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A.1l. PROOFS OF MAIN RESULTS

THIS SUPPLEMENT PRESENTS the proofs of some of the results presented in the
previous sections.

A.1.1. Proof of Lemma 2.1

We first show the claim for a < 1, that is,

1
(Al) (1_a)1a(P7 Q)_ EII/Z(P’ Q) ZO

Let H,(x) = 2(1 — x*) — 2(1 — x'/?), 0 < x < oo; then the above inequality
becomes

(A2) /Ha<§>qdv >0,

Note that
d >0, ifx>1,
d_H"(x) =—x*'4x712 { =0, ifx=1,
X <0, ifx<l1.

The above holds for the case with & = 0 as well, since Hy(x) = —logx — 2(1 —

x'2). Moreover, H,(1) = 0. Therefore H,(x) > 0 for all x > 0, and the desired

inequality (A.2) follows immediately. Next, we prove the case with @ > 1, that

2
is,
1
al,(P, Q) > 511/2(P, Q).
LetB=1—-a< %; then the above inequality becomes

1
(A.3) (A-p)_p(P,0) > EII/Z(Pa Q).

By (A.1) and the symmetry of the Hellinger distance,

1 1
(1-p)1s(Q,P) > 511/2(Q’P) = 511/2(135 Q).
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But the equality I;_z(P, Q) = Iz(Q, P) holds for every B € R, and (A.3) fol-
lows.

NOTATION: Let C be a generic positive constant, || - || be the L,-metric,
On:90+t/\/ﬁ; 7_-'Q,, :T(Qn)a TP,, :T(Pn)a

Pyo=argmin H(P,Q), R.(Q,0,7)= 0.
€Po

_/ B S
(1+7vy'gu(x, 0))
gn(x,0)=g(x, Ol{x e X,},

An = G,Q_lgn(xa 00), A = G/Q_lg(xa 90)’

1
Y0, = —2</ A A dQn) /An{erll/z - dP;an}in/z-

A.1.2. Proof of Theorem 3.1
A.1.2.1. Proof of (i)

Pick arbitrary » > 0 and ¢ € R”. Consider the following parametric submodel
having the likelihood ratio

Py, 14 0g(x.6,)
dPy f (1+ £ ga(x, 6,)) dP,

(A4) = f(-x7 9,,, gn);

where
= —Ep[g(x, 0,)8.(x, 0,0 Ep[g(x, 6,)]

Note that Py, o = Py, P, ¢, € Pe, (by the definition of {,), and £, = O(n~'?) (by
the proof of Lemma A.4(i)). Also, since sup,_, [{.g.(x, 6,)| = O(n~"*m,) =
o(1), the likelihood ratio '“Z’—;{f" is well defined for all n large enough. So, for

this submodel the mapping 7, must satisfy (3.1).
We now evaluate the Hellinger distance between Py, ,, and P,y. An expansion
around ¢, = 0 yields

é’/ &f(xa 0113 é‘l’l)l/2 dp3/2
! I&n {n=0

1, 0*f(x,6,, {)'?
Eg” I

H(Pe,,,g,,, Po) =

L dPy”
{nzfn

+

b
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where £, is a point on the line joining £, and 0, and

(9 B Gn; n 1/2 1
o 0n L)) 518006, 02 = En[8.(x, 6]},

9L =0
[ (x, 00, &)"?

38 L),

1 _ .

=—7(1+ Lgn(x, 6) (14 £ Ep[ga(x, 00]) "

X gu(x, 0,)8:(x, 0,)

1 _ _
— 5 (145806, 0)) (14 £ En[g,(x. 0)])
X gn(x, en)EPO [gn(X, 0,,)]/

-52

3
+ Z(l + ,8n(x, Hn))]/z(l + g,/zEPo[gn(x’ 0")])

X Ep[8:(x, 0,)]Ep,[84(x, 0,)] -

Thus, a lengthy but straightforward calculation combined with Lemma A.4,
L =0(n""%), and sup,_, 1{.g,(x, 6,)] = o(1) implies

1 2
~00(8a(x, 0,) — Ep,[8a(x, 0,)])dP)| + o(1)

(AS) ”H(Pon,g,,,Po)Z =n 5

1 ryi—1
—t t.
-7 b

Based on this limit, a lower bound of the maximum bias of 7, is obtained as
(see, Rieder (1994, eq. (56), p. 180))

liminf  sup  n(70 T,(Q) — 7(6)))’

"0 QeBy (Py,r/n)

> lim inf sup n(roT,(Py, ) — 7'(190))2

MO teRP:Py, g, B (Po,r/ VM)

ar(6)\ \°
> max (60) t
{teRP:(1/4)1 St<r2—¢} 00

_ 4(r2 _ 8)(57;go)> 2_1<(?73(30)>’

for each ¢ € (0, r?), where the first inequality follows from the set inclusion re-
lationship, the second inequality follows from (3.1) and (A.5), and the equality
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follows from the Kuhn-Tucker theorem. Since ¢ can be arbitrarily small, we
obtain the conclusion.

A.1.2.2. Proof of (ii)

Pick arbitrary r > 0 and sequence Q, € By (Py,r/ /n). We first show the
Fisher consistency of 7. From Lemma A.2 (note: Py, ;, € Bu(Py,r//n) for
all n large enough),

V(T (Py, ;) — 0)) = —ﬁE‘l/AndPgmg,, +o(1)

= z—lG'Q—lfag(x, 0)/390dP,, ;,t + o(1)

-t

for all n large enough, where @ is a point on the line joining 6, and 6,, the
second equality follows from [ g(x, 6y)I{x ¢ X,}dP,, ;, = o(n"'/*) (by an ar-
gument similar to (A.16)), [ g(x, 6,)dPy, ;, =0 (by Py, ;, € Ps,), and an ex-
pansion around 6, = 6, and the convergence follows from the last statement
of Lemma A.4(i). Therefore, T is Fisher consistent.

