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BY JIHONG LEE AND QINGMIN LIU

THIS SUPPLEMENT CONTAINS additional results and proofs that were left out
of the main paper. Section S.1 presents alternative equilibrium constructions
that are outcome-equivalent to the reputation equilibrium of Theorem 1 in
the main paper. Section S.2 demonstrates multiple reputation equilibria in
the non-generic symmetric binary case. Section S.3 offers examples of non-
reputation equilibria. Section S.4 formally compares our analysis to that of the
reputation literature.

S.1. OUTCOME-EQUIVALENT EQUILIBRIUM PROFILES

We offer and verify alternative equilibrium strategy/belief profiles that in-
duce the same outcome paths and payoffs as the equilibrium constructed for
Theorem 1 in the main paper (Appendix C). We say that two strategy pro-
files are outcome-equivalent at belief p if the two profiles generate the same
probability distribution of outcomes (transfers, outside options, and posterior
beliefs).

S.1.1. Randomization by the Short-Run Player at p<p∗

Consider the following modification to the strategy profile and beliefs stated
in Appendix C.2.2:

1. Player 2’s strategy is the same except at p ∈ (0�p∗), it offers some s′ >
EB[v] − c with probability r(p) = p

p∗
1−p∗
1−p

and EB[v] − c with probability 1 −
r(p).

2. Type G’s strategy is the same.
3. Type B’s strategy is the same except at p ∈ (0�p∗), it accepts s if and only

if s ≤EB[v] − c.
4. Beliefs are the same.
It is straightforward to see that the arguments for Lemma 15 also apply here

to verify the above profile, which is outcome-equivalent to the original equilib-
rium at all p.

S.1.2. Type G’s Response

Next, we consider an equilibrium in which type G’s response to the cutoff de-
mand EG[v] depends on p. Consider the following modification to the strategy
profile and beliefs stated in Appendix C.2.2:
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1. Player 2’s strategy is the same.
2. Type G’s strategy is if p < p∗∗, it accepts s if and only if s < EG[v]; if

p≥ p∗∗, it accepts s if and only if s ≤EG[v].
3. Type B’s strategy is the same except at any p ∈ (p∗�p∗∗), it accepts s if and

only if s < max{ξ(p)�EG[v]}, where ξ(p) = Sα(p)−δEB[v]
1−δ

and Sα(p) is the fixed
point of Tα for α ∈ [0�1] as in Appendix C.

4. Beliefs:
(a) The belief is updated by Bayes’ rule whenever possible.
(b) At p < p∗∗, the posterior belief assigns probability 1 to type B after ac-

ceptance of a demand higher than or equal to EG[v]; there is no change of
belief after acceptance of a demand lower than EG[v].

(c) At p ≥ p∗∗, the posterior belief assigns probability 1 to type B after ac-
ceptance of a demand strictly higher than EG[v]; there is no change of belief
after acceptance of a demand lower than or equal to EG[v].

(d) At any p ∈ (p∗∗�1), the posterior belief assigns probability 1 to type G
after rejection (which is off-path).

Note that the only substantive difference between the above profile and the
equilibrium profile in the main paper lies in type B’s response at p ∈ (p∗�p∗∗)
when the offer is exactly max{ξ(p)�EG[v]}; instead of accepting, type B now
rejects it. The beliefs are rewritten to take account of this modification. We
define ξ(p) precisely as the demand whose acceptance and subsequent revela-
tion generate the continuation payment Sα(p). Thus, the proposed profile can
be verified similarly as in the proof of Lemma 15.

S.2. MULTIPLE EQUILIBRIA IN THE NON-GENERIC SYMMETRIC BINARY CASE

In the symmetric binary model considered in Section 4 and Appendix E, the
equilibrium value function is given explicitly by the second-order difference
equation for positive integer n:

Sn = (1 − δ)EB[v] + δqSn−1 + δ(1 − q)Sn+1�(S.1)

In the parametrized model, δ = e−r� and q = 1+μ
√
�

2 . Starting from the initial
conditions S−1 = S0 = S = EB[v]− (1 − δ)c, we define N = sup{n :Sn > EG[v]}.
In Appendix E, we showed that, generically, SN+1 <EG[v].

