπQn(θ)= n−1
n∑
i=1

S · (εi(β�π)⊗ I2)qπ�i(π) ∈R3�

82If the ICS statistic involves an unrestricted estimator, we assume Assumption C6 holds.
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Assumption D1 is verified using the sufficient condition Assumption Q1 and
Lemma 8.6 in Supplemental Appendix A.

Assumption D2 holds with

J(γ0)(13.17)

=

⎛⎜⎜⎝
Eγ0qβ�i(π0)

′Υ−1
0 qβ�i(π0) 0k×3 Eγ0qβ�i(π0)

′Υ−1
0 qi(ω0)

03×k
1
2
S · (Υ0 ⊗Υ0) · S′ 03

Eγ0qi(ω0)
′Υ−1

0 qβ�i(π0) 0′
3 Eγ0qi(ω0)

′Υ−1
0 qi(ω0)

⎞⎟⎟⎠ �

where the zero elements follow from εi(β0�π0) = εi. Assumption D3 holds
with V (γ0) equal to J(γ0) except that 1

2S · (Υ0 ⊗ Υ0) · S′ is replaced by
1
4S(I4 +K4)(Υ0 ⊗ Υ0)S

′. Because H(π;γ0) and J(γ0) are block diagonal, the
first- and second-order derivatives of Qn(θ) w.r.t. ζ do not effect the asymp-
totic distributions of the estimators and the QLR statistic for π.

We consider the QLR test and CI’s involving π. In consequence, Assump-
tion RQ2(ii) holds for the QLR statistic with ŝn = 1 and the standard critical
value is χ2

1�1−α. Assumptions RQ1 and RQ3 hold automatically.

13.2. Asymptotic Distributions of the Statistics

Let QLRn(πH0) denote the QLR statistic for the null hypothesis H0 :π =
πH0 , where πH0 may be different from the limit π0 of the true value of π.

Under {γn} ∈ Γ (γ0�0� b) with b ∈ Rk, the asymptotic distribution of
QLRn(πH0) is the distribution of

QLR(h�πH0)= 2
(
ξ(πH0;γ0� b)− inf

π∈Π
ξ(π;γ0� b)

)
� where(13.18)

ξ(π;γ0� b)

= −(Gβ(π;γ0)− a(π)′Υ−1
0 a(π0)b)

′(Gβ(π;γ0)− a(π)′Υ−1
0 a(π0)b)

2a(π)′Υ−1
0 a(π)

�

Gβ(π;γ0)= (
a(π)′Υ−1/2

0 η
)′ ∈Rk�

η= (η1� � � � �ηk) ∈R2×k� ηj ∼N(0� I2) are i.i.d.

for j = 1� � � � �k�

By construction, {Gβ(π;γ0) :π ∈ Π} is a Gaussian process with covariance
kernel a(π1)

′Υ−1
0 a(π2)Ik. Under {γn} ∈ Γ (γ0�∞�ω0), QLRn(πH0) ∼ χ2

1 when
πH0 = π0.
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The null-imposed ICS statistic is83

An(πH0)= (nβ̂n(πH0)
′Σ̂−1
ββ�n(πH0)β̂n(πH0)/k)

1/2� where(13.19)

Σ̂ββ�n(πH0)=
(
a(πH0)

′Υ̂−1
n (πH0)a(πH0)n

−1
n∑
i=1

ZiZ
′
i

)−1

�

Υ̂n(πH0)= n−1
n∑
i=1

εi(β̂n(πH0)�πH0)εi(β̂n(πH0)�πH0)
′�

Under {γn} ∈ Γ (γ0�0� b) with b ∈ Rk, Υ̂n(πH0) →p Υ0 by a uniform LLN,
β̂n(πH0)→p 0, and εi(0�π) does not depend on π. Under {γn} ∈ Γ (γ0�∞�ω0),
Υ̂n(πH0)→p Υ0 when πH0 = π0 by a uniform LLN and β̂n(π0)→p β0. This re-
places the verification of Assumptions V1 (vector β) and V2 for the type 2
robust QLR test and CI because the asymptotic variance of n1/2(β̂n(πH0)−βn)
is (a(πH0)