We next show (3.1). An expansion of 7o Ty, around T, = 6,, Lem-
mas A.1(ii) and A.2, and Assumption 3.1(viii) imply

- ar(6
Vi o To, — 7(0) =~ 733"

>/21 / A,dQ,+o0(1)
= —/nv), / A,{dQ)* —dpr,*}dQY?
SN / A, dP*{dQY? — dPy*} + o(1),
where we denote v = (%)/2‘1. From the triangle inequality,

n(ro Ty, — 7(6y))’

o

+

2

i [ Aldoyr —ariyagy:

2

v / A,{dQ)* —dp,*} dPy"?

+2

i [ AuldQy ~ i) agy?
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X

v / A, {dQY? — dpPy*} dP,"?

}+0(1)
= n{A1 + A2 + 2A3} + 0(1).

For A;, observe that

< B*r—2 + O(n’l)
— n b

A <

V(/)/A,,A:l dQ.v,

[tagy—aryy

where the first inequality follows from the Cauchy-Schwarz inequality, and the
second inequality follows from Lemma A.5(i) and Q, € By (Py, r/+/n). Simi-

larly, we have A4, < B*é +o(n) and A4; < B*% + o(n~!). Combining these
terms,

(A6)  limsupn(ro Ty, —7(6)" < 4B,

n—0o0

for any sequence Q, € By (P, r/ J/n) and r > 0. Pick any r > 0. Since the supre-
MUm SUPyp, p, v 170 T(Q) — 7(6y))? is finite for all n large enough (from
Lemma A.1(i)), there exists a sequence Q% € By (P, r/+/n) such that

limsupn(7o Ty; — 7(90))2

n—oo

=limsup sup n(roT(Q)— 7(00))2.

n—oo  QeBy (Py,r/v/n)

Therefore, the conclusion follows by (A.6).

A.1.3. Proof of Theorem 3.2
A.1.3.1. Proof of (i)

Pick arbitrary ¢ € (0, 7?) and r > 0. Consider the parametric submodel Py, ,,
defined in (A.4). The convolution theorem (Theorem 25.20 of van der Vaart
(1998)) implies that, for each ¢ € R”, there exists a probability measure M, that
does not depend on ¢ and satisfies

(A7) V(1o Tu(P) —70T,(Py,.))~>My* N(0,B*) under P, ,,.

, It(00)\ \’
t*=arg max — )t
(teRP:(1/4)¢ St<r2—g} d0

((97(9())
a0

Let

) z/ngo*N(o,B*) > 0.
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Since the integral f EdM, = N(0, B*) does not depend on ¢, such ¢* always
exists. From ;731" <r?> — g and (A.5), it holds that Py, /i ¢, € By (Po, r//1)
for all n large enough. Also, note that Ep, . [sup,.e [g(x, 6)|"] < oo for all n

large enough_(by sup,.» 1,8.(x, 6,)] = o(1) and Assumption 3.1(v)). Thus,
Poyive) i, € Bu(Po, r/+/n) for all n large enough, and we have

lim liminf  su /bAnToT(P)—T(QO)) do®"

b=oo m=00 By, r/f)

> lim liminf/ bAn(toT,(P,) — 7(00)) dpP®"

b—o00 n—00 Oo+t*//1,En

= lim liminf/b/\n< (&T(g°)> ) dM, % N (0, B)

’ 2
a2

+2(&7530)> t*/ngo «N(0, B

> {1+44(7 - o)} B,

where the first equality follows from the Fisher consistency of 7, (A.9), and the
continuous mapping theorem, the second equality follows from the monotone
convergence theorem, and the second inequality follows from the definition of
t*. Since ¢ can be arbitrarily small, we obtain the conclusion.

A.1.3.2. Proof of (ii)

Pick arbitrary r > 0 and b > 0. Applying the inequality b A (¢; + ;) < b A
¢+ b A c, for any ¢, ¢; >0,

(A.8) lim sup sup /b A n(q- oT(P,) — 7(60))2 dQ®"

n—00  QeBy (Py,r//n)

<limsup su /b/\n TOT(P)—TOT(P)) dQ®"

n—>00  QeBy (P, r/f)
+ 2limsup sup /b/\ |TOT(P)—TOT(P)|
n—>00  QeBy (Py,r//n)
x |ro T(P,) —7(8)|} dO®"
+ limsup sup /b A n 70T(P,) — 7(00)) do®"
n—>00  QeBy (Py,r//n)

=A,+2A4,+ As.
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For A4,,

(A9) A, <bxlimsup sup f do®"
(X100 X ) X

n=>00  QeBy (Py,r/yn) J (¥1seees

n

<bxlimsup  sup Z/ dQ
Xi¢Xn

n—>00  QeBp (Py,r//n) =

<bxlimsup sup nm,"E, [sup|g(x, 0)|"] =0,
n—>00  QeBy (Py,r//n) 0<O

where the first inequality follows from T'(P,) = T(P,) forall (x1,...,x,) € X"

n?

the second inequality follows from a set inclusion relation, the third inequal-
ity follows from the Markov inequality, and the equality follows from Assump-
tion 3.1(vii) and Ep[sup,. |g(x, 6)|"] < oo for all Q € By (Py, r/+/n). Similarly,
we have 4, =0. _

We now consider A4;. Note that the mapping f;, ,(Q) = [bAn(ro T(P,) —
7(60))*>dQ®" is continuous in Q € By (P, r/+/n) under the Hellinger distance
for each n, and the set By (Py, r/+/n) (not By (Py, r/+/n)) is compact under the
Hellinger distance for each n. Thus, there exists O, , € By (Py, r/+/n) such that

SUPeg,, (py.ry v Jn(Q) = £,(Qy.) for each n. Then we have

As; <limsup sup /b A n(T oT(P,) — 7(00))2dQ®"

n—oo  QeBy (Py,r/v/n)

zlimsup/b/\n(To T(P,) —1(60)) A0S

n— 00

:/b/\ (£+1,)°dN(0, B*)

<B'+1;
< (1 + 4r2)B*,
where 7, = limsup, ,_ /n(7o T(Qb,n) —71(6y)), the first inequality follows from

By (Py, r//n) € By (Py, r//n), the second equality follows from Lemma A.8

(with Q, = Qb,n) and the continuous mapping theorem, the second inequality
follows from b A ¢ < c and a direct calculation, and the last inequality follows
from Theorem 3.1(ii). Combining these results, the conclusion is obtained.