Suppose the non-generic case in which SN+1 = EG[v]. In this case, two equi-
librium outcomes are possible. The first equilibrium is as reported above such
that p∗ = φ−N(p∗∗) (i.e., N consecutive unfavorable signals from p∗∗) and at
p∗∗, player 2 makes a losing demand for sure, and, hence, SB(p∗∗) = SN . The
other equilibrium is identical to the first equilibrium except for the following
situations:

• At any p ∈ (0�φ−1(p∗)), type B rejects player 1’s demand in a way that
immediately after rejection moves posterior to φ−1(p∗) (and not to p∗).

• At any p ∈ [φ−1(p∗)�p∗), type B rejects player 1’s demand for sure.
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FIGURE S.1.—Non-generic equilibrium I.

• At p∗∗, player 2 demands EG[v] for sure and type B accepts it for sure.
Thus, in this equilibrium, SB(p∗∗)= EG[v].

Figures S.1 and S.2 illustrate these two equilibria.
Note that we can construct many other equilibrium strategies that result in

the two value functions depicted in Figures S.1 and S.2. For instance, take the
second case (Figure S.2) and consider some p ∈ [φ−1(p∗)�p∗). Here, type B is
still indifferent to the demand EB[v] − c and, hence, may sometimes accept it,
as long as the acceptance probability is not too large so that the posterior right
after rejection does not jump above p∗.

FIGURE S.2.—Non-generic equilibrium II.
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S.3. NON-REPUTATION EQUILIBRIA

In this section, we demonstrate non-reputation equilibria of our game by set-
ting V = {0�1} and f B(1) = fG(0) = q ∈ ( 1

2 �1). Thus, EB[v] = q and EG[v] =
1 − q; also, 2q− 1 > c and p∗∗ = EB[v]−EG[v]−c

EB[v]−EG[v] = 2q−1−c

2q−1 .

S.3.1. A Folk Theorem With Complete Information

First, we relax the restriction to Markov strategies and establish a folk theo-
rem for the case of complete information with p = 0.

LEMMA S.1: Suppose that player 1’s type is known to be B. Then the following
statements hold:

(a) In any subgame perfect equilibrium, player 1’s equilibrium expected pay-
ment, S, is such that S ∈ [q− c�q].

(b) Fix any δ > 1
2 . Then any S ∈ [q − c�q] can be supported as an equilibrium

expected payment of player 1.

PROOF: Part (a): Fix any δ and any subgame perfect equilibrium. First, let
us show that S ≥ q− c. Suppose not, so S < q− c. Then since rejecting any of-
fer gives player 1 (one-period) expected payment of q, acceptance of an offer
strictly below q − c must occur at some history on the equilibrium path. Con-
sider player 2 who makes such an offer. But, clearly, this short-run player can
improve his expected payoff by instead making any offer at least q − c; player
1’s rejection gives him payoff q− c.

Next, let us show that S ≤ q. Suppose not. But the bad type can guarantee
himself payment of q by always rejecting.

Part (b): We know that there exists a Markov equilibrium that supports pay-
ment q. Consider any S ∈ [q− c�q) and the following trigger strategy profile:

• At any history in which no deviation from the equilibrium has been ob-
served, player 2 offers S for sure and player 1 accepts an offer if and only if it
is less than or equal to S.

• At any history in which acceptance of an offer higher than S has been
observed, player 2 offers q for sure and player 1 accepts an offer if and only if
it is less than or equal to q.

• At any other history, player 2 offers S for sure and player 1 accepts an
offer if and only if it is less than or equal to S.

To establish that the above profile constitutes a subgame perfect equilibrium,
it suffices to consider player 1’s incentives when facing a deviating offer S + ε
for small ε > 0. Given the above profile, rejecting the offer yields payment (1−
δ)q+δS, while accepting leads to (1−δ)(S+ε)+δq. Since δ > 1

2 and S < q, it
is easily seen that the latter is larger than the former. Thus, player 1 will reject
S + ε for sure. This, in turn, supports optimality of player 2’s strategy. Q.E.D.
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Now fix any δ > δ̄ as in the proof of Theorem 1. The following strategies
describe a non-reputation equilibrium:

• At any history/period t with pt > 0, all players play according to the equi-
librium of Theorem 1 for belief pt .