′Υ−1
0 a(πH0))

−1Ik under {γn} ∈ Γ (γ0�0� b} and {γn} ∈ Γ (γ0�∞�ω0).
In this example,

τβ(π;γ0� b)= −Gβ(π;γ0)− a(π)′Υ−1
0 a(π0)b

a(π)′Υ−1
0 a(π)

�(13.20)

Under {γn} ∈ Γ (γ0�0� b) with b ∈Rk, the asymptotic distribution ofAn(πH0) is

A(h�πH0)= (a(πH0)
′Υ−1

0 a(πH0)τβ(πH0;γ0� b)
′τβ(πH0;γ0� b)/k)

1/2(13.21)

= (−2ξ(πH0;γ0� b)/k)
1/2�

Under {γn} ∈ Γ (γ0�∞�ω0), An(πH0)∼ (χ2
k/k)

1/2 when πH0 = π0.

13.3. Simplified Representation

In this section, we simplify the expressions in (13.18) and (13.21) for the
asymptotic distributions of QLRn(πH0) and An(πH0). We show that they cor-
respond to the asymptotic distributions in Moreira (2003) and Andrews, Mor-
eira, and Stock (2006) when Π =R. Above, we assume Π is compact because
the general assumptions for nonlinear models used in AC1 rely on bounded-
ness of the parameter space, as is common in the extremum estimator litera-
ture. In the linear model considered here that could be relaxed.

83By definition of β̂n(π), for the restriction H0 :π = πH0 , the restricted estimator β̃n
equals β̂n(πH0). Also, for this restriction, some (lengthy) algebra shows that Σ̃ββ�n reduces to
J̃−1
ββ�nṼββ�nJ̃

−1
ββ�n, where J̃ββ�n and Ṽββ�n are the upper left dβ × dβ blocks of J̃n and Ṽn, respectively,

and, in turn, J̃−1
ββ�nṼββ�nJ̃

−1
ββ�n, reduces to the expression in (13.19) for Σ̂ββ�n(πH0).
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Define two independent random variable S and T by

S ∼N(cπb� Ik) and T ∼N(dπb� Ik)� where(13.22)

cπ = (π0 −πH0) · (a′
⊥Υ0a⊥)−1/2 ∈R�

dπ = a′
0Υ

−1
0 a · (a′Υ−1

0 a)
−1/2 ∈R�

a⊥ = (1�−πH0)
′� a= (πH0�1)′� and a0 = (π0�1)′�

Now we show that under {γn} ∈ Γ (γ0�0� b) with b ∈ Rk, the distributions of
QLR(h�πH0) and A(h�πH0) in (13.18) and (13.21) satisfy

QLR(h�πH0)∼ 1
2
(
QS −QT +

√
(QS −QT)2 + 4Q2

ST

)
�(13.23)

A(h�πH0)∼√
QT/k� where

QS = S′S� QT = T ′T� and QST = S′T�

The result for QLR(h�πH0) is analogous to the combination of (3.4) and
Lemma 4 of Andrews, Moreira, and Stock (2006), but is obtained by a different
route.

Define a∗(π)= Υ−1/2
0 a(π), where as above a(π)= (π�1)′ ∈R2, and a∗

⊥(π)=
Υ 1/2

0 a⊥(π), where a⊥(π) = (1�−π)′ ∈ R2. Then Gβ(π;γ0) = η′a∗(π) and
a(π)′Υ−1

0 a(π0)b = ba∗(π0)
′a∗(π). The chi-square process ξ(π;γ0� b) can be

written as

ξ(π;γ0� b)= −a
∗(π)′M ′Ma∗(π)
2a∗(π)′a∗(π)

� where(13.24)

M = η′ − ba∗(π0)
′ ∈Rk×2�

vec(M)∼N(−a∗(π0)⊗ b� I2k)�

and η is defined in (13.18). Define a 2 × 2 orthogonal matrix

L= [L1�L2](13.25)

=
[ −a∗

⊥(πH0)√
a∗

⊥(πH0)
′a∗

⊥(πH0)
�

−a∗(πH0)√
a∗(πH0)