A.1.4. Proof of Theorem 3.3
A.1.4.1. Proof of (i)

Consider the parametric submodel Py, ;, defined in (A.4). Since ¢ is uni-
formly continuous on R” (by Assumption 3.2) and 7, is Fisher consis-
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tent,

b /\K(\/E{Sn —TO Ta(P@tlagn)})
et~ - (92 ) 0

d0

uniformly in ¢, |¢| < ¢ and {S,},.x for each ¢ > 0 and b > 0. Thus,

(A.10)  inf sup/b AN(Vn{S, — 7o T,(Py,(,)})dPE",

$n€S Jr1=c
. IT(60)\’
= inf bAC( R, — t)dPy" 1),
it | ( ( 76 )) bt 0D

for each ¢ > 0, where R, = /n{S, — 7(6,)} is a standardized estimator and
Qn
R ={/n{S, — 7(6y)}:S, € S}. By expanding the log likelihood ratio log Pty

dPS"
around ¢, =0,

dPy" d
log — 1%55" =, {8u(x:, 0,) — Ep[gu(x, 6,)]}
i=1

_é,, & gn(xi’ 6n)gn(xia en)gn
" 201+ {ga(xi, 6,))?

n ng, Epg.(x, 0,)1Ep[8:(x, 0,)] Ly

2
2(1+Z;,/gn<x, en>)

=L —L,+ L,

where £, and ¢, are points on the line joining ¢, and 0. For L;, an expansion
of g,(x, 6,) (in ¢,) around 6, = 6, combined with Lemma A.4(i) implies that,
under P,

1 n
Li=—tGQ'— Z{gn(x,«, 0,) — Ep,[84(x, 0,)]} + 0,(1).
Vo
Also, Lemma A.4(i) and sup, . |{/ g.(x, 6,)| = o(1) imply that, under P,,

1
L,2% Et’Et, L;— 0.

Therefore, in the terminology of Rieder (1994, Definition 2.2.9), the paramet-
ric model Py, ., is asymptotically normal with the asymptotic sufficient statistic
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-G'0O'L Zl A& (xi, 6,)—Ep,[g.(x, 6,)]} and the asymptotic covariance ma-

trix 3. Note that this is essentially the LAN (local asymptotic normality) con-
dition introduced by LeCam. If P, ,, is asymptotically normal in this sense,
we can directly apply the result of the minimax risk bound by Rieder (1994,
Theorem 3.3.8(a)), that is,

J
(A.11)  lim lim liminf inf sup/b/\Z( ( 7(90)> )d Py

b—ococ—00 n—oo S,eS |t <c 070

> / ¢dN(0, BY)

(see also Theorem 1 in LeCam and Yang (1990)). From (A.10) and (A.11),

lim lim liminf inf sup/ b AL(VnfS, —70T,(Py,.)})dPy",

b—>ooc—00 n—>00 $;€S |f<¢

> /ZdN(O,B*).

Finally, since Ep, , [sup,. [g(x,0)|"] < oo for all n large enough (by
Sup, ., 1£.8.(x, 6,)| = o(1) and Assumption 3.1(v)), we have P,, ;, € By (Py,r/
V/n) for all ¢ satisfying ¢/ 3t < r* — g with any & € (0, r?) and all n large enough.
Therefore, the set inclusion relation yields

lim lim liminf inf ~ sup /b A(V/n{S, — To T,(Q)}) dO®"

b—oor—o00 n—>oo S"GSQGBH(PU,r/ﬁ)

> lim lim liminf inf sup/b A(Vn{S, — 7o T, (Py,)})dPS",

b—ococ—>00 n—oo S,eS lt|<c
which implies the conclusion.

A.1.4.2. Proof of (ii)
Pick arbitrary » > 0 and b > 0. Since T(P,) = T(P,) for all (xi, ..., x,) € X7,

(A.12) lim  sup /bAe(ﬁ{ToT(Pn)—ToT(Q)})dQW

"% 0eBy (Py.r/ V)

<lim  sup / bAt(vVn{roT(P,)
n_)OOQEBH(Po,r/ﬁ) (x1 Xn)EXy

—10T(Q)})d0O*"
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+ lim  sup f bAZ(ﬁ{ToT(Pn)
(X1 5eees Xp)EXS

"7 QeBy (Py.r/v/)
—710T(Q)})dQ®".

An argument similar to (A.9) implies that the first term of (A.12) is zero.
From X" C X" and By (Py, r//n) € By(Py, r/+/n), the second term of (A.12)
is bounded from above by

lim  sup /bAe(ﬁ{ToT(Pn)—ToT(Q)})dQW

" OeBy (Py.r//n)

_ / b A LdN(0, BY),

where the equality follows from Lemma A.8, the uniform continuity of £ over
R”, and compactness of By (P, r/+/n) under the Hellinger distance. Let b —
oo and the conclusion follows.

A.2. AUXILIARY LEMMAS

LEMMA A.1: Suppose that Assumption 3.1 holds. Then

(i) for each r > 0, T(Q) exists for all Q € By(Py,r//n) and all n large
enough,

(ii) TQn — 0y as n — oo for each r > 0 and sequence Q, € By (Py, r//n).

PROOF:

Proof of (i). The proof is split into several steps. Let G(6, Q) be the convex
hull of the support of g(x, #) under x ~ Q.

In the first step, we show that 0 € int G(6,, Py). If 0 ¢ G(6,, Py), then we have
Ep,[g(x, 09)] # 0, which is a contradiction. Thus, it is enough to show that 0
is not on the boundary of G(6y, P;). Suppose 0 is indeed on the boundary of
G(6y, Py). In this case, we have two cases: (a) there exists a constant m-vector
a # 0 such that a’'g > 0 for all g € G(6,, Py) and Py{g € G(6y, Py):a'g > 0} > 0,
or (b) there exists a # 0 such that a'g =0 for all g € G(6,, Py). For the case
(a), we have a'Ep [g(x, 6y)] > 0, which contradicts with Ep [g(x, )] = 0. For
the case (b), we have a'Ep [g(x, 69)g(x, 6y)'la = 0, which contradicts with As-
sumption 3.1(vi).