• At any history with pt = 0, the continuation strategies are given by the
equilibrium in which the bad type obtains payment S∗ ∈ [q− c�q) (Lemma S.1
above).

It is straightforward to see that this profile only changes the initial condition
for the recursive equation (S.1) above, from S0 = S = q − (1 − δ)c to S0 =
(1 − δ)(q− c)+ δS∗.

S.3.2. Non-Monotone Payoffs

In a reputation equilibrium, the long-run player’s payoff (or payment) is
assumed to be monotone increasing (or decreasing) in reputation p ∈ [0�1].
A motivation for this restriction is that reputation is often taken to be a valu-
able asset. In this section, we offer examples of non-reputation equilibrium in
which equilibrium payoffs are non-monotone. A common feature of the equi-
libria constructed below is that type G adopts different cutoffs at different
beliefs.

EXAMPLE S.1: In this example, we construct and verify an equilibrium in
which the payments are monotone decreasing at interior beliefs p ∈ (0�1), but
jump up at p= 1.

• For any C ∈ (1 − q− c�1 − q), define p∗∗ to be such that

C = p∗∗(1 − q)+ (
1 −p∗∗)q− c

or p∗∗ = q−c−C

2q−1 ∈ (0�1). Thus, at p∗∗, player 2 is indifferent between C accepted
for sure and a losing demand. Note that p∗∗ ∈ (p∗∗�1).1

• Fix any p∗ ∈ (φ1(p∗∗)�1), that is, p∗ cannot be reached from p∗∗ after a
good signal.

• Fix any C ∈ (1 −q− c�1 −q) such that p∗∗ ∈ (p∗�φ1(p∗)). It is easy to see
that such a C exists.

Next, consider equilibrium strategies and beliefs. The new equilibrium and
its belief system are identical to our main equilibrium with two belief thresh-
olds p∗ and p∗∗ (Appendix C.2.2) at all levels of p except at the interval (p∗�1).
In this region of beliefs, we have the following scenarios:

1. At p ∈ (p∗�p∗∗), type G accepts s if and only if sG ≤ max{ SG(p)−δ(1−q)

1−δ
�C}

and type B accepts s if and only if sB ≤ max{ SB(p)−δq

1−δ
�C}.

1Note that C > 1 − q− c. This is because player 2 can guarantee the expected payoff 1 − q− c
from the outside option and, hence, p∗∗ is not well defined if C = 1 − q− c.
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2. At p ∈ [p∗∗�1), both types accept s if and only if s ≤ C.
3. Player 2 demands q at p ∈ (p∗�p∗∗) and C at p ∈ [p∗∗�1).
4. Beliefs:
(a) Beliefs are updated via Bayes’ rule whenever possible.
(b) At any p ∈ (p∗�1), acceptance of any demand strictly larger than C takes

the posterior to 0; there is no change of belief after acceptance of a demand
lower than or equal to C.

(c) At any p ∈ [p∗∗�1), rejection itself does not change the belief.
Thus, in the proposed equilibrium, the long-run players’ bargaining postures

become tougher at high beliefs above p∗∗, with a new cutoff C < 1 − q. In
fact, another region of gambling appears, (p∗�p∗∗), where both types of player
1 reject the equilibrium demand in the hope of obtaining a payoff even better
than 1−q = EG[v] at [p∗∗�1). This equilibrium is depicted in Figure S.3 below.

Now, we show that there exists some δ̄ such that, for δ > δ̄, the proposed
profile constitutes an equilibrium. It suffices to consider p ∈ (p∗�1).

Case 1: Suppose p ∈ (p∗�p∗∗). In this case, clearly, the two types’ best re-
sponses to C or less are to accept it for sure. In addition, note that by our def-
initions of p∗ and p∗∗, after rejection, a good signal takes the belief to (p∗∗�1)
and a bad signal takes it to (p∗∗�p∗). Also, accepting a demand higher than C
takes the belief to 0, where the offer must be q (which type B accepts and type
G rejects).

Thus, type G’s reservation one-period payment sG = SG(p)−δ(1−q)

1−δ
is given by

(1 − δ)sG + δ(1 − q)

= SG(p)= (1 − δ)(1 − q)+ δ(1 − q)2 + δqC ∈ (C�1 − q)�

while type B’s reservation one-period payment sB = SB(p)−δq

1−δ
is given by

(1 − δ)sB + δq = SB(p)= (1 − δ)q+ δq(1 − q)+ δ(1 − q)C�

FIGURE S.3.—Non-monotone equilibrium I.