′a∗(πH0)

]
� which yields

ML= [ML1�ML2] = [η′L1 + cπb�η′L2 + dπb]
∼ [S�T ]�

where the distribution holds because η′L1�η
′L2 ∼N(0� Ik), η′L1 and η′L2 are

independent, and a∗(π0)
′a∗

⊥(πH0)= π0 −πH0 . Using the expressions above, we



138 D. W. K. ANDREWS AND X. CHENG

obtain

ξ(πH0;γ0� b)= −1
2
(ML2)

′(ML2)∼ −1
2
T ′T = −1

2
QT�(13.26)

inf
π∈R
ξ(π;γ0� b)= −1

2
λmax(M

′M)= −1
2
λmax((ML)

′(ML))

∼ −1
2
λmax([S�T ]′[S�T ])

= −1
4
(
QS +QT +

√
(QS −QT)2 + 4Q2

ST

)
�

This implies the desired results in (13.23) because QLR(h�πH0)= 2(ξ(πH0;γ0�
b)− infπ∈R ξ(π;γ0� b)) and A(πH0;γ0� b)= (−2ξ(πH0;γ0� b)/k)

1/2.

13.4. Unrestricted ICS Statistic

Next we provide an unrestricted ICS statistic using a LS estimator of β and
show that the asymptotic distribution of this statistic is a function of S and T .
In the numerical study, we compare the powers of the type 2 robust QLR tests
with null-imposed and unrestricted ICS statistics.

Let β̂n = (Z′Z)−1Z′Ye2 be the LS estimator of β based on the second
reduced-form equation, where Z = (Z1� � � � �Zn)

′ ∈Rn×k, Y = (Y1�Y2) ∈Rn×2,
Yj = (yj�1� � � � � yj�n)′ ∈Rn for j = 1 and 2, and e2 = (0�1)′. The asymptotic vari-
ance of n1/2(β̂n −βn) is e′

2Υ0e2Ik. The unrestricted ICS statistic is

An =
(
Υ̂−1
n�22nβ̂

′
n

(
n−1

n∑
i=1

ZiZ
′
i

)
β̂n/k

)1/2

� where(13.27)

Υ̂n�22 = n−1
n∑
i=1

(y2�i −Z′
iβ̂n)

2�

Now we show that under Γ (γ0�0� b) with b ∈Rk,

An →d A
∗(πH0;γ0� b)∼ ((ϕ1S +ϕ2T)

′(ϕ1S +ϕ2T)/k)
1/2� where(13.28)

ϕ= (ϕ1�ϕ2)
′ =D−1e2 ∈R2�

D= [
(e′

2Υ0e2)
1/2a⊥(a′

⊥Υ0a⊥)−1/2� (e′
2Υ0e2)

1/2Υ−1
0 a(a

′Υ−1
0 a)

−1/2
]
�

where a⊥ and a are defined in (13.22). Define

Sn = (Z′Z)−1/2Z′Ya′
⊥ · (a′

⊥Υ0a⊥)−1/2�(13.29)

Tn = (Z′Z)−1/2Z′YΥ−1
0 a · (a′Υ−1

0 a)
−1/2�
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Note that

ϕ1Sn +ϕ2Tn = [Sn :Tn]ϕ= (e′
2Υ0e2)

−1/2(Z′Z)−1/2Z′YDϕ(13.30)

= (e′
2Υ0e2)

−1/2(Z′Z/n)1/2n1/2β̂n

= (e′
2Υ0e2)

−1/2n1/2β̂n + op(1)�
Hence,

An = (
(ϕ1Sn +ϕ2Tn)

′(ϕ1Sn +ϕ2Tn)/k
)1/2 + op(1)(13.31)

by (13.27) and (13.30). This implies the desired result because under {γn} ∈
Γ (γ0�0� b), Sn →d S and Tn →d T by arguments analogous to those used to
establish Lemma 4 of Andrews, Moreira, and Stock (2006).