In the second step, we show that, for each r > 0, there exists 6 > 0
such that 0 € intG(6, Q) for all |6 — 6y < & and all Q € By(P,, 8). Pick
any r > 0. From the first step, we can find m + 1 points {g;,..., 8n1} =
{g(X1, 00), ..., 8(Xmi1, 6p)} in the support of g(x, 6,) under x ~ P, such that 0
is interior of the convex hull of {g1, ..., g,.1}. From the property of the convex
hull (Rockafeller (1970), Corollary 2.3.1), we can take ¢, > 0 such that, for any
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points {g1, ..., gn41) satistying |g; — g;| < ¢, for j=1, ..., m+1, the interior of
the convex hull of {gy, ..., g1} contains 0. Let us take any j=1,...,m+ 1.
For the second step, it is sufficient to show that there exists 6; > 0 such that
0flg(x,0) — gjl <c¢}>0forall [0 — 6y <9; and all Q € By (P, 6;). Sup-
pose this is false, that is, for any &; > 0, we can take a pair (Q;, 6;) such
that H(Q;, Py) < d;, |0; — 6| < 6;, and Q;{|g(x, 0;) — g;| < ¢} =0. Then we
have

0, > H(Q), Py) > \// (,/dQ; — VdP,)?
{lg(x,0))—gjl<cr)

= \/P0{|g(x, 0;) — §/| = C’}'

On the other hand, by Assumption 3.1(iv), the dominated convergence theo-
rem guarantees

Py{lg(x, 0) — g <}
_)P0{|g(x’ 00)_g/|fcr}>0 as Hj_)00~

Since §; can be arbitrarily small, we have a contradiction. This completes the
second step.

In the third step, we show that, for each r > 0, there exists 6 > 0 such
that R, (6, Q) = infpcp, po H(P, Q) has a minimum on {6 € @: [0 — 6| < 5}
for all Q € By (Py, 7=) and all n large enough. Let us take & > 0 to satisfy
the conclusion of the second step. By Assumption 3.1(iv), we can take N;
to satisfy maxi<j<mi1SUPgeq oo, <5 |§(Xj5 O)| < my,. Thus, letting G,(6, Q) be
the convex hull of the support of g,(x, ) under x ~ Q, the second step also
guarantees that, for each r > 0, there exists 6 > 0 such that 0 € intG,(0, Q)
for all |6 — 6y| < 8, all Q € By(Py, 8), and all n > N;. Based on this, the
convex duality result in Borwein and Lewis (1993, Theorem 3.4) implies
R,(0, Q) =sup,on— [ mdQ for all |6 — 6y < §, all Q € By(P,, d),
and all n > N;. Since sup,.zn — [ r7g; 4Q is continuous at all 6 with
|6 — 6] < 6 (by the maximum theorem), the Weierstrass theorem completes
the third step.

Finally, based on the third step, it is sufficient for the conclusion to show that,
for every r > 0, there exists N € N such that R, (6, Q) < infseg.9-g,>5 Rx (0, Q)
for all n > N and all Q € By (P, ﬁ). Pick any r > 0. We first derive an up-

per bound of R,(6y, Q) = sup, pn— [ m dQ. From Lemma A.5(ii),
Yau(6o, Q) = argmax,cgm — f m dQ exists and sup,_, |V, (6o, Q) gu(x,
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0y)] < % for all n large enough and all Q € By (P, ﬁ). Thus, by a second-order
expansion around v, (6, Q) =0, we have

Ru(05, 0) < —1 + (60, Q) / g.(x, 6) dO.

Define C* = infyep,9-0,=5 | Ep [g(x, 0)11*/(1 + |Ep [g(x, 0)]]) > 0. From Lem-
ma A.5 and m,n~"? — 0, it holds that

*

(A13)  m,(R(6y, Q) +1) <m, ik

<

Ya (6o, Q)//gn(x, 60)dQ

for all n large enough and all Q € By (P, ﬁ). We now derive a lower bound

of R,(0, Q) with |0 — 6,| > 8. Pick any 6 € O such that |0 — 6,| > 8, and take
any n large enough and Q € By (P, ﬁ) to satisfy (A.13). If 0 ¢ G,(6, O), then

R, (8, Q) = +o0. Thus, we concentrate on the case of 0 € G, (0, Q), which guar-
antees R, (6, Q) =sup_gm — f m dQ (Borwein and Lewis (1993), The-

orem 3.4). Let vy(6) = Ep [g(x, 6)]/(1 + |Ep)[g(x, 0)]]). Observe that

1
_ / d
(1+m; 7 (6)gu(x, 6))

=—1+ m;l'yg(ﬂ)'/gn(X, 0)dQ

R.(6,0) =

Q

_— / (O, 00"

! (1+ t(x)m;  y0(0)' gu(x, 60))°
where the second equality follows from an expansion (#(x) € (0,1) for al-

most every x under Q). From an argument similar to Lemma A.5, with
SUPyep |70(0)] <1 and m, — oo,

sup /g,,(x, O)dQ—/g(x, 0)dP,| < g,
0O 4
_ (Y0(0) g (x, 6))* ‘ cx
m; ' su dQ| < —,
! Ge(g (I+t(x)m, y(0) g.(x, 0))° Q= 4

for all n large enough and all Q € By (P, ﬁ). Combining these results and
using the definition of C*, we obtain

(A.14) inf  m,(R.(6,0)+1) > —

06:10—6|>6 2’

for all n large enough and all Q € By (Py, 7). Therefore, (A.13) and (A.14)
complete the proof of the final step.
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Proof of (ii). Pick arbitrary r > 0 and sequence Q, € By (P,, r/+/n). From the
triangle inequality,

(A.15) sug|EQn [8.(x, 0)] — Ep,[8(x, 0)]]
I8,
= SuglEQn [gn(x, 0)] — Ep,[gu(x, 0)]]
fe

+sup|Ep,[g(x, O)I{x ¢ X,}]|.

0O

The first term of (A.15) satisfies

sug|EQn [g.(x, 0)] — Ep[g.(x, 0)]|
6el

<sup
0cO

/ g.(x, 0){dQ* — dPY?)