GAMBLING REPUTATION 7

where SB(p) ∈ (C�1 − q) if δ > 2q−1
q2−(1−q)C

∈ (0�1).
Consider player 2. We have that sG < 1−q−c if δ > c

c+(1−q)−(1−q)2−qC
∈ (0�1).

Similarly, sB < q − c with sufficiently large δ. Since p < p∗∗, player 2 strictly
prefers a losing demand to a sure payoff of C, while 1 −q− c and q− c are the
expected payoffs from an outside option when player 1 is G and B, respectively.
This implies that with sufficiently large δ, player 2 finds it optimal to offer a
losing demand at p ∈ (p∗�p∗∗).

Case 2: Suppose p ∈ (p∗∗�1). Consider type G. Clearly, accepting s is opti-
mal if s ≤ C. Suppose that s > C . Since acceptance takes the belief to 0 and,
hence, the ensuing demand is q (which he will reject), the continuation pay-
ment equals (1 − δ)s + δ(1 − q), while the continuation payment from rejec-
tion (which does not alter the belief itself) is at most (1 − δ)(1 − q) + δ(1 −
q)2 +δqC < 1−q. Thus, rejection is the best response with sufficiently large δ.
We can handle type B via a similar argument. Since p≥ p∗∗, player 2’s strategy
best responds to his opponents’ strategies.

EXAMPLE S.2: Our next construction demonstrates the possibility of non-
monotone payoff jump below p = 1. Fix two cutoff demands C1�C2 ∈ (1 − q−
c�1 − q) such that C1 < C2. Define p∗∗ = q−c−C1

2q−1 and fix p̄ ∈ (φ1(p∗∗)�1). The
equilibrium strategies are essentially the same as before, except that type G
accepts a demand s if and only if s ≤ C1 at p < p̄, and if and only if s ≤ C2 at
p ∈ [p̄�1). Figure S.4 illustrates type B’s payoffs induced by such a profile.

Up to p̄, the construction is identical to our main equilibrium except that
type G’s cutoff is C1 instead of 1 − q and p∗∗ is redefined accordingly. To
show that it is mutually optimal for C2 to be offered and accepted for sure

FIGURE S.4.—Non-monotone equilibrium II.
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FIGURE S.5.—Further example.

at p ∈ (p̄�1), consider type B’s incentive to reject C2 at such a belief (a sim-
ilar argument would also apply to type G). Here, rejection yields at best
(1−δ)q+δ[qC1 +(1−q)C2], but for given δ, this will not be less than the equi-
librium payment C2 from acceptance as long as C2 −C1 is sufficiently small.

Now, we see that there are many other non-monotone equilibria with a sim-
ilar structure: when p is sufficiently close to 1, type G changes the cutoff de-
mand over multiple intervals. For given δ, this kind of non-stationarity can
generate multiple non-monotone steps in the equilibrium value function as
long as the cutoffs are sufficiently close to one another; see Figure S.5 for an
illustration.

S.4. A COMPARISON WITH THE REPUTATION LITERATURE

Our model differs from the behavior-type reputation approach of Fuden-
berg and Levine (1989, 1992) in two major aspects. First, we have assumed
payoff types on the long-run player and derived their equilibrium behavior en-
dogenously in reputation equilibrium. Second, outside options in our model re-
veal information about payoff types and, at the same time, are directly payoff-
relevant.

To bring our analysis closer to Fudenberg and Levine (1989), we consider
the following variant of our model:

• Player 1 is either the rational type or an insistent type who accepts a de-
mand if and only if it is no larger than a cutoff C. Let the prior probability on
the insistent type be p0.

• An outside option is type-independent; that is, we let f B = fG = f with a
mean E[v].
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• Player 2 incurs a cost c ∈ (0�E[v]) upon rejection from player 1.
It is important to note that this new model still differs from the canonical

model of Fudenberg and Levine (1989) in that its stage game is one of extensive
form and, moreover, not all of the long-run player’s strategies are identifiable,
since only actual transfers are observable.