13.5. Simulation Design

The model considered is the same as that in the numerical section in An-
drews, Moreira, and Stock (2006). The parameters that characterize the distri-
butions of the tests are λ= b′b, the number of IV’s k, the correlation between

FIGURE S-26.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter π in the linear IV model, k= 2�10, ρ= 0�5, λ= 5�20. The ICS statistic for the robust
QLR test is the null-imposed Wald statistic.
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FIGURE S-27.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter π in the linear IV model, k = 5, ρ = 0�95�0�5, λ = 5�20. The ICS statistic for the
robust QLR test is the unrestricted Wald statistic.

the reduced-form errors ρ, and πH0 − π0. The significance level of the tests is
5% and the parameter space for π is R. All results are based on 50,000 simu-
lation repetitions.

We plot the power functions of the CLR, LM, and Anderson–Rubin (de-
noted AR in Figures S-26–S-28) tests together with the power function of the
type 2 robust QLR test. For the robust test, we consider both the null-imposed
ICS statistic An(πH0) and the unrestricted ICS statistic An.

For the type 2 robust test, the LF critical value is obtained over discrete
values of λ from 0 to 40 with a grid of 1. The transition function s(x) equals
exp(−2x) and the constant D equals 0. The choices of s(x) and D were deter-
mined via some experimentation to be good choices in terms of yielding null
rejection probabilities that are relatively close to the nominal size 5% across
different values of λ. Given s(x) and D, the choice of κ was determined by
maximizing average power against the alternatives plotted in the figures. The
choice set of κ runs from 0 to 3 with a grid 0�5. A wide range of κ values yields
similar average power.

The conditional critical values for the CLR test are based on tables in the
Supplemental Appendix of Andrews, Moreira, and Stock (2006) and are com-
puted with linear interpolation.
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FIGURE S-28.—Power functions for the CLR, robust QLR, LM, and AR tests for the structural
parameter π in the linear IV model, k= 2�10, ρ= 0�5, λ= 5�20. The ICS statistic for the robust
QLR test is the unrestricted Wald statistic.

13.6. Results

The results are given in Figure 8 of AC1, as well as Figures S-26–S-32. Fig-
ure S-26 shows that the robust QLR test based on the NI-ICS statistic has

FIGURE S-29.—Coverage probabilities of robust QLR CI’s for the structural parameter π in
the linear IV model, k = 5, ρ = 0�95, 0�5. The ICS statistics for Rob and Rob∗ are the null-im-
posed and unrestricted Wald statistics.
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FIGURE S-30.—Coverage probabilities of robust QLR CI’s for the structural parameter π in
the linear IV model, k= 2�10, ρ= 0�5. The ICS statistics for Rob and Rob∗ are the null-imposed
and unrestricted Wald statistics.

FIGURE S-31.—Asymptotic densities of the QLR statistic for the structural parameter π in the
linear IV model when k= 5, ρ= 0�5 and the χ2

1 density (black line).

FIGURE S-32.—Asymptotic 95% quantiles of the QLR statistic and asymptotic coverage prob-
abilities of standard CI’s concerning the structural parameter π in the linear IV model.
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power that is essentially equal to that of the CLR test. Figures S-27 and S-28
show that the type 2 robust test based on the unrestricted ICS statistic has
lower power than the CLR test.

Figures S-29 and S-30 show the coverage probabilities of the two robust QLR
tests as a function of λ, which measures the strength of the IV’s. The robust
test based on the NI-ICS statistic is close to being asymptotically similar. The
robust test based on the unrestricted ICS statistic overcovers in some scenarios.

Figure S-31 graphs the density of the QLR statistic under the null hypothe-
sis and compares it to a chi-square distribution with 1 degree of freedom, χ2

1
(which is its distribution under strong identification). It is clear that for weak
IV’s (i.e., small λ), the χ2

1 distribution does not provide a good approximation
in the upper tail to the actual asymptotic distribution.

The first set of graphs in Figure S-32 shows that the 95% quantiles of the
asymptotic distribution of the QLR statistic increase noticeably as λ decreases
to 0. The second set of graphs in Figure S-32 show that the standard QLR test,
which uses the 95% quantile from the χ2

1 distribution, undercovers noticeably
with weak IV’s. The asymptotic size of the standard QLR test varies from 60%
to 90%, depending on the parameter configuration.
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