+ 2sup

0O

/ g.(x, 0)dP,*{dQY* — dP,")

r

r? 2
<m— +2\/Epo[ilelglg(x, 0)| ]ﬁ

—0(n "),
where the first inequality follows from the triangle inequality, the second in-

equality follows from Q, € By (P,, r//n) and the Cauchy-Schwarz inequality,

and the equality follows from Assumption 3.1(v) and (vii). The second term of
(A.15) satisfies

(A.16) sug|Epn [g(x, OI{x ¢ X,}]|

1/m (n=1)/n
< (f sup|g(x, 0)\"dPo> (/ Iix ¢ Xn}dPo)
0@

= (en[smplst. o' ]) " (2 suplece o )"

=o(n'?),

where the first inequality follows from the Holder inequality, the second in-
equality follows from the Markov inequality, and the equality follows from
Assumption 3.1(v) and (vii). Combining these results, we obtain the uniform
convergence sup, o 1 Ep,[g.(x, 0)1— Ep,[g(x, 0)]] — 0. Therefore, from the tri-
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angle inequality and |E,[g,(x, Tp,)]| = O(n~'/?) (Lemma A.6(i)),
|Er[8(x, To,)]|
S |EP0 [g(x’ TQn)] - EQn [g”(x’ TQn):H + |EQn [g’l(x’ TQM)]| - 0'

The conclusion follows from Assumption 3.1(iii). Q.E.D.

LEMMA A.2: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn € BH(PO: I"/\/ﬁ),

(A17)  /n(Ty, — 6p) = —/n3"" /A,, dQ,+o(1).
PROOF: The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and

Theorem 6.4.5). Pick arbitrary r > 0 and Q, € By (Py, r/+/n). Observe that

2

_ 1 -
(A.18) HdQ}/Z —dP)%, + 5To, = 60)'A,dQ,

2

_ 1

2

1 -
+ HE(TQ,, — 00— P0,)' A, dQ)?

_ 1
o[ (a0 -arizy + 5010 0.001% a0

x (To, — 00— ¥n0,)
1 2
_ 1/2 pl/2 ’ 1/2
- HdQn - dPHO’Qn + EwannAn dQn

2

b

1
- H E(TQn — 00— Yn0,)' Ay dQ,

where the second equality follows from
- 1
/ {de/z — APy o, +5V.0,M in/Z}A; dQ;f*

’ D 1 ’ ’
= f A {dQL? —dP;O/?Qn}dQ}/ZJr El//n,gn / AALdQ, =0.
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The left hand side of (A.18) satisfies

_ 1 -
(A.19) HdQ,'/2 —dP,, + E(TQn — 6y)'A, dQ"?

<[dQ)? —dpP;’ , | +o(ITo, — 6sl) +o(n?)

< |aQ? — dF}:

00+¥1,0,0n

+0(|Tp, — 60l) + o(n™'7?)

=

— 1
A0 = APy, + 0,0, A000)"

+0(1Tg, — 60l) + o(Ithn0,1) + 0(n7?),

where the first inequality follows from the triangle inequality and Lem-
ma A.3(i), the second inequality follows from

B

and the third inequality follows from the triangle inequality and Lem-
ma A.3(ii). From (A.18) and (A.19),

T . 12 _ gpl/2
Ty, =argmin|[dQ,” — dPy,

2

_ 1
‘ Herlz/z —dPy, + Elp;l,QnA” do,”?

2(1/2

1 -
+ H E(TQn - 00 - "p”an)/An dQ}I’L/2

=

— 1
A0 — AP, + 3,0 00 0

+0(ITp, — 60l) + o(|¢hn0,1) + 0o(n7'7?).

This implies that

(A20)  o(ITy, — 60l) + o(Ithuo,l) + o(n72)

1 - _
2 \/Z(TQII - 00 - lpnaQn)/\/A"Ait dQ"(TQn - 00 - lpnaQn)
= C|Tg, — 0 — 0.,

for all n large enough, where the second inequality follows from Lemma A.5(i)
and Assumption 3.1(vi).
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We now analyze ¢, ¢,. From the definition of ¢, o, ,
-1
a2 o =-2f([aa,00.) 37 [ aa0i - ari, ) aoy?

Sax [ Aoy - ari, |0l

From this and Lemma A.5(i), the first term of (A.21) is o(n~"/?). The second
term of (A.21) satisfies

—257" / A{dQ)? —dP)%, }dO)?
= —ZE_IG/Q_I (/ gn(x; HO)gn(x; 00)/dQn) %(90, Qn)

_ _ n(007 Qn)/gn(xa 00)
23°1G'0 1</ Y
* 15 7,(60, 08 (%, 60)

X gn(x, Go)gn(X, 00)/dQn> 7/1(907 Qn)
— —E_IG’Q‘I{/gn(x, 60) dQ,
+ %/ Qn(x7 007 Qn)gn(x7 00) dQn} + 0(”71/2)

= 3! /A,, dQ,+o(n'7?),

where the first equality follows from (A.22), the second equality follows from
(A.23) and Lemma A.5, and the third equality follows from Lemma A.S.
Therefore,

S g, = =/ / A, dQ, + o(1),

which also implies |, o,| = O(n~"/?) (by Lemma A.5(i)). Combining this with
(A.20),

V(Ty, = 00) =0, + 0(v/nlTo, — 60l) + o(1).
By solving this equation for /n(Ty, — ), the conclusion is obtained. Q.E.D.

LEMMA A.3: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn € BH(POa r/\/ﬁ)y
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(i) NP>, —dPy, +3(To, — 00 A dQY2 I = 0| Tg, — bul) + 0(n ™),
Q) 4Py, o, 0, = APy, +10,0,4, A0 = 01,0, +0(n™').

PROOF:

Proof of (i). From the convex duality of partially finite programming
(Borwein and Lewis (1993)), the Radon-Nikodym derivative d Py o/dQ is writ-
ten as

dPyy 1
dQ (14 va(0,0)gu(x, )%’

(A.22)

foreachn e N, 6 € @, and Q € M, where v, (6, Q) solves

gn(x,0)
A.23 0=
( ) /(1+7n(0, 0)'gn(x,0))?