S.4.1. Benchmark: A Folk Theorem With p0 = 0

First consider the benchmark case of p0 = 0 in our new model. Using a sim-
ilar argument employed in the proof of Lemma S.1 above, we obtain the fol-
lowing lemma.

LEMMA S.2: Suppose that p0 = 0. Then the following statements hold:
(a) In any subgame perfect equilibrium, player 1’s (discounted average expected)

payment, S, is such that S ∈ [E[v] − c�E[v]].
(b) Fix any δ > 1

2 . Then any S ∈ [E[v] − c�E[v]] can be supported as an equi-
librium payment of player 1.

S.4.2. Stackelberg Payoff and Strategy

Next we consider the range of insistent cutoff C. Let D(C) be the set of best
responses of player 2 to player 1’s insistent strategy with cutoff C. We can then
denote the Stackelberg payoff of player 1 as

sup
C

inf
d∈D(C)

u1(C�d)�

where u1(C�d) is the negative of player 1’s payment, to be consistent with the
standard maximin payoff notion in repeated games.

Note that

D(C)=
{ {C} if C >E[v] − c,{

s : s ≥ E[v] − c
}

if C =E[v] − c,
{s : s > C} if C <E[v] − c.

The reason is as follows. If C > E[v] − c, then player 2 should demand just
C, since a lower demand is clearly dominated by C, while a higher demand
is rejected, leading to a payoff of E[v] − c. If C < E[v] − c, then player 2 is
better off making a losing demand. If the cutoff is exactly E[v] − c, player 2 is
indifferent between a losing demand and an acceptable demand E[v] − c.

With D(C) in place, it is clear that

sup
C

inf
d∈D(C)

u1(C�d) = −(
E[v] − c

)
�
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However, this sup-inf payoff is not achieved by the insistent strategy C =
E[v] − c because

inf
d∈D(E[v]−c)

u1

(
E[v] − c�d

) = −E[v]�

That is, faced with cutoff E[v] − c, player 2’s best response that minimizes
player 1’s payoff is to make a losing demand. Note that

inf
d∈D(E[v]−c+1/n)

u1

(
E[v] − c + 1

n
�d

)
= −

(
E[v] − c + 1

n

)
�

Hence, the Stackelberg payoff supC infd∈D(C) u1(C�d) is achieved by a sequence
of cutoffs Cn =E[v] − c + 1

n
, but the Stackelberg strategy does not exist.

S.4.3. Payoff Bound

To simplify our analysis, we make the assumption that player 2’s demand is
bounded above by a constant s > 0.

LEMMA S.3: Fix any δ and any equilibrium. There exists p̃ ∈ (0�1) such that
at any history with p> p̃, player 2 demands C for sure.

PROOF: Define p̃ ∈ (0�1) such that

p̃C + (1 − p̃)
(
E[v] − c

) = p̃
(
E[v] − c

) + (1 − p̃)s�

where the left-hand side is the payoff that player 2 can secure by demanding
C at belief p̃; the right-hand side is the highest possible payoff that could be
obtained when demanding more than C . By definition, if p > p̃, the demand
must be C . Q.E.D.

LEMMA S.4: Fix any δ and any Markov perfect equilibrium. Also, fix any belief
p and consider a demand s > C . Then if the rational type accepts s with positive
probability, he must accept any s′ < s for sure.

PROOF: If s is accepted, the continuation (discounted average expected)
payment from accepting s must be at least as good as that from rejecting it.

Since rejected demands are not observable, rejecting any demand results in
the same continuation payment. Also, by the Markov assumption, accepting
any demand strictly above C leads to revelation and, hence, continuation pay-
ment at the next period equal to E[v]. Then accepting any s′ ∈ (C� s) must be
strictly better than rejecting it since it yields a lower immediate payment.

On the other hand, accepting a demand s′ ≤ C need not lead to revelation,
but the continuation payment at the next period must still be bounded above
by E[v]. Thus, the same arguments imply that such a demand must also be
accepted for sure. Q.E.D.
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THEOREM S.1: For any C ∈ (E[v] − c�E[v]), p0 ∈ (0�1), and ε > 0, there
exists δ̃ such that rational player 1’s (discounted average expected) payment in any
Markov perfect equilibrium is at most C − ε if δ > δ̃.