= Ep[ga(x, 0){1 —2v.(0, Q) gu(x, 0) + 04(x, 0, D) }],

dQ

with

3(7a(0, 0)'8n(x, 0))* +2(7,(0, Q) gu(x, 0))°
(1 +7.(0, Q) gu(x, 0)) '

0.(x,0,0) =

Denote ¢, = TQn — 6. Pick arbitrary r > 0 and sequence Q, € By (Py, r//n).
From the triangle inequality and (A.22),

TQn ,On

_ _ 1
P, — APy, + 510,40}

=

{7:(00, 0. 80(x, 00) — ¥u(Tp,, Q) 8u(x, Tp,) } dO)

1
+ Etl/’lAn inl/z

+ H {7n(00’ Qn),gn(x7 60) - ')’n(TQn’ Qn),gn(x’ TQ»z)}

1
* { A+ vu(To,, 0n) 8a(x, Tp,)) (1 + (80, Q) 8u(x, 6))

- 1} dQ:l/Z - Tl + Tz.




18 Y. KITAMURA, T. OTSU, AND K. EVDOKIMOV

For T,, Lemmas A.5 and A.6 imply T, = o(n~/?). For T, the triangle inequality
and (A.23) yield

T, <

1 ., _ . _
{_iEQn [8.(x, To)] Eo,[8n(x, To)8n(x, To) ] gu(x, T,

1 / -
+ 5E0,[8:0x. 00)] Eo, [g1(x, 00)g(x, 0] gu(x, 60)

1
+ Et;’A”} dQl?

+ | Eg,[0n(x, 60, Q) gu(x, 00)] Eo,[84 (X5 00)gn(x, 00)]"
x gn(x, 00)d Q)|
+ | Eo,[0n(x, To, Q) gn(xs To)] Eoy[n(xs To,)8n(x, To,)]™

X gn(x) 90) de,/z |
=Tn+ T+ Ts.

Lemmas A.5 and A.6 imply that Ty, = o(n~"?) and T3 = o(n~"?). For Tiy,
expansions of g,(x, Ty,) around Ty, = 6, yield

1 el /
T, < _EEQ,, [.(x, Tp,)]

X (Egy[80(x, To,)8n (X, T, ] = Eou[8(x, 00)8a(x, 00)] )

x gu(x, To,) dQ

1 -y 7!
+ H_EEQM [gn(x’ TQn)] EQn [g"(x’ OO)g"(x’ 00) ]

x {ga(x, Tp,) — gu(x, 00)} dQY?

1 J n aé , 40
4 H—Et;(/%dQn—G) Eg,[24(x, 60)gu(x, 60)] "

X gn(x, 60)dQ,”

1 _
+ H Ety/,G/((271 - EQ,, [gn(x, Oo)gn(X, 00)/] 1)gn(-x7 00) dQ;l/z

=o(n'"?) + o(t,),
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where 6 is a point on the line joining 6, and Ty, and the equality follows from
Lemmas A.5(i) and A.6(i).
Proof of (ii). Similar to the proof of Part (i) of this lemma. Q.E.D.

LEMMA A.4: Suppose that Assumption 3.1 hold. Then, for each t € R?,

() 1Ep[8x(x, 00)1 = 0(n™'?), |Ep [ga(X, 0,)] = O(n~'7?), |Ep [gn(x, 0,) X
8n(x,0,)]1 =2 = o(1), and |Ep [9g,(x, 6,)/30') — G| = o(1),

(i) (0, Py) = argmax,cgm — [ m dPy exists for all n large enough,
Y265 Po)| = O(n="72), and sup, . | a6, Po)'8u(x, 6,)| = o(1).

PROOF:

Proof of (i): Proof of the first statement. The same argument as (A.16) with
Assumption 3.1(iii) yields the conclusion.

Proof of the second statement. Pick an arbitrary ¢ € R?. From the triangle
inequality,

(A24)  |Ep[gu(x,00)]| <|Er[g(x, 0.01{x ¢ X.}]| + |Er,[g(x, 6]

By the same argument as (A.16) and Ep [|g(x, 6,)|"] < oo (from Assump-
tion 3.1(v)), the first term of (A.24) is o(n~'/?). The second term of (A.24)
satisfies

Jg(x, 0) H ‘ i
50 || vn

for all n large enough, where the inequality follows from a Taylor expansion
around ¢ = 0 and Assumption 3.1(iii), and the equality follows from Assump-
tion 3.1(v). Combining these results, the conclusion is obtained.

Proof of the third statement. Pick an arbitrary ¢ € R”. From the triangle in-
equality,

|EP0 [g(x7 on):” < EPO [Sup — 0(}1_1/2),

0N

|, [20(x, 0,)8(x, 6,)] = 2|
< |En[8:(x, 0,)8a(x, 0,)'] = En,[g(x, 0.)g(x, 0,
+|En[g(x, 6,)8(x, 6,)] - 2.

The first term is o(n~"/?) by the same argument as (A.16) and the second term
converges to zero by the continuity of g(x, ) at 6.
Proof of the fourth statement. Similar to the proof of the third statement.
Proof of (ii). Pick an arbitrary ¢t € R?. Let I, = {y € R":|y| < a,} with a
positive sequence {a,},cy satisfying a,m, — 0 and a,n'? — oco. Observe that

(A.25) sup  |Yg.(x,0)| <a,m,— 0.

yely,xeX,0€0
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Since R, (Py, 0,, ) is twice continuously differentiable with respect to y and
I, is compact, y = argmax,p, R, (P, 6,, v) exists for each n € N. A Taylor
expansion around y = 0 yields

(A26) —-1= Rn(P07 en; O) =< Rn(P07 Hna :)7)

- - (X, 0,)8n(x, 0,)" ] .
=—1+YEp[g.(x,6,)] — VEPO[g & ]

(1+7'gu(x, 0,))
5 _1 + ?,EPO[gn(x’ on)] - C’;//EPU [gn(x; an)gn(xa On),]’;/
< =14 |9|Ep[gu(x, 0)]| = C171%,

for all n large enough, where y is a point on the line joining 0 and 7, the
second inequality follows from (A.25), and the last inequality follows from
Lemma A.4(i) and Assumption 3.1(vi). Thus, Lemma A.4(i) implies

(A27)  CI¥I<|En[gu(x. 6)]| = O(n™"7).

From a,n'? — oo, ¥ is an interior point of I, and satisfies the first-order
condition JR,(Q,, 0y, ¥)/dy = 0 for all n large enough. Since R, (Q,, 6y, v)
is concave in vy for all n large enough, y = argmax,cgn R, (P, 0,,, v) for all n
large enough and the first statement is obtained. Thus, the second statement is
obtained from (A.27). The third statement follows from (A.27) and Assump-
tion 3.1(vii). Q.E.D.

LEMMA A.5: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Q, € By (Py,r//n),

(i) |Eq,[8:(x, 80)]l = O(n~"?), and |Ey,[g,(x, 00)gx(x, 60)'1 — 2] = o(1),

(il) ¥.(60, Q,) = argmax,cgm — [ m dQ, exists for all n large enough,
and y,(60, Q)| = O(n~"?), and sup . |v.(60, Q) gn(x, 60)| = o(1).

PROOF:
Proof of (i): Proof of the first statement. Pick any r > 0 and sequence Q, €
By (Py, r/s/n). We have
|Eo,[8(x, 60)]]

< ‘ / 8n(x, 00){dQ, — dPo}| + |Ep,[gn(x, 60)]]

< Vgn(x, 80){dQY? — Py}

+2‘ / ga(x, 00) dP)*{dQY* — dP)*}| + o(n™'7?)
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r

o(n?
o)

2
< m% +2Ep [|g(x, 60)]]
—o(n '),

where the first and second inequalities follow from the triangle inequality and
Lemma A.4(i), the third inequality follows from the Cauchy-Schwarz inequal-
ity and Q, € By (P, r/+/n), and the equality follows from Assumption 3.1(v)
and (vii).

Proof of the second statement. Pick arbitrary r > 0 and sequence Q, €
By (Py, r/+/n). From the triangle inequality,

(A28)  |Eg,[gu(x, 00)gu(x, 60)] — 02|
< |Eg,[gn(x, 00)8u(x, 65)'] — Ep,[84(x, 00)8x(x, 65)']|
+ |Er,[(x, 00)g(x, 00) T{x ¢ X,}]).
The first term of the right hand side of (A.28) satisfies
|E,[84(x, 00)8(x, 00)] — En,[84(x, 00)gu(x, 6))]]

=<

/ 800X, 60)8,(x, 00 {d QY — dPY

+2

/ 2,(x, 0018, (x, 60)' AP {d Q2 — dP?)

r? r
< mios+2En[|g(x, 00 ] 7= = o(D),
where the first inequality follows from the triangle inequality, the second in-
equality follows from the Cauchy-Schwarz inequality and Q, € By (Py, r/</n),

and the equality follows from Assumption 3.1(v) and (vii). The second term of
(A.28) satisfies

|Ep,[8(x, 00)g(x, 60)I{x ¢ X,}]|
1/(1+6) 8/(14-6)
= </}g(x700)g()@ 00)/‘1+6dP0> (/H{X¢Xn}dpo)

< (En[|g(x, 007" (m " En [ g(x, 60)]"]) " = 0(1),

for sufficiently small 6 > 0, where the first inequality follows from the Holder
inequality, the second inequality follows from the Markov inequality, and the
equality follows from Assumption 3.1(vii).

Proof of (ii). Similar to the proof of Lemma A.4(ii). Repeat the same argu-
ment with R,,(Q,,, 6y, y) instead of R,,(Py, 0., v). O.E.D.
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LEMMA A.6: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Q, € By (Py,r/\/n), ) )

(i) |Eg,[8:(x, To)1l = O(n™'?), |Eg,[gx(x, Tp,)gn(x, Tp,)'] — 2] = o(1),
and |Ep,[08,(x, Tp,)/d0']1 — G| = o(1),

(ii) 'y,,(TQ",Qn) = argmaX,egn — [ ———=—dQ, exists for all n large

(+v'gn(x,Tg,))

enough, |v,(To,, Q.)| = O(n"?), and sup,_,, |v.(Tp,, Q) gu(x, Tp,)| = o(1).

PROOF:
Proof of (i): Proof of the first statement. Pick any r > 0 and sequence Q, €

~ _ Eg,lgn(x,Tg)] : S —1)2
By (Py, r/4/n). Define y = T G T Since |y| =n~172,

A.29 sup |y g.(x,0)| <n?m,— 0.
( P Y8

XEX,0€0

Observe that
(A30)  |Eg,[g.(x, To)gu(x, Tp,) ]|

§/sup|gn(x, 0)|’{dQ}* —apry)’

0O

+2/sup‘gn(x, 0)|2dP5/2{dQ}/2 — dPé/z}

0O

+ Ep, [itglg|gn(x, 9)|2]

%

27 2
=m—+ 2mn\/Ep0 [igglg(x, 0)| ]ﬁ

+ Ep, [iggig(x, 0)|2]

< CEp[sup|g(x, 0)['],

0O

for all n large enough, where the first inequality follows from the triangle in-
equality, the second inequality follows from the Cauchy-Schwarz inequality
and Q, € By (Py, r/+/n), and the last inequality follows from Assumption 3.1(v)
and (vii). Thus, an expansion around y = 0 yields

(A31) Rn(Qn, TQn’ ’;/)

gn(x, Tp,)gn(x, TQ,Z)’} N
(1 + 'ygn(x’ TQn))3

> —14+n""?|Ep,[g:(x, Tp,)]| — CYEo,[8n(x, To,)8n(x, Tp,) |7
= _1 + n_1/2|EQn [gn(x’ TQH):H - Cn_17

=—1+YEg,[8.(x, Tp,)] — 5"EQn[
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for all n large enough, where y is a point on the line joining 0 and 7,
the first inequality follows from (A.29), and the second inequality follows
from %'y = n~! and (A.30). From the duality of partially finite programming
(Borwein and Lewis (1993)), y,T(TQn, 0,) and TQn are written as yn(TQn, 0,) =

argmaxye]R'" Rn(Qn’ TQ,,) 7) and TQn = arg min(ﬂe@ Rn(Qna 09 ’)’n(ea Qn)) There—
fore, from (A.31),

(A32) —1+4+n"?|Eg,[g.(x,Tp,)]| - Cn™"
=< Rn(Qn; TQ,,, :)7) =< Rn(Qna TQ,,’ ’Yn(TQn, Qn))
=< Rn(Qn’ HOa 7n(007 Qn))

By an argument similar to (A.26), combined with |y, (6, Q,)| = O(n~"?) and
|Eo,[8:(x, 6p)]] = O(n~'/?) (by Lemma A.5), we have

(A33) Rn(Qna 005 ’)’n(eo, Qn))
< —1 4 |74(80, Q) ||Eqg, [84(x, 0)]] = C|a (60, Q)|
=-1+0(n™").