REMARK: Notice that if we take Cn = E[v] − c + 1
n
, then this theorem says

that when the discount factor is large, the rational type’s payment is bounded
above by a level arbitrarily close to Cn. If we take n → ∞, we show that player
1 can obtain his Stackelberg payment E[v] − c (note from the previous section
that the Stackelberg strategy in this model is not well defined). Therefore, the
reputation gain is proportional to c. However, our analysis in the main paper
has shown that with informative outside options, the reputation gain is only
(1 − δ)c, which approaches 0 as δ→ 1. This highlights the difference between
our model and Fudenberg and Levine (1989): informative outside options are
indeed the source of the low reputation benefit.

PROOF OF THEOREM S.1: Fix a Markov perfect equilibrium and consider
a deviation by the rational type to mimicking the insistent type: accepting a
demand if and only if it is no larger than C. Now consider player 2 in period t
before player 1’s type is revealed, that is, pt ∈ (0�1).

If player 2 demands C, then his expected payoff in the given equilibrium is
bounded below by

ptC + (1 −pt)
(
E[v] − c

)
�

where C >E[v]− c is accepted for sure by the insistent type whose probability
is at least pt and E[v] − c is the least player 2 could obtain from the rational
type in any equilibrium.

If player 2 demands s > C , then player 2’s payoff is bounded above by

pt

(
E[v] − c

) + (1 −pt)
[
ass + (1 − as)

(
E[v] − c

)]
�

where as denotes the probability with which the rational type accepts s.
Therefore, player 2 demands s > C in the given equilibrium only if

pt

(
E[v] − c

) + (1 −pt)
[
ass + (1 − as)

(
E[v] − c

)]
≥ ptC + (1 −pt)

(
E[v] − c

)
�

This is equivalent to

as ≥ pt

1 −pt

C − (E[v] − c)

s − (E[v] − c)
> 0�(S.2)

Hence, we have just shown that if player 2 demands s > C , he must anticipate
that s is accepted by the rational type with positive probability.

Next we make the following claim.
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Claim: Fix any Markov perfect equilibrium. If the rational type deviates to
mimic the insistent type, then the posterior in any period is bounded below
by p0.

Proof of the Claim: At any t, if an offer s ≤ C is accepted by player 1 and
observed, the posterior belief cannot go down. If player 2’s demand puts a
positive probability on s > C , then s is rejected for sure by the insistent type,
while by the previous argument, s must be accepted with positive probability
by the rational type. This, together with Lemma S.4 above, implies that any
demand less than s must be accepted for sure by the rational type and, hence,
rejection is more likely to come from the insistent type. It follows that rejection
cannot reduce reputation.

Thus, it follows that if player 2 ever demands s > C in equilibrium, by (S.2),
the acceptance probability as must be bounded below such that

as ≥ p0

1 −p0

C − (E[v] − c)

s − (E[v] − c)
≥ p0

1 −p0

C − (E[v] − c)

s − (E[v] − c)
=: κ�(S.3)

Now let us return to the play conditional on the rational type’s deviation.
Notice that observable histories are only rejection and acceptance of a de-
mand equal to or lower than C. Moreover, the posterior on the insistent type
is bounded below by p0. If player 2’s demand is always no larger than C, then
clearly the rational type achieves an average payment of at most C. Suppose
that this is not the case, and consider a period t with posterior pt in which
player 2 offers a demand strictly higher than C with positive probability. From
Lemma S.3 above, pt ≤ p̃. After rejection in t, by (S.3), the posterior at t + 1
is at least

pt+1 ≥ pt

pt + (1 −pt)(1 − κ)
�

Hence, since pt ≤ p̃ < 1, we have

pt+1 ≥ pt

p̃+ (1 − p̃)(1 − κ)
�

Now, let K be such that

p0

[
1

p̃+ (1 − p̃)(1 − κ)

]K

> 1�

Such a K exists and is finite because p̃+ (1 − p̃)(1 − κ) < 1. Therefore, there
can be at most K periods during which player 2 makes a demand strictly larger
than C; otherwise, rejecting such demands K times would take the belief above
p̃ at which we know C must be demanded for sure. Note that K is independent
of δ. This proves the payment bound of the rational type. Q.E.D.
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