From (A.32) and (A.33), the conclusion follows.

Proof of the second statement. Similar to the proof of the second statement of
Lemma A.5(i).

Proof of the third statement. Pick arbitrary r > 0 and sequence Q, €
By (Py, r/«/n). From the triangle inequality,

(A34)  |Eg,[dgu(x, Tp,)/30'] — G|
< |Eg,[98:(x, Tp,)/90'] — Ep,[dga(x, Tp,) /0]
+ | Ep, [I{x ¢ X,}g(x, Tp,)/90']| + |Ep,[9g(x, Tp,)/30'] — G|.
The first term of (A.34) satisfies

|Eo,[984(x, Tp,)/90'] — Ep,[98u(x, Tp,)/30']|

=

/&g,,(x, TQn)/&Q/{dQﬁ/2 — dPg/z}2

+ 2' / g, (x, Tp,) /90 dPy*{dQY* — dP)*}

2
< sup |igu(x, 0)/20|" +2Ep [supldg, (x, 0)/30

XEXy,0eN n

=o(1),

1=
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where the first inequality follows from the triangle inequality, the second in-
equality follows from the Cauchy-Schwarz inequality, and the equality follows
from Assumption 3.1(v) and (vii). The second term of (A.34) is o(1) by the
same argument as (A.16). The third term of (A.34) is o(1) by the continuity of
dg(x, 0)/d6 at 6, and Lemma A.1(ii). Therefore, the conclusion is obtained.
Proof of (ii). Similar to the proof of Lemma A.4(ii). Repeat the same argu-
ment with R,(Q,, Tp,, v) instead of R, (P, 6,,v). O.E.D.

LEMMA A.7: Suppose that Assumption 3.1 holds. Then, for each sequence
Q. € By(Py,r//n)and r >0, Tp, L 0, under Q,.

PROOF: Similar to the proof of Lemma A.1(i). Q.E.D.

LEMMA A.8: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Q, € By (P, r//1),

STy, — 0y = —u3"! / AdP,+0,(1) under Q,,

Vn(Tp, —Tp,) 4 N(0,37") under Q,.

PROOF: The proof of the first statement is similar to that of Lemma A.2
(replace Q, with P, and use Lemmas A.9 and A.10 instead of Lemmas A.5
and A.6). For the second statement, Lemma A.2 and the first statement imply

Vn(Tp, —Tp,)
1 n
= _2,.6/9,1% ;{gnu,», 60) — Eg,[84(x, 00)]} + 0,(1),

under Q,. Thus, it is sufficient to check that we can apply a central limit theo-
rem to the triangular array {g,(x;, 69)}1<i<n.n. Observe that

Eo,[

:/|g,,(x, 00)|"""{dQY? — dPy*)

2+8]

gn(x, 0p)|

+2 / |2.(x, 607 dP)*{dQY> — dPY?} + Ep,[| ga(x, 60)7"]

2
< miﬂ% +2m,*Ep,[|g(x, 90)| ] + Ep,[|g(x, 00)|2+8] <00,

\/_
for all n large enough, where the first inequality follows from the Cauchy-
Schwarz inequality, and the second inequality follows from Assumption 3.1(v)
and (vii). Therefore, the conclusion is obtained. Q.E.D.
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LEMMA A.9: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Q, € By (Py, r//n), the following hold under Q,,:

(i) |Ep,[gn(x, 6)]] = O,(n~'7?), |EP,,[gn(x 00)8(x, 60)'1— 2| =0,(1),

(i) v.(6p, P,) = argmax,cgm — f mdP exists a.s. for all n large

em)ugh, |’Yn(00, Pn)| - Op(” 1/2), al’ld SUPXGX |7n(00a Pn) gn(x, 00)' - Op(l)-

PROOF:
Proof of (i): Proof of the first statement. From the triangle inequality,

|Ep, [8,(x, 60)]|
S |E1’n [gn(x7 00)] - EQn [gn(x’ 00)]| + |EQ,, [gn(x7 00):”

The first term is O, (n~/?) by the central limit theorem for the triangular array
{g.(xi, 60)}1<i<n..- The second term is O(n~'/%) by Lemma A.5(i).
Proof of the second statement. From the triangle inequality,

|Ep,[84(x, 00)80(x, 6) — £2]]
= |Epn[gn(x7 OO)gn(X, 00)/] _EQn[gn(x’ oo)gn(x’ 00),:”
* |EQ” [g,,(x, 00)8n (X, 90),] - Q|

From a law of large numbers, the first term is 0,(1). From Lemma A.5(i), the
second term is o(1).

Proof of (ii). Similar to the proof of Lemma A.4(ii) except using Lem-
ma A.9(i) instead of Lemma A.4(i). Q.E.D.

LEMMA A.10: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Q, € By (Py, r//n), the following hold under Q,:

() |Ep,[8:(x, Te)1l = O, (n7'2), |Ep,[8u(x, Tp,)8u(x, Tp,)1 — 0] =
O0,(n"'*), and |Ep,[3g,(x, Tp,)/30') — G| = 0,(1),

(i) yu(Tp,, P,) = argmax,cem — [ m dP, exists a.s. for all n large

enough, |v,(Tp,P,)| = O,(n"Y?), and sup,_, |V.(Tp,, P.) g:(x, Tp,)| = 0,(1).

PROOF:
Proof of (i). Similar to the proof of Lemma A.6(i).
Proof of (ii). Similar to the proof of Lemma A.6(ii). Q.E.D.